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We consider the self-collision of portals in classical general relativity. Portals are wormholes supported
by a single loop of negative mass cosmic string, and being wormholes, portals have a nontrivial topology.
Portals can be constructed so that the curvature is zero everywhere outside the cosmic string, with vanishing
ADM mass. The conical singularities of these wormholes can be smoothed, yielding a spatial topology of
S2 × S1 with a point corresponding to spatial infinity removed. If one attempts to collide the mouths of a
smoothed portal to induce self-annihilation, one naively might think that a Euclidean topology is recovered,
which would violate the classical no topology change theorems. We consider a particular limit of smoothed
portals supported by an anisotropic fluid, and find that while the portal mouths do not experience an
acceleration as they are brought close together, a curvature singularity forms in the limit that the separation
distance vanishes. We find that in general relativity, the interaction between portal mouths is not primarily
gravitational in nature, but depends critically on matter interactions.
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I. INTRODUCTION

A portal is a type of traversable wormhole described in [1]
as a loop-based wormhole supported by a single loop of
negative mass/negative tension cosmic string. Portals can be
thought of as a limiting case of a spherical thin-shell
wormhole that is flattened to a disk. Portals may be
constructed so that the geometry is flat everywhere except
at the string. The dihedral wormhole, the two-dimensional
version of a polyhedral wormhole considered in [2], is an
example of a portal (with corners). To construct a portal one
can employ the thin-shell formalism to compute the energy-
momentum tensor for thematter distribution required to hold
it open.One finds that a tremendous amount of negativemass
is needed to support portals of this type; a calculation in [1]
estimates that a square-shaped dihedral wormhole [2] with a
surface area of ∼1 m2 requires a cosmic string on the
wormhole boundary with a negative mass of the magnitude
of themass of Jupiter to hold it open. Portalsmay be obtained
by taking limits of other spacetime geometries, such as the
zero-mass limit for an appropriate analytic extension of the
Kerr metric [3–5] (there, portals are referred to as gates); see
also [6] which discusses similar wormhole structures in a
class of spheroidal solutions to the vacuum Einstein equa-
tions. In this article, we adopt the terminology of [7,8] for
portals since they are now widely known as such in popular
culture due to examples found in media, for instance, those
found in the eponymous video games [9].
Quantum gravitational considerations suggest that space-

time at the Planck scale may permit fluctuations in top-
ology [10–12], so one might expect portal-like wormholes

to form during the Planck epoch of the early universe. In the
case such wormholes are stable or metastable, cosmic
inflation could expand them to macroscopic sizes [13].
Of course, whether portals or portal-like wormholes are
stable depends on the microscopic description of the
cosmic string required to support the portal. The locally
defined mass for such a cosmic string is negative, so a
microscopic model will necessarily violate energy con-
ditions. More generally, it has been shown under some
rather general considerations that traversable wormholes
[14] require the violation of the null energy condition
[15–17]; see also [1]. However, such a violation does not
necessarily imply that a solution is unphysical. For in-
stance, the avoidance of energy condition violations in the
energy-momentum tensor for matter has been treated
within modified gravity theories [18], and it has been
shown that traversable wormhole solutions can be con-
structed in Einstein-Dirac-Maxwell theory, the fermionic
sector of which violates the null energy condition [19]. For
a detailed discussion of energy conditions, we refer to the
review [20].
In this work, we consider the smoothing and self-

collision of portals, assuming a simple matter model for
the cosmic string. Being wormholes, portals have a non-
trivial spatial topology. Indeed, we will construct smoothed
portals and show that their topology in three spatial
dimensions is S2 × S1 minus a point corresponding to
spatial infinity. For an axisymmetric portal configuration,
one might imagine taking a limit in which the portal mouths
are brought together in a manner in which one would
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naively expect to recover a Euclidean topology. However,
this would run contrary to classical no topology change
theorems [21,22]. Such a limit is nonetheless useful for
identifying and studying obstructions to topology change in
classical general relativity, and may perhaps be of interest
for studying topology-changing processes in quantum
gravity. Furthermore, an understanding of the self-inter-
action of portals can (stability issues aside) shed some light
on whether portals are expected to persist after the Planck
epoch of the early universe.
In Sec. II, we describe the construction of portals. In

Sec. III, we discuss the smoothing of the conical singu-
larities in portals. In Sec. IV, we carefully illustrate the
topology of smoothed portals. In Sec. V, a line element for
static smoothed axisymmetric portals in cylindrical coor-
dinates is constructed. In Sec. VI, junction conditions are
analyzed. In Sec. VII, we examine the self-collision of
portals. In Sec. VIII, we discuss results. Throughout this
article, we consider a 3þ 1 dimensional spacetime and
employ the ð−;þ;þ;þÞ signature, choosing units such that
the gravitational constant G and the speed of light are set to
one, G ¼ 1 and c ¼ 1. Unless stated otherwise, all dia-
grams in this article are spatial, i.e., they describe the
geometry and topology of spatial hypersurfaces.

II. PORTALS: CONSTRUCTION

Portals may be constructed by way of a cut-and-paste
procedure along a pair of two-dimensional disks of radius a
in flat three-dimensional Euclidean space. One can imagine
portals as a limiting case of a spherical thin-shell wormhole
that is flattened to a disk; the thin-shell formalism may then
be employed to compute the energy-momentum tensor for
the matter distribution required to hold it open.
Let both disks be centered on the z-axis, with disk 1

lying in the plane z ¼ z0 and disk 2 lying in the plane
z ¼ −z0. The cut and paste procedure, as illustrated in
Fig. 1, involves gluing the top face of disk 1, denoted by a1,
to the bottom face of disk 2, denoted by a2, and gluing the
bottom face of disk 1, denoted by b1, to the top face of disk
2, denoted by b2. The result is a portal wormhole, i.e., a
portal. Such a wormhole is illustrated in Fig. 2, which also
shows a curve that passes into the bottom face a2 and
emerges from the top face a1. In Fig. 3 a cut of the space
through y ¼ 0 is made and the two-dimensional x-z plane
of the wormhole is shown embedded in a different three-
dimensional Euclidean space. Note that to simplify the
analysis, we shall only consider cases where the identi-
fications are performed without twisting, meaning that a
frame transported along a straight line traveling through the
wormhole does not experience any change in orientation.
It is appropriate at this point to introduce some termi-

nology. The surfaces of disk 1 and disk 2 will be referred to
as the mouths of the wormhole w. The boundary of disks 1
and 2, which is really a single surface of codimension two,

will be denoted ∂w and referred to as the wormhole
boundary.
The wormhole boundary is singular, where we define

singularities in terms of geodesic incompleteness [23], and
in particular, we regard a singularity to be any (limit) point
or submanifold through which one cannot extend a geo-
desic. The singularity here is rather mild; it is in fact a

FIG. 1. Gluing procedure for axisymmetric portals. The left
side of the diagram describes a cylindrical region in the three-
dimensional Euclidean space centered on the z-axis. Disks 1 and
2 are on the respective planes defined by z ¼ z0 and z ¼ −z0,
have radius a and are also centered on the z-axis. The right side of
the diagram describes the gluing procedure for the disks, where
one performs the identifications a1 ↔ a2, and b1 ↔ b2.

FIG. 2. Diagram of a portal in three-dimensional space,
assumed Euclidean. The portal wormhole w has radius a and
boundary denoted by ∂w. The curve γ is parallel to the z-axis.
Observe that γ does not pass through the region −z0 < z < z0,
a ≤ 1. Though the boundary to the wormhole mouths ∂w appears
in two places, it is in fact a single surface. Here the two previous
blue and orange colors used in the identification process of the
two sides of the portal are combined into a single blue color to
simplify the figure.
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conical singularity characterized by a surplus angle of 2π.
To see this, consider Fig. 4, which describes the geometry
surrounding the singularity in terms of a surfaceP, which is
a subset of a plane normal to the wormhole boundary ∂w. In
particular, P is defined to be a two-dimensional surface
cutting through the wormhole boundary ∂w such that the
tangent vector of ∂w is normal to the plane P. In Fig. 4(a),
P is illustrated in the x-z plane as the region enclosed by the
circle. From Fig. 4(b) one can infer that, excluding the
singular point at ∂w, P can be decomposed into two flat
disks P1 and P2 which are each cut along a radial line and
glued together along the cut lines such that the disk P2 is
effectively inserted into the cut line of P1; the point ∂w in
the surface P may then be characterized by a surplus angle
of 2π.
A glimpse of the self-collision problem, or the limit

z0 → 0, can be now advanced. At first glance, the portal
appears to annihilate itself, since it is naively expected that
the wormhole approaches Euclidean space in this limit.
However, being a wormhole, the topology of a portal is
nontrivial, so the complete self-annihilation of a portal
implies a change in the topology of the manifold. Such a
process will likely be of interest for studying topology
change in quantum gravity. A natural question, the answer
to which forms one of the important topics of this article, is
whether gravity encourages or obstructs the collision
between the mouths of portals supported by smoothed
cosmic strings.

III. SMOOTHED COSMIC STRINGS

The metric for a straight nonsingular cosmic string
can be written in cylindrical coordinates ðt; r;φ; ζÞ as
ds2 ¼ −dt2 þ dr2 þ α2r2dφ2 þ dζ2. For α different from
unity this metric has a conical singularity at r ¼ 0. To
smooth this singularity out one introduces a function ψ ¼
ψðrÞ such that the line element takes the form

ds2 ¼ −dt2 þ ψdr2 þ α2r2dφ2 þ dζ2: ð1Þ

One may read off the components of the metric tensor gμν
by comparison with ds2 ¼ gμνdxμdxν. The string smooth-
ing function ψ must satisfy the properties,

lim
r→0

ψðrÞ ¼ α2; lim
r→∞

ψðrÞ ¼ 1: ð2Þ

For a fixed domain 0 < φ < 2π, (with φ ¼ 0 and φ ¼ 2π
identified), α < 1 corresponds to a line element for a
conical spacetime in the limit ψ → 1 with a deficit angle
δ ¼ 2πð1 − jαjÞ. For portals, the relevant parameter choice
is α ¼ 2, which corresponds to a surplus angle of 2π in the
singular limit ψ → 1. The singular string is at r ¼ 0; the
smoothing should maintain the core of the string at r ¼ 0,
with possible shifts Δr much smaller than the width of the
smoothing region.

FIG. 3. An illustration of the x-z plane of Fig. 2, embedded in a
different three-dimensional Euclidean space. Here, the vertical
dotted lines have a proper distance of zero. Again, the two
previous blue and orange colors used in the identification process
of the two sides of the portal have been mixed into a single
blue color.

(a)

(b)

FIG. 4. Illustration of surface P in the neighborhood of ∂w.P is
defined to be the subset to a plane orthogonal to the tangent
vectors of ∂w. In (a), P is illustrated in the x-z plane as the region
enclosed by the circle. In (b), the surface P is a single surface
divided into two regions labeled P1 and P2. In the bottom portion
of the diagram, P1 and P2 are illustrated as flat disks, which have
a cut along the vertical half-dotted lines—they are glued together
in the manner indicated in the top portion of (b) to form the
surface P. Again, the two previous blue and orange colors used in
the identification process of the two sides of the portal have been
given in blue.
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One can evaluate the Einstein tensor Gμν for the metric
given in Eq. (1) which has the following nonvanishing
components

Gtt ¼ −
1

2r
∂
∂r

�
1

ψ

�

Gζζ ¼
1

2r
∂
∂r

�
1

ψ

�
; ð3Þ

so thatGζζ ¼ −Gtt. Combined with the Einstein field equa-
tions Gμν ¼ 8πTμν, where Tμν is the energy-momentum
tensor, this result suggests a rudimentary model for a
negative mass cosmic string in general relativity: one
may model a straight, negative mass cosmic string as a
negative mass anisotropic fluid with energy momentum
tensor T ·· ¼ diagðρe; pr; pφ; pζÞ and equation of state
pr ¼ 0, pφ ¼ 0, and pζ ¼ −ρe, where ρe < 0, and with
ρe being the energy density, and pr, pφ, and pζ, being the
stresses in the respective directions. One might expect the
equation of state pζ ¼ −ρe to lead to instabilities, since one
might generally expect systems containing negative energy
matter to be unstable. However, these issues of instability
concern the microscopic features of the cosmic string. For
our purposes, this simple model, which we imagine to be a
coarse-grained description of a cosmic string, suffices.

IV. TOPOLOGY OF SMOOTHED PORTALS

Now we consider the topology of a portal in a spatial
slice. Since one can smooth out the conical singularities for
cosmic strings, one can construct a manifold containing a
portal that is everywhere regular. To simplify the discus-
sion, we describe the topology in the context of the
axisymmetric portal configuration as illustrated in Fig. 2.
Since we consider axisymmetric portals, the spatial

topology can be represented as a slice along the x-z plane
which upon compactification is illustrated in Fig. 5. In
Fig. 5(a) a straightforward presentation of the compactified
slice is shown; note that this diagram has cuts, indicated by
the dotted lines between the contours ai and bi, i ∈ f1; 2g.
In Fig. 5(b) a different, more elaborate but interesting
presentation of the compactified manifold without cuts is
shown. That Figs. 5(a) and 5(b) describe the same manifold
can be seen by recognizing that regions I and II in Fig. 5(a)
are homeomorphic to their respective counterparts in
Fig. 5(b), and that the labeled segments of the boundaries
enclosing regions I and II are glued together in the same
way in Figs. 5(a) and 5(b).
Figure 6 is a schematic image of Fig. 5, and is helpful for

understanding the topology of the portal. From it, one can
infer the three-dimensional topology by recognizing that the
possible curves σi which could be drawn on Fig. 5(a) and are
displayed explicitly in Fig. 6(a), indeed represent surfaces
with the topology of a two-sphere S2. Moreover, the
same curves that could be drawn on Fig. 5(b) are displayed

in Fig. 6(b), now appearing as horizontal lines. The
identifications indicate a topology S2 × S1 with a point (or
sphere-shaped hole) corresponding to spatial infinity ∂M,

(a)

(b)

FIG. 5. Topology of a portal. (a) describes the compactified x-z
plane of the axisymmetric portal of Fig. 2, with ∂M being the
boundary at r̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
¼ ∞. Here, the dotted lines (repre-

senting the mouths of the wormhole) denote cuts in the manifold,
and the vertical line in the center corresponds to the z-axis. (b) is
an illustration of the same compactified plane, with the vertical
and horizontal sides identified. The contours enclosing the
shaded regions I and II form the boundaries of I and II, and
their segments are labeled to illustrate the correspondence
between the diagrams. The segments labeled c1, c2, f1, f2 all
lie along the z-axis, and the segments e1 and e2 lie along the
boundary ∂M. The remaining segments are glued: a1 is glued to
a2, b1 is glued to b2, and d1 is glued to d2.
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which is represented by the semicircular arcs in Figs. 5(b)
and 6(b).
As an aside, we remark on the relationship of the

construction performed here to the Deutsch-Politzer (DP)
time machine, which is constructed by way of a similar cut-
and-paste procedure in n-dimensional spacetime [24–27].
In particular, the 2þ 1 counterpart of the DP spacetime can
be easily visualized by replacing the z-axis in Fig. 2 with

the t-axis. As a further aside, one might also imagine an
interesting variant of the DP construction in which the
mouths are placed side by side. In particular, one can in
four-dimensional Minkowski space perform a cut-and-
paste procedure on the t ¼ 0 slice along two nonoverlap-
ping regions s1 and s2, each bounded by a two-sphere of the
same radius, such that timelike and null curves passing
through s1 from t < 0 emerge through s2 at t > 0. Such a
construction is homeomorphic to the DP spacetime (though
having a different causal structure, lacking closed timelike
curves), and might be thought of as describing a form of
teleportation in which two regions of space effectively
switch places—for this reason, it may be appropriate to
refer to them as teleporters. The topology of DP spacetimes
(and teleporters, since they are homeomorphic) in n
dimensions is Sn−1 × S1 minus a point corresponding to
infinity [26,27], which for n ¼ 3 is the same as the spatial
topology of the portals considered here. However, it was
also shown in [26,27] that one cannot construct an every-
where smooth metric of Lorentzian signature on these
spacetimes, in contrast to the smooth Euclidean signature
metrics we will construct in this paper. Moreover, though
the spacelike quasiregular singularities of teleporters and
DP spacetimes resemble those of conical singularities, they
differ in that spacelike quasiregular singularities can
significantly alter the causal structure of spacetime in the
vicinity of the singularity—see in particular Fig. 3 of [28].
For this reason, one cannot regard teleporters and DP
spacetimes as limits of smooth spacetimes, making them
difficult to study within the framework of classical general
relativity. Note that though one might imagine that the
formation of spacelike quasiregular singularities is forbid-
den by some physical principle, the formulation of such a
principle (beyond excluding by fiat those singularities) can
be a rather subtle matter, as discussed in [29,30].

V. STATIC LINE ELEMENT FOR
PORTAL GEOMETRIES

Before a proper analysis of the self-interaction and self-
collision of a portal can be conducted, it is appropriate to
specify coordinates which are simple in Fig. 5(a) and
regular everywhere in Fig. 5(b) except for a surface of
codimension one, which is dealt with later when trans-
forming to cylindrical coordinates. To do this, we consider
the configuration illustrated in Fig. 2 in the singular limit
where the manifold is everywhere flat except for the conical
singularity at the wormhole boundary ∂w, i.e., the string
core. Assume ∂w is circular, with a radius a, centered on
the z-axis at �z0. It is natural to consider as a starting point
oblate spheroidal coordinates in the z > 0 region, with ∂w
as the focal ring. In ordinary Euclidean space, spheroidal
coordinates centered on ∂w at z ¼ þz0 are related to
Cartesian coordinates in the following manner:

(a)

(b)

FIG. 6. Behavior of surfaces in Fig. 5. Since (a) is a repre-
sentation of an axisymmetric configuration, one can imagine
rotating (a) about a vertical line in the center so that the contours
here represented by σ1, σ2, σ3, and σ4, all describe surfaces with
topology S2. Since the vertical gray lines in (b) are identified
[these correspond to the vertical gray line in the center of (a)], one
can then infer that the topology is S2 × S1 minus a point or minus
a hole.
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x ¼ a cosh μ cos ν cosϕ;

y ¼ a cosh μ cos ν sinϕ;

z ¼ z0 þ a sinh μ sin ν: ð4Þ

A reflection about the z ¼ 0 plane yields a coordinate
system that is regular everywhere except for a measure zero
set which includes the focal rings at ∂w and the z ¼ 0
plane, where the coordinates fail to be smooth. One can
then apply junction conditions to deal with the nonregu-
larity of the coordinate system at z ¼ 0. The line element
for Minkowski spacetime in spheroidal coordinates takes
the form

ds2 ¼ −dt2 þ 1

2
a2ðcosh 2μ − cos 2νÞðdμ2 þ dν2Þ

þ a2cosh2μcos2νdϕ2; ð5Þ

A second order expansion about μ ¼ 0, ν ¼ 0 of the second
term yields 1

2
a2ðcosh 2μ − cos 2νÞ ≈ a2ðμ2 þ ν2Þ. Similarly

expanding the third term yields a2 cosh2 μ cos2 ν ≈
a2ð1þ μ2 − ν2Þ with ≈ denoting the expansion to second
order. Note that μ ¼ 0, ν ¼ 0 corresponds to the position of
the focal ring. For large a, one may restrict to a small
angular range in ϕ, and neglect terms μ2dϕ2 and ν2dϕ2.
This corresponds to a limit in which one can neglect the
curvature of the wormhole boundary. In this limit, the line
element has the form:

ds2 ≈ −dt2 þ a2ðμ2 þ ν2Þðdμ2 þ dν2Þ þ a2dϕ2: ð6Þ

It is straightforward to verify that this is in fact a flat metric
everywhere except at the origin point μ ¼ 0, ν ¼ 0. It turns
out that one can recover the conical metric given in Eq. (1)
in the limit ψ → 1 for α ¼ 2 with the coordinate choice

given by μ ¼
ffiffiffiffi
2r
a

q
sinφ and ν ¼

ffiffiffiffi
2r
a

q
cosφ which yields

ds2 ≈ −dt2 þ dr2 þ 4r2dφ2 þ a2dϕ2. This result indicates
that the geometry immediately surrounding the conical
singularity of the singular portal is given by the metric
given in Eq. (6) if one extends the domain of the
coordinates μ and ν to negative values. It is straightforward
to work out the following differential expressions

dr ¼ aðμdμþ νdνÞ;
2rdφ ¼ aðνdμ − μdνÞ; ð7Þ

where r ¼ a
2
ðμ2 þ ν2Þ and tanφ ¼ μ

ν. One can then use the
differentials in Eq. (1) to smooth out the conical singular-
ities, resulting in the line element

ds2 ≈ −dt2 þ a2ðμ2 þ ν2Þðdμ2 þ dν2Þ þ a2dϕ2

þ a2ðψ − 1Þðμdμþ νdνÞ2: ð8Þ

When the string smoothing function is trivial, i.e., ψ ¼ 1,
one recovers Eq. (6). We note that here, the point μ ¼ ν ¼ 0
corresponds to the core of the smoothed string (r ¼ 0),
about which the string smoothing function is centered.
The analysis so far requires small values for μ and ν and a

restriction to a small angular range in ϕ. However, Eq. (8)
can be used to motivate a line element suitable for a larger
range of coordinate values. Since μ is a hyperbolic
coordinate, and ν is an angular coordinate, it is natural
to replace instances of μ and ν in the Taylor-expanded line
element (8) with the appropriate hyperbolic and trigono-
metric functions. Choosing

r ¼ a
4
ðcosh 2μ − cos 2νÞ ð9Þ

(note that r ¼ 0 at the core of the string), one may then
construct the line element

ds2 ¼ −dt2 þ 1

2
a2ðcosh 2μ − cos 2νÞðdμ2 þ dν2Þ

þ a2cosh2μcos2νdϕ2

þ a2ðψ − 1Þðsinh μdμþ sin νdνÞ2; ð10Þ

and it can be verified that this line element reduces to
Eq. (8) in the appropriate limits.
It is convenient to transform Eq. (10) back to Cartesian

coordinates, since the properties of the boundary surface
z ¼ 0, which corresponds to the constraint (recall z0 is half
the z separation between the portal mouths)

sinh μ sin ν ¼ −
z0
a
; ð11Þ

are of particular interest for the self-collision problem. In fact,
since the problem is axially symmetric, it is more convenient
to transform to the cylindrical coordinates ρ, ϕ, z, where one
has the coordinate definition ρ ≔ a cosh μ cos ν, and z is
defined in Eq. (4). One can verify that in this cylindrical
coordinate system, the line element (10) takes the form

ds2 ¼ −dt2 þ dρ2 þ ρ2dϕ2 þ dz2

þΨðρ; zÞ − 1

Δz2 þ Δρ2
½Δρdρþ Δzdz�2; ð12Þ

whereΨðρ; zÞ ¼ ψðrÞ is the string smoothing function, with
r being given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔρ2 þ Δz2Þ½ð2aþ ΔρÞ2 þ Δz2�

p
2a

; ð13Þ

and the following have been defined
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Δρ ≔ ρ − a;

Δz ≔ z − z0: ð14Þ

In these coordinates, the core (r ¼ 0) of the smoothed
string is located at Δρ ¼ Δz ¼ 0. We compute the Einstein
tensor for Eq. (12) to leading order in a−1, assuming
Δρ ≪ a, and that Ψðρ; zÞ and its derivatives are of order
unity for large a. The nonvanishing components of the
Einstein tensor take the form:

Gt
t ¼ GþOða−1Þ

Gρ
ρ ¼ Oða−1Þ

Gϕ
ϕ ¼ GþOða−1Þ

Gz
z ¼ Oða−1Þ

Gρ
z ¼ Gz

ρ ¼ Oða−1Þ; ð15Þ

where G ¼ GðΔρ;ΔzÞ is given by:

G ¼ 1

4Ψ2ðΔρ2 þ Δz2Þ
× f−2Δz½1þ Ψ − Δρ∂ρΨ�∂zΨ − Δρ2∂zΨ2

− ½2Δρð1þΨÞ∂ρΨþ Δz2ð∂ρΨÞ2�
þ 2Ψ½Δz2∂2

ρΨþ ΨΔρ2∂2
zΨ − 2ΔρΔz∂z∂ρΨ�g: ð16Þ

As expected, we recover the Einstein tensor of Eq. (3) in
the limit of large a, so in this limit, the model of the
cosmic string as an anisotropic fluid with equation of
state pζ ¼ −ρe applies. Of course, for finite a, when the
curvature of the cosmic string becomes significant, a more
complicated matter model will be needed.

VI. JUNCTION CONDITIONS

A. Thin shell at z= 0

The line element given in Eq. (12) is only valid for z > 0.
However, we can construct a metric for the z < 0 region
simply by reflecting in the plane z ¼ 0, which is depicted
by the shaded region in Fig. 7. In general, such a procedure
will create a thin shell at the z ¼ 0 surface. For singular
(non-smoothed) strings, the space is 3-flat, except at the
locations of the strings. Thus although there might be a
coordinate discontinuity at the z ¼ 0 plane, there would be
no geometrical singularity. However, the situation is differ-
ent for smoothed portals, since the smoothing of the string
produces a “fattened” matter distribution which can extend
to the z ¼ 0 surface.
To see that a thin shell is created under a reflection about

z ¼ 0, we employ the thin shell formalism [31,32] to
compute the surface stress tensor at z ¼ 0 (here the indices
i, j correspond to the coordinates t; ρ;ϕ):

τij ¼ −
1

8π
ð½Kij� − ½K�γijÞ; ð17Þ

where Kij is the extrinsic curvature tensor of the surface
z ¼ 0, which is given by the expression Kij ¼
1
2α ð

∂γij
∂z −Diβj −DjβiÞ, where Di is the surface covariant

derivative compatible with the induced metric γij ¼ gij,

βi ≔ gzi, α ¼
ffiffiffiffiffiffi
j gγ j

q
, with g and γ being the determinants

of the respective metric tensors gμν and γij, and the brackets
½A� ≔ Aþ − A− denote a jump in the extrinsic curvatures.
The extrinsic curvatures are defined such that the unit normal
vectors point in the same direction across the surface. Due to
the symmetry in the problem, a nonvanishing extrinsic
curvature will generally lead to a nonvanishing jump so that
½Kij� ¼ 2Kij and ½K� ¼ 2K, resulting in a nonvanishing
surface energy-momentum tensor τij. A nonvanishing τij
describes the surface stress-energy of a thin shell at the z ¼ 0
surface, as illustrated in Fig. 7.
Given the line element Eq. (12) for z > 0, and demand-

ing that the geometry be symmetric about z ¼ 0, the non-
vanishing components of the surface energy-momentum
tensor [given by (17)] take the form

τtt ¼ τρρ þ τϕϕ;

τρρ ¼
ΔρðΨ − 1Þz0

4πðaþ ΔρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΨðΔρ2 þ z20ÞðΔρ2Ψþ z20Þ

p ;

τϕϕ ¼ 1

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΨðΔρ2 þ z20Þ

p ðΔρ2Ψþ z20Þ3=2
f2ðΨ − 1Þz30

þ Δρz0ðΔρ2ðΨþ 1Þ þ 2z20Þ∂ρΨ

þ Δρ2ðΔρ2Ψþ z20Þ∂zΨg; ð18Þ

where Ψ and its derivatives are evaluated at z ¼ 0, and
mixed index components are presented due to their sim-
plicity. The final expression for the components of τij
depends on the choice of a string smoothing function, and
vanishes where Ψ ¼ 1 and ∂zΨ ¼ ∂ρΨ ¼ 0, outside the

FIG. 7. An illustration of the self-collision problem. The z ¼ 0
plane has been shaded in gray. Equation (18) indicates that a
generic smoothing of the string (defined by a choice for Ψ) will
generate a thin shell at the z ¼ 0 plane. For a smoothed string of a
given thickness, one expects the energy of the shell to be
concentrated in a circular strip (indicated in dark gray) centered
at ρ ¼ a.
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smoothing region. We note that τρρ vanishes regardless, in
the large a limit.

B. Junction conditions at z= 0

The shell at z ¼ 0 is somewhat artificial, as it is the
consequence of a reflection about the z ¼ 0 plane. To
eliminate this shell, we impose junction conditions, which
amounts to the demand that τij ¼ 0. These junction
conditions will lead to boundary conditions on the string
smoothing function Ψ and its derivatives at z ¼ 0. Earlier,
we saw that τij ¼ 0 if Ψ ¼ 1 and ∂zΨ ¼ ∂ρΨ ¼ 0, but here
we show that for finite a, these boundary conditions follow
from τij ¼ 0. From Eq. (18), we note that if τρρ ¼ 0 and
τϕϕ ¼ 0, then τtt ¼ 0. The vanishing of τρρ (assuming finite
a) requires Ψjz¼0 ¼ 1, which in turn implies ∂ρΨjz¼0 ¼ 0.
Under these conditions, the vanishing of τϕϕ requires
∂zΨjz¼0 ¼ 0. Thus, we can eliminate the shell by requiring
the boundary conditions Ψ ¼ 1, ∂ρΨ ¼ 0, and ∂zΨ ¼ 0 at
the z ¼ 0 surface.
In the large a limit, one can see from Eqs. (18) that

τρρ → 0, so perhaps one can in this limit relax the condition
Ψ ¼ 1 at z ¼ 0. From Eq. (18), we find that the condition
τtt ¼ τϕϕ ¼ 0 yields the following differential equation for
Ψjz¼0:

∂ρΨ ¼ −
ðΔρ4Ψþ Δρ2z20Þ∂zΨþ 2ðΨ − 1Þz30

2Δρz30 þ Δρ3ðΨþ 1Þz0
; ð19Þ

with the understanding that all quantities here are evaluated
at z ¼ 0 and are at most functions of ρ. The right hand side
of Eq. (19) can be expanded in Δρ, under the assumption
that Ψ and ∂zΨ do not diverge at Δρ ¼ 0, yielding:

∂ρΨ ¼ 1 −Ψ
Δρ

þOðΔρÞ: ð20Þ

If we require ∂ρΨ to be zero or finite at z ¼ 0 and
Δρ ¼ 0, then ðΨ − 1Þjz¼0 ∝ Δρ, and it follows that at z ¼ 0

and Δρ ¼ 0, one must have Ψ → 1.

C. Example smoothing function

It is not too difficult to construct a string smoothing
function satisfying the finite a boundary conditions Ψ ¼ 1,
∂ρΨ ¼ ∂zΨ ¼ 0 at the z ¼ 0 surface. As an example, one
may start with the following smoothing function ψ [33]:

ψ ¼ r2 þ ᾱ2ε2

r2 þ ε2
; ð21Þ

where ᾱ has the value 2 for a smoothed cosmic string with
surplus angle 2π at large r, and ε is roughly the thickness of
the smoothed cosmic string. From ψ , one can construct
a string smoothing function Ψ satisfying the boundary

conditions by promoting the quantity ᾱ to a function of z of
the form:

ᾱ

�
z
z0

�
¼ αþ ð1 − αÞ

Ωð zz0Þ
Ωð0Þ ; ð22Þ

where α ¼ 2 for the portal geometry, and the function ΩðxÞ
satisfies the properties

Ω0ð0Þ ¼ Ωð1Þ ¼ 0;

Ωð0Þ ≠ 0;

Ωð∞Þ ¼ 0: ð23Þ
These properties are constructed to ensure that ᾱ ¼ 2 at

ρ ¼ a and z ¼ z0; this condition is needed to avoid an
additional conical singularity.

VII. DYNAMICAL PORTALS AND
SELF-COLLISION

A. The self-collision problem

The self-collision problem for an axisymmetric portal
can be understood with the help of Fig. 7. Here, we
consider symmetry about z ¼ 0. As remarked earlier, the
self-collision problem refers to a process in which the portal
mouths are brought together, and corresponds to the limit
z0 → 0. It may be useful to provide a conceptualization of
the self-collision problem in the context of Fig. 5. One
might imagine the self-collision of a portal as a process that
brings together a portion of the top and bottom faces of
Fig. 5(b). In particular, the outermost portions of the
segments d1 and d2 in Fig. 5(b) are pinched together with
segments b1 and b2 to make the left and right edges
(segments c1 and c2) disappear. Alternatively, the distances,
as defined by the spatial metric, along a subclass of curves
that pass through the contours b1, b2 vanish.
To study the self-collision problem, we will consider a

dynamical portal geometry in the large a limit and solve the
Einstein field equations in 3þ 1 form in the vicinity of an
initial slice satisfying a generalization of the line element in
Eq. (12). The goal of this calculation is to determine the
acceleration of the portal mouths for a given set of initial
data. For the matter model, we consider an anisotropic fluid
with no stresses in the direction perpendicular to the length
along the string, as indicated in Eq. (3); in doing so, we
ignore matter interactions in the directions perpendicular to
the string and highlight gravitational interactions between
the portal mouths.

B. Time dependent metric

Here, we consider the large a limit. To simplify the
notation, we make the replacements ρ → a and Δρ → ρ̄.
Without loss of generality, one may restrict to Gaussian
normal coordinates in a neighborhood of the t ¼ 0 slice.
We generalize the line element in Eq. (12) to the form:
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ds2 ¼ −dt2 þ dρ̄2 þ a2dϕ2 þ dz2 þ Ψ − 1

χ2Δz2 þ ρ̄2

× ½λ2dρ2 þ 2χρ̄Δzdρ̄dzþ χ2Δz2dz2�; ð24Þ

where now Ψ ¼ Ψðρ̄; z; tÞ, χ ¼ χðρ̄; z; tÞ, and λ ¼ λðρ̄; z; tÞ
are smooth functions of ρ̄ and z. To ensure that the
geometry is locally flat at the core of the string ρ̄ ¼ 0,
z ¼ z0, we require that Ψð0; z0; 0Þ ¼ 4, χð0; z0; 0Þ ¼ 1,
and λðρ̄; z0; 0Þ ¼ ρ̄; notice that the line element reduces to
the form of Eq. (12) at the core of the string ρ̄ ¼ Δz ¼ 0.
It is also appropriate to choose initial data such that _Ψ ¼
_χ ¼ _λ ¼ 0 at the core of the string, so the locally flat
condition is maintained, at least to first order in time. To
simplify the analysis, we will choose initial data such that at
ρ̄ ¼ 0, the quantity Ψ has a vanishing first derivative with
respect to ρ̄.

C. Geodesic distance between portal mouths

Here, we consider the length of a spatial geodesic
connecting the cores of the smoothed strings supporting
the portal mouths. The core of the string is defined to be
ρ̄ ¼ 0, Δz ¼ 0 for z > 0, and the symmetric statement for
z < 0. For the spatial part (dt ¼ 0) of the line element in
Eq. (24), one may verify that for a tangent vector
v ¼ ð0; 0; vzÞ, ð3ÞΓi

jkv
jvk ∝ vi at ρ̄ ¼ 0 provided that

∂ ρ̄Ψjρ̄¼0 ¼ 0, which follows our choice of initial data
along ρ̄ ¼ 0. Thus, the line ρ̄ ¼ 0, ϕ ¼ constant is a spatial
geodesic. Along this geodesic, the spatial part of the line
element (24) simplifies to ds2 ¼ Ψdz2, so that the length L
of the geodesic connecting the centers of the smoothed
strings is given by the integral:

L ¼ 2

Z
z0

0

ffiffiffiffi
Ψ

p
dz ¼ L0 þ V0tþ

A0

2
t2 þOðt3Þ: ð25Þ

The initial distance L0, the initial velocity V0 and the
initial acceleration A0 may be obtained by expandingΨ in t,
with the following result:

L0 ≔ 2

Z
z0

0

ffiffiffiffiffiffi
Ψ0

p
dz;

V0 ≔
Z

z0

0

_Ψ0ffiffiffiffiffiffi
Ψ0

p dz;

A0 ≔
Z

z0

0

2Ψ0Ψ̈0 − _Ψ2
0

2Ψ3=2
0

dz; ð26Þ

where the subscripts 0 denote evaluation at t ¼ 0, overdots
denote derivatives with respect to t, and all quantities are
understood to be evaluated at ρ̄ ¼ 0. Since we are working
in Gaussian normal coordinates, the velocity and accel-
eration are measured according to observers aligned with ∂

∂t.
This result indicates that if ∂ ρ̄Ψjρ̄¼0 ¼ 0 is assumed, one

only needs to know Ψ and its first and second time
derivatives at ρ̄ ¼ 0 to obtain the acceleration A0 (L0

and V0 are determined by the initial data).

D. Anisotropic fluid

For the matter model, we consider an anisotropic fluid
with an energy-momentum tensor of the form:

Tμν ¼ ρuðuμuν − wμwνÞ ð27Þ

where ρu is the rest frame energy, uμ is a unit timelike
vector and wμ is a unit spacelike vector. We choose them to
have the following form:

u ¼ ðut; uρ̄; 0; uzÞ

w ¼
�
0; 0;

1

a
; 0

�
ð28Þ

where the component ut of the four-velocity is fixed by the
normalization condition. The initial conditions for uρ̄ and
uz will be discussed in the next section.

E. 3 + 1 equations and their solution

Wewill work in the 3þ 1 formalism, assuming Gaussian
normal coordinates which correspond to the conditions
gtt ¼ −1 and gti ¼ 0. Here, the spatial metric will be
denoted γij ¼ gij to avoid confusion. In Gaussian normal
coordinates, the 3þ 1 decomposition [34–36] of the
Einstein field equations takes the form:

_γij ¼ 2Kij; ð29Þ

_Kij ¼ 2KikKj
k − KKij − 3Rij − κ

�
1

2
ðS − ρmÞγij − Sij

�
;

ð30Þ

DkðKi
k − γki KÞ ¼ κSi; ð31Þ

3Rþ K2 − KijKij ¼ 2κρm; ð32Þ

where κ ¼ 8π (setting G ¼ c ¼ 1), Kij is the extrinsic
curvature, ρm ≔ Ttt is the energy density defined with
respect to Gaussian normal observers, Sij ¼ Tij are the
purely spatial components of the energy-momentum tensor
(with trace S ≔ γijSij), Si ≔ Tti is the momentum density,
3Rij is the spatial Ricci tensor, and 3R its trace.
Equations (31) and (32) are constraints on the initial data,
and are referred to respectively as the momentum and
Hamiltonian constraints. The time evolution of the system
is provided by Eqs. (29) and (30).
First, we consider the constraints. The momentum

constraint can in principle be solved for the fluid velocity
components uρ̄ and uz but the constraint is quartic in uρ̄ and
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uz. However, in the ρ̄ → 0 limit, one component of the
momentum constraint equation reads:

Δz2ρuuρ̄χ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δz2ðuρ̄Þ2χ2 þ Δz2χ2½ðuzÞ2Ψþ 1�

p
ðΔz2χ2Þ3=2 ¼ 0; ð33Þ

which implies uρ̄ ¼ 0 at ρ̄ ¼ 0. We therefore require
uρ̄ ∝ ρ̄. The Hamiltonian constraint given in (32) can be
solved for the fluid density ρu [see Eq. (27)], bearing in
mind ρm ¼ Ttt.
We now turn to the evolution equations. For the purposes

of this article, it suffices to compute the second time
derivatives Ψ̈, χ̈, λ̈ at t ¼ 0 and ρ̄ ¼ 0, given some
specification for the initial data Ψ, χ, λ and _Ψ, _χ, _λ. At
the t ¼ 0 surface, the extrinsic curvature Kij may be
computed by taking the time derivative of γij; its time
derivative ∂tKij may be computed similarly. One finds that
each term in Eq. (30) has the same matrix form:

M ¼

2
64
a 0 b

0 0 0

b 0 c

3
75; ð34Þ

so that there are three independent equations for Ψ̈0, χ̈0, ̈λ0.
In the ρ̄ → 0 limit, the equations yield the following
expressions (the details of the calculation are provided in
the associated Mathematica file [37]):

Ψ̈0 ¼
_Ψ2

2Ψ
;

χ̈0 ¼
_χ

2

�
4_χ

χ
þ
�
1

Ψ
−

4

Ψ − 1

�
_Ψ
�
−

3RΔzχ2Ψuz∂ ρ̄uρ̄

ðΨ − 1Þ½1þ ðuzÞ2Ψ� ;

̈λ0 ¼ _λ

�
4_χ

χ
−

2 _Ψ
Ψ − 1

−
ðuzÞ2 _Ψ

2ðuzÞ2Ψþ 2

�
: ð35Þ

These equations are subject to the condition:

_λ0 ¼
Δzχ

ffiffiffiffiffiffiffiffiffiffiffiffi
−3RΨ

p
uzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðΨ − 1ÞððuzÞ2Ψþ 1Þ
p ; ð36Þ

which assumes 3R < 0 (this is the case if K and ρm < 0
dominate in the Hamiltonian constraint) and is needed to
ensure that ̈λ0 remains finite at ρ̄ ¼ 0. That an additional
constraint on _λ0 is needed should not be surprising, as we
have already solved the Hamiltonian and momentum
constraints, and have fixed the gauge in choosing
Gaussian normal coordinates. It is well-known that general
relativity has two physical degrees of freedom, and since
there are three functions in the metric, one might expect the
equations to yield an additional constraint. We note that if
_Ψ ¼ _χ ¼ _λ ¼ Δz ¼ 0, Eq. (35) implies Ψ̈ ¼ χ̈ ¼ ̈λ ¼ 0.
For the appropriate initial conditions at the core of the

smoothed string at ρ̄ ¼ 0, Δz ¼ 0, this ensures that no
conical singularity forms at the core of the string.
Now that we have an expression for Ψ̈0, we can evaluate

the integrand for A0. As it turns out, the solution Ψ̈0 ¼
_Ψ2
0

2Ψ0

in Eq. (35) is precisely the condition for the vanishing of the
integrand of A0. This leads us to the conclusion that for the
class of portals we have considered here, the portal mouths
experience no acceleration toward each other; the portal
mouths neither attract nor repel, even when brought close
together.

F. Curvature singularity formation

Since the absence of an effective force between the portal
mouths indicates that classical general relativity presents no
obstruction to their collision, one might conceivably
imagine that the collision process results in topology
change. A topology changing process will likely require
the tearing of the manifold, and one might expect the
formation of a curvature singularity as the portal mouths are
brought together.
To see that a curvature singularity does indeed form, we

analyze what happens to the Ricci scalar as the portal
mouths are brought together. Consider the case where the
portal mouths are approaching each other with some initial
velocity given by some specification of initial data for _Ψ.
One might imagine that since Eq. (24) has a rather general
form, the metric at a later time may be recast into the same
form with a smaller value of z0 and χ ∼ 1 at ρ̄ ¼ 0. If in this
case Ψ is of order unity, a significantly smaller value for z0
will correspond to a decreased proper distance L [as
defined in Eq. (25)] between the portal mouths. At
ρ̄ ¼ 0, the Ricci scalar takes the form:

Rjρ̄¼0 ¼
2Ψ̈Ψ − _Ψ2 − 2Ψ∂ ρ̄∂ ρ̄Ψ

2Ψ2

þ ðΨþ 1Þχ∂zΨ − 2ðΨ − 1ÞΨ∂zχ

Δzχ2Ψ2

−
2ðΨ − 1Þð∂zλ

2 þ χ − 1 −Ψ_λ2Þ
Δz2χ2Ψ

: ð37Þ

For points jΔzj < z0, the last two terms in the Ricci
scalar become large as z0 → 0. It is straightforward to show
that ∂zΨ ∼ kz

z0
, with kz of order unity. At the core of the

string ρ̄ ¼ 0, Δz ¼ 0, one must have Ψ ¼ α2 ¼ 4 to ensure
that the spatial geometry there remains locally flat. Though
the boundary conditions for satisfying the junction con-
ditions at z ¼ 0 for the line element (24) are more
complicated, one can still establish that the junction
conditions require Ψ ¼ 1 at ρ̄ ¼ 0. Since Ψ ¼ 4 at z ¼
z0 and Ψ ¼ 1 at z ¼ 0 along ρ̄ ¼ 0, one concludes that for
some value of jΔzj < z0, ∂zΨ ∼ kz

z0
, with kz of order unity.

Now at z ¼ 0, one might also expect z derivatives to
vanish since the geometry is symmetric about z ¼ 0.
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Since Ψ ¼ 1 at ρ̄ ¼ 0, and assuming that the dynamics
preserve the symmetries (Ψ̈ ¼ _Ψ ¼ 0), the Ricci scalar
simplifies to:

Rjρ̄¼z¼0 ¼ −∂ ρ̄∂ ρ̄Ψ: ð38Þ

In principle, the Ricci scalar at ρ̄ ¼ 0, z ¼ 0may diverge
in the z0 → 0 limit if ∂ ρ̄∂ ρ̄Ψ diverges.
Intuitively, the formation of a singularity in the Ricci

curvature indicates that the density of anisotropic fluid
becomes large as the portal mouths approach each other. To
understand this, consider what happens to the matter
between the portal mouths in the region ρ̄ < a, jΔzj <
z0 for finite a. In between the portal mouths, curves parallel
to the z-axis (by which we mean curves of constant t; ρ̄;ϕ)
have finite length on the order of the separation distance
z0 ∼ L between the portal mouths. As the portal mouths
approach each other, the separation distance decreases, and
it follows that the volume of the region between the portal
mouths decreases. For smoothed cosmic strings, there will
always be a finite amount of matter in the region ρ̄ < a,
jΔzj < z0, and it follows that the density of the matter must
become large as the portal mouths approach each other.
This mechanism is illustrated in Fig. 8, which depicts the
anisotropic matter distribution between the portal mouths
as a bundle of (low) negative mass cosmic strings.

VIII. CONCLUSION

We have described in detail the construction and top-
ology of portals supported by smoothed matter distribu-
tions, and have obtained line elements, given in Eqs. (12)
and (24) for a class of (large radius) axisymmetric portals
supported by an anisotropic fluid. We have shown that the
portal mouths experience no acceleration toward each
other, which in turn suggests that there is no effective

force present between the portal mouths in the direction
parallel to the axis of symmetry. We have also shown that
the Ricci scalar diverges as the portal mouths collide, as one
might expect. These results indicate that for the class of
portal-type geometries considered, gravity alone does not
prevent a collision between mouths of smoothed portals,
and that, since the Ricci scalar diverges, a complete
description of such a collision and the final state will
likely require a theory of quantum gravity. Regardless,
one might be able to make some progress toward under-
standing the aftermath of portal self-collisions by relaxing
symmetry assumptions and considering the interactions of
unsmoothed cosmic strings. The interaction of unsmoothed
cosmic strings as described in [38,39] suggests that in
general, the self-collision of asymmetric portal geometries
in such a case will likely result in highly nontrivial spatial
topologies and cosmic string configurations.
Our results are based on a simple classical matter model,

that of an anisotropic fluid, in which the stresses for the
smoothed cosmic string are simplified in that they are
directed only along the length of the string, at least in the
large a limit we have considered. Since there are no stresses
in the directions perpendicular to the strings, the fluid does
not contribute to the effective force between portal mouths.
The lack of acceleration between the portal mouths arising
from the solution to the Einstein equations indicates that
gravity does not generate an effective force between the
portal mouths. One might expect this to be the case if one
imagines the anisotropic fluid to consist of a bundle of low
(negative)mass/tension cosmic strings; since the geometry in
the immediate region around a single unsmoothed cosmic
string is locally flat, a collection of strings will not gravitate.
One might expect our results to change when quantum

effects are included. In the region between the portal
mouths ρ < a, jΔzj < z0, curves parallel to the z-axis have
topology S1, which suggests that quantum fields within this
region must satisfy periodic boundary conditions. One may
then expect the portal mouths to experience an attractive
(topological) Casimir force when the portal mouths are
separated by small distances (see 12.3.3 of [1] and also [40]
for a discussion of the Casimir effect with periodic
boundary conditions).
A more detailed matter model for the smoothed cosmic

string could also produce an effective force between the
portal mouths, changing our result. One might, for instance,
consider an electrically charged cosmic string, which
would produce a repulsion between the portal mouths if
the overall charge is nonzero, or a neutral current-carrying
string, which would attract, as the symmetry about z ¼ 0
implies that the currents are parallel. It is also worth
investigating whether strings with negative mass can be
constructed in null energy condition-violating field theo-
ries, such as the Einstein-Dirac-Maxwell theory. A simple
example involves the construction of negative mass strings
from phantom fields, in which the action for the matter

FIG. 8. An illustration describing the behavior of a rigid
arrangement of cosmic strings between the portal mouths as
the mouths approach each other (the leftmost diagram is earliest
in time). Here, the z direction is horizontal, the radial direction is
vertical, and the strings (indicated by the red and blue dots) are
perpendicular to the page and parallel to the ϕ direction. The
portal mouths correspond to the identified vertical lines. As the
distance between the portal mouths decreases, the density of
cosmic strings increases.
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sector for the fields has the opposite sign relative to the
gravitational action. In the case of local gauge strings
[41,42], one might imagine that in the long-distance limit
(in which gravity is weak), their phantom counterparts
interact similarly, as the actions differ only by an overall
sign. From numerical studies of interacting local gauge
strings [43], parallel oriented strings weakly repel, so one
might expect a weak repulsion for phantom gauge strings.
These considerations indicate that the nature and

strength of the interaction between portal mouths are not
determined primarily by the gravitational interaction (as
described by classical general relativity). Rather, the
behavior of closely separated portal mouths depends
critically on the behavior of matter—both the matter
supporting the portals and the behavior of quantum fields

around portals can change the direction and magnitude of
the effective force between the portal mouths. An interest-
ing question, motivated by the singularity which forms as
the portal mouths are brought together, is whether low-
energy quantum gravitational effects, manifesting as
higher-curvature terms in the effective action, introduce
nontrivial gravitational interactions between the portal
mouths.
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