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The analysis of teleparallel fðT;∇μ1T;…;∇μn � � �∇μ1TÞ gravity in the Jordan and Einstein frames is
presented. The equivalence between fðT;∇μ1T;…;∇μn � � �∇μ1TÞ gravity and a scalar-multitensor theory is
proved in both frames for systems with a regular Hessian matrix. For each order of derivative an auxiliary
tensor of the same order is introduced. As a consequence, the order of the differential equation for the tetrad
field is reduced to an equation of order two, but the price to be paid is the analysis of a system of coupled
equations for the auxiliary fields.
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I. INTRODUCTION

Despite the success of general relativity (GR) in predict-
ing the existence of gravitational waves, light deflection,
etc., some problems still remain unanswered by this theory.
For instance, the nonrenormalizability [1,2] and the exist-
ence of singularities prevent the construction of a self-
consistent theory of quantum gravity. Two other problems
are related to galaxy rotation curves and the accelerated
expansion of the universe, both of them not accommodated
by GR in the presence of ordinary matter [3–6]. A possible
solution to these last two problems is the introduction
of exotic contents of matter-energy, known as dark energy
and dark matter [7–11]. Accordingly, these two should
correspond to 95% of the total amount of matter and energy
of the Universe.
As an alternative to the “dark side” (and also as an

attempt to circumvent the problems of the quantization of
gravity), there are some proposals which suggest modifi-
cations to the geometric content of the field equations.
Several of these modifications also end up presenting some
problems like the existence of ghosts, etc., but they are still
of interest either as toy models or as effective theories.
In the Riemann manifold, these modifications include the
so called “fðRÞ theories”, as well as other modifications in
which the Lagrangian has a functional dependence with the
scalar curvature, the Riemann, Ricci or Weyl tensors, and
eventually with their derivatives [12–51].
Other proposals include modifying the underlying mani-

fold in which the theory is built. In particular, if the
Riemann manifold is replaced, then other modifications
can be studied. Here, the interest is devoted to theories
constructed on the Weitzeböck manifold [52,53], which is a
manifold that presents torsion instead of curvature. These

theories are known as teleparallel gravities and among
them one was proposed to be equivalent to GR, the so
called “teleparallel equivalent of general relativity” (TEGR)
[53–59]. The Lagrangian of this theory is linear in the
scalar torsion T, just like the Einstein-Hilbert Lagrangian is
linear in the scalar curvature R. Since TEGR is in many
ways equivalent to GR, many of the problems found on the
latter still remain on the former. This way, extensions of
TEGR (and their applications) have been considered in
modifications that include “fðTÞ theories” and other
models where the Lagrangian depends on derivatives of
the torsion scalar [60–73].
Extensions of the teleparallel gravity usually modify the

number of degrees of freedom (d.o.f.) of the physical
system when comparing with the number obtained in
TEGR. Determining the d.o.f. is not a trivial task as has
been discussed in Refs. [65,68,69,71]. An interesting
approach to deal with this problem is to consider the
system in the Jordan and/or Einstein frames. In both
representations, auxiliary variables are introduced and in
some cases, the analysis can be carried out in a simpler
way. For instance, for fðTÞ theories (in which the field
equations are second order differential equations in the
geometric representation), a scalar field is introduced and
the analysis of the field equations or the analysis of the
Hamiltonian structure can clarify the number of d.o.f. of the
problem [65,68].
Theories that include derivatives of the scalar torsion

usually lead to differential equations of order higher than
two. In cases like these, the analysis of the system in the
Jordan and Einstein frames can be even more interesting
once the order of the differential equations can be reduced
in these representations. As it will be seen, besides the usual
scalar field that usually one obtains in fðTÞ theories,
other auxiliary tensor fields will be introduced. In both
frames, the result is a scalar-multitensor theory. The results*pompeia@ita.br
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obtained here are somehow similar to those obtained in
Riemann manifolds for fðR;∇μ1R;…;∇μn � � �∇μ1RÞ the-
ories [47,48], in which a complicated higher-order differ-
ential equation is replaced by a system of coupled equations
of lower order of derivatives.
As far as the author is concerned, the analysis of

fðT;∇μ1T;…;∇μn � � �∇μ1TÞ theories in the Jordan and
Einstein frames has not been addressed in the literature.
This is what is going to be explored here. The aim of this
work is to present the Jordan and Einstein representations
for these theories. In Sec. II, fðT;∇μT; eaμÞ theories will
analyzed in both Jordan and Einstein frames. In Sec. III, the
analysis of Sec. II is extended to include higher order
derivatives. In Sec. IV, an example is presented. Section V
will be dedicated to the final remarks.

II. FOURTH-ORDER TELEPARALLEL
THEORIES OF GRAVITY

The fundamental variables that will be considered here
are the tetrad fields eaμ. Latin indexes a; b; c;…;
g ¼ ð0Þ; ð1Þ; ð2Þ; ð3Þ label the internal/tangent space coor-
dinates; greek indexes refer to the Weitzenböck spacetime
coordinates running from 0 to 3, while latin indexes
i; j; k;… ¼ 1, 2, 3 label space coordinates.
The tetrads and the spacetime metric tensor gμν are

related by

gμν ¼ ηabeaμebν ; ηab ¼ eμaeνbgμν; ð1Þ

where ηab is the Minkowski metric tensor and the tetrad eμa
and eaμ satisfy the duality relation:

eaμeνa ¼ δνμ; eaμe
μ
b ¼ δab: ð2Þ

The covariant derivative is defined in terms of the
Weitzenböck connection

Γα
μν ¼ eαa∂μeaν ; ð3Þ

which is a connection that presents torsion,

Tα
μν ≡ Γα

μν − Γα
νμ ¼ eαa½∂μeaν − ∂νeaμ�; ð4Þ

but no curvature.
A proper index contraction of the torsion tensor defines

the vector

Tμ ≡ Tν
νμ; ð5Þ

while a quadratic combination defines the scalar torsion:

T ≡ 1

4
TβρμTβρμ þ

1

2
TβρμTρβμ − TβTβ ð6Þ

This scalar can also be expressed in terms of the super-
potential [63,64] or dual torsion [66]:

Σναμ ≡ 1

4
ðTναμ þ Tανμ − TμναÞ þ 1

2
ðgμνTα − gανTμÞ ð7Þ

so that T ¼ ΣβρμTβρμ.
In order to study a gravitation theory equivalent to

general relativity in a Weitzenböck manifold, one has to
consider the action

S ¼
Z

d4xeT þ Smatter; ð8Þ

where e ¼ det eaμ ¼ ffiffiffiffiffiffi−gp
and Smatter stands for the action of

a matter field. This leads to the so called TEGR.
The simplest modification that can be made in tele-

parallel gravity is the replacement of T in the Lagrangian by
a function of T. This is known in the literature as “fðTÞ
gravity”. In this section, the interest is devoted to a more
general class of teleparallel gravity, in which the gravita-
tional Lagrangian depends on a general function of T and
its first derivative:

Sg ¼
Z

d4xefðT;∇μT; eaμÞ: ð9Þ

The explicit dependence of f with eaμ is necessary in
order to consider the contribution of the tetrad which is not
present in T and ∇μT. Actually, in order to build a scalar
quantity with ∇μT, a contraction of indexes needs to take
place. The tetrad can be used for this, and this is the reason
why it is considered separately [74]. It is important to stress
that covariant derivative considered here is build with the
Weitzenböck connection and not the Levi-Civita one. This
class of modified gravities will be analyzed in the geo-
metric, Jordan and Einstein frames.

A. Geometric frame

In this subsection, the field equations will be analyzed
considering only the tetrad fields as the independent
variables. Since the Lagrangian depends on the derivative
of the torsion, fourth-order equations differential equations
for the tetrad are expected.
The variation of the action integral leads to

δSg ¼
Z

d4x

�
eeαaδeaαf þ ∂f

∂T δT

þ ∂f
∂ð∇μTÞ

δð∇μTÞ þ
∂f
∂edα δe

d
α

�
: ð10Þ

The third term on the right-hand side (rhs) can be
rewritten as
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e
∂f

∂ð∇μTÞ
δð∇μTÞ ¼ ∂μB

μ
ð1Þ − e∇T

μ
∂f

∂ð∇μTÞ
δT; ð11Þ

where the modified covariant derivative operator ∇T
μ is

defined as ∇T
μ ≡∇μ − Tμ. After a straightforward calcu-

lation, the field equations are obtained, leading to:

4

e
∂σ½eΦ̄ð1ÞΣd

σα� þ 4Φ̄ð1ÞΣσραTσρd − eαdf −
∂f
∂edα ¼ 0; ð12Þ

where

Φ̄ð1Þ ≡
�∂f
∂T −∇T

μ
∂f

∂ð∇μTÞ
�
: ð13Þ

These equations can be up to fourth-order in the
derivatives of the tetrad field according to the functional
dependence of f with the derivative of the scalar torsion.
For instance, this will be the case if this dependence is
quadratic or of higher order. It is interesting to note that
the structure of the field equations is pretty similar to the
ones obtained in fðTÞ theories [75]—one should replace
f0ðTÞ → ð∂f∂T −∇T

μ
∂f

∂ð∇μTÞÞ and subtract the term ∂f
∂edα.

Dealing with nonlinear fourth-order differential equa-
tions may be a hard task. As an alternative, the action can be
studied in other frames where auxiliary fields are intro-
duced. This will be explored in the next subsections.

B. Jordan frame

The analysis of the action (9) in the Jordan frame consists
in introducing auxiliary variables in order to reduce the
differential order of the field equations. The price to be paid
is the presence of extra field equations that compose a
system of coupled equations. In the present case, a scalar
and a vector fields are introduced.
The starting point is to write an action S0g that will be

equivalent to Sg. This is done with the help of a scalar and a
vector quantities which must be considered as independent
fields; T and ∇μT are taken as parameters:

S0g ¼
Z

d4xe

�
fðξ; ξμ; eaμÞ−

∂f
∂ξ ðξ− TÞ− ∂f

∂ξμ ðξμ −∇μTÞ
�
:

ð14Þ

The variations of this action (with respect to ξ and ξμ) under
the assumption of the minimal action principle lead to the
set of equations:0

B@
∂2f
∂ξ2

∂2f
∂ξ∂ξμ

∂2f
∂ξν∂ξ

∂2f
∂ξν∂ξμ

1
CA� ðξ − TÞ

ðξμ −∇μTÞ
�

¼ 0: ð15Þ

The equivalence between S0g and Sg is attained when

det

0
B@

∂2f
∂ξ2

∂2f
∂ξ∂ξμ

∂2f
∂ξν∂ξ

∂2f
∂ξν∂ξμ

1
CA ≠ 0; ð16Þ

i.e. when the Hessian matrix in regular. This implies

�
ξ − T ¼ 0;

ξμ −∇μT ¼ 0:
ð17Þ

Clearly, ∂f
∂ξ and ∂f

∂ξμ play the role of Lagrangian multi-

pliers, so they can be considered as independent fields

8<
:

ϕ≡ ∂f
∂ξ ;

ϕν ≡ ∂f
∂ξν ;

ð18Þ

These new quantities have an inversible relation with ξ
and ξν due to Eq. (16). In terms of these new fields ϕ and
ϕμ, S0g is given by

S0g ¼
Z

d4xe½ϕT þ ϕμ∇μT − Ūðϕ;ϕμ; eaμÞ�; ð19Þ

where

Ūðϕ;ϕμ; eaμÞ≡ ϕξþ ϕμξμ − fðξ; ξμ; eaμÞ: ð20Þ

In this expression, one has to consider ξ ¼ ξðϕ;ϕμÞ and
ξμ ¼ ξμðϕ;ϕμÞ.
In Eq. (19), the vector field couples to the derivative of

the scalar torsion. This coupling is such that the action still
depends on the second derivative of the tetrad. However,
this is a linear dependence so that a fourth-order equation
will not be obtained for the tetrad field.
Notwithstanding, this derivative coupling can be elim-

inated with the introduction of a new scalar field Φ. For
this, an integral by parts has to be performed in the term
eϕμ∇μT [similarly to what was done in Eq. (11)]. This new
scalar field is defined as a linear combination of ϕ, the
covariant derivative of ϕμ and the contraction of the vector
field with the torsion (in its vector form):

Φ≡ ϕ −∇T
μϕ

μ: ð21Þ

The action becomes

S0g ¼
Z

d4xeðΦT −U þ ∂μBμÞ; ð22Þ

where the potential U is given by
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U ¼ UðΦ;ϕμ;∇T
μϕ

μ; eaμÞ
≡ ðΦþ∇T

μϕ
μÞξþ ϕμξμ − fðξ; ξμ; eaμÞ; ð23Þ

and Bμ stands for a surface term.
The action given in Eq. (22) resembles a teleparallel

scalar-tensor (Brans-Dicke-like) theory. However, one must
recall that a vector field is also present in the potential. In
principle, there are no kinetic terms for Φ and ϕμ, so one
could infer that the field equations for these fields are not
dynamical and will only set constraints. This may be
misleading and the manipulation of the field equations
can show otherwise. This way, the analysis of the dynamics
and the counting of the degrees of freedom has to be done
carefully for each case.
Finally, the field equations will be obtained. The funda-

mental fields are eaα;Φ, and ϕμ and the respective field
equations are8>><
>>:

4
e ∂σðΦeΣa

σαÞ þ 4ΦΣσραTσρa − eαaðΦT −UÞ þ δU
δeaα

¼ 0;

T − δU
δΦ ¼ 0;

δU
δϕμ ¼ 0:

ð24Þ

The first of these equations presents several similarities
with Eq. (12). However, it is clearly a second order
differential equation for the tetrad field. The order of the
second equation has to be determined for each case, but it
seems reasonable to suppose it can depend only on the first
derivative of the vector field. For the last equation, it can be
up to second order since the potential U has a functional
dependence with the covariant divergence of ϕμ.
This system can also be analyzed in the Einstein frame.

This will be done in the next subsection.

C. Einstein frame

Now the analysis of the system in the Einstein frame is
presented. Although using the term “Einstein frame” may
be a “forced terminology” (as discussed in Ref. [65]), it will
be applied in the same context that it was used in this
reference. This means that the starting point is the action
obtained in the Jordan frame—Eq. (22)—except by a
surface term which is neglected. Next, a conformal trans-
formation is applied to the tetrad field:

ẽaμðxÞ ¼ ΩðxÞeaμðxÞ; ẽμaðxÞ ¼ Ω−1ðxÞeμaðxÞ: ð25Þ
The conformal transformation is propagated to the
Weitzenböck connection, torsion, scalar torsion, covariant
derivative and so on. Some useful relations are

Γ̃α
νμ ¼ Γα

νμ þ δαμ∂ν lnΩ; ð26Þ

T̃α
νμ ¼ Tα

νμ þ δαμ∂ν lnΩ − δαν∂μ lnΩ; ð27Þ

T̃μ ¼ Tμ − 3∂μ lnΩ; ð28Þ

T̃ ¼ Ω−2T þ 4Ω−2Tν∂ν lnΩ − 6Ω−2gμν∂ν lnΩ∂μ lnΩ;

ð29Þ

∇̃T
μϕ

μ ¼ ∇T
μϕ

μ þ 4∂μ lnΩϕμ: ð30Þ

The conformal factor is chosen such that

Ω2 ¼ Φ: ð31Þ

As a consequence, the coupling between the scalar
torsion and the scalar field is absorbed by the transformed
quantities:

S0g ¼
Z

d4xẽ
�
T̃ − 2T̃ν∂ν lnΦ−

3

2
g̃μν∂ν lnΦ∂μ lnΦ− Ṽ

�
;

ð32Þ

where

Ṽ ≡Φ−2UðΦ;ϕμ; ∇̃T
μϕ

μ; ẽaμÞ − 4Φ−2∂μ lnΩϕμξ: ð33Þ

If a new scalar field is defined,

ϕ̃≡ ffiffiffi
3

p
lnΦ ⇒ Φ ¼ e

ϕ̃ffiffi
3

p
; ð34Þ

then a canonical kinetic term appears for this scalar field.
Up to a surface term, the transformed Lagrangian is
expressed as a linear combination of the scalar torsion
(i.e., the same of TEGR) with a canonical kinetic term
for ϕ̃. There is also a nonminimal coupling term between
the scalar field, the torsion and its derivative. The potential
Ṽ includes the contribution of the vector field:

S0g¼
Z

d4xẽ

�
T̃−

1

2
g̃μν∂νϕ̃∂μϕ̃þ

2ffiffiffi
3

p ϕ̃∇̃T
ν T̃ν− Ṽ

�
; ð35Þ

where ∇̃T
ν ≡ ð∇̃ν − T̃νÞ.

Now the variation of the action for the fields ẽaμ; ϕ̃, and
ϕμ leads to the following field equations:

− 4ẽΣ̃σραT̃σρa − 4∂σðẽΣ̃a
σαÞ þ ẽẽαa

�
T̃ −

1

2
g̃μν∂νϕ̃∂μϕ̃ − Ṽ −

2ffiffiffi
3

p □̃ ϕ̃

�

þ ẽ
2ffiffiffi
3

p
�
∇̃σϕ̃T̃α þ ∇̃σ∇̃αϕ̃þ

ffiffiffi
3

p

2
∇̃αϕ̃∂σϕ̃

�
ẽσa − ẽ

δṼ
δẽaα

¼ 0; ð36Þ
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8<
:

□̃ ϕ̃−T̃ν∂νϕ̃þ 2ffiffi
3

p ∇̃T
ν T̃ν − δṼ

δϕ̃
¼ 0;

δṼ
δϕμ ¼ 0:

ð37Þ

Alternatively, Eq. (36) can be presented in a more
compact form:

4

ẽ
∂σðẽΣ̃a

σαÞ þ 4Σ̃σραT̃σρa − ẽαaT̃ ¼ κT̃α
ðeffÞa; ð38Þ

where

T̃α
ðeffÞa ≡

1

κ
ẽαa

�
−
1

2
g̃μν∂νϕ̃∂μϕ̃ − Ṽ −

2ffiffiffi
3

p □̃ ϕ̃

�

þ 1

κ

2ffiffiffi
3

p
�
∇̃σϕ̃T̃α þ ∇̃σ∇̃αϕ̃þ

ffiffiffi
3

p

2
∇̃αϕ̃∂σϕ̃

�
ẽσa

−
1

κ

δṼ
δẽaα

: ð39Þ

Equation (38) is exactly the same one obtained in
TEGR where T̃α

ðeffÞa is interpreted as an effective energy-

momentum tensor for the auxiliary fields ϕ̃;ϕμ. The first
equation of Eq. (37) is a dynamical equation for ϕ̃ while
the second one may be dynamical (or not) for ϕμ, depend-
ing on the potential Ṽ. It can be a differential equation up to

second-order, once Ṽ depends on the first derivative of the
vector field.

III. HIGHER-ORDER TELEPARALLEL
THEORIES OF GRAVITY

The analysis performed in the previous section can be
extended to a more general class of modified gravities in
which the function f depends on derivatives of the scalar
torsion up to order n. Essentially, this extension consists in
taking an action for the gravitational field given by:

Sg ¼
Z

d4xefðT;∇μ1T;∇μ1∇μ2T;…;∇μ1…∇μnT; e
g
αÞ:

ð40Þ

As before, the explicit dependence of f on the tetrad
ensures that a scalar quantity can be built with the tensors
of order 1 to n that are now present in this Lagrangian. The
analysis in the geometric, Jordan, and Einstein frames is
presented below.

A. Geometric frame

Once again the analysis is carried out by considering the
tetrad fields as the independent variables. The Lagrangian
now depends on the derivatives up to order (nþ 1) of the
tetrad, meaning that the field equations will be differential
equations of order up to 2ðnþ 1Þ.

The variation of the action (40) gives:

δSg ¼
Z

d4xδef þ
Z

d4xe

�∂f
∂T δT þ ∂f

∂ð∇μ1TÞ
δð∇μ1TÞ þ…þ ∂f

∂ð∇μ1…∇μnTÞ
δð∇μ1…∇μnTÞ þ

∂f
∂edα δe

d
α

�
: ð41Þ

The successive use of integration by parts must be carried out in order to let the action in a more suitable form. In general,
each term containing the variation of a derivative of T will result in a boundary term combined with a term proportional to
the variation δT and other terms proportional to the variation of the tetrad field. To illustrate this, the expression obtained for
the term involving the second derivative of T is presented:

e
∂f

∂ð∇μ1∇μ2TÞ
δð∇μ1∇μ2TÞ ¼ ∂μB

μ
ð2Þ þ e∇T

μ2∇T
μ1

∂f
∂ð∇μ1∇μ2TÞ

δT þ e∇T
μ1

� ∂f
∂ð∇μ1∇αTÞ

eρg∇ρT

�
δegα: ð42Þ

This result can be extended so that:

e
∂f

∂ð∇μ1…∇μnTÞ
δð∇μ1…∇μnTÞ

¼ ∂μB
μ
ðnÞ þ ð−1Þne∇T

μn…∇T
μ1

∂f
∂ð∇μ1…∇μnTÞ

δT

− ð−1Þ1e∇T
μ1

�
ðδαν2…δμnνn e

μ2
d þ � � � þ δμ2ν2…δμn−1νn−1δ

α
νne

μn
d Þ ∂f

∂ð∇μ1∇ν2…∇νnTÞ
∇μ2…∇μnT

�
δedα
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− ð−1Þ2e∇T
μ2∇T

μ1

�
ðδαν3…δμnνn e

μ3
d þ � � � þ δμ3ν3…δμn−1νn−1δ

α
νne

μn
d Þ ∂f

∂ð∇μ1∇μ2∇ν3…∇νnTÞ
∇μ3…∇μnT

�
δedα

−…

− ð−1Þn−1e∇T
μn−1…∇T

μ1

�
δανne

μn
d

∂f
∂ð∇μ1…∇μn−1∇νnTÞ

∇μnT

�
δedα: ð43Þ

After a long calculation and defining the quantity

Φ̄ðnÞ ≡
�∂f
∂T −∇T

μ1

∂f
∂ð∇μ1TÞ

þ∇T
μ2∇T

μ1

∂f
∂ð∇μ1∇μ2TÞ

þ � � � þ ð−1Þn∇T
μn…∇T

μ1

∂f
∂ð∇μ1…∇μnTÞ

�
; ð44Þ

the field equations are obtained:

0 ¼ 4

e
∂σðΦ̄ðnÞeΣd

σαÞ þ 4Φ̄ðnÞΣσραTσρd − eαdf −
∂f
∂edα −∇T

μ1

� ∂f
∂ð∇μ1∇αTÞ

eμ2d ∇μ2T

�
þ…

þ ð−1Þ1∇T
μ1

�
ðδαν2…δμnνn e

μ2
d þ � � � þ δμ2ν2…δμn−1νn−1δ

α
νne

μn
d Þ ∂f

∂ð∇μ1∇ν2…∇νnTÞ
∇μ2…∇μnT

�

þ ð−1Þ2∇T
μ2∇T

μ1

�
ðδαν3…δμnνn e

μ3
d þ � � � þ δμ3ν3…δμn−1νn−1δ

α
νne

μn
d Þ ∂f

∂ð∇μ1∇μ2∇ν3…∇νnTÞ
∇μ3…∇μnT

�
þ � � �

þ ð−1Þn−1∇T
μn−1…∇T

μ1

�
δανne

μn
d

∂f
∂ð∇μ1…∇μn−1∇νnTÞ

∇μnT

�
: ð45Þ

In this case, the order of derivative of the field equations can be up to 2ðnþ 1Þ. Of course, this is determined by the form of
the function f. In particular, in order to have a 2ðnþ 1Þ differential equation, f needs to present (at least) a quadratic
dependence with the higher derivative of the scalar torsion. By comparing these field equations with Eq. (12), one sees that
the structure of the first line of Eq. (45) is essentially the same of Eq. (12), with Φ̄ð1Þ replaced by Φ̄ðnÞ. The remaining lines of
Eq. (45) have no analog in Eq. (12) since they all are related to higher order terms. It is worth noting that the number of
terms in these remaining lines increases considerably with n.
As before, in order to reduce the order of the differential equations, one can introduce auxiliary fields. This is done next,

where the system is analyzed in the Jordan and Einstein frame representations.

B. Jordan frame

The lesson that one can take from the analysis of the Jordan frame of fðTÞ theories and the previous analysis
of fðT;∇μTÞ theories is: If f depends only on the scalar T, then an auxiliary tensor of order zero (i.e., a scalar field)
should be considered; if f depends on the scalar field and its first derivative, then a tensor of order zero (a scalar field)
and a tensor of order 1 (a vector field) have to be introduced. If this line of reasoning is extended to
fðT;∇μ1T;∇μ1∇μ2T;…;∇μ1…∇μnT; e

g
αÞ, then for each order of derivative, a tensor of the same order should be proposed.

In fact, in order to build an action equivalent to Eq. (40) with auxiliary fields, one must introduce nþ 1 tensors
ξ; ξμ1 ; ξμ1μ2 ;…; ξμ1…μn and nþ 1 Lagrange multipliers ∂f

∂ξ ;…; ∂f
∂ξμ1…μn

so that

S0g ¼
Z

d4xe

�
fðξ; ξμ1 ; ξμ1μ2 ;…; ξμ1…μnÞ −

∂f
∂ξ ðξ − TÞ − ∂f

∂ξμ1
ðξμ1 −∇μ1TÞ

−
∂f

∂ξμ1μ2
ðξμ1μ2 −∇μ1∇μ2TÞ −… −

∂f
∂ξμ1…μn

ðξμ1…μn −∇μ1…∇μnTÞ
�
: ð46Þ
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The null variations of S0g considering the independence
of ξ; ξν1 ;…; ξν1…νn lead to

H

0
BBBBBB@

ðξ − TÞ
ðξμ1 −∇μ1TÞ

..

.

ðξμ1…μn −∇μ1…∇μnTÞ

1
CCCCCCA

¼ 0; ð47Þ

where

H ≡

0
BBBBBBBB@

∂2f
∂ξ2

∂2f
∂ξ∂ξμ1 … ∂2f

∂ξ∂ξμ1…μn

∂2f
∂ξν1∂ξ

∂2f
∂ξν1∂ξμ1 … ∂2f

∂ξν1∂ξμ1…μn

..

. ..
. . .

. ..
.

∂2f
∂ξν1…νn∂ξ

∂2f
∂ξν1…νn∂ξμ1 … ∂2f

∂ξν1…νn∂ξμ1…μn

1
CCCCCCCCA
:

Whenever H is regular (i.e. detH ≠ 0), the equivalence
of S0g and Sg is proved and the Lagrange multipliers can be
considered as independent fields with an inversible relation
with the quantities ξ; ξμ1 ; ξμ1μ2 ;…; ξμ1…μn :

8>>>>>>>><
>>>>>>>>:

ϕ≡∂f
∂ξ ;

ϕν1 ≡ ∂f
∂ξν1 ;

..

.

ϕν1…νn ≡ ∂f
∂ξν1…νn

;

⇒

8>>>>>><
>>>>>>:

ξ¼ ξðϕ;ϕμ1 ;…;ϕμ1…μnÞ;
ξν1 ¼ ξν1ðϕ;ϕμ1 ;…;ϕμ1…μnÞ;
..
.

ξν1…νn ¼ ξν1…νnðϕ;ϕμ1 ;…;ϕμ1…μnÞ:

ð48Þ

Equation (46) then is rewritten as

S0g ¼
Z

d4xe½fðξ; ξμ1 ; ξμ1μ2 ;…; ξμ1…μnÞ

− ϕξ − ϕμ1ξμ1 − ϕμ1μ2ξμ1μ2 − ϕμ1…μnξμ1…μn

þ ϕT þ ϕμ1∇μ1T þ ϕμ1μ2∇μ1∇μ2T þ � � �
þ ϕμ1…μn∇μ1…∇μnT�: ð49Þ

Recurrent integration by parts of the terms involving
derivatives of the scalar torsion shows that this action
can be expressed in a very compact form

S0 ¼
Z

d4xeðΦT −U þ ∂μBμÞ; ð50Þ

where ∂μBμ stands for a surface term. The quantities Φ and
U are defined as

Φ≡ ϕ −∇T
μ1ϕ

μ1 þ∇T
μ2∇T

μ1ϕ
μ1μ2 þ � � �

þ ð−1Þn∇T
μn…∇T

μ1ϕ
μ1…μn ; ð51Þ

and

U ≡UðΦ;ϕμ1 ;…;ϕμ1…μn ;∇T
μnϕ

μ1 ;∇T
μ2∇T

μ1ϕ
μ1μ2 ;…;∇T

μn…∇T
μ1ϕ

μ1…μnÞ
≡ ½Φþ∇T

μ1ϕ
μ1 −∇T

μ2∇T
μ1ϕ

μ1μ2 þ � � � − ð−1Þn∇T
μn…∇T

μ1ϕ
μ1…μn �ξ

þ ϕμ1ξμ1 þ ϕμ1μ2ξμ1μ2 þ � � � þ ϕμ1…μnξμ1…μn − ðξ; ξμ1 ; ξμ1μ2 ;…; ξμ1…μnÞ: ð52Þ

In this expression, ξ; ξμ1 ; ξμ1μ2 ;…; ξμ1…μn have to be taken
as functions of ϕ;ϕμ1 ;…;ϕμ1…μn .
The action presented in Eq. (46) has the same

structure of the one presented in Eq. (22)—a nonminimal
coupling term between the scalar field and the scalar
torsion, no explicit kinetic terms for the auxiliary fields
and a potential that includes the dependence with
the auxiliary tensors. It is interesting to note that the
potential U has a dependence with the recurrent diver-
gence of each auxiliary tensor field, i.e., ∇T

μnϕ
μ1 ,

∇T
μ2∇T

μ1ϕ
μ1μ2 , …;∇T

μn…∇T
μ1ϕ

μ1…μn .
The field equations obtained from variations of Eq. (46)

with respect to eaα;Φ;ϕμ1 ;…;ϕμ1…μn are

8>>>>>>>>><
>>>>>>>>>:

4∂σðΦeΣa
σαÞþ4eΦΣσραTσρa−eeαaðΦT−UÞþe δU

δeaα
¼0;

T− δU
δΦ¼0;

δU
δϕμ1 ¼0;

..

.

δU
δϕμ1…μn ¼0:

ð53Þ

The first of these equations is a second order differential
equation for the tetrad field, while the order of the
remaining equations has to be determined in each case.
In principle, the maximum order of derivative for the
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auxiliary fields is n due to presence of the term
∇T

μn…∇T
μ1ϕ

μ1…μnξ in the potential U. It is important to
stress that derivatives of the tetrad field of order higher than
two may eventually appear in the other equations since the
covariant derivative is recurrently applied.

C. Einstein frame

The analysis of the system in the Einstein frame follows
precisely the same steps that were taken in the previous
Section. All the equations from Eq. (25) until Eq. (31) are

valid in the present case. After the application of the
conformal transformation, the action becomes

S0g ¼
Z

d4xẽ

�
T̃ − 2T̃ν∂ν lnΦ −

3

2
g̃μν∂ν lnΦ∂μ lnΦ

− Ṽ þΦ−2L̃M

�
; ð54Þ

where the potential Ṽ is extended as:

Ṽ ¼ Φ−2UðΦ;ϕμ1 ;…;ϕμ1…μn ; ∇̃T
μnϕ

μ1 ; ∇̃T
μ2∇̃T

μ1ϕ
μ1μ2 ;…; ∇̃T

μn…∇̃T
μ1ϕ

μ1…μnÞ

−Φ−2
�
2∂μ lnΦϕμ −

5

2
∇T

μ2ð∂μ1 lnΦϕμ1μ2Þ − 2∂μ2 lnΦ∇T
μ1ϕ

μ1μ2 − 5∂μ2 lnΦ∂μ1 lnΦϕμ1μ2

þ hð3Þðϕμ1μ2μ3 ;…; ∂μ1 lnΦ; ∂μ1∂μ2 lnΦ; ∂μ1∂μ2∂μ3 lnΦÞ

þ � � � þ hðnÞðϕμ1…μn ;…; ∂μ lnΦ;…; ∂μ1…∂μn lnΦÞ
�
ξ: ð55Þ

Above, hð3Þðϕμ1μ2μ3 ;…;∂μ1 lnΦ;∂μ1∂μ2 lnΦ;∂μ1∂μ2∂μ3 lnΦÞ,
…; hðnÞðϕμ1…μn ;…; ∂μ lnΦ; ;…∂μ1…∂μn lnΦÞ stand for
functions containing contractions of the tensors (and their
derivatives) with the derivatives of the conformal factor (or
equivalently derivatives of Φ).
As before, a new scalar field is defined as in Eq. (34) and

the action becomes (disregarding surface terms):

S0g ¼
Z

d4xẽ

�
T̃ þ 2ffiffiffi

3
p ϕ̃∇̃T

ν T̃ν −
1

2
g̃μν∂νϕ̃∂μϕ̃ − Ṽ

�
:

ð56Þ

This is formally the same action obtained in Eq. (35). This
way, the field equations have the same structure of the
equations Eq. (36) and Eq. (37):

4

ẽ
∂σðẽΣ̃a

σαÞ þ 4Σ̃σραT̃σρa − ẽαaT̃ ¼ κT̃α
ðeffÞa; ð57Þ

8>>><
>>>:

δṼ
δϕμ1 ¼ 0;

..

.

δṼ
δϕμ1…μn ¼ 0:

ð58Þ

The effective energy-momentum tensor is defined just like
in Eq. (39). Again, a TEGR-like equation is obtained and
the order of derivative of each field has to be determined for
the particular cases of interest. In the next section, an
example will be presented.

IV. EXAMPLE

In order to illustrate how to proceed in each of the frames
presented previously, an example will be considered. Let
the Lagrangian be composed by a combination of a linear
and a quadratic terms in the scalar torsion and a quadratic
contraction of the first derivative of T:

fðT;∇μT; eaμÞ ¼ αT þ β

2
T2 þ γ

2
gμν∇μT∇νT: ð59Þ

As mentioned before, in order to build a scalar quantity
with∇μT, a contraction using explicitly the tetrad field (via
gμν) had to be considered. This is the reason why the term
∂f
∂edα appears in Eq. (12) [and also in Eq. (45)]. This is the

term that makes the structure of the field equation obtained
here slightly different from the one obtained in fðTÞ
theories. Now the analysis for each representation frame
is presented.

A. Geometric frame

In the geometric frame, the partial derivatives of f with
respect to T;∇μT, and edα are

8>>><
>>>:

∂f
∂T ¼ αþ βT;

∂f
∂ð∇μTÞ ¼ γgμν∂νT;

∂f
∂edα ¼ −γgανeμd∇μT∇νT;

ð60Þ

so that Φ̄ð1Þ given in Eq. (13) is

P. J. POMPEIA PHYS. REV. D 103, 124036 (2021)

124036-8



Φ̄ð1Þ ¼ αþ βT − γgμν∇T
μ∇νT: ð61Þ

Finally, the field equation is

0 ¼ eαd

�
αT þ β

2
T2 þ γ

2
gμν∂μT∂νT

�
− γgανeμd∂μT∂νT

− 4½αþ βT − γgμν∇T
μ∂νT�ΣσραTσρd

−
4

e
∂σðe½αþ βT − γgμν∇T

μ∂νT�Σd
σαÞ: ð62Þ

This is a differential equation of order 4 in the tetrad
fields—see the term 4γgμνΣd

σαð∂σ∂μ∂νTÞ of the last line
of the equation above. A quick analysis of the Cauchy
problem [76] shows that the fourth-order time derivative of
tetrad fields are present only for the components eai .
Actually, there are no time derivatives of ea0 in T, so these
variables cannot be considered as dynamical from the point
of view of the Cauchy problem. If one takes into account
the general covariance of the theory, it seems reasonable to
suppose that one can get rid of 4 of the remaining d.o.f. The
global symmetry by Lorentz transformations may be useful
to reduce even more the number of d.o.f. In principle, we
can suppose that up to 4 of the remaining degrees of
freedom could be potentially eliminated. Were this case, the
system would be left with 4 d.o.f. However, it is not clear if
this can be achieved. Actually, determining the number of
d.o.f. that can be eliminated is not trivial and deserves a
careful analysis. At this point, what can be said is that the
number of d.o.f. lies between 4 and 8.

B. Jordan frame

The analysis in the Jordan frame begins with the
introduction of the auxiliary scalar and vector quantities
ξ and ξμ. This way,

fðξ; ξμ; eaμÞ ¼ αξþ β

2
ξ2 þ γ

2
gμνξμξν: ð63Þ

The Hessian matrix in this case is given by

H ≡
0
B@

∂2f
∂ξ2

∂2f
∂ξ∂ξμ

∂2f
∂ξν∂ξ

∂2f
∂ξν∂ξμ

1
CA ¼

�
β 0

0 γgμν

�
: ð64Þ

As long as β and γ are non-null, detH ≠ 0. This way, the
scalar and vector fields ϕ and ϕμ are well defined and
establish an inversible relation with ξ and ξμ:(

ϕ≡ ∂f
∂ξ ¼ αþ βξ;

ϕν ≡ ∂f
∂ξν ¼ γgμνξμ;

⇒

(
ξ ¼ ϕ−α

β ;

ξμ ¼ 1
γ gμνϕ

ν:
ð65Þ

The scalar field Φ is defined by Eq. (21) so that the
potential U [Eq. (23)] is given by

UðΦ;ϕμ;∇T
μϕ

μ; eaμÞ ¼
1

2β
½Φþ∇T

μϕ
μ1 − α�2 þ 1

2γ
gμνϕνϕμ:

ð66Þ

With this potential, the action can be written as

S0 ¼
Z

d4xe

�
ΦT −

1

2β
ðΦþ∇T

μ1ϕ
μ1 − αÞ2 − 1

2γ
gμνϕνϕμ

�
:

ð67Þ

Finally, the variation of S0 leads to the field equations,
given by:

0 ¼ −4ΦΣσραTσρa −
4

e
∂σðΦeΣa

σαÞ − 1

γ
ϕaϕ

α þ eαaΦT

− eαa
1

2β
½Φþ∇T

μϕ
μ − α�2 − eαa

1

2γ
gμνϕνϕμ

þ 1

β
eαa½ϕρ∂ρðΦþ∇T

μϕ
μÞ þ ðΦþ∇T

μϕ
μ − αÞ∇T

ρϕ
ρ�:

ð68Þ

0 ¼ T −
1

β
ðΦþ∇T

μϕ
μ − αÞ; ð69Þ

0 ¼ 1

β
∂ρðΦþ∇T

μϕ
μÞ − 1

γ
ϕρ: ð70Þ

As one can directly verify, this is a set of second order
differential equations. To be more precise, Eqs. (68)
and (70) are second order equations (for eaμ and ϕμ) while
Eq. (69) is of first order. From the point of view of the
Cauchy problem, the latter should be understood as a
constraint on the initial data. Equation (70) sets four
equations for ϕμ but only when ρ ¼ 0 a dynamical equation
is obtained. Besides, only the component ϕ0 can be
considered a dynamical variable since this is the only
component of ϕμ that is twice derived in time. When ρ ¼ 1,
2, 3, a set of constraints on the initial data are obtained for
ϕi. Finally, Eq. (68) is a second order differential equation
for both the tetrad and the vector fields (while it is of first
order for Φ). In this equation, the second-order time
derivatives of the tetrad field are only present for the
variables eai . This way, ea0 cannot be considered as
dynamical variables. In addition, if one considers general
covariance of the theory, then 4 degrees of freedom can be
eliminated. The global Lorentz invariance could be used to
eliminate additional d.o.f.—between 0 and 4 (as discussed
previously, the number of d.o.f. associated to this symmetry
that can be eliminated is not easily determined). A naive
counting of the degrees of freedomwould consider between
4 and 8 coming from the tetrad fields and one from ϕμ

(i.e., ϕ0). However, this is misleading. If, for instance, the
trace of Eq. (68) is considered (by a contractionwith eaα), then
a combination between ∂0∂0ϕ

0 and ∂0∂0eai emerges and
one of the degrees of freedom can be further eliminated.
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This way, as it happens in the geometric approach, this
system presents between 4 and 8 degrees of freedom.

C. Einstein frame

As presented previously, the passage from the Jordan
to the Einstein frame is performed by a conformal

transformation of the tetrad field. A new scalar field ϕ̃
is also introduced in such a way that the fundamental
fields are ϕ̃, the vector field ϕμ and the transformed tetrad
field, ẽaμ. The action integral, Eq. (35), is completely
determined when the potential Ṽ is set. For the present
case, one finds

Ṽ ¼ e−
2ϕ̃ffiffi
3

p 1

2β

�
e

ϕ̃ffiffi
3

p þ ð∇̃μ − T̃μÞϕμ −
2ffiffiffi
3

p ϕμ∂μϕ̃ − α

�
2

þ e−
3ϕ̃ffiffi
3

p 1

2γ
g̃μνϕνϕμ; ð71Þ

so that

S0 ¼
Z

d4xẽ

�
T̃ þ 2ffiffiffi

3
p ϕ̃∇̃T

ν T̃ν −
1

2
g̃μν∂νϕ̃∂μϕ̃ − e−

ffiffi
3

p
ϕ̃ 1

2γ
g̃μνϕνϕμ − e−

2ϕ̃ffiffi
3

p 1

2β

�
e

ϕ̃ffiffi
3

p þ ∇̃T
μϕ

μ −
2ffiffiffi
3

p ϕμ∂μϕ̃ − α

�
2
�
: ð72Þ

Now the field equations are obtained respectively for ϕ̃, ϕμ, and ẽaμ:

0 ¼ 1ffiffiffi
3

p
β
e−

2ϕ̃ffiffi
3

p
�
e

ϕ̃ffiffi
3

p þ ∇̃T
μϕ

μ −
2ffiffiffi
3

p ϕμ∂μϕ̃ − α

�
2

þ □̃ ϕ̃−T̃μ∂μϕ̃þ 2ffiffiffi
3

p ∇̃νT̃ν −
2ffiffiffi
3

p T̃νT̃ν þ
ffiffiffi
3

p

2γ
e−

ffiffi
3

p
ϕ̃g̃μνϕνϕμ

−
1ffiffiffi
3

p
β
e−

ϕ̃ffiffi
3

p
�
e

ϕ̃ffiffi
3

p þ ∇̃T
μϕ

μ −
2ffiffiffi
3

p ϕμ∂μϕ̃ − α

�
−

2ffiffiffi
3

p
β
∇̃T

ν

�
e−

2ϕ̃ffiffi
3

p
�
e

ϕ̃ffiffi
3

p þ ∇̃T
μϕ

μ −
2ffiffiffi
3

p ϕμ∂μϕ̃ − α

�
ϕν

�
; ð73Þ

0 ¼ −
1

γ
e−

ffiffi
3

p
ϕ̃ϕν þ

1

β
e−

2ϕ̃ffiffi
3

p ∂ν

�
e

ϕ̃ffiffi
3

p þ ∇̃T
μϕ

μ −
2ffiffiffi
3

p ϕμ∂μϕ̃ − α

�
; ð74Þ

4
1

ẽ
∂σðẽΣ̃a

σαÞ þ 4Σ̃σραT̃σρa − ẽαaT̃ ¼ χTα
ðeffÞa: ð75Þ

The effective energy-momentum tensor is:

χTα
ðeffÞa ≡ ẽαa

��
−
1

2
g̃μν∂νϕ̃∂μϕ̃ −

2ffiffiffi
3

p □̃ ϕ̃−
1

2γ
e−

ffiffi
3

p
ϕ̃g̃μνϕνϕμ −

1

2β
e−

2ϕ̃ffiffi
3

p
�
e

ϕ̃ffiffi
3

p þ ∇̃T
μϕ

μ −
2ffiffiffi
3

p ϕμ∂μϕ̃ − α

�
2

þ 1

β
ϕν∇̃ν

�
e−

2ϕ̃ffiffi
3

p
�
e

ϕ̃ffiffi
3

p þ ∇̃T
μϕ

μ −
2ffiffiffi
3

p ϕμ∂μϕ̃ − α

��
þ 1

β
e−

2ϕ̃ffiffi
3

p
�
e

ϕ̃ffiffi
3

p þ ∇̃T
μϕ

μ −
2ffiffiffi
3

p ϕμ∂μϕ̃ − α

�
∇̃T

ν ϕ
ν

�

þ g̃ανẽμa∂νϕ̃∂μϕ̃ −
1

γ
e−

ffiffi
3

p
ϕ̃ηabẽbμϕαϕμ þ 2ffiffiffi

3
p ½∇̃σ∇̃α∂μϕ̃þ ∇̃σϕ̃T̃α�ẽσa: ð76Þ

Now all equations are second order for the scalar, vector
and tetrad fields. The equations for the tetrad fields have the
same structure of those obtained in TEGR. Concerning the
Cauchy problem, the second time derivatives of ẽa0 and ϕi

are absent in these equations, so in principle only the fields
ϕ̃, ϕ0 and ẽai seem to be dynamical. However, similarly to
what happens in the analysis of the Jordan frame, if the
trace of the equation for the tetrad field is taken into
account, then a constraint between the second time deriv-
atives of these fields emerges. As a consequence one degree
of freedom is removed. Besides, for ν ¼ 0 in Eq. (74), a
combination of the second time derivatives of ϕ̃ and ϕ0

emerges, showing that these quantities are not dynamically
independent. Again, considering the Lorentz global

invariance and the general covariance of the theory, the
counting of the degrees of freedom results a number
between 4 and 8, as it was observed in the previous cases.

V. FINAL REMARKS

In this paper, the Jordan and Einstein representations
for systems in which the Lagrangian is a function of the
scalar torsion and its derivatives have been presented. The
analysis started with fðT;∇μT; eaμÞ systems. It was shown
that in the Jordan frame two auxiliary fields had to
introduced—a scalar and a vector fields. The theory
resembles a scalar-tensor theory with no kinetic term for
the scalar field; also the potential U has a dependence with
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the divergence of the vector field. Using the results from the
Jordan frame as the starting point, a conformal trans-
formation was applied to the tetrad fields leading the
system to its Einstein representation. In this case, a kinetic
term for a new scalar field (that was introduced to replace
the scalar field of the Jordan frame) is present. The field
equations for the tetrads have the same form of the
equations obtained in TEGR where an effective energy-
momentum tensor for the auxiliary fields was defined.
These results were extended to fðT;∇μ1T;…;

∇μn � � �∇μ1TÞ theories. In order to change the representation
from the geometric to the Jordan frame, nþ 1 tensors (of
order zero to n) had to be introduced. The theory also
resembles a scalar-tensor theory similar to fðT;∇μT; eaμÞ,
however the potential U now has the contribution of the
divergences of the auxiliary tensor fields. The representation
in the Einstein frame was obtained by a conformal trans-
formation of the tetrad field. As before, a kinetic term for the
scalar fieldwas present in the action and the equations for the
tetrad field was basically the same of the TEGR with an
effective energy-momentum tensor for the auxiliary fields.

Finally, an example was presented in order to illustrate
how to proceed in order to obtain each of the repre-
sentations considered here. A quick analysis of the
Cauchy problem in each frame has shown that the
number of d.o.f. in each case seems to be consistent
and limited to the same number. A rigorous approach to
this problem should consider the constraint analysis, for
instance in the Hamiltonian or in Hamilton-Jacobi
approaches. A question that was not considered here
concerns the equivalence between the Jordan and
Einstein frames. A final answer for this problem is
not yet known for simpler system like fðRÞ or fðTÞ
theories. For the present case, the proof of equivalence
(or not) seems to be more intricate. This is a problem for
future investigations.
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