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We analyze the post-Newtonian orbit of stars around a deformed Kerr black hole. The deformation we
consider is a class of disformal transformations of a nontrivial Kerr solution in scalar-tensor theory which
are labeled via the disformal parameter D. We study different limits of the disformal parameter, and
compare the trajectories of stars orbiting a black hole to the case of the Kerr spacetime in general relativity,
up to 2PN order. Our findings show that for generic nonzero D, the no-hair theorem of general relativity is
violated, in the sense that the black hole’s quadrupole Q is not determined by its mass M and angular
momentum J through the relationQ ¼ −J2=M. Limiting values ofD provide examples of simple and exact
noncircular metric solutions, whereas in a particular limit, where 1þD is small but finite, we obtain a
leading correction to the Schwarzschild precession due to disformality. In this case, the disformal parameter
is constrained using the recent measurement of the pericenter precession of the star S2 by the GRAVITY
Collaboration.
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I. INTRODUCTION

In the center of the MilkyWay lies Sagittarius A (Sgr A),
a complex radio source hidden at optical wavelengths by
large clouds of optic dust. Within Sgr A, in the center of a
spiral structure, lies the very bright compact astronomical
radio and infrared source Sgr A*. There is strong evidence
that a supermassive black hole of mass M� ∼ 4 × 106 M⊙
inhabits the center of our Galaxy, and its location coincides
with Sgr A* (see Refs. [1–3] and references within). The
local supermassive black hole, for our purposes Sgr A*,
due to its proximity, of roughly 8 kpc, and strong gravity,
provides a very promising avenue to test the general theory
of relativity (GR) [4]. Indeed, while GR has passed all
observational tests [5], the gravitational field around
black holes remained until very recently largely untested.
In this regard, there have been considerable breakthroughs
in recent years, whether it be by the detection of gravita-
tional waves from a black hole merger [6], or the imaging
of the supermassive black hole M87*’s shadow by the
Event Horizon Telescope [7]. Additionally, the GRAVITY
Collaboration [8] has measured the redshift and pericenter
precession of the star S2 orbiting Sgr A*[2,3], and its
results are compatible with the GR predictions. The
GRAVITY measurements are the most recent and most
precise addition to the observation of star orbits in the
vicinity of Sgr A*, which have been gathering radio and
infrared observational data for more than two and a half
decades [9,10]. In the future, the spin and eventually the
quadrupole of Sgr A* could in principle be measured by the
precise study of multiple star trajectories orbiting the black
hole, especially those that have short periods of the order of

a year [11]. Pulsar timing measurements on the other hand
would also provide a very promising alternate avenue to
determine such parameters (see e.g., Ref. [12]) but for the
moment their presence in the immediate vicinity of Sgr A*
remains elusive. In GR, from the theoretical point of view a
stationary and axially symmetric black hole is uniquely
given by the Kerr metric [13], which depends on two
parameters: the massM and angular momentum J ¼ aM of
the black hole. According to the no-hair theorems all
higher-order multipoles are then determined by these
parameters. Notably, the quadrupole moment Q satisfies
Q ¼ −J2=M, so an independent measurement of J and Q
using star orbits or pulsar timing measurements would
provide an excellent test of the black hole nature of Sgr A*.
In this rapidly evolving observational context, it is

important to study rotating black hole metrics alternative
to Kerr. This would provide viable rulers by which
departures from GR can be quantified and eventually a
starting point to charter new phenomena. Given the
difficulty of finding exact solutions describing rotating
black holes, several numerical solutions have been con-
structed, using powerful numerical techniques (see for
example Refs. [14–17] and references within). On the
other hand the usual analytical approach is, starting from
some interesting geometric property (integrability of geo-
desics, proximity to Kerr, etc.), to construct metric defor-
mations of the Kerr spacetime from a theory-agnostic point
of view; see Ref. [4] for examples of such deformations.
Although this approach is quite powerful, such ad hoc
deformations, are not solutions of some theory and may
lead to singular or noncausal spacetimes [18].
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In the framework of degenerate higher-order scalar-
tensor (DHOST) theories of gravity, [19,20], regular
deformations of the Kerr metric were constructed recently
in Ref. [21] (see also Ref. [22]). This was technically
achieved using a disformal transformation of a stealth Kerr
solution of DHOST theory [23]. In the absence of a better
name, we will often refer to these disformal transformations
of Kerr as disformed Kerr spacetimes. Their departure from
Kerr is parametrized by a constant D. Each constant D
corresponds to a different disformed metric and also labels
a different class of DHOST theories that admit the
disformed metric as a solution. In this sense, the disformal
parameter D does not correspond to extra hair (because
changing D changes the theory), but rather it labels a new
class of black hole solutions in modified gravity theories.
Without being agnostic on the theory, we can also follow a
phenomenological point of view, and considerD as an extra
parameter, and even study some of its limits. Interestingly,
for the disformed metric, the scalar field acts as a global
time function, ensuring that no closed timelike curves
appear in the region outside the event horizon [21].
Furthermore, these solutions were shown to have many
interesting properties which differentiate them from the
Kerr metric: the event horizon no longer lies at constant
radius r and is not a Killing horizon; the limiting surface for
stationary observers is generically distinct from the outer
event horizon; the metric is noncircular, meaning that it
cannot be written in a form that exhibits the reflection
symmetry ðt;φÞ → ð−t;−φÞ; see Ref. [21] for details. The
latter property is usually assumed for axisymmetric space-
times in the literature as it is a property of vacuum GR
solutions. Therefore, already, the disformed Kerr metrics
are interesting counterexamples and their study could
lead to a better understanding of the implications of
noncircularity. Even though the geodesic equation is not
separable in this case, one can integrate it numerically, and
the shadows of disformed Kerr black holes were studied
in Ref. [24].
In this work, we will assume that the gravitational field

of Sgr A* is described by the disformed Kerr metric, and
study the bound post-Newtonian (PN) orbits of stars in this
spacetime. In this case one can expand the metric asymp-
totically in powers of M=r, where r is the distance of the
star to the black hole. We will consider different limiting
cases for the disformal parameterD. WhenD ¼ 0, we have
a Kerr black hole and the secular evolution of orbital
parameters is well known (see for instance Ref. [25]). The
precession of the star’s pericenter is a 1PN effect, and
already exists for the Schwarzschild spacetime. When the
black hole is spinning, we obtain additional effects at
higher PN orders. The dragging of inertial frames (or
Lense-Thirring effect) appears at 1.5PN order, while
quadrupole contributions appear at 2PN order. We will
examine how the predictions of the disformal Kerr metric
differ from those of the Kerr spacetime for different values
of D, and up to 2PN order. We will see that generically the
no-hair theorem is violated in the disformal case, which

makes these metrics interesting counterexamples to the
Kerr spacetime. Additionally, we will see that in one case,
namely 1þD ∼M=r, the Schwarzschild precession is
modified by disformality, and hence it is already possible
to constrain the disformal parameter using current obser-
vations in this case.
The paper is structured as follows. In Sec. II, we discuss

the asymptotic properties of the disformed Kerr metric [21].
In Sec. III, we present the osculating orbit method used in
this work to calculate the secular evolution of orbital
parameters, following Ref. [25]. In Sec. IV, we analyze
the secular evolution of orbital parameters for various cases
of the disformal parameter D. We start with the generic
case, where D is neither too large nor too close to −1,
before considering the cases where D → ∞, D → −1,
and Dþ 1 are small but finite separately. Finally, we
discuss observational constraints and summarize our results
in Sec. V.

II. THE DISFORMED KERR METRIC

The starting point of our study is the following defor-
mation (or more exactly disformal transformation) of the
Kerr metric [21]:

g̃μνdxμdxν ¼ −
�
1 −

2M̃r
ρ2

�
dt2 −

4
ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
M̃arsin2θ
ρ2

dtdφ

þ sin2θ
ρ2

½ðr2 þ a2Þ2 − a2Δsin2θ�dφ2

þ ρ2Δ − 2M̃ð1þDÞrDða2 þ r2Þ
Δ2

dr2

− 2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M̃rða2 þ r2Þ

p
Δ

dtdrþ ρ2dθ2; ð1Þ

where M̃ is the mass of the black hole, a is related to the
angular momentum,1 and we have introduced the shorthand
notations,

Δ ¼ r2 þ a2 − 2Mr; ρ2 ¼ r2 þ a2 cos2 θ;

where we note that M ¼ ð1þDÞM̃. The deformation of
the Kerr metric is encoded in the constant parameter D
in Eq. (1). For each D, the metric (1) with the associated
scalar field is an exact solution of a given subclass of
DHOST theory (see Appendix A for details). Given the
phenomenological scope of this paper, we will treat D
as a deformation parameter, assuming in particular that
1þD ≥ 0 for the disformed metric to be real. In the
following, we assume that matter fields are minimally
coupled to the disformed metric. Being in the physical

1The value of the angular momentum per unit mass as seen by
an asymptotic observer is actually ã ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
, as explained

below.
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frame, the scalar field does not directly couple to matter and
therefore does not create the fifth force.
One can easily check that forD ¼ 0 the metric (1) reduces

to the Kerr metric in Boyer-Lindquist (BL) coordinates. A
nontrivial property of the disformed metric is the presence of
an off-diagonal term g̃tr, which cannot in general be elim-
inated by a coordinate change without introducing other off-
diagonal elements; see the discussion inRef. [21]. This can be
linked to the fact that forD ≠ 0 themetric (1) is noncircular, in
contrast to the Kerr metric. An exception is the static
case a ¼ 0, for which it can be shown by an appropriate
coordinate transformation that the metric is simply that of a
Schwarzschild black hole of mass M̃ [26,27].
While the strong gravity regime is very different from

that of the Kerr metric [21], the asymptotic form of Eq. (1)
is similar to the GR spacetime for generic values of D. To
see this, we first perform the following coordinate change:

dt → dt −D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M̃rða2 þ r2Þ

p
Δð1 − 2M̃

r Þ
dr: ð2Þ

When a ¼ 0, this is the coordinate change that brings the
metric to the familiar Schwarzschild coordinates. In the
general case, this transformation makes the g̃tr term smaller
in orders of M̃=r, so that crucially the leading asymptotic
terms are the same as those of Kerr in BL coordinates.
Indeed, after this coordinate change (2), the asymptotic
form of the disformed metric is

ds̃2 ¼ −
�
1 −

2M̃
r

þO
�
1

r3

��
dt2

−
�
4ã M̃
r3

þO
�
1

r5

��
½xdy − ydx�dt

þ
�
δij þO

�
1

r

�
cij

�
dxidxj þ D

1þD

�
O
�
ã2M̃
r3

�
dt2

þO
�
ã2M̃3=2

r7=2

�
bidtdxi þO

�
ã2

r2

�
dijdxidxj

�
; ð3Þ

where ã ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
, and fbi; cij; dijg ∼Oð1Þ. It can be

seen from the above expression that the values of the
observed mass and angular momentum are given by M̃ and
ã correspondingly. In other words, the deformation param-
eterD affects the mass and angular momentum of the black
hole. Apart from this important fact, the disformal correc-
tions only affect subleading terms of the asymptotic Kerr
spacetime. However, when Dþ 1 → 0, the higher-order
corrections become important, as we will see in the
following. Though it is not obvious from Eq. (3), we will
also see that the limit D → ∞ gives rise to a notable
difference from the Kerr spacetime asymptotically.
Our goal is to study the post-Newtonian motion of stars

in the vicinity of a disformed Kerr spacetime. In the
Newtonian limit the trajectory of a star forms an ellipse

with the black hole located at one of its foci. In order to
describe the post-Newtonian motion, we introduce the
following dimensionless parameters:

ε ¼ M̃
A
; χ ¼ ã

M̃
; ð4Þ

where A is the semimajor axis of the ellipse, and the
dimensionless spin χ is assumed to be ofOð1Þ. We consider
the case where the star is far away from the black hole, and
write the metric up to 2PN order, meaning that we keep
terms up to Oðε3Þ. As stated above, we first perform the
coordinate change (2) so that the asymptotic form of the
metric is closer to Kerr in BL coordinates. After this
redefinition, the line element up to 2PN order reads

ds̃22PN ¼ −
�
1 −

2M̃
r

þ 2M̃3χ2 cos2 θ
ð1þDÞr3

�
dt2

þ
�
1þ 2M̃

r
þ 4M̃2

r2
−
M̃2χ2 sin2 θ
ð1þDÞr2

�
dr2

þ r2
�
1þ M̃2χ2 cos2 θ

ð1þDÞr2
�
dθ2

þ r2 sin2 θ

�
1þ M̃2χ2

ð1þDÞr2
�
dφ2

−
4M̃2χ sin2 θ

r
dtdφ: ð5Þ

Note that we keep terms up to Oðε3Þ in the g̃tt component,
and lower-order terms in ε in other components because the
motion of stars is assumed to be nonrelativistic. Indeed, for
the motion of a nonrelativistic star, the spatial variation is
suppressed with respect to the time variation along the
trajectory by the 3-velocity v ∼

ffiffiffi
ε

p
, i.e., dxi ∼

ffiffiffi
ε

p
dt, and

therefore one needs to keep lower-order terms in the spatial
components of the metric. At this PN order, the metric is
circular [meaning it is unchanged under the reflection
ðt;φÞ → ð−t;−φÞ], and the expansion is very close to the
Kerr metric. One can also check that for Eq. (5) the Ricci
tensor is nonzero only at ε3 order, i.e., Rμν ∼Oðε3Þ (in these
coordinates). This can be seen by evaluating the Ricci tensor
for the full metric (1) [see also Ref. [21] where the curvature
invariants were computed for Eq. (1)]. Thus one can say that
the metric (5) is Ricci-flat up to the order ε2.
Once we have read off the mass and spin of the black

hole from the g̃tt and g̃tφ terms, the disformal factor D only
enters the terms proportional to χ2 in Eq. (5), which
correspond to quadrupole terms.2 In other words, the
disformal metric is equivalent to the Kerr metric up to

2It is worth noting that these terms correspond to the leading-
order contributions of the Newtonian quadrupole moment, even
though we will refer to them as 2PN in the context of a large-r
expansion.
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1.5PN order for genericD. To better understand the form of
deviations at higher PN orders, it is instructive to compare
the metric (5) to a non-Kerr metric at that order. A
particularly interesting example is the Butterworth-Ipser
(BI) metric [28,29], which was constructed to model a
rapidly rotating star. The BI metric is usually written in

quasi-isotropic coordinates (see Appendix B). Therefore in
order to see a relation of the asymptotic expansions of the
disformed Kerr and the BI metrics, we write the 2PN-order
expansion of the BI metric in BL-like coordinates. The
coordinate change is given in Appendix D [see Eq. (D2)],
which results in

ds2BI ¼ −
�
1 −

2M̃
r

þ 2M̃3

r3

�
qþ 6a0 þ

χ2

2ð1þDÞ − 3ð4a0 þ qÞcos2θ
��

dt2 −
4M̃2χsin2θ

r
dtdφ

þ
�
1þ 2M̃

r
þ 4M̃2

r2
þ M̃2

r2

�
6a0 cos 2θ −

χ2

2ð1þDÞ
��

dr2 þ r2
�
1þ M̃2

r2

�
6a0 cos 2θ þ

χ2

2ð1þDÞ
��

dθ2

þ r2sin2θ

�
1þ M̃2

r2

�
6a0 þ

χ2

2ð1þDÞ
��

dφ2; ð6Þ

where a0 and q are quadrupole parameters and we adopt
here the notations of Ref. [30] (but we use a0 instead of
their a to avoid confusion with the Kerr spin parameter). In
fact with these conventions, the parameter q corresponds to
the coordinate-invariant quadrupole moment, as pointed
out in Ref. [31] (see also Ref. [32]). One can see that the
disformed Kerr and the BI metrics can indeed be matched
at 2PN order. A direct comparison of the above line
element to the metric (5) gives the following identification
of the parameters for the disformed metric in the case of
generic D:

aðDÞ
0 ¼ χ2

12ð1þDÞ ; qðDÞ ¼ −
χ2

1þD
: ð7Þ

It may seem surprising that such a matching exists,
taking into account the completely different nature of the
disformed Kerr and BI metrics, and given that there are
only two free parameters at hand. It should be noted
however, that at higher PN orders, where the noncircularity
of the disformed metric (re)appears, such a matching
cannot be done as the BI metric is circular (see for example
Refs. [30,33]).3 Furthermore, for some limiting cases of D
that we will consider below, the matching does not exist,
i.e., the disformed metric cannot be written in the BI form,
even at 2PN order.
In the following, we will apply the theory of orbital

perturbations to calculate the secular variation of orbital
parameters. As we will see, the secular evolution of
orbital parameters does not change up to 1.5PN order
for generic D, as can be guessed from the form of the
expansion (5). However, for small enough (1þD) modi-
fications of the time variation of orbital parameters happen
at lower orders. In this case, the experimental bounds

coming from the GRAVITY Collaboration can be used to
constrain the disformal parameter. In the following we will
study various parameter ranges of D that may lead to
testable effects.

III. OSCULATING ORBIT METHOD

We will use the standard osculating orbit method to
compute the secular variation of orbital elements (see for
instance Ref. [36]). In general, the three-dimensional
acceleration of a test body can be written in the following
form:

a ¼ −
M̃
r3

xþ F; ð8Þ

where the first term on the rhs corresponds to the
Newtonian acceleration, F is the perturbation of the
Newtonian acceleration and x is the position vector in
space, so that r ¼ jxj. We need to calculate the projections
of the acceleration (8) along the orthogonal directions x,
h ¼ x × v, and h × x, where v ¼ dx=dt is the 3-velocity of
the star. These projections are given by

S ¼ 1

r
x · F; T ¼ 1

hr
ðh × xÞ · F; W ¼ 1

h
h · F;

where h ¼ jhj. The expressions for x in Cartesian coor-
dinates (see Fig. 1) with respect to the orbital elements read,

x ¼ r½cosΩ cos u − sinΩ cos { sin u�;
y ¼ r½sinΩ cos uþ cosΩ cos { sin u�;
z ¼ r sin { sin u;

where u ¼ ωþ f. To obtain the components of v one
differentiates the above expression assuming that all the
angles are constant except for u. In the following, we use
the standard relations,

3Noncircularity appears in GR neutron stars when considering
fluids with convective meridional currents (see for example
Refs. [34,35]).
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r ¼ p
1þ e cos f

;
dr
dt

¼ eh
p
sin f;

h ¼
ffiffiffiffiffiffiffiffi
M̃p

q
; p ¼ Að1 − e2Þ; ð9Þ

where A and e are respectively the semimajor axis and
eccentricity of the ellipse. In order for the limit e → 0 to be
well defined, the alternative orbit parameters α ¼ e cosω
and β ¼ e sinω are introduced. With the above definitions,
we can write the evolution equations for all the orbital
parameters (see for instance Ref. [25], though notice a typo
in the expressions for dα=dt and dβ=dt):

dp
dt

¼ 2r

ffiffiffiffiffi
p

M̃

r
T ;

dα
dt

¼
ffiffiffiffiffi
p

M̃

r �
S sin uþ

�
αr
p

þ
�
1þ r

p

�
cos u

�
T

þ βrW
p

cot { sin u
�
;

dβ
dt

¼
ffiffiffiffiffi
p

M̃

r �
−S cos uþ

�
βr
p

þ
�
1þ r

p

�
sin u

�
T

−
αrW
p

cot { sin u

�
;

d{
dt

¼ rW cos uffiffiffiffiffiffiffiffi
M̃p

p ;

dΩ
dt

¼ rW sin uffiffiffiffiffiffiffiffi
M̃p

p
sin {

;

du
dt

¼ h
r2

− cos {
dΩ
dt

: ð10Þ

Using the evolution equations (10), we follow the analysis
of Ref. [25] to obtain the secular variation of orbital
elements. First, we use the last equation of Eq. (10) to
trade dt for du in all other equations and write them in the
form,

Qk ¼
dXk

du
;

where the Xk stands for orbital parameters p, α, β, { and Ω.
We now perform a two-time-scale analysis [25,37–40] by
introducing a second variable Θ ¼ ϵu, where ϵ is a
bookkeeping parameter that is useful to keep track of
small terms. Since Θ varies on longer time scales, in the
following we treat u and Θ as independent variables. This
approach allows us to make an average over a period
using the variable u, while keeping Θ as a slow-varying
(almost constant) variable. We define the average holdingΘ
fixed as

hCi ¼ 1

2π

Z
2π

0

CðΘ; uÞdu; ð11Þ

and each orbital parameter is decomposed as

XkðΘ; uÞ ¼ X̄kðΘÞ þ ϵZkðX̄l; uÞ; ð12Þ

X̄kðΘÞ ¼ hXkðΘ; uÞi; hZkðX̄kðΘÞ; uÞi ¼ 0: ð13Þ

This analysis is not necessary to obtain leading-order terms
in the variation of orbital parameters, but the periodic
contributions which appear in the Zk must be taken into
account if one calculates higher-order terms in ϵ. In order to

FIG. 1. Kepler orbit of a star S around the black hole located at O. The purple line is called the line of nodes, and it is defined by the
intersecting points of the star’s trajectory with the ðOxyÞ reference plane. The nodal angleΩ gives the position of this line with respect to
the ðOxÞ axis. Starting from the line of nodes, the pericenter P of the trajectory is given by the pericenter angle ω, while { represents the
inclination angle of the ellipse with respect to the ðOxyÞ plane. Finally, the true anomaly, f, gives the position of the star S with respect to
the pericenter P.
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obtain secular variations of the orbital parameters, one can
derive the following formula (see Ref. [25] for details):

dX̄k

du
¼ ϵhQ0

ki þ ϵ2
hD

Q0
k;l

Z
u

0

Q0
l du

0
E
þ hQ0

k;lihuQ0
l i

− hðuþ πÞQ0
k;lihQ0

l i
i
þOðϵ3Þ; ð14Þ

where Q0
k ¼ QkðX̄l; uÞ. In the following section we will

make use of this approach to find the secular orbital shifts
for different ranges of the parameters of the disformed
metric (1).

IV. ORBITAL PERTURBATIONS FOR THE
DISFORMED KERR METRIC

In this section we use the technique described above to
calculate the secular shifts of orbital parameters for differ-
ent cases involving the disformal parameterD. We will start
with a generic D, and then consider limiting cases that
provide interesting phenomenology. As is common in the
literature, we coordinate transform to Kerr harmonic
coordinates, i.e., coordinates verifying □xμH ¼ 0, where
the □ operator corresponds to the Kerr metric with Kerr
parameters M̃ and ã. It should be made clear that one has
□̃xμH ≠ 0, which means that these coordinates are not
harmonic for the disformed metric. The idea, however, is
to use the same coordinates that one uses when assuming
the Kerr black hole and GR, in order to better gauge the
differences arising from the disformed spacetime.4 This is
also the reason why we work with the black hole param-
eters fã; M̃g determined from the asymptotic expansion.
Therefore, this choice of coordinates makes it easier to link
our results to observations.
Below we first consider the case of generic D in

Sec. IVA, and then study different limits of the parameter

D. In particular, we investigate the large-D limit in
Sec. IV B, for which the metric (1) and its asymptotic
expansion (5) simplify considerably, since a number of terms
drop out. The exact limit D → −1 studied in Sec. IV C
provides another simple and interesting example. Finally, we
study the limit of small but finite (1þD), for which
deviations from the Kerr geometry are enhanced and,
consequently, the corrections to orbital shifts become larger.
We consider two different regimes separately: ð1þDÞ ∼ ε
in Sec. IVD, and ð1þDÞ ∼ ffiffiffi

ε
p

in Sec. IV E.

A. Disformal Kerr: Generic case

We start with the generic case, where D is arbitrary, but
not too large or too close to −1. In terms of the BL
coordinates ft; r; θ;φg, the harmonic coordinates xμH can be
written as [25,41]

tH ¼ t;

xH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̃2 þ a2

p
cosΨ sin θ;

yH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̃2 þ a2

p
sinΨ sin θ;

zH ¼ R̃ cos θ; ð15Þ

where R̃ and Ψ are defined as

R̃ ¼ r − M̃;

Ψ ¼ φþ tan−1
�

ã

r − M̃

�
þ
Z

ã
Δ
dr: ð16Þ

We now invert these relations up to Oðε3Þ, and replace the
BL-like coordinates of Eq. (5) by harmonic coordinates (we
drop the index “H” in the following). The result is

g̃00 ¼ −1þ 2M̃
r

−
2M̃2

r2
þ 2M̃3

r3
þ M̃3χ2

r3

�
1 −

3þD
1þD

ðn · sÞ2
�
þOðε4Þ;

g̃0j ¼
2M̃2χ

r2
ðn × sÞj þOðε3Þ;

g̃ij ¼
�
1þ 2M̃

r
þ M̃2

r2

�
1 −

Dχ2

1þD

��
δij þ

M̃2

r2
ninj þ

DM̃2χ2

ð1þDÞr2 ½2ninj þ sisj − 2sðinjÞðn · sÞ� þOðε5=2Þ; ð17Þ

where n ¼ x=r, s ¼ J=J ¼ ez, and r ¼ rðx; y; zÞ is now the radial coordinate in the old metric expressed in harmonic
coordinates. When D ¼ 0, the expressions (17) reduce to the Kerr metric components in harmonic coordinates (see
Ref. [25]).
We now apply the method described in Sec. III to the metric (17). For generic values of D, the secular variation of orbit

elements up to 2PN order is given by,

4We thank Gilles Esposito-Farèse for enlightening discussions concerning this issue.
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dp̄
du

¼ 0;

dᾱ
du

¼ −
3M̃ β̄

p̄
þ 6χβ̄ cos {̄

�
M̃
p̄

�
3=2

þ 3M̃2β̄

4p̄2
ð10 − ᾱ2 − β̄2Þ

−
3M̃2β̄χ2

4p̄2ð1þDÞ ð5 cos
2 {̄ − 1Þ;

dβ̄
du

¼ 3M̃ ᾱ

p̄
− 6χᾱ cos {̄

�
M̃
p̄

�
3=2

−
3M̃2ᾱ

4p̄2
ð10 − ᾱ2 − β̄2Þ

þ 3M̃2ᾱχ2

4p̄2ð1þDÞ ð5 cos
2 {̄ − 1Þ;

d{̄
du

¼ 0;

dΩ̄
du

¼ 2χ

�
M̃
p̄

�
3=2

−
3M̃2χ2 cos {̄
2p̄2ð1þDÞ : ð18Þ

The corresponding relations for fω̄; ēg read

dω̄
du

¼ 3M̃
p̄

− 6χ cos {̄

�
M̃
p̄

�
3=2

−
3M̃2ð10 − ē2Þ

4p̄2

þ 3M̃2χ2ð5 cos2 {̄ − 1Þ
4p̄2ð1þDÞ ;

dē
du

¼ 0: ð19Þ

The expressions for the Kerr metric are obtained by setting
D ¼ 0 in the above equations. Note that terms of order
Oðεnþ1Þ in the metric correspond to OðεnÞ order in the
equations for the secular shifts (18). In particular, in the
Newtonian approximation, the rhs of Eq. (18) is identically
zero, so that there are no shifts in any of the orbital
parameters. The leading-order PN corrections of OðεÞ lead
to a variation of α and β, which correspond to the standard
pericenter precession as in GR. The Lense-Thirring (or
frame-dragging) effect is due to the term Oðε3=2Þ, corre-
sponding to 1.5PN order, in the last equation of Eq. (18),
which results in a variation of Ω. Similar terms also enter
the corrections to the shifts of α and β. The higher-order
Schwarzschild corrections at 2PN order in the variation of α
and β [the third term on rhs of Eq. (18)], are unaffected by
the modification of gravity in this case. Crucially however,
quadrupole corrections proportional to χ2 now get cor-
rected by the factor ð1þDÞ−1. As expected, the secular
variation of the orbit parameters remains unchanged up to
the Lense-Thirring terms when compared to Kerr, while the
quadrupole terms are modified.

B. A noncircular Schwarzschild deformation

Let us now consider the limit of an infinite disformal
parameter, i.e., D → ∞, while at the same time keeping the
physical spin of the black hole ã ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
finite. This

implies a → 0 but as we discussed above, the observable
quantity is ã rather than a. This limit applied to the
disformed metric (1) yields the following finite line
element:

ds̃2NCS¼−
�
1−

2M̃
r

�
dt2þ

ffiffiffiffiffi
2r

M̃

r
dtdr−

4χM̃2 sin2θ
r

dtdφ

−
r

2M̃
dr2þr2dθ2þr2 sin2θ

�
1þ2χ2M̃3 sin2θ

r3

�
dφ2:

We can put the metric in a “Schwarzschild-like” form, by
trading the ðtrÞ term for an ðrφÞ term through the
coordinate change (2), assuming the limit D → ∞ and
a → 0,

ds̃2NCS ¼ −
�
1 −

2M̃
r

��
dtþ 2χM̃2 sin2 θ

r − 2M̃
dφ

�
2

þ
�
1 −

2M̃
r

�−1

0
B@dr −

ffiffiffiffiffiffiffiffiffi
2M̃3

r

s
χ sin2 θdφ

1
CA

2

þ r2ðdθ2 þ sin2 θdφ2Þ: ð20Þ

The metric is noncircular and given its familiar form
[for χ ¼ 0 the line element (20) corresponds to the
Schwarzschild metric] we call the metric noncircular
Schwarzschild (NCS) deformation. Despite the name, the
properties of the above metric are quite different from the
static GR case. For a start the metric is stationary and
spinning: from the ðtφÞ term we can read off the value of
the spin χ, when compared to an asymptotic expansion of
the Kerr spacetime. Also note that r ¼ 2M̃ is not a horizon
location, but rather the static limit ergosurface. The horizon
is a null surface situated in the interior of this ergosurface
[21]. A necessary condition for this disformed black hole to
have a smooth outer horizon is χ < 1=2; see Ref. [21]. The
metric is everywhere regular apart from r ¼ 0which is now
the location of the black hole singularity. As in the case of
generic D, the nonzero contribution to the Ricci tensor
starts at ε3 order. It can be shown that this metric is a
solution of a particular class of scalar-tensor theories
belonging to DHOST Ia; see Appendix A.
Similarly to the generic case considered above, we

change coordinates to those that are harmonic for the
Kerr metric, and expand in ε to obtain
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g̃ðNCSÞ00 ¼ −1þ 2M̃
r

−
2M̃2

r2
þ 2M̃3

r3
þ M̃3χ2

r3
½1 − ðn · sÞ2� þOðε4Þ;

g̃ðNCSÞ0j ¼ 2M̃2χ

r2
ðn × sÞj þOðε3Þ;

g̃ðNCSÞij ¼
�
1þ 2M̃

r
þ M̃2

r2
ð1 − χ2Þ

�
δij þ 2

ffiffiffi
2

p
χðn × sÞðinjÞ

�
M̃
r

�
3=2

þ M̃2

r2
ninj

þ M̃2χ2

r2
½2ninj þ siεsj − 2sðinjÞðn · sÞ� þOðε5=2Þ: ð21Þ

where now r is the radial harmonic coordinate relevant for
the PN expansion. This metric is almost identical to the
D → ∞ limit of Eq. (17), the only difference being the term

∼Oðε3=2Þ in the g̃ðNCSÞij components. This term comes from
the g̃rφ component of Eq. (20), meaning that the metric is
already noncircular at this PN order (unlike in the case of
genericD discussed above). This implies, in particular, that
the NCS metric cannot be matched to the BI metric (6).
We now perform the two-time-scale analysis described

in Sec. III. We obtain

dp̄
du

¼ 0;

dᾱ
du

¼ −
3M̃ β̄

p̄
þ 6χβ̄ cos {̄

�
M̃
p̄

�
3=2

þ 3M̃2β̄

4p̄2
ð10 − ᾱ2 − β̄2Þ;

dβ̄
du

¼ 3M̃ ᾱ

p̄
− 6χᾱ cos {̄

�
M̃
p̄

�
3=2

−
3M̃2ᾱ

4p̄2
ð10 − ᾱ2 − β̄2Þ;

d{̄
du

¼ 0;

dΩ̄
du

¼ 2χ

�
M̃
p̄

�
3=2

: ð22Þ

The above expressions can be alternatively found by taking
the limit D → ∞ in Eq. (18). Hence, the noncircular terms
in the spatial components of Eq. (21) do not influence
the secular shifts at this PN order, as their effect averages to
0 over an orbital period. As we can see by comparing
Eqs. (22) and (18) where we set D ¼ 0, the variation of the
orbit elements are modified at 2PN order, while the 1PN
and Lense-Thirring terms remain the same. The difference
appearing at 2PN order is in the quadrupole terms: for the
case under consideration they do not appear at this order,
while in the Kerr case they are present. In terms of ω̄, we
obtain to 2PN order,

dω̄
du

¼ 3M̃
p̄

− 6χ cos {̄

�
M̃
p̄

�
3=2

−
3M̃2ð10 − ē2Þ

4p̄2
: ð23Þ

In comparison to the Kerr case, in the above expression
the quadrupole term is absent, while other terms are the
same as in the Kerr case, namely, the 1PN and 2PN

Schwarzschild corrections and the Lense-Thirring term
are recovered.

C. Quasi-Weyl metric

Now we consider the limit D → −1 in the disformed
metric (1). We also assume that ã → 0, while a remains
finite. This is done in order for the asymptotic expansion
(5) to make sense, as otherwise the terms proportional to
ð1þDÞ−1 in the expansion become infinite. Although the
physical rotation parameter ã is zero, this limit does not
result in the Schwarzschild metric, which would corre-
spond to a → 0 instead. However, the nondiagonal term g̃tφ
drops out and we obtain the following simple line element:

ds̃2QW ¼ −
�
1 −

2M̃r
ρ2

�
dt2 þ ρ2

r2 þ a2
dr2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M̃r

r2 þ a2

s
dtdrþ ρ2dθ2 þ ðr2 þ a2Þ sin2 θdφ2:

ð24Þ

Now in the absence of the g̃tr term the above line element
would be a Weyl metric—in essence a static and axially
symmetric circular metric. The metric is however clearly
not static; it is rather stationary and noncircular. At a loss of
a better namewe call this metric a quasi-Weyl (QW) metric;
in essence it is a simple noncircular metric with no frame-
dragging term in the φ direction. It has a ring singularity at
ρ ¼ 0, and an ergosurface at g̃tt ¼ 0, which interestingly is
both the static and stationary observer limit due to the
absence of frame dragging. The event horizon on the other
hand is in the interior of this surface, as found generically
in Ref. [21]. Despite the seemingly singular nature of the
limit, it can be shown that this metric is a solution of a
particular class of scalar-tensor theories belonging to
DHOST Ia; see Appendix A.
This case is in some sense the opposite of the D → ∞

case studied above, where the Lense-Thirring effect is
present but there are no quadrupole terms. If we set a ¼ 0,
Eq (24) corresponds to the Schwarzschild solution written
in the Gullstrand-Painlevé coordinates. After the coordinate
change (2), the metric reads
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ds̃2QW ¼ −
�
1 −

2M̃r
ρ2

�
dt2 þ r5ðr − 2M̃Þ þ 2a2r3 cos2 θðr − 3M̃Þ þ a4 cos4 θðr − 2M̃Þ2

ρ2ðr − 2M̃Þ2ðr2 þ a2Þ dr2

−
4a2

ffiffiffiffiffiffiffiffiffiffiffi
2M̃3r

p
cos2 θ

ρ2ðr − 2M̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p dtdrþ ρ2dθ2 þ ðr2 þ a2Þ sin2 θdφ2: ð25Þ

The 2PN expression of the above metric can be obtained
from Eq. (5) by defining χ1 ¼ a=M̃, setting χ ¼ χ1

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
and taking the limit D → −1. Note that we also assume
χ1 ∼Oð1Þ. At this PN order, the quasi-Weyl metric can also
be matched to the BI metric (6), with the BI parameters
defined as q ¼ −χ21 and a0 ¼ χ21=12. The resulting 2PN
metric does not contain the Lense-Thirring term,
which could be anticipated, since the physical rotation
parameter in this case is zero. Meanwhile the metric still
contains a free quadrupole parameter. As in the two
previous cases, the Ricci tensor for the metric (25) is
nonzero only at ε3 order.
Similarly to the generic case described above, we change

to Kerr harmonic coordinates and calculate the secular
variations of orbital parameters, following the method of
Sec. III. We obtain the following results up to 2PN order:

dp̄
du

¼ 0;

dᾱ
du

¼ −
3M̃ β̄

p̄
þ 3M̃2β̄

4p̄2
ð10 − ᾱ2 − β̄2Þ

−
3M̃2β̄χ21
4p̄2

ð5 cos2 {̄ − 1Þ;

dβ̄
du

¼ 3M̃ ᾱ

p̄
−
3M̃2ᾱ

4p̄2
ð10 − ᾱ2 − β̄2Þ

þ 3M̃2ᾱχ21
4p̄2

ð5 cos2 {̄ − 1Þ;
d{̄
du

¼ 0;

dΩ̄
du

¼ −
3M̃2χ21 cos {̄

2p̄2
; ð26Þ

where χ1 is a finite quantity, while χ ¼ ã=M̃ introduced
earlier is zero in this case. The above expressions can also
be obtained from Eq. (18) by substituting χ ¼ χ1

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
as

explained above. As one can see from Eq. (26), the Lense-
Thirring terms drop out in this limit, which is consistent
with the absence of a ðtφÞ term in the metric. However, the

quadrupole terms appear at 2PN order, similarly to the Kerr
case. While the structure of these terms is the same as for
Kerr, the free parameter χ1 entering the quadrupole terms is
not related to the black hole spin, which is zero in the quasi-
Weyl case. This is to be compared to the Kerr case, for
which the corresponding quadrupole term is constrained by
the no-hair theorem. Indeed, for the Kerr metric with
parameters fM̃; ãg, the quadrupole reads, in terms of these,
Q ¼ −M̃3χ2. Therefore if the no-hair theorem was valid in
the case of quasi-Weyl, it would imply Q ¼ 0, since χ ¼ 0.
The metric (24) instead contains an arbitrary quadrupole
Q1 ¼ −M̃3χ21, i.e., the no-hair theorem does not hold.

D. Enhanced Kerr disformation

Finally, for the two last variants of the Kerr disformation
we examine the situation when (1þD) is small but finite.
As we saw above, the generic values of D result in a rather
mild effect on the secular shifts, i.e., only quadrupole terms
in Eq. (18) are modified. The limit D → −1 (quasi-Weyl)
yields stronger modifications, since χQW ¼ 0, and thus the
frame-dragging terms are also modified with respect to
Kerr. In contrast to the quasi-Weyl case, here we assume
thatD has a small finite offset from −1, so that the physical
spin remains finite, while the corrections to the Kerr metric
are enhanced with respect to the generic case. Indeed, if we
take 1þD ∼ ε, the terms proportional to ð1þDÞ−1 in the
metric expansion (5) become one order lower in ε. More
precisely, we assume the following form for the constant
disformal factor:

D ¼ −1þ χ2

λ
ε; fλ; χg ∼Oð1Þ; ð27Þ

where the factor χ2=λ is chosen for convenience and we
introduced a new parameter λ here. Similarly to the case
of generic D discussed above, we perform the coordinate
transformation (2) in the disformal metric (1), and
expand the line element to Oðε3Þ, assuming dxi ∼

ffiffiffi
ε

p
dt.

The result is
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ds̃2EKD ≃ −
�
1 −

2Aε
r

þ 2A3ε2λ

r3
cos2 θ −

2A5ε3λ2 cos4 θ
r5

�
dt2

þ
�
1þ Aεð2r − Aλ sin2 θÞ

r2
þ A2ε2ð4r2 − 2Arλþ A2λ2 sin2 θÞ

r4

�
dr2

þ r2
�
1þ ελA2

r2
cos2 θ

�
dθ2 þ r2 sin2 θ

�
1þ ελA2

r2

�
dφ2 −

4
ffiffiffi
2

p
A7=2ε5=2λ cos2 θ

r7=2
dtdr −

4A2ε2χ sin2 θ
r

dtdφ: ð28Þ

Note that the above expression cannot be obtained by
substituting Eq. (27) in the asymptotic expansion (5). This
is because in Eq. (5) we neglected, in particular, terms of the
form ∼ð1þDÞ−2Oðε5Þ in the ðttÞ component of the metric,
which become ∼Oðε3Þ for values of the disformal parameter
(27). Similarly, terms ∼ð1þDÞ−1Oðε7=2Þ in the ðtrÞ com-
ponents and ∼ð1þDÞ−1Oðε3Þ or ∼ð1þDÞ−2Oðε4Þ in
spatial components were neglected in Eq. (5). However,
they become important for the case considered here.
The metric (28) is noncircular and its Ricci curvature is

nonzero already at ε2 order, which is one order lower than

all other cases considered above. As one of the conse-
quences of noncircularity, the enhanced Kerr disformation
(EKD) metric cannot be matched to the BI metric (6) at this
order. Also, due to noncircularity in the generic case (5), the
off-diagonal term ðtrÞ cannot be eliminated in Eq. (28),
since g̃tt depends on θ now. To recover the asymptotic Kerr
metric at Oðε3Þ one replaces λ ¼ χ2ε in Eq. (28), which
corresponds to setting D ¼ 0. By inverting the relations
(15) to the right order, the asymptotic expansion (28) can be
written in the Kerr harmonic coordinates,

g̃ð−1Þ00 ¼ −1þ 2M̃
r

−
2M̃2

r2

�
1þ Ãðn · sÞ2

r

�
þ M̃3

r3

�
2þ ð1 − ðn · sÞ2Þχ2 þ 6Ãðn · sÞ2

r
þ 2Ã2ðn · sÞ4

r2

�
þOðε4Þ;

g̃ð−1Þ0j ¼ 2M̃2χ

r2
ðn ∧ sÞj −

2
ffiffiffi
2

p
ÃM̃5=2ðn · sÞ
r7=2

nj þOðε3Þ;

g̃ð−1Þij ¼
�
1þ M̃

r

�
2þ Ã

r

�
þ M̃2

r2
ð1 − χ2Þ

�
δij −

2Ã M̃
r2

ninj þ
M̃2

r2

�
1þ 2χ2 −

2Ãðn · sÞ2
r

þ Ã2

r2
ð1 − ðn · sÞ2Þ

�
ninj

þ Ã M̃
r2

�
1 −

M̃χ2

Ã

�
½2sðinjÞðn · sÞ − sisj� þOðε5=2Þ; ð29Þ

where Ã ¼ λA. The asymptotic expansion of the Kerr
metric in harmonic coordinates is recovered by setting
Ã → M̃χ2 and keeping terms up to 2PN order (one can
check that the Kerr metric is indeed recovered by compar-
ing to Ref. [25] for instance).
We now apply the osculating orbitmethod startingwith the

metric (29). Themetric iswritten up to 2PNorder, and thuswe
can calculate the secular shifts up to this order. The final
expressions are quite heavy, and can be found in Appendix B.
Setting λ ¼ χ2ε, our result up to 2PN order coincides with
Ref. [25] for the Kerr spacetime. Expressing the result in
terms of fē; ω̄g, we can see that the secular variation of the
parameters fp̄; {̄; ēg is of 2PN order. This is to be compared
with the Kerr case, for which the effect is only of 3PN order.
This naively suggests possible strong secular effects in the
case of the disformal metric, meaning that the parameters
fp̄; {̄; ēg could change considerably over a long period of
time,when compared to theKerr predictions. However, this is
not the case, because the corresponding corrections in
Eq. (B1) average to zero. Indeed, using the fact that the
pericenter angle ω̄ varies over a shorter time scale than the

other parameters (the first correction appears at 1PN order),
we can average over ω̄ in the system (B1) [25]. After this
average, there remains no secular variation of fp̄; {̄; ēg at this
order (see Appendix B for details).
Using the expressions that we obtained for the variations

of ᾱ and β̄ in Eq. (B1), one can derive the corresponding
formula for the secular variation of ω̄:

dω̄
du

¼ 3M̃
p̄

�
1þ λ

4ð1 − ē2Þ ð5cos
2 {̄ − 1Þ

�

− 6χ cos {̄

�
M̃
p̄

�
3=2

þOðε2Þ: ð30Þ

When combined with the variation of Ω̄ and after multi-
plication by 2π, one obtains

Δϖ̄ ≡ Δω̄þ cos {̄ΔΩ̄

¼ 6πM̃
p̄

�
1þ λ

4ð1 − ē2Þ ð3cos
2 {̄ − 1Þ

�
þOðε3=2Þ;

ð31Þ
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where ϖ̄ is the precession of the pericenter relative to the fixed
reference direction [the ðOxÞ axis in our case; see Fig. 1]. As
expected from the asymptotic expression (3), there are
leading-order corrections to the secular pericenter shift. In
Appendix C, we derive this leading term using the standard
textbook method in the equatorial plane. One can check that
the two methods are compatible by setting {̄ ¼ 0 in Eq. (31),
which corresponds to an orbit in the equatorial plane of the
black hole. While the leading-order terms are the same, one
must be careful when comparing the higher-order corrections
of the different methods, as explained in Ref. [42].

E. enhanced Kerr disformation

Here we examine a case of small and finite deviation of
D from−1, similar to the previous case. The difference is in
the value of the offset; here we study larger (but still small)
deviations of order

ffiffiffi
ε

p
:

D ¼ −1þ χ2

λ2

ffiffiffi
ε

p
; λ2 ∼Oð1Þ: ð32Þ

Since the offset is larger than in the previous case, one
expects that the modified gravity effects are smaller than
those for EKD, while still larger than in the generic case.
The metric in this limit can be obtained by replacing the
relation (32) in the line element (17). Unlike in the EKD
case, the metric is circular at 2PN order, and we have
Rμν ∼ ε5=2. The resulting metric cannot be matched to the
BI metric (6), since by replacing the disformal parameter
according to Eq. (32), one introduces fractional powers of
the mass in the metric. The secular variation of orbital
parameters reads

dp̄
du

¼ 0;

dᾱ
du

¼ −
3M̃ β̄

p̄
þ 3β̄

4

�
8χ cos {̄ −

λ2ð5 cos2 {̄ − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ᾱ2 − β̄2

p ��
M̃
p̄

�
3=2

þ 3M̃2β̄

4p̄2
ð10 − ᾱ2 − β̄2Þ;

dβ̄
du

¼ 3M̃ ᾱ

p̄
−
3ᾱ

4

�
8χ cos {̄ −

λ2ð5 cos2 {̄ − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ᾱ2 − β̄2

p ��
M̃
p̄

�
3=2

−
3M̃2ᾱ

4p̄2
ð10 − ᾱ2 − β̄2Þ;

d{̄
du

¼ 0;

dΩ̄
du

¼ 2

�
χ −

3λ2 cos {̄

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ᾱ2 − β̄2

p ��
M̃
p̄

�
3=2

: ð33Þ

The above secular variations can be obtained by replacing
Eq. (32) in the expressions (18) for the generic case. As one
can see from the above expressions, in this case the Kerr

quadrupole terms drop out, similarly to the NCS case
(D → ∞). However for the eKD metric corrections appear
at lower order, at the level of the Lense-Thirring terms. This
happens because the quadrupole (2PN) corrections of the
generic case become 1.5PN-order corrections here, due to
the presence of the small value of (1þD) [Eq. (32)]. The
1PN order is not modified for the eKD case unlike in the
EKD case considered above.
Note that it is possible to consider deformations of the

form 1þD ∼ εj in Eq. (32), where j ≤ 1. The case j ¼ 1
was discussed in Sec. IV D, while j > 1would be ruled out
from the Schwarzschild precession measurement by the
GRAVITY Collaboration [2], since the leading GR term is
modified in this case. We chose the particular case j ¼ 1=2
for simplicity, since for other powers j < 1, the term
proportional to λ2 in Eq. (33) would introduce a fractional
power 2 − j of the mass either between the leading
pericenter and Lense-Thirring terms (for j > 1=2) or
between the Lense-Thirring and quadrupole contributions
(for j < 1=2).

V. SUMMARY, OBSERVATIONAL
CONSTRAINTS AND PREDICTIONS

In this work, we have studied the 2PN motion of stars
around a disformed Kerr black hole, and compared the
effects to those predicted by the Kerr metric. For the case of
a generic D, we found that the modification of gravity
appears at the quadrupole level, leading to a violation of the
no-hair theorem. We also examined particular limiting
cases of D, which were motivated by the search for simpler
line elements and/or larger deviations from GR that can be
tested experimentally.
For a start, the NCS metric obtained in the limit D → ∞

and studied in Sec. IV B, constitutes an interesting hybrid
between the Schwarzschild and Kerr spacetimes. While the
(t − r) sector of the metric is identical to the Schwarzschild
spacetime, there remains a ðtφÞ term which introduces
Lense-Thirring corrections to the orbit of stars; see
Eq. (20). Interestingly, the quadrupole corrections that
arise for the Kerr spacetime are not present in this case.
The NCS metric is a simple example of a noncircular
metric, and its study could be helpful in understanding the
effects of noncircularity. In regard to observational pre-
dictions of the secular variation of orbital parameters, this
case is quite similar to the generic case of D. In spite of the
1.5PN corrections in the metric [coming from the g̃rφ term
in Eq. (20)], the secular variation of orbit elements is
modified at 2PN order, while the 1PN and Lense-Thirring
terms are the same as in the Kerr case (22).
A second interesting limit of Kerr deformations arises

when (1þD) becomes small. In this case, as can be
guessed e.g., from Eq. (3), the corrections to the Kerr metric
become more important than those for genericD, due to the
terms containing (1þD) in the denominator. We examined
separately two cases: the exact limit D → −1 and the case
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when (1þD) is small but finite. In the former case we took
the formal limit D → −1 and ã → 0 while at the same time
keeping a finite, and obtained the quasi-Weyl metric; see
Sec. IV C. Note that taking the limit of vanishing ã is
needed in order to avoid the divergence of the metric when
D → −1. Since the observed spin is zero in this case,
ã ¼ 0, the Lense-Thirring effects are absent in the secular
shifts given by Eq. (26). It is interesting to note that while
the quadrupole terms are present in the expressions for the
variation of orbital parameters [the terms proportional to χ21
in Eq. (26)], the parameter χ1 appearing in these terms is
not related to the observed spin of the black hole.
Finally, we examined the case where (1þD) is small but

finite, while at the same time keeping a finite observable
spin ã. In Sec. IV D, the case of the enhanced Kerr
deformation, we assumed that ð1þDÞ ∼ ε. In this case,
the subdominant corrections ofOðεnþ1Þ order (or higher) in
the metric expansion containing (1þD) in the denomi-
nator are comparable with OðεnÞ-order terms of the Kerr
metric. The asymptotic expansion in this case is more
delicate, since we need to take into account higher-order
terms in ε in order to get secular shifts to 2PN order (the
result is given in Appendix B). The pericenter shift in this
case receives a leading-order correction due to the modi-
fication of gravity, given by Eq. (31). This case is therefore
most interesting from the perspective of observing the
effects of Kerr deformations. As a separate subcase we also
considered a slightly larger offset of (1þD) from zero,
namely 1þD ∼

ffiffiffi
ε

p
, which we dubbed enhanced Kerr

deformation. Such an assumption about the parameter of
disformality results in the absence of quadrupole correc-
tions in the secular variation of orbital parameters, while we
obtained modifications of the 1.5PN-order terms instead.
Table I summarizes the main results and particularities of
different variants of the disformed Kerr metric, depending
on the values of the disformal parameter.
Observations of the star S2 in the center of our Galaxy

provide an opportunity to test GR by measuring its redshift
[2] and pericenter precession [3]. The redshift includes the

Newtonian Doppler effect and relativistic corrections. The
measured combination of the leading corrections, the
gravitational redshift and relativistic transverse Doppler
effect, was found to be in agreement with GR [2]. Note,
however, that the gravitational redshift at this observational
precision is due to the Newtonian potential in the gtt
component of the metric. This means that the current
observations of the S2 star’s redshift do not allow to test the
Sgr A* metric beyond Newtonian order. Taking into
account that all the variants of the disformed Kerr metric
agree with GR at this order, these observations do not put
any constraints on the considered Kerr deformations.
The star S2 experiences a pericenter precession when

orbiting around Sgr A*. It was found to be in agreement
with GR [3] with the accuracy fSP ≃ 1.1� 0.2, where fSP
defines the ratio of the orbital pericenter precession (per
period) of S2 to its GR value. For GR one has fSP ¼ 1
while for Newtonian gravity fSP ¼ 0. Since the pericenter
precession is a 1PN effect, the only case we can constrain
using the observed pericenter precession [3] is the
enhanced Kerr disformation studied in Sec. IV D.5 All
other deformations give corrections to the orbital shifts at
higher PN orders (see e.g., Table I), and therefore they
automatically pass this observational test.6 For the EKD
metric, on the other hand, it is possible to constrain the
disformal parameter D using the pericenter precession of
the star S2. In order to stay within the experimental bounds
of Ref. [3], the correction to the Schwarzschild precession
in Eq. (31) must satisfy

TABLE I. Summary of the different regimes considered for the disformal parameter D and some properties of the
resulting metrics at 2PN order. In the first column, we report the PN order at which the metric differs from Kerr in
each case. The second column shows the PN order at which the predictions for the secular evolution of orbital
parameters start to deviate from Kerr. The third column contains the order of the Ricci tensor. In the fourth column,
we specify if the 2PN metric in each case is circular, and in the last column if the 2PN metric can be identified with
the Butterworth-Ipser metric.

Deviations from Kerr

Value of D Metric Secular evolution Rμν Circularity at 2PN order BI form at 2PN order

Generic D 2PN 2PN Oðε3Þ ✓ ✗

NCS ðD → ∞Þ 1.5PN 2PN Oðε3Þ ✗ ✗

QW ðD → −1Þ 1.5PN 1.5PN Oðε3Þ ✓ ✓

EKD ðDþ 1 ∼ εÞ 1PN 1PN Oðε2Þ ✗ ✗

eKD ðDþ 1 ∼
ffiffiffi
ε

p Þ 1.5PN 1.5PN Oðε5=2Þ ✓ ✗

5Note that since the pericenter precession is sensitive to 1PN-
order terms, its measurement also allows to constrain spherically
symmetric deformations of the Schwarzschild metric in DHOST
theory. In particular Refs. [43,44] constrained a particular
solution of Horndeski theory given in Ref. [45].

6Note also that for stronger Kerr deformations than EKD, for
instance when 1þD ∼ ε3=2, the correction to the pericenter shift
is larger than the leading GR correction, which is already ruled
out by the GRAVITY observations [3].
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���� λð3 cos2 {̄ − 1Þ
4ð1 − ē2Þ

����≲ 0.2: ð34Þ

If we assume j3 cos2 {̄ − 1j ∼ 1, and replace the eccentricity
ē ¼ 0.87 of the star S2, the inequality is saturated for
λ0 ∼ 0.2. Using the relation (27), we deduce a lower bound
for the disformal parameter, D ≥ D0, which verifies

D0 ¼ −1þ χ2ε0
λ0

; ð35Þ

where ε0 ¼ M̃=A0, with A0 being the semimajor axis of
S2’s orbit. Taking the deformation to be D ¼ D0 to
maximize the effects of disformality, we consider another
star with ε ≠ ε0 in general. The leading pericenter pre-
cession reads, from Eq. (31),

Δϖ̄ ¼ 6πM̃
p̄

�
1þ ελ0

ε0

ð3 cos2 {̄ − 1Þ
4ð1 − ē2Þ

�
: ð36Þ

Note the factor ελ0=ε0 in the second term of the brackets,
since ε=λ ¼ ε0=λ0. The above expression is correct as long
as ε stays in the range,

ε2 ≲ 10−3 ≲ ffiffiffi
ε

p
; ð37Þ

which implies that the perturbative expansion in ε is valid.7

Future observations will determine the pericenter pre-
cession of other stars orbiting around Sgr A*. If some of
them have high eccentricities, the effect of modified gravity
in the case of the EKD metric will be detected by the
correction to the pericenter precession, as suggested by
Eq. (36). This is correct for a generic inclination angle {̄;
however it is worth noting that for a specific value
{̄ ¼ arccosð1= ffiffiffi

3
p Þ, the contribution coming from the dis-

formal metric vanishes completely. Note also that depend-
ing on the value of {̄, it is in principle possible to obtain a
negative pericenter precession at leading order. This is a
notable difference from the Kerr spacetime, as argued in
Ref. [46], where the authors showed that a negative
precession can arise in the case of a naked singularity in
the Johannsen-Psaltis spacetime [47].
While all the variants of the Kerr deformations, besides

the EKD metric, automatically satisfy the current obser-
vational bounds coming from the star S2, future

experiments will be able to probe these Kerr deformations
as well. Indeed, none of the deformations of Kerr presented
in this paper verify the no-hair theorem. Therefore, future
observations aiming at testing the no-hair theorem for the
Kerr spacetime will probe all the deformations of Kerr.
More precisely, the observation of high-eccentricity stars
with short periods orbiting Sgr A* can in principle lead to
the determination of the spin and quadrupole moment by
measuring the secular variation of the nodal and inclination
angles fΩ; {g [11] (see also Ref. [4] for a review). Another
promising method to test the no-hair theorem is to use
pulsar timing, which could allow the determination of the
spin and quadrupole moment of Sgr A* if a binary pulsar
orbiting closely enough to the black hole is discovered (see
the review [4] and references therein). The authors of
Ref. [48] calculated the second-order Shapiro delay for the
BI metric. These results can be applied to the disformed
Kerr metric in the cases where the line element can be put in
the BI form (see Table I). The disformed metric in the
generic case, as well as in the limits D → ∞ and D → −1
provide examples where the no-hair theorem is not verified,
and hence are interesting counterexamples to the standard
GR case.
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APPENDIX A: CONSTRUCTION OF THE
DISFORMED METRIC AND CORRESPONDING

DHOST THEORIES

1. Construction of the metric

The starting point of our construction is the stealth Kerr
solution [23], which belongs to the class Ia ofDHOST theory.
The metric in Boyer-Lindquist-like coordinates reads,

gμνdxμdxν ¼ −
�
1 −

2Mr
ρ2

�
dt2 −

4Mar sin2 θ
ρ2

dtdφ

þ sin2 θ
ρ2

½ðr2 þ a2Þ2 − a2Δ sin2 θ�dφ2

þ ρ2

Δ
dr2 þ ρ2dθ2; ðA1Þ

ϕ ¼ q0

�
tþ

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mrða2 þ r2Þ

p
Δ

dr

�
; ðA2Þ

7To see this explicitly, we need to inspect the subleading terms
in Eq. (36), which have the structure Oðð1þ λÞε3=2Þþ
Oðð1þ λÞ2ε2Þ. The first inequality in Eq. (37) comes from the
requirement that Oðð1þ λÞ2ε2Þ is subleading with respect to
Eq. (36), i.e., ðλεÞ2 ≲ ðλεÞ. The second inequality comes from the
comparison of Eq. (36) with Oðð1þ λÞε3=2Þ for small λ: one
ensures that the corrections are subdominant, resulting in
ε3=2≲λε. After replacing the values for λ0∼10−1 and ε0∼10−4

we obtain Eq. (37).
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whereM represents the bare mass of the black hole, a is the
angular momentum per unit mass, q0 is a positive constant,
and fρ;Δg are defined in the main text after Eq. (1). The
nontrivial scalar ϕ defines a geodesic vector ∂μϕ, which is
used to construct the disformed Kerr metric g̃ [21]:

g̃μν ¼ gμν −
D
q20

∂μϕ∂νϕ; ðA3Þ

whereD is a constant whose sign is not fixed a priori. After
introducing the rescaled mass M̃ ¼ M=ð1þDÞ, which is
in fact the physical mass as measured by a distant observer,
and rescaling the time coordinate as t → t=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
, we

obtain our starting metric (1). Note that we have assumed
Dþ 1 > 0 to perform these redefinitions. Although D is a
given constant parametrizing a particular DHOST theory, it
can be thought of as an additional parameter of the
disformed metric in a more phenomenological approach.
A nontrivial addition to the new metric is the term g̃tr,
which cannot in general be eliminated by a coordinate
change without introducing other off-diagonal elements
(see discussion in Ref. [21]). An exception is the static case
a ¼ 0, for which it can be shown by an appropriate
coordinate change that the metric is simply that of a
Schwarzschild black hole of mass M̃ [26,27].

2. DHOST theories

Since the DHOST Ia class is stable under the disformal
map [49], the disformed metric (1) is again a solution of a
DHOST theory determined by the disformal parameter D.
The shift-symmetric quadratic DHOST action [19,20] can
be written in the following way:

S½g� ¼ M2
P

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
fðXÞRþ KðXÞ −G3ðXÞ□ϕ

þ
X5
i¼1

AiðXÞLi

�
; ðA4Þ

where M2
P ¼ ð8πGÞ−1 is the reduced Planck mass,

X ¼ gμν∂μϕ∂νϕ, and the Li are given by

L1 ¼ ϕμνϕ
μν; L2 ¼ ð□ϕÞ2; L3 ¼ ϕμνϕ

μϕν
□ϕ;

L4 ¼ ϕμϕ
νϕμαϕνα; L5 ¼ ðϕμνϕ

μϕνÞ2; ðA5Þ

with ϕμ ≡∇μϕ and ϕμν ≡∇μ∇νϕ. In order for the theory
to be degenerate, the functions fA2; A4; A5g are fixed by the
choice of ff; A1; A3g. We will focus on the DHOST Ia
class, which is related to the Horndeski theories by the
disformal map. The functions in the Lagrangian are
modified by the transformation (A3), such that we have
S̃½g̃� ¼ S½g�. We couple the matter fields minimally in each
case (either to g̃μν or gμν), which ensures that we indeed
have different theories. For a constant disformal parameter,

the transformation rule for the Lagrangian functions [49] is
simplified, and we have

f ¼ f̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ BX

p
;

A1 ¼
Ã1 þBð1þ BXÞf̃

ð1þ BXÞ3=2 ;

A2 ¼
Ã2 − Bð1þBXÞf̃

ð1þBXÞ3=2 ;

A3 ¼
Ã3 − 2Bð1þ BXÞÃ2 − 4Bð1þBXÞ3f̃X

ð1þ BXÞ7=2 ;

A4 ¼
Ã4 − 2Bð1þ BXÞÃ1 þ 4Bð1þ BXÞ3f̃X

ð1þBXÞ7=2 ;

A5 ¼
Ã5 þBð1þ BXÞ½Bð1þ BXÞðÃ1 þ Ã2Þ− ðÃ3 þ Ã4Þ�

ð1þBXÞ11=2 ;

ðA6Þ

where B ¼ −D=q20 and f̃X ¼ ∂f̃=∂X. The functions of X̃
can be seen as functions of X through the transformation

X̃ ¼ X
1þ BX

: ðA7Þ

Since we start with a stealth configuration where X ¼ −q20,
and we assume a constant disformal factor, it is clear that X̃
is again a constant on shell. This means that the fÃ4; Ã5g
terms in the Lagrangian will not enter the equations of
motion. Indeed, one has L4 ∼ XμXμ and L5 ∼ ðXμϕμÞ2, so
any variation of these terms will include at least one
derivative of X and hence vanish in the field equations.
For this reason, we will be interested in the functions
ff̃; Ã1; Ã3g in the following, as we impose Ã2 ¼ −Ã1

which is a condition for not having the Ostrogradsky ghost
in DHOST Ia theories. Additionally, we will assume that
the initial theory (with the stealth-Kerr solution), satisfies
A1 ¼ A2 ¼ G3 ¼ 0 [23], and we also assume K ¼ 0. Then,
inverting the relations (A6), we obtain

f̃ ¼ fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ BX

p ;

Ã1 ¼ −B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ BX

p
f;

Ã3 ¼ ð1þ BXÞ7=2A3 þ 4Bð1þ BXÞ5=2fX: ðA8Þ

To write the action in terms of X̃, one uses the relation
1þ BX ¼ 1=ð1 − BX̃Þ. In particular, we see that setting

f̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BX̃

p
and A3 ¼ 0, gives us the particular

Horndeski theory which admits the generic disformal
metric (1) as a solution (see also Ref. [45]).
As it is clear from the above discussion, any trans-

formations involving finite nonzero 1þD > 0 are well
defined. This implies, in particular, that the metric for the
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case of generic D, as well as EKD and eKD metrics are
solutions of DHOST theories. From the point of view of the
action, the only difference is the choice of parameterD. On
the other hand, the two other cases, NCS and QW metrics,
are obtained by taking the limit D → ∞ and D → −1.
Neither of these limits are well defined at the level of the
action, as formulated above. Thus it is not guaranteed that
the NCS or QW metrics are solutions of any finite non-
singular theory. However, as we show below, it is possible
in both of these cases to formulate an action leading to the
NCS and QW metrics as solutions.

3. Theory giving rise to the noncircular
Schwarzschild metric

The NCS metric presented in Sec. IV B is obtained by
taking the limitD → ∞. In order to make sense of the action
we first redefine the scalar field as ϕ ¼ q0ψ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
, and

the expression for the disformed metric (A3) and scalar
kinetic term become

g̃μν ¼ gμν −
D

1þD
∂μψ∂νψ ;

Y ¼ gμν∂μψ∂νψ ¼ D
q20

X:

The resulting action in terms of ψ and Ỹ ¼ Y=ð1 − YÞ reads,
in the limit D → ∞,

SD→∞½g̃� ¼
M2

P

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p � ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ỹ

p
fðỸÞR̃

þ fffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ỹ

p ½ψμνψ
μν − ð□ψÞ2�

−
4fỸffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ỹ

p ψμψμνψ
ν□ψ

�
:

Note that the limit D → ∞ translates to Ỹ → −1 in terms of
the variable ψ . By inspecting the equations of motion
following from the above action, one can notice that the
first and the third terms give subdominant contributions with
respect to the contribution from the second term, in the limit
Ỹ → −1. As a result, upon redefining the function f, we
obtain the action,

SNCS½g̃� ¼
M2

P

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
f½ψμνψ

μν − ð□ψÞ2�: ðA9Þ

One can check that the solution for the NCS metric (20) and
the scalar field ψ , given by Eq. (A2) with the redefinition
ϕ ¼ q0ψ=

ffiffiffiffi
D

p
, is indeed a solution for the theory (A9),

which belongs to DHOST classes IIIa and Ia [49].

4. Theory giving rise to the quasi-Weyl metric

In this section, we discuss the theory that admits the
quasi-Weyl metric of Sec. IV C, which was obtained in the
limit D → −1, as a solution. This limit is singular for our
variables, since after the time rescaling leading to the
coordinates used in the metric (1), the scalar field (A2)
reads

ϕ ¼ q0ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
�
tþ ð1þDÞ

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M̃rða2 þ r2Þ

p
Δ

dr
�
:

We absorb this divergence using the same redefinition
of the scalar field as in the previous section, ϕ ¼
q0ψ=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
. After this redefinition, we take the limit

D → −1, which results in the simple expression8 ψ ¼ t.
Taking the same limit in the general action given by the
functions (A8), and expressing everything in terms of the
field ψ , results in

SQW½g̃� ¼
M2

P

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p � ffiffiffiffiffiffiffi
−Ỹ

p
fðỸÞR̃

−
fffiffiffiffiffiffiffi
−Ỹ

p ½ψμνψ
μν − ð□ψÞ2� þ 4fỸffiffiffiffiffiffiffi

−Ỹ
p ψμψμνψ

ν
□ψ

�
;

ðA10Þ

where f has also been redefined as f → f
ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
to

absorb a residual infinite factor. One can check that the
above action admits the QW metric (25) and ψ ¼ t as a
solution. If we consider a constant f̃, the theory belongs to
the Horndeski class.

APPENDIX B: SECULAR SHIFTS
FOR THE EKD METRIC

In this appendix, we provide the expressions for secular
perturbations of orbital parameters up to 2PN order in the
case of the enhanced Kerr disformation, Dþ 1 ∼OðεÞ; see
Sec. IV D. Since the EKD metric (29) does not fall into the
class of genericD, we cannot use the results of Sec. IVA to
find the variation of orbital parameters. Here we present the
result of applying the osculating orbit method described in
Sec. III to the metric (29). We obtain

8Solutions where the scalar depends only on time were
discussed in Ref. [50].
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dp̄
du

¼ λM̃2sin2 {̄

p̄ð1 − ᾱ2 − β̄2Þ2 ½5ᾱ β̄ ð5þ 2ᾱ2 þ 2β̄2Þ þ I1ðᾱ; β̄Þ�

−
λ2M̃2ᾱ β̄ sin2 {̄

8p̄ð1 − ᾱ2 − β̄2Þ3 ½−72þ ðᾱ2 þ β̄2Þ2 þ 6ᾱ2 − 2β̄2 þ ð84þ ðᾱ2 þ β̄2Þ2 − 6β̄2 − 14ᾱ2Þcos2 {̄�;

d{̄
du

¼ λM̃2 sin 2{̄

4p̄2ð1 − ᾱ2 − β̄2Þ2 ½5ᾱ β̄ ð5þ 2ᾱ2 þ 2β̄2Þ þ I1ðᾱ; β̄Þ�

þ λ2M̃2ᾱ β̄ sin 2{̄

32p̄2ð1 − ᾱ2 − β̄2Þ3 ½176þ 3ðᾱ2 þ β̄2Þ2 þ 86β̄2 þ 78ᾱ2 − ð84þ ðᾱ2 þ β̄2Þ2 − 6β̄2 − 14ᾱ2Þcos2 {̄�;

dΩ̄
du

¼ −
3M̃λ cos {̄

2p̄ð1 − ᾱ2 − β̄2Þ þ 2χ

�
M̃
p̄

�
3=2

þ λM̃2 cos {̄
4p̄2ð1 − ᾱ2 − β̄2Þ2 ½48þ 37ᾱ4 þ 57β̄4 − 35ᾱ2 þ 15β̄2 þ 94ᾱ2β̄2 þ I2ðᾱ; β̄Þ�

þ λ2M̃2 cos {̄

32p̄2ð1 − ᾱ2 − β̄2Þ3 ½174þ ᾱ4ð6β̄2 − 79Þ þ 6ᾱ2ð13 − β̄2 þ 2β̄4Þ þ β̄2ð570þ 89β̄2 þ 6β̄4Þ�

þ λ2M̃2cos3 {̄
32p̄2ð1 − ᾱ2 − β̄2Þ3 ½−66þ 2ᾱ6 − 554β̄2 þ 207β̄4 þ ᾱ4ð191þ 4β̄2Þ þ 2ᾱ2ðβ̄4 þ 207β̄2 − 123Þ�;

dᾱ
du

¼ −
3M̃ β̄

4p̄ð1 − ᾱ2 − β̄2Þ ½4ð1 − ᾱ2 − β̄2Þ þ λð5cos2 {̄ − 1Þ� þ 6β̄χ cos {̄

�
M̃
p̄

�
3=2

þ 3M̃2β̄ð10 − ᾱ2 − β̄2Þ
4p̄2

þ λM̃2

16p̄2ð1 − ᾱ2 − β̄2Þ2 ½2β̄ð−53þ 199ᾱ2 þ 34ᾱ4 − 19β̄2ð5þ 2ᾱ2Þ − 72β̄4Þ þ sin2 {̄I3ðᾱ; β̄Þ þ J 1ðᾱ; β̄; {̄Þ�

þ λM̃2β̄cos2 {̄
8p̄2ð1 − ᾱ2 − β̄2Þ2 ½253þ 48ᾱ4 þ 194β̄4 − 27β̄4 þ ᾱ2ð242β̄2 − 421Þ�

−
λ2M̃2β̄

64p̄2ð1 − ᾱ2 − β̄2Þ3 ½585þ 2ᾱ2ð2ᾱ4 − 18ᾱ2 − 147Þ þ 2β̄2ð693þ 34ᾱ2 þ 4ᾱ4Þ þ 4β̄4ð46þ ᾱ2Þ�

−
λ2M̃2β̄cos2 {̄

32p̄2ð1 − ᾱ2 − β̄2Þ3 ½−729þ ᾱ2ð290þ 295ᾱ2 þ 6ᾱ4Þ þ 2β̄2ð6ᾱ4 þ 315ᾱ2 − 733Þ þ β̄4ð239þ 6ᾱ2Þ�

þ λ2M̃2β̄cos4 {̄

64p̄2ð1 − ᾱ2 − β̄2Þ3 ½−585þ 2ᾱ2ð−209þ 321ᾱ2 þ 4ᾱ4Þ þ 2β̄2ð8ᾱ4 þ 936ᾱ2 − 941Þ þ 2β̄4ð559þ 4ᾱ2Þ�;

dβ̄
du

¼ 3M̃ ᾱ

4p̄ð1 − ᾱ2 − β̄2Þ ½4ð1 − ᾱ2 − β̄2Þ þ λð5cos2 {̄ − 1Þ� − 6ᾱχ cos {̄

�
M̃
p̄

�
3=2

−
3M̃2ᾱð10 − ᾱ2 − β̄2Þ

4p̄2

þ λM̃2

16p̄2ð1 − ᾱ2 − β̄2Þ2 ½2ᾱð87þ 46ᾱ4 þ 461β̄2 þ ᾱ2ð167þ 198β̄2Þ þ 152β̄4Þ − sin2 {̄I4ðᾱ; β̄Þ − J 2ðᾱ; β̄; {̄Þ�

−
λM̃2ᾱcos2 {̄

8p̄2ð1 − ᾱ2 − β̄2Þ2 ½287þ 128ᾱ4 þ 339β̄2 þ 274β̄4 þ ᾱ2ð−55þ 402β̄2Þ�

−
λ2M̃2ᾱ

64p̄2ð1 − ᾱ2 − β̄2Þ3 ½−429þ 102ᾱ2 þ 68ᾱ4 þ 2β̄2ð−773 − 18ᾱ2 þ 2ᾱ4Þ þ 8β̄4ðᾱ2 − 23Þ þ 4β̄6�

þ λ2M̃2ᾱcos2 {̄

32p̄2ð1 − ᾱ2 − β̄2Þ3 ½−813þ 298ᾱ2 þ 371ᾱ4 þ 6ᾱ6 þ 2β̄2ð−713þ 375ᾱ2 þ 6ᾱ4Þ þ β̄4ð283þ 6ᾱ2Þ�

−
λ2M̃2ᾱcos4 {̄

64p̄2ð1 − ᾱ2 − β̄2Þ3 ½−909 − 210ᾱ2 þ 762ᾱ4 þ 4ᾱ6 þ 2β̄2ð−821þ 2ᾱ2ð520þ ᾱ2ÞÞ þ 2β̄4ð603 − 2ᾱ2Þ − 4β̄6�;

ðB1Þ

where we defined the following functions to make the previous expressions lighter [and we use the average h·i as defined in
Eq. (11)]:
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HðκÞðu; ᾱ; β̄Þ ¼ 4
ffiffiffi
2

p
ð1 − ᾱ2 − β̄2Þð1þ ᾱ cos uþ β̄ sin uÞκ;

I1ðᾱ; β̄Þ ¼ hsin 2uðβ̄ cos u − ᾱ sin uÞHð3=2Þðu; ᾱ; β̄Þi;
I2ðᾱ; β̄Þ ¼ 4hsin2uðβ̄ cos u − ᾱ sin uÞHð3=2Þðu; ᾱ; β̄Þi;
I3ðᾱ; β̄Þ ¼ 16hcos usin2uHð7=2Þðu; ᾱ; β̄Þi;
I4ðᾱ; β̄Þ ¼ 16hcos2u sin uHð7=2Þðu; ᾱ; β̄Þi;

J 1ðᾱ; β̄; {̄Þ ¼ 4hðβ̄ cos u − ᾱ sin uÞHð3=2Þðu; ᾱ; β̄Þð4β̄cos2 {̄sin2uþ sin2 {̄ sin 2uð3ᾱþ 4 cos uþ ᾱ cos 2uþ β̄ sin 2uÞÞi;
J 2ðᾱ; β̄; {̄Þ ¼ 4hðβ̄ cos u − ᾱ sin uÞHð3=2Þðu; ᾱ; β̄Þð4ᾱcos2 {̄sin2uþ sin2 {̄ sin 2uð−3β̄ − 4 sin uþ β̄ cos 2u − ᾱ sin 2uÞÞi:

Using the expressions for the secular variations of fᾱ; β̄g in Eq. (B1), one can obtain the secular variations of fω̄; ēg. As
we discussed in Sec. IV D [see Eq. (31)], the leading correction for the variation of the pericenter angle is modified due to
disformality. Similarly to the parameters fp̄; {̄g, ē receives secular corrections at 2PN order, which is one ε order lower than
the GR value:

dē
du

¼ λM̃2 sin2 {̄
8p̄2ð1 − ē2Þ2 ½ē sin 2ω̄ð17þ 183ē2 þ 40ē4Þ þ 16

ffiffiffi
2

p
ð1 − ē2Þ2hsin 2u sinðu − ω̄Þð1þ ē cosðu − ω̄ÞÞ3=2i�

þ ēλ2M̃2 sin2 {̄
64p̄2ð1 − ē2Þ2 ½4ē

2 sin2 {̄ sin 4ω̄þ 2 sin 2ω̄ð−39þ 5ē2 þ ē4 þ cos2 {̄ð−81 − 25ē2 þ ē4ÞÞ�: ðB2Þ

Though the secular contributions for fp̄; {̄; ēg appear at a
lower PN order than for the Kerr metric, one can show that
over long time scales these contributions average out to 0.
Indeed, the characteristic time scale over which the peri-
center angle ω̄ varies is shorter than for other parameters, as
the leading secular shift for ω̄ appears at 1PN order. Hence,
one can average the secular variations of orbital parameters
over ω̄, while keeping other parameters fixed. It is not
necessary to perform another two-time-scale analysis since
the terms containing ω̄ are already of 2PN order, which
means such an analysis would only be relevant if we were
interested in higher-order PN terms (see Ref. [25]). From
Eq. (B2), one can easily see that

1

2π

Z
2π

0

dē
du

dω̄ ¼ 0 ðB3Þ

at this PN order, and hence the variation of eccentricity
averages out to 0 over a long time scale. One can check that
the same is true for the parameters fp̄; {̄g.

APPENDIX C: LEADING-ORDER PERICENTER
PRECESSION USING THE TEXTBOOK METHOD

In this appendix, we apply the textbook method to derive
the leading term for the pericenter precession for the EKD
metric considered in Sec. IV D, and compare it with the
result obtained in Eq. (31). Assuming that the trajectory is
in the equatorial plane θ ¼ π=2, one can write first-order
geodesic equations. This is not the case for the general
motion outside of the equatorial plane, because of the
absence of a nontrivial Killing tensor for the disformed

Kerr metric. The orbit of stars around the central black hole
of the Galaxy is approximately an ellipse, for which the
energy and angular momentum can be written as

E2 ≃ 1 −
M̃
A
;

L2 ≃ AM̃ð1 − e2Þ;

where A and e are respectively the semimajor axis and
eccentricity of the Kepler orbit. We now combine the
geodesic equations for the variables fr;φg, and use the
standard variable U ≡ 1=r. By substituting the above
values for energy and angular momentum in the geodesic
equations, a second-order equation follows:

U00ðφÞ þ FðU; M̃; a;DÞ ¼ 0; ðC1Þ

where F is a complicated expression which also depends
on A, e. Following the standard procedure (see, e.g.,
Ref. [51]), we introduce a small parameter

η ¼ 3M̃2

L2
≃

3

ð1 − e2Þ ε; ðC2Þ

where ε ¼ M̃=A is the small parameter used throughout the
main text. We again assume ã ¼ χM̃ with χ ∼Oð1Þ, so that
we can also express a in terms of η. We look for a solution
to Eq. (C1) of the form

U ¼ 1þ e cosφ
Að1 − e2Þ þ ηδUðφÞ;
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where the first part corresponds to the Kepler orbit, and
the second term is the leading correction in η. For the
Schwarzschild metric (a ¼ 0), this leads to the equation

δU00
S þ δUS ¼

ð1þ e cosφÞ2
Að1 − e2Þ :

The above equation can be solved (see e.g., Ref. [51]) to
write down the solution for U at first order in η:

US ≃
1þ e cos ½φð1 − ηÞ�

Að1 − e2Þ :

From this expression, one can calculate the precession of
the pericenter ΔΦS as

ΔΦS ¼ 2π

�
1

1 − η
− 1

�
≃ 2πη ¼ 6πM̃

Að1 − e2Þ : ðC3Þ

The asymptotic expression of the disformed metric sug-
gests that for the EKD metric, i.e., when Dþ 1 ∼OðεÞ,
corrections from higher-order terms in ε become of 1PN
order, i.e., comparable to the leading Schwarzschild cor-
rections. To check this, we rewrite Eq. (27) in terms of η:

D ¼ −1þ ð1 − e2Þχ2
3λ

η:

Assuming this form for D in Eq. (C1) and expanding to
OðηÞ, we obtain the following equation for the correction to
the Kepler orbit:

δU00 þ δU

¼ ð1þ e cosφÞ2
Að1 − e2Þ

þ λð1þ e cosφÞð2þ e cosφþ e2 − 2e2 cosð2φÞÞ
3Að1 − e2Þ2 :

Solving this equation and keeping only the terms of the
form φ sinφ which provide a secular shift, the standard
procedure gives,

ΔΦ ¼ ΔΦS

�
1þ λ

2ð1 − e2Þ
�
: ðC4Þ

Thus for a spinning EKD black hole the corrections to the
pericenter precession due to modifications of gravity are of
the same order as the leading GR effect. Equation (C4)
provides a useful check for our calculations in the main
text, where we obtain secular shifts for the EKD black hole
by the orbital perturbation method. In particular, we obtain
the expression for the pericenter precession in Eq. (31). The
two expressions agree after setting {̄ ¼ 0 in Eq. (31), which

corresponds to an orbit in the equatorial plane, as assumed
in this appendix.

APPENDIX D: COMPARISON TO OTHER
METRICS

It is instructive to compare the Kerr disformation to other
metrics presented in the literature, in the asymptotic regime,
i.e., for large distances. The main challenge here is that
normally line elements are written in different coordinates,
which makes a direct comparison impossible. We will write
all the interesting metrics in Boyer-Lindquist-like coordi-
nates, so that we can see a connection to our asymptotic
expansion of the disformed Kerr metric (5).
We first explain how the expression for the Butterworth-

Ipser metric in Boyer-Lindquist-like coordinates can be
obtained in Eq. (6). We start with the ansatz of Ref. [52] for
a circular and axisymmetric metric in quasi-isotropic
coordinates:

ds2 ¼ −e2νdt2 þ e2ψðdφ − ω̃dtÞ2 þ e2μðdR2 þ R2dθ2Þ;

where ν, ψ , ω̃ and μ are functions of R and θ. The BI metric
at 2PN order is given by the following expressions (see
Ref. [30] for instance9):

ν¼−
M̃
R
þ
�
−

1

12
þa0−ð4a0þqÞP2ðcosθÞ

�
M̃3

R3
þOðR−4Þ;

μ¼ M̃
R
−
�
1

4
þa0−4a0P2ðcosθÞ

�
M̃2

R2
þOðR−3Þ;

ψ ¼ logðRsinθÞþM̃
R
þ
�
3a0−

1

4

�
M̃2

R2
þOðR−3Þ;

ω̃¼2χM̃2

R3
þþOðR−4Þ; ðD1Þ

where P2ðxÞ ¼ ð3x2 − 1Þ=2 is a Legendre polynomial. The
coordinate transformation that brings the disformed Kerr
metric to quasi-isotropic coordinates ft; R; θ;φg at 2PN
order reads

r ¼ R

�
1þ M̃

2R

�
1þ χffiffiffiffiffiffiffiffiffiffiffiffi

1þD
p

���
1þ M̃

2R

�
1−

χffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
��

:

ðD2Þ

In the case D ¼ 0, the previous redefinition brings the full
Kerr metric to quasi-isotropic coordinates; see e.g.,
Ref. [53]. For nonzero disformal parameter D, one must
introduce extra factors containing D in the transformation,
and the resulting metric is only quasi-isotropic

9There is a typo in Eq. (3.29c) of this reference, where the
quantity μS should be added to the right-hand side. We use the
notation a0 instead of a to avoid confusion with the Kerr spin
parameter.
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asymptotically. By inverting the above relation, we obtain
the expression (6) for the BI metric in BL-like coordinates.
A well-known example of an axisymmetric and sta-

tionary spacetime is the Hartle-Thorne (HT) metric, that
describes a metric for slowly rotating stars. Note that the

“quasi-Kerr” metric [54], sometimes used as an alternative
to the Kerr metric, is exactly the HT metric up to 2PN order.
The HT metric for slowly rotating stars can be written in a
form which reduces to BL coordinates in the Kerr limit. At
2PN order, this metric reads

ds2HT ¼ −
�
1 −

2M̃
r

−
M̃3

r3
½qHT − χ2 þ ðχ2 − 3qHTÞ cos2 θ�

�
dt2 þ

�
1þ 2M̃

r
þ M̃2ð4 − χ2 sin2 θÞ

r2

�
dr2

þ r2
�
1þ M̃2χ2 cos2 θ

r2

�
dθ2 þ r2 sin2 θ

�
1þ M̃2χ2

r2

�
dφ2 −

4M̃2χ sin2 θ
r

dtdφ: ðD3Þ

We have used the expression of the metric in the appendix of
Ref. [55]10 with the identification Q ¼ qHTM̃

3 and
J ¼ χM̃2. The HT metric up to 2PN order is a subclass
of the BI metric. This can be seen by comparing Eqs. (D3)
and (6) (where one sets D ¼ 0) with the identification q ¼
−qHT and a0 ¼ χ2=12. The disformed metric given by
Eq. (5) cannot be matched with Eq. (D3), as can be seen
from a direct comparison. The other variants of the Kerr
disformation cannot be matched to the HT metric either. In
particular, for NCS, EKD and eKD this follows from the fact
that these cannot be matched to the BI metric. The case of the
QW metric can be checked by comparing the different
elements of the metric, taking into account that the ðtφÞ

component in the QW metric is absent. On the other hand,
the orbital shifts up to 2PN order in the generic case (18) can
be matched to the orbital shifts for the HT metric, by
identifying qHT ¼ χ2=ð1þDÞ. Similarly, the secular varia-
tions for the NCS metric (the limit of large D) at 2PN are
identical to those for HT metric when setting qHT ¼ 0. In
order to recover the 2PN secular shifts of the QW metric,
Eq. (26), one sets qHT ¼ χ21 and χ ¼ 0 in the metric (D3).
Another spacetime worth comparing our results to is the

Johannsen metric [56]. Unlike the Hartle-Thorne metric, it
describes a rotating black hole. Using the notations of
Ref. [56], the line element at 2PN order in BL coordi-
nates reads

ds2J ¼ −
�
1 −

2M̃
r

þ M̃3

r3
½2α13 − ϵ3 − 2χ2 cos2 θ�

�
dt2 þ

�
1þ 2M̃

r
þ M̃2ð4 − α52 − χ2 sin2 θÞ

r2

�
dr2

þ r2
�
1þ M̃2χ2 cos2 θ

r2

�
dθ2 þ r2 sin2 θ

�
1þ M̃2χ2

r2

�
dφ2 −

4M̃2χ sin2 θ
r

dtdφ: ðD4Þ

Note that the Johannsen metric is circular by construction.
The Kerr metric at this order is obtained by setting α13 ¼
α52 ¼ ϵ3 ¼ 0 in the above expression. In general, the
metric (D4) does not match the BI metric at 2PN order.
Only for a special combination of the parameters, q ¼ −χ2,
a0 ¼ χ2=12, α52 ¼ 0 and ϵ3 ¼ 2α13, do these two metrics
match. In this case the coordinate-invariant quadrupole is
the same as for Kerr and the no-hair theorem is not violated
at this order. The Johannsen metric can also be mapped to

other Kerr-like metrics; see Ref. [56] for details. One can
also verify by comparing Eqs. (D4) and (5) that the
disformed metric in the generic case does not match the
Johannsen metric at this order. The same conclusion is true
for the other variants of the disformed metric. As for the
secular variation of orbital parameters, the 2PN Schwarzs-
child terms are modified for the Johannsen metric with
respect to the Kerr case, while the quadrupole terms
proportional to χ2 are the same as in the Kerr case
[Eq. (18) with D ¼ 0]. Notice that this is different from
the generic case of the disformal parameter, where we
found that the terms proportional to χ2 are modified with
respect to the Kerr case.

10Notice a typo in the coordinate transformation to BL-like
coordinates (as pointed out in Ref. [54]).
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