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We provide evidence that gravitational radiation in a 4D radiation dominated universe, with equation of
state w ¼ 1=3, consists of two components: helicity-2 gravitons and massless scalar acoustic waves. On
physical grounds, we would expect the homogeneous solution of the Weyl tensor components to be a good
approximation to its inhomogeneous counterparts, whenever the observer is located well in the far zone of
an isolated astrophysical source of cosmological gravitational radiation. We show explicitly that these
homogeneous and inhomogeneous solutions both receive contributions from the gauge-invariant tensor
and the two Bardeen (acoustic) scalars. Comparison of these Weyl tensor computations thus allows us to
not only identify, in the high frequency limit, the corresponding gravitational tensor and scalar radiation;
but also their oscillatory polarization patterns.
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I. MOTIVATION

What is gravitational radiation? This question is well
studied in the asymptotically flat case, where the metric
takes the form gμν → ημν þ hμν. The asymptotically cos-
mological case is much less studied at a fundamental
theoretical level, however. For instance, basic questions
such as “What is the gravitational-wave energy produced
by an isolated source in a cosmological background?” have
only begun to be answered in the specific case of de Sitter–
cosmological constant dominated universe in the very
recent works of [1–4], although the generic Jeffreys-
Wentzel-Kramers-Brillouin (JWKB) results are known in
the high frequency limit [5,6].
In this paper, we wish to initiate an investigation into

whether there are additional radiative degrees of freedom
associated with the metric when the cosmology is driven by
a perfect fluid—as opposed to, say, the vacuum spacetimes
of Minkowski and de Sitter—and if so, what the corre-
sponding oscillatory polarization patterns are. More

specifically, we place a hypothetical isolated astrophysical
system in an even (d ≥ 4)-dimensional universe, which in
turn is assumed to be driven by a single perfect fluid of
constant equation-of-state w; and we inquire what sort of
gravitational waves it engenders.1 Hence, our perturbed
cosmological geometry, containing this gravitational radi-
ation, takes the form2

gμν½η; x⃗� ¼ a½η�2ðημν þ χμν½η; x⃗�Þ; ð1Þ

a½η� ¼
�
η

η0

� 2
qw
;

qw≡ ðd− 3Þþ ðd− 1Þw; w¼−1;0≤w≤ 1: ð2Þ

For the discussion at hand, it is advantageous to work in the

synchronous gauge χðsÞμ0 ¼ 0 because the proper geodesic
spatial distance between two co-moving freely falling test
masses at x⃗ ¼ Y⃗0 and x⃗ ¼ Z⃗0 may then be readily
expressed as

1Our primary goal here is to obtain the concrete cosmological GW signals received from a remote isolated source. For a rigorous
formal treatment of nonlinear GWs, we refer the reader to the book [7]. The weak cosmological GWs were also studied by Grischuk [8];
however, he only considered source-free metric perturbations and not the fluid equations themselves. After imposing a gauge condition
and specializing to the cosmological background, he was essentially dealing with the spin-2 portion of the metric perturbations, in
contrast to our attempt to solve for the full metric perturbations in the Einstein-fluid system [note that his Eq. (8) corresponds to the
homogeneous version of our Eq. (19)]. On the other hand, the focus of his work is on the low-frequency regime where the GWs would be
amplified as long as the universe is not in its radiation-dominated phase, whereas we are interested in the high-frequency GWs produced
by the distant astrophysical sources (see § III below for the far-zone JWKB analysis).

2The “mostly plus” sign convention is used for the metric, namely, ημν ¼ diag½−1;þ1;…;þ1�; Greek indices μ; ν;…, run from 0
(time) to d − 1, while Latin ones i; j;…, run over only the spatial values 1 to d − 1. The symmetrization–antisymmetrization of tensor
indices are denoted by round ð…Þ=square ½…� brackets, e.g., TðμνÞ ≡ 1

2
ðTμν þ TνμÞ and T ½μν� ≡ 1

2
ðTμν − TνμÞ.

PHYSICAL REVIEW D 103, 124033 (2021)

2470-0010=2021=103(12)=124033(19) 124033-1 © 2021 American Physical Society

https://orcid.org/0000-0001-9302-2214
https://orcid.org/0000-0002-0516-8246
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.124033&domain=pdf&date_stamp=2021-06-11
https://doi.org/10.1103/PhysRevD.103.124033
https://doi.org/10.1103/PhysRevD.103.124033
https://doi.org/10.1103/PhysRevD.103.124033
https://doi.org/10.1103/PhysRevD.103.124033


L½η; Y⃗0 ↔ Z⃗0� ¼ a½η�jY⃗0 − Z⃗0j
�
1þ 1

2
n̂in̂j

Z
1

0

χðsÞij ½η; Y⃗0 þ λðZ⃗0 − Y⃗0Þ�dλþO½ðχðsÞab Þ2�
�
; ð3Þ

n̂i ≡ Yi
0 − Zi

0

jY⃗0 − Z⃗0j
: ð4Þ

We see the fractional distortion of space is, at leading order
in Lð _a=aÞ,�
δL
L0

�
½η; Y⃗0↔ Z⃗0�

¼1

2
n̂in̂j

Z
1

0

χðsÞij ½η;Y⃗0þλðZ⃗0− Y⃗0Þ�dλþO½ðχðsÞab Þ2�: ð5Þ

Now, gravitational radiation itself may be characterized by
its ability to do work on a hypothetical Weber bar immersed
in a curved spacetime, due to tidal forces induced by the
finite-frequencies content of geometric curvature—namely,
the time dependent portion of the geodesic deviation
equation tells us the relative acceleration ai between
infinitesimally nearby test masses is

ai ≡∇U∇Uξ
i ¼ −Bi

jξ
j: ð6Þ

Here, ∇U denotes the covariant derivative along the comov-
ing family of timelike observers in cosmology, with tangent
vector Uμ ¼ a−1δμ0 in the synchronous gauge. Moreover,
within the same gauge, the exact distortion tensor is

Bi
j ≡ Ri

αjβUαUβ ¼ a−2Ri
0j0: ð7Þ

We shall focus on the traceless part of this tidal tensor—i.e.,
the Weyl components Ci

0j0.

ai ¼ −ððtrace − termsÞi0j0 þ a−2δ1Ci
0j0 þO½ðχðsÞab Þ2�Þξj:

ð8Þ

The reasons are twofold. The first is geometric: the traceless
part of the tensor Bi

j produces an independent distortion
pattern from its trace part; see [9] for a pedagogical
discussion. The second is technical: because the Weyl tensor
Cα

βμν is conformally invariant, it is zero when there are no
perturbations, and hence its linear-in-χμν piece δ1Ci

0j0 is
gauge invariant. We may therefore use the gauge-invariant
content of χμν obtained in [10] to construct the solution for
δ1Ci

0j0; and in turn, the high-frequency synchronous gauge

perturbation χðsÞij . Note that the computation of δ1Ci
0j0 has

already been partially undertaken in [11]; but in this work we
will not only provide somewhat simpler final results but also
explicit solutions in the physically important case of the four-
dimensional (4D) radiation dominated universe (i.e., d ¼ 4

and w ¼ 1=3). The 4D solutions for χðsÞij during radiation

domination will teach us; at least in the short wavelength
limit, isolated gravitational-wave (GW) sources engender 2
independent sets of oscillatory polarization degrees of free-
dom. These two sets of polarizations survive even when the
gravitational-wave source is removed; that is, both the
inhomogeneous and homogeneous solutions of δ1Ci

0j0

contain them. Since the latter may be viewed as an
approximation to the situation where the observer is located
in the distant far zone of the source, our results therefore
suggest that gravitational radiation in a 4D radiation universe
indeed does not consist solely of the usual massless spin-2
modes but also of the Bardeen scalars, because both the
tensor and scalar gauge invariant variables appear in the
homogeneous solutions of δ1Ci

0j0.
3

In Sec. II, we will gather and improve upon the results
from [10,11]. We delineate both the gauge-invariant content
of χμν and the general construction of the Weyl tensor that
was begun in [11]. In Sec. III, we specialize to the primary
cosmology of physical interest, the d ¼ 4 and w ¼ 1=3
case. Then in Sec. IV we summarize the results and sketch
future directions. In Appendix, we tie up some loose ends
from [11]; and describe the linearized Weyl tensor δ1Ci

0j0

results in de Sitter w ¼ −1 and matter dominated w ¼ 0
universes.

II. LINEARIZED GRAVITATION IN
SPATIALLY FLAT COSMOLOGIES

WITH RELATIVISTIC FLUID

A. Gauge-invariant variables

In [10,11], the following scalar-vector-tensor decompo-
sition was performed for the metric perturbation χμν of
Eq. (1) as well as the stress-energy tensor ðaÞTμν of the
hypothetical isolated astrophysical system.

χ00≡E; χ0i≡∂iFþFi;

χij≡Dijþ∂ðiDjÞ þ
D

d−1
δijþ

�
∂i∂j−

δij
d−1

∇⃗2

�
K; ð9Þ

ðaÞT00≡ρ; ðaÞT0i≡Σiþ∂iΣ;

ðaÞTij≡σijþ∂ðiσjÞ þ
σ

d−1
δijþ

�
∂i∂j−

δij
d−1

∇⃗2

�
ϒ: ð10Þ

By construction, these modes are subject to the following
constraints:

3The primary goal of this paper is to study the propagation of
cosmological GWs in the position space, in contrast to the Fourier
space analysis that cosmologists usually perform to compute the
large-scale structure correlation functions.
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∂iFi ¼ ∂iDi ¼ 0 ¼ δijDij ¼ ∂iDij; ð11Þ
∂iΣi ¼ ∂iσi ¼ 0 ¼ δijσij ¼ ∂iσij: ð12Þ

From Eq. (9), the gauge-invariant content of χμν takes the
form of 2 Bardeen scalarsΦ andΨ; 1 vector Vi; and 1 spin-
2 tensor Dij; the following definitions ensure they are not
altered under an infinitesimal change in coordinates.4

Φ≡ −
E
2
þ 1

a
∂0

�
a

�
F −

_K
2

��
; ð13Þ

Ψ≡ −
D − ∇⃗2K
2ðd − 1Þ −

_a
a

�
F −

_K
2

�
; ð14Þ

Vi ≡ Fi −
_Di

2
and Dij ≡ χTTij : ð15Þ

B. Linearized Einstein equations

In [10], the gauge invariant variables were shown to obey

− Ψ̈ − ðqw þ d − 2ÞH _Ψþ w∇⃗2Ψ

¼ −8πGN

� ∂0ðad−2ΣÞ
ðd − 2Þad−2 −

wρ
ðd − 2Þ þH _ϒ

�
; ð16Þ

ðd − 3ÞΨ −Φ ¼ 8πGNϒ; ð17Þ

∇⃗2Vi ¼ −16πGNΣi; ð18Þ

−D̈ij − ðd − 2ÞH _Dij þ ∇⃗2Dij ¼ −16πGNσij; ð19Þ

where H≡ _a=a ¼ 2=ðqwηÞ denotes the conformal Hubble
parameter. These field equations were first solved analyti-
cally in [10], written in terms of their associated scalar
Green’s functions convolved against the nonlocal compo-
nents of the matter stress-energy tensor,5 namely, the right-
hand side of Eqs. (16)–(19). Then, with the help of the
Fourier-space projection and the “time-integral” method
developed in [11], these solutions can be further re-cast into
the convolutions of their effective Green’s functions with
the local components of the astrophysical ðaÞTμν.

1. Spin-2

The solution to Eq. (19), governing the spin-2 graviton
Dij, can be found in Eq. (247) of [11]:

Dij½η; x⃗� ¼ 16πGN

Z
Rd−1

dd−1x⃗0
Z

∞

0

dη0Θ½T�
�
a½η0�
a½η�

�d−2
2

�
CðgÞ
1;d

�
ðaÞTij½η0; x⃗0� þ

δij
d − 2

ððaÞT00½η0; x⃗0� − ðaÞTll½η0; x⃗0�Þ
�

− 2a½η0�d−22 ∂η0 ða½η0�−d−2
2 ∂ðiC

ðgÞ
2;dÞðaÞTjÞ0½η0; x⃗0�

þ δij
d − 2

H½η0�a½η0�d−22 ∂η0 ða½η0�−d−2
2 CðgÞ

2;dÞððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ

−
1

d − 2
ð∂i∂jC

ðgÞ
2;d − ðd − 3ÞH½η0�a½η0�d−22 ∂η0 ða½η0�−d−2

2 ∂i∂jC
ðgÞ
3;dÞÞððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ

�

þ 16πGN

d − 2

Z
Rd−1

dd−1x⃗0ðδijGðEÞ
d

ðaÞT00½η; x⃗0� þ ðd − 3Þ∂i∂jDd
ðaÞT00½η; x⃗0�Þ; ð20Þ

where T≡η−η0, R≡ jx⃗− x⃗0j, and ðaÞTll≡δijðaÞTij. The

scalar function CðgÞ
1;d itself, obeying a homogeneous wave

equation, is the advanced minus retarded scalar Green’s
function,

CðgÞ
1;d½η; η0;R� ¼ Gðg;−Þ

d ½η; η0;R� −Gðg;þÞ
d ½η; η0;R�: ð21Þ

Equivalently, Gðg;þÞ
d ¼ −Θ½T�CðgÞ

1;d. For the even dimen-
sional case,

Gðg;þÞ
even d≥4½η; η0;R� ¼ −Θ½T�

�
1

2π

∂
∂σ̄

�d−2
2

×

�
Θ½σ̄�
2

P−d−2
qw

�
1þ σ̄

ηη0

��
;

σ̄ ¼ ðη − η0Þ2 − R2

2
; ð22Þ

where Pν is the Legendre function. [See also Eqs. (112) and
(113) of [10].] Note that all the scalar Green’s functions

4The notations defined here are the same ones used in [11]. To
convert them into those defined in [10], we follow the replace-
ments: Φ½here� → Ψ[10]/2, Ψ½here� → Φ[10]/2, Vi½here� →
−Vi[10], and Dij½here� → −Dij[10].

5Other than the energy density ρ and the spatial trace σ, the rest
of the components in Eq. (10) are the non-local functions of the
original stress-energy tensor ðaÞTμν. This non-locality arises from
the local projections implemented in Fourier space that leads up
to the weighted smearing of ðaÞTμν all over the space.
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introduced in this paper, generally denoted by Gþ
d , obey the

following type of wave equation:�
∂2
η;x⃗ þ

κðκ þ 1Þ
η2

�
Gþ

d ¼
�
∂2
η0;x⃗0 þ

κðκ þ 1Þ
η02

�
Gþ

d

¼ δ½η − η0�δðd−1Þ½x⃗ − x⃗0�; ð23Þ

where ∂2 ≡ ημν∂μ∂ν. Here, Gðg;þÞ
d solves Eq. (23) with

κ ¼ −ðd − 2Þ=qw. Additionally, CðgÞ
2;d and CðgÞ

3;d are both

related to the known CðgÞ
1;d through the “time-integral

method” developed in [11]:

CðgÞ
2;d½η; η0;R� ¼ −a½η�d−22

Z
η

η0
dη2a½η2�−ðd−2Þ

Z
η2

η0
dη1a½η1�d−22 CðgÞ

1;d½η1; η0;R� −GðEÞ
d ½R�

�
a½η�
a½η0�

�d−2
2

Z
η

η0
dη1

�
a½η0�
a½η1�

�
d−2

; ð24Þ

CðgÞ
3;d½η; η0;R� ¼ a½η�d−22

Z
η

η0
dη4a½η4�−ðd−2Þ

Z
η4

η0
dη3a½η3�d−2

Z
η3

η0
dη2a½η2�−ðd−2Þ

Z
η2

η0
dη1a½η1�d−22 CðgÞ

1;d½η1; η0;R�

þGðEÞ
d ½R�

�
a½η�
a½η0�

�d−2
2

Z
η

η0
dη3a½η3�−ðd−2Þ

Z
η3

η0
dη2a½η2�d−2

Z
η2

η0
dη1

�
a½η0�
a½η1�

�
d−2

þDd½R�
�
a½η�
a½η0�

�d−2
2

Z
η

η0
dη1

�
a½η0�
a½η1�

�
d−2

; ð25Þ

with the Euclidean Green’s function GðEÞ
d and Dd, respec-

tively, defined as the inverse Fourier transforms of −1=k⃗2

and 1=k⃗4,

GðEÞ
d≥4½R� ¼ −

Γ½d−3
2
�

4π
d−1
2 Rd−3

; ð26Þ

DðregÞ
4 ½R� ¼ −

R
8π

; ð27Þ

DðregÞ
5þ2ϵ½R� ¼

1

16π2

�
1

ϵ
− γ − ln½π� − 2 ln½μR�

�
; ð28Þ

Dd≥6½R� ¼
Γ½d−5

2
�

16π
d−1
2 Rd−5

; ð29Þ

note that D4 and D5 of the latter have been dimensionally
regularized, in which an arbitrary mass scale μ, as well as
the Euler-Mascheroni constant γ, were introduced, but
those constants present in the regularization scheme will
not show up in the final results because they will be
removed by the spatial derivatives ∂i∂j of the tensor
structure in Eq. (20). Note that the expression (20) here
is a bit different from Eq. (247) of [11], where the double-

time derivatives of CðgÞ
2;d and CðgÞ

3;d with respect to η0 have

been replaced with the lower-derivative terms via the

homogeneous wave equation for CðgÞ
1;d, which also holds

for both CðgÞ
2;d and CðgÞ

3;d.

2. Vector potential

As long as all the gravitational perturbations χμν become
negligible in the far past, [10] has argued that [cf. Eq. (178)
of [11]]

Vi½η; x⃗� ¼ 16πGN

Z
Rd−1

dd−1x⃗0ð∂i∂jDd
ðaÞT0j½η; x⃗0�

−GðEÞ
d

ðaÞT0i½η; x⃗0�Þ: ð30Þ

3. Bardeen scalar potentials for 0 < w ≤ 1

The inhomogeneous Ψ solution that solves the
scalar wave equation (16) was originally found in
Eq. (264) of [11] to involve all the three scalar functions

CðwÞ
1;d , CðwÞ

2;d , and CðwÞ
3;d defined similarly to their spin-2

counterparts CðgÞ’s above. However, that expression can
actually be further reduced to a more concise form

involving just CðwÞ
2;d alone,

Ψ½η; x⃗� ¼ −
8πGN

d − 2

ð1þ qw
2
Þ

w
d−3
2

Z
Rd−1

dd−1x⃗0
Z

∞

0

dη0Θ½T�
�
a½η0�
a½η�

�d−2
2 ðH½η�H½η0�CðwÞ

2;d ððd − 3ÞðaÞT00½η0; x⃗0�

þðaÞTll½η0; x⃗0�ÞÞ þ
8πGN

d − 2

Z
Rd−1

dd−1x⃗0ðGðEÞ
d

ðaÞT00½η; x⃗0� þ ðd − 1ÞH½η�∂jDd
ðaÞT0j½η; x⃗0�Þ: ð31Þ
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The CðwÞ
1;d is the advanced minus retarded Green’s function,

CðwÞ
1;d ½η; η0;R� ¼ Gðw;−Þ

d ½η; η0;R� −Gðw;þÞ
d ½η; η0;R�; ð32Þ

while, in a similar manner to Eq. (24), CðwÞ
2;d is expressible in

terms of CðwÞ
1;d :

CðwÞ
2;d ½η;η0;R� ¼ −a½η�−d−2

2

Z
η

η0
dη2a½η2�d−2

×
Z

η2

η0
dη1a½η1�−d−2

2 CðwÞ
1;d ½η1;η0;R�

−w
d−3
2 GðEÞ

d ½R�
�
a½η0�
a½η�

�d−2
2

Z
η

η0
dη1

�
a½η1�
a½η0�

�
d−2

;

ð33Þ

and the solutions of the retarded scalar Green’s function

Gðw;þÞ
d for d ≥ 4, obeying Eq. (23) with κ ¼ ðd − 2Þ=qw

and the rescaled spatial coordinates: x⃗ → x⃗=
ffiffiffiffi
w

p
and

x⃗0 → x⃗0=
ffiffiffiffi
w

p
, may be found in Eqs. (131) and (132) of

[10]—for even dimensions,

Gðw;þÞ
even d≥4½η; η0;R� ¼ −Θ½T�

�
1

2π

∂
∂σ̄w

�d−2
2

×

�
Θ½σ̄w�
2

Pd−2
qw

�
1þ σ̄w

ηη0

��
;

σ̄w ¼ ðη − η0Þ2 − R2=w
2

: ð34Þ

To arrive at Eq. (31) from Eq. (264) of [11], we have carried
out the time derivatives within the latter, by making use of

the homogeneous wave equation obeyed by CðwÞ
2;d and CðwÞ

3;d

to convert their higher derivatives into their lower ones,
then taking appropriate linear combinations to simplify the
ensuing expressions.
With the solution of Ψ at hand, the other Bardeen scalar

Φ can be obtained immediately by inserting Eq. (31) into
the relation (17), or its localized version given in Eq. (175)
of [11],

Φ½η; x⃗� ¼ ðd− 3ÞΨ½η; x⃗� þ 8πGN

d− 2

Z
Rd−1

dd−1x⃗0ðGðEÞ
d

ðaÞTll½η; x⃗0�

− ðd− 1Þ∂i∂jDd
ðaÞTij½η; x⃗0�Þ: ð35Þ

C. Remarks on acoustic modes

We highlight here, according to Eq. (16), the Bardeen
gauge-invariant scalars obey wave equations—albeit with

associated acoustic cones 0 < jdx⃗j=dη ¼ ffiffiffiffi
w

p
≤ 1 instead

of the null one of the spin-2 counterpart in Eq. (19). This
distinct cone structure of the acoustic waves is due to the
σ̄w dependence in Eq. (34), as opposed to the σ̄ in
Eq. (22). It is precisely these acoustic modes that
prompted us to examine whether their wave solutions
in (31) and (35) are mere artifacts of the decoupling
procedure employed in [10] to obtain stand-alone equa-
tions for each and every metric variable; or, whether
these acoustic features do in fact contribute to the
traceless portion of the physical tidal forces in Eq. (6).
We now turn to this question, for all even dimensional
(d ≥ 4) relativistic cosmologies.

D. Linearized Weyl tensor

In terms of the gauge-invariant variables in Eqs. (13)
through (15), the linearized Weyl components we are after
read

δ1Ci
0j0 ¼

�
d − 3

d − 2

���
∂i∂j −

δij
d − 1

∇⃗2

�
ðΦþΨÞ

þ ∂ði _VjÞ −
1

2

�
D̈ij þ

1

d − 3
∇⃗2Dij

��
: ð36Þ

To compute them, we proceed to substitute the gauge-
invariant solutions (20), (30), (31), and (35) into Eq. (36).
Since these δ1Ci

0j0 are the traceless components of the
physical tidal tensor, the reader would not be surprised to
learn that Eq. (36) has been shown in [11] to be causal—
namely, they depend on the astrophysical system on or
inside the null cone of the observer at ðη; x⃗Þ. The first
attempt made in [11] revealed all the gauge invariant
variables fΦ;Ψ; Vi; Dijg were needed to ensure this
causality to hold, because each and every one of them
are acausal—but when inserted into Eq. (36), the acausal
terms of these gauge-invariant variables cancel among
themselves.
Moreover, we are able to simplify somewhat the result

for δ1Ci
0j0 relative to that in [11]. We have already noted so

for the Ψ in Eq. (31). The contributions from Dij can also
be simplified by converting the second time derivatives of

CðgÞ
2;d and CðgÞ

3;d to their lower-derivative terms using the
homogeneous wave equation they satisfy, followed by

replacing certain time integrals of CðgÞ
1;d with the new

commutators CðgÞ
V;d and CðgÞ

S;d. After all these steps, the full
δ1Ci

0j0 can be expressed in terms of the retarded

scalar Green’s functions Gðg;þÞ
d ¼ −Θ½T�CðgÞ

1;d, GðV;þÞ
d ¼

−Θ½T�CðgÞ
V;d, and GðS;þÞ

d ¼ −Θ½T�CðgÞ
S;d in the spin-2 sector

and Gðw;þÞ
d ¼ −Θ½T�CðwÞ

1;d for the Bardeen scalars.

GRAVITATIONAL TENSOR AND ACOUSTIC WAVES IN A … PHYS. REV. D 103, 124033 (2021)

124033-5



δ1Ci
0j0½η; x⃗� ¼ δ1CðgÞi

0j0½η; x⃗� þ δ1CðΨÞi
0j0½η; x⃗� þ

8πGN

d − 2

�
ðaÞTij½η; x⃗� −

δij
d − 1

ððd − 3ÞðaÞT00½η; x⃗� þ 2ðaÞTll½η; x⃗�Þ
�
; ð37Þ

where the tensor-only contribution is

δ1CðgÞi
0j0½η; x⃗� ¼ 8πGN

Z
Rd−1

dd−1x⃗0
Z

∞

0

dη0
�
a½η0�
a½η�

�d−2
2

��
G̈ðg;þÞ

d − ðd − 3ÞH½η� _Gðg;þÞ
d

þ ðd − 2Þðd − 4þ qwÞ
4

H½η�2Gðg;þÞ
d

��
ðaÞTij½η0; x⃗0� þ

δij
d − 2

ððaÞT00½η0; x⃗0� − ðaÞTll½η0; x⃗0�Þ
�

− 2a½η�d−42 ∂ηða½η�−d−4
2 ∂ðiG

ðV;þÞ
d ÞðaÞTjÞ0½η0; x⃗0� þ

δij
d − 2

H½η0�a½η�d−42 ∂ηða½η�−d−4
2 GðV;þÞ

d Þ

× ððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ þ
1

d − 2

�
d − 3

d − 2þ qw
2

�
∂i∂jG

ðS;þÞ
d þ

�
1þ qw

2

d − 3

�
∂i∂jG

ðg;þÞ
d

�

þ ðd − 3Þ
�
1þ qw

2

�
H½η�H½η0�∂i∂jQ

ðV;þÞ
d

�
ððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ

�
; ð38Þ

and that of the scalar-only ones is

δ1CðΨÞi
0j0½η; x⃗� ¼ 8πGN

�
d − 3

d − 2

��
1þ qw

2

�
1

w
d−1
2

Z
Rd−1

dd−1x⃗0
Z

∞

0

dη0
�
a½η0�
a½η�

�d−2
2

H½η�H½η0�

×

�
δij

d − 1
Gðw;þÞ

d − w∂i∂jQ
ðw;þÞ
d

�
ððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ: ð39Þ

Here, the exact even d ≥ 4 solutions of GðV;þÞ
d and GðS;þÞ

d , obeying the wave equation (23) for κ ¼ ðd − 2Þ=qw and

κ ¼ 1þ ðd − 2Þ=qw, respectively, can be derived similarly to both Gðg;þÞ
d and Gðw;þÞ

d through Nariai’s ansatz delineated in
Appendix D of [10],

GðV;þÞ
even d≥4½η; η0;R� ¼ −Θ½T�

�
1

2π

∂
∂σ̄

�d−2
2

�
Θ½σ̄�
2

Pd−2
qw

�
1þ σ̄

ηη0

��
; σ̄ ¼ ðη − η0Þ2 − R2

2
; ð40Þ

GðS;þÞ
even d≥4½η; η0;R� ¼ −Θ½T�

�
1

2π

∂
∂σ̄

�d−2
2

×

�
Θ½σ̄�
2

P1þd−2
qw

�
1þ σ̄

ηη0

��
: ð41Þ

The remaining time integrals in the effective Green’s

function of δ1Ci
0j0 are encapsulated within QðV;þÞ

d and

Qðw;þÞ
d , defined by

QðV;þÞ
d ½η; η0;R�≡ a½η�−d−2

2

Z
η

η0
dη2a½η2�d−2

×
Z

η2

η0
dη1a½η1�−d−2

2 GðV;þÞ
d ½η1; η0;R�; ð42Þ

Qðw;þÞ
d ½η; η0;R�≡ a½η�−d−2

2

Z
η

η0
dη2a½η2�d−2

×
Z

η2

η0
dη1a½η1�−d−2

2 Gðw;þÞ
d ½η1; η0;R�: ð43Þ

Note that Gðw;þÞ
d and Qðw;þÞ

d may be obtained from GðV;þÞ
d

and QðV;þÞ
d simply via the replacement R → R=

ffiffiffiffi
w

p
.6

At this juncture, it is the time integrals in Eqs. (42) and
(43) that are currently the primary obstacles towards an
explicit closed arbitrary-w expression for δ1Ci

0j0 in
Eq. (37). Nonetheless, these integrals may be evaluated
for particular equations of state. Section III will focus
exclusively on the radiation dominated w ¼ 1=3 case. The
de Sitter w ¼ −1 and matter dominated w ¼ 0 cases may
be found in Appendix.
The physical significance of the result in Eq. (37) is the

appearance of the acoustic-cone structure encoded inGðw;þÞ
d

and Qðw;þÞ
d . That is, the acoustic waves of Φ and Ψ do not

appear to be mere artifacts of the decoupling procedure of
[10]; rather, Eq. (37) instead tells us the trace-free tidal
forces in a relativistic cosmology 0 < w ≤ 1 do in fact carry
acoustic modes that propagate at equal to or less than speed

6We have further checked the computation in Eq. (37) by
performing it in Fourier (k⃗-)space.
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ffiffiffiffi
w

p
. Of course, in the limit of a very dilute universe, we

expect to recover Minkowski spacetime—these acoustic
tidal forces must therefore be Hubble-suppressed relative to
the tensor ones.

More explicitly, provided that the observer is located
away from the GW sources (R ≠ 0), the acoustic-only tidal
forces (39) can be recast into

δ1CðΨÞi
0j0½η; x⃗� ¼ 8πGN

�
d − 3

d − 2

��
1þ qw

2

�
1

w
d−1
2

Z
Rd−1

dd−1x⃗0
Z

∞

0

dη0
�
a½η0�
a½η�

�d−2
2 ðδij − ðd − 1ÞR̂iR̂jÞ

×H½η�H½η0�
�

1

d − 1
Gðw;þÞ

d −
w
R

∂
∂RQðw;þÞ

d

�
ððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ: ð44Þ

Notice the δ1CðΨÞi
0j0 in Eq. (44) is manifestly traceless due

to the δij − ðd − 1ÞR̂iR̂j; this is consistent with the Weyl
being the trace-free part of Riemann. To arrive at Eq. (44),

we have also employed the field equation obeyed byCðwÞ
1;d to

convert ∂i∂jQ
ðw;þÞ
d into

∂i∂jQ
ðw;þÞ
d ¼ R̂iR̂jw−1Gðw;þÞ

d

þ ðδij − ðd− 1ÞR̂iR̂jÞ
1

R
∂
∂RQðw;þÞ

d ; ðR ≠ 0Þ:
ð45Þ

That the Green’s functions of Ψ in Eq. (31) and Φ in

Eq. (35) depend on CðwÞ
2;d but not on CðwÞ

1;d helps ensure the
acoustic contributions to the Weyl tensor in Eq. (44) are
Hubble-suppressed relative to the tensor counterparts—i.e.,
theH½η�H½η0� factors tell us, as already alluded to above, as
the universe dilutes (H → 0) we should recover the
Minkowski limit, where these acoustic waves should cease

to exist. Furthermore, we will witness in some detail below,
the acoustic-cone scalar signal to the null-cone tensor
signal scales as ðHτcÞ2 ≪ 1, where H ≡ _a=a2 ¼ H=a is
the usual Hubble parameter and τc the characteristic
timescale of the source.
Let us now move on in the following section to examine

the features of these acoustic-gravitational waves for the
physically important radiation dominated phase of our 4D
universe.

III. GRAVITATIONAL WAVES AND
POLARIZATION PATTERNS IN A 4D
RADIATION DOMINATED UNIVERSE

When specialized to 4D radiation domination

a½η� ¼ η

η0
; d ¼ 4; w ¼ 1

3
; ð46Þ

the full exact δ1Ci
0j0 in Eq. (37) reads

δ1Cð4D radÞi
0j0½η; x⃗� ¼ δ1Cðgj4D radÞi

0j0½η; x⃗� þ δ1CðΨj4D radÞi
0j0½η; x⃗� þ 4πGN

�
ðaÞTij½η; x⃗� −

δij
3
ððaÞT00½η; x⃗� þ 2ðaÞTll½η; x⃗�Þ

�
;

ð47Þ

where the tensor-only portions are

δ1Cðgj4D radÞi
0j0½η; x⃗� ¼ 8πGN

Z
R3

d3x⃗0
Z

∞

0

dη0
�
η0

η

���
G̈ðgjrad;þÞ

4 −
1

η
_Gðgjrad;þÞ
4 þ 1

η2
Gðgjrad;þÞ

4

�

×

�
ðaÞTij½η0; x⃗0� þ

δij
2
ððaÞT00½η0; x⃗0� − ðaÞTll½η0; x⃗0�Þ

�
− 2∂ði _G

ðVjrad;þÞ
4

ðaÞTjÞ0½η0; x⃗0�

þ δij
2η0

_GðVjrad;þÞ
4 ððaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ þ

�
1

6
ð∂i∂jG

ðSjrad;þÞ
4 þ 2∂i∂jG

ðgjrad;þÞ
4 Þ

þ 1

ηη0
∂i∂jQ

ðVjrad;þÞ
4

�
ððaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ

�
; ð48Þ
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and the scalar-only portions are

δ1CðΨj4DradÞi
0j0½η; x⃗�¼8πGN

Z
R3

d3x⃗0
Z

∞

0

dη0
ffiffiffi
3

p

η2

×
	
δijG

ðwjrad;þÞ
4 −∂i∂jQ

ðwjrad;þÞ
4



×
	
ðaÞT00½η0; x⃗0�þðaÞTll½η0; x⃗0�



: ð49Þ

The relevant retarded scalar Green’s functions Gðgjrad;þÞ
4 ,

Gðwjrad;þÞ
4 ,GðVjrad;þÞ

4 , andGðSjrad;þÞ
4 , respectively, are given in

Eqs. (22), (34), (40), and (41) with d set to 4 and w to 1=3,

Gðgjrad;þÞ
4 ½η; η0;R� ¼ −

δ½T − R�
4πR

; ð50Þ

GðVjrad;þÞ
4 ½η; η0;R� ¼ −

δ½T − R�
4πR

−
Θ½T − R�
4πηη0

; ð51Þ

GðSjrad;þÞ
4 ½η;η0;R�¼−

δ½T−R�
4πR

−
3Θ½T−R�
4πηη0

�
1þðη−η0Þ2−R2

2ηη0

�
; ð52Þ

Gðwjrad;þÞ
4 ½η; η0;R� ¼ −

δ½T −
ffiffiffi
3

p
R�

4
ffiffiffi
3

p
πR

−
Θ½T −

ffiffiffi
3

p
R�

4πηη0
: ð53Þ

The QðVjrad;þÞ
4 and Qðwjrad;þÞ

4 from Eqs. (42) and (43) can
now be analytically evaluated:

QðVjrad;þÞ
4 ½η; η0;R� ¼ −

Θ½T − R�
24πηη0

�
R2 − 3ðη2 þ η02Þ

þ 2ðη3 − η03Þ
R

�
; ð54Þ

Qðwjrad;þÞ
4 ½η; η0;R� ¼ −

Θ½T −
ffiffiffi
3

p
R�

24πηη0

�
3R2 − 3ðη2 þ η02Þ

þ 2ðη3 − η03Þffiffiffi
3

p
R

�
: ð55Þ

They are both pure-tail and vanish identically on the null or
acoustic cones. We notice that the pure light-cone nature of

Gðgjrad;þÞ
4 in Eq. (50) is closely tied to its conformal

invariance. Whereas the other scalar Green’s functions in
Eqs. (51)–(53) all develop tails. Additionally, the tail

functions of GðVjrad;þÞ
4 and Gðwjrad;þÞ

4 are both space inde-
pendent.
Assuming the observer at ðη; x⃗Þ is away from the source

area (R ≠ 0), the scalar-only contributions in Eq. (49) are
now, according to Eq. (44),

δ1CðΨj4D radÞi
0j0½η; x⃗� ¼ −2GN

Z
R3

d3x⃗0ðδij − 3R̂iR̂jÞ
�

1

Rη2
ððaÞT00½η −

ffiffiffi
3

p
R; x⃗0� þ ðaÞTll½η −

ffiffiffi
3

p
R; x⃗0�Þ

þ 1

3R3

Z
η−

ffiffi
3

p
R−0þ

0

dη0
ðη3 − η03Þ

η3η0
ððaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ

�
: ð56Þ

The first line, with the 1=R scaling, is composed of the
acoustic-cone signals; while the second line, decaying as
1=R3 instead, corresponds to the acoustic tails that depend
on the entire past history of the source(s) right up to the
retarded time η −

ffiffiffi
3

p
R. Even though the tail signals, for a

fixed observer time η, fall off faster with increasing distance
than their acoustic-cone counterpart, the former in the far
zone is not always guaranteed to be strongly suppressed
relative to the latter—we will carry out the relevant
estimates below.

A. Far-zone JWKB limit: Trace-free tidal forces

Since radiation corresponds to the transport of energy
momentum away from its emitter, its study usually takes
place in the region of space far from the source; where the
characteristic timescale of the source τc—as well as its
typical size rc—is much shorter than the proper observer-
source spatial distance a½η�r: namely, τc ≪ a½η�r and

rc ≪ a½η�r. Additionally, about a cosmological back-
ground, this necessarily implies τc is much shorter than
that associated with the universe itself 1=H; since the latter
is always the longest time/length scale. This far zone
“JKWB limit” is what we wish to consider in this section.

1. Estimates

To extract the leading far-zone contributions of Eq. (47),
we first discard the source terms evaluated at the observer’s
spacetime location, i.e., the terms in the parenthesis, and
carry out the derivatives acting on the relevant scalar
Green’s functions; whereby certain tail terms will be
converted into the null-cone or acoustic-cone pieces as
the result of differentiating the step functions.
Let us first compare the various “direct” spin-2 terms;

i.e., its light cone signals. One will find, it is the second
derivatives of the delta function δ00, which occurs only in
the tensor sector, that yield the dominant signals in the far
zone. The reasons are as follows. For the tensor sector, each
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derivative acting on the δ functions may be integrated by
parts; and the dominant piece of the results are time
derivatives ∂η0 acting on the source ðaÞTμν. These
∂n
η0
ðaÞTμν terms scale as a½η0�nðaÞTμν=τnc for n ¼ 1 and

n ¼ 2. A direct calculation then reveals all the subdominant
direct signals in the far zone R ≈ r, are suppressed by
factors of order H½ηr�τc and τc=ða½ηr�rÞ relative to the
leading portion of the δ00 terms, where τc is evaluated at
the retarded time ηr ≡ η − r. The H½ηr�τc corresponds to
the ratio (characteristic timescale of the source)/(cosmic
age), which we will assume to be small. There are also
factors that scale as ðH½ηr�τcÞH½η�ða½η�rÞ; but since the
H½η�ða½η�rÞ∼ (physical observer-source distance)/(size of
the observable universe) ≪ 1, we will ignore them.
Furthermore, there are “finite size” effects, analogous to
the multipole expansion in flat spacetime, that scale as
H½ηr�rc and rc=ða½ηr�rÞ.
Next, let us move on to compare the direct scalar

signals—i.e., its acoustic-cone portion—to its spin-2 coun-
terparts. Denote the dominant light-cone terms in Eq. (48)
by δ1CðgjDLCÞ:

δ1CðgjDLCÞ½η; x⃗�

≡ GN

Z
R3

d3x⃗0
Z

∞

0

dη0
�
η0

η

�
δ00½T − R�

R
S½η0; x⃗0�

∼GN

Z
R3

d3x⃗0
�
η − R
η

�
a½η − R�2

τ2cR
S½η − R; x⃗0�; ð57Þ

where the function S refers to a generic component of the
matter stress-energy tensor ðaÞTμν,

7 and all the numerical
constants and the tensor structure have been omitted. In a
similar manner, the acoustic-cone amplitude of Eq. (56) can
also be written schematically as

δ1CðΨjdirectÞ½η; x⃗�≡GN

Z
R3

d3x⃗0
1

Rη2
S½η −

ffiffiffi
3

p
R; x⃗0�: ð58Þ

Ignoring the different propagation cones between the tensor
versus acoustic signals in Eqs. (57) and (58), we take the
ratio of their far-zone amplitudes to deduce

���� δ1CðΨjdirectÞ½η; x⃗�
δ1CðgjDLCÞ½η; x⃗�

���� ∼ ðH½ηr�τcÞ2; ðfar zoneÞ: ð59Þ

In addition to the direct part of the signal, there also exist
nonvanishing tail effects in δ1Cð4D radÞi

0j0, as opposed to the
de Sitter case [see Appendix]. More specifically, the spin-2
tail portion of Eq. (48) generally contains two types of
amplitudes:

δ1Cðgjtail−1Þ½η; x⃗�≡ GN

Z
R3

d3x⃗0
Z

η−R−0þ

0

dη0
1

η3η0
S½η0; x⃗0�;

ð60Þ

δ1Cðgjtail−2Þ½η; x⃗�

≡GN

Z
R3

d3x⃗0
1

R3

Z
η−R−0þ

0

dη0
ðη3 − η03Þ

η3η0
S½η0; x⃗0�; ð61Þ

while the acoustic tail, as we have already noted in Eq. (56),
has the same amplitude as the latter up to a rescaled spatial
dependence R →

ffiffiffi
3

p
R,

δ1CðΨjtailÞ½η; x⃗�

≡GN

Z
R3

d3x⃗0
1

R3

Z
η−

ffiffi
3

p
R−0þ

0

dη0
ðη3 − η03Þ

η3η0
S½η0; x⃗0�: ð62Þ

Within these tail terms, the S½η0; x⃗0� usually involves both
ðaÞT00½η0; x⃗0� and ðaÞTll½η0; x⃗0� of the matter source; however,
the former, in the far-zone limit, may potentially lead to
divergent tail integrals in Eqs. (60)–(62). This is because
the total mass or energy of the astrophysical system ðaÞM,

ðaÞM½η�≡
Z
R3

d3x⃗a½η�3ðaÞT 0̂ 0̂½η; x⃗�

¼
Z
R3

d3x⃗a½η�ðaÞT00½η; x⃗�; ð63Þ

is approximately conserved, at least for small Hubble
scales, so that the integral

Z
R3

d3x⃗0
Z

η−R−0þ

0

dη0
1

η0
ðaÞT00½η0; x⃗0�

∼ ðaÞM
Z

η−r−0þ

0

dη0
η0
η02

ðfar zoneÞ; ð64Þ

as well as its acoustic counterpart in Eq. (62), appears to
blow up at the lower limit η0 → 0. The notation ðaÞT 0̂ 0̂ ≡
a−2ðaÞT00 here denotes the energy density observed by a co-
moving observer in a orthonormal frame. As an example,
this pathology occurs for co-moving point particles.
Whether this divergence poses a real physical issue,
however, cannot be clarified until the explicit ðaÞTμν of
the astrophysical source(s) is specified, which we shall
leave to our future work.
In spite of this potential issue, we may estimate the far-

zone tail-to-cone amplitude by comparing the signals

7Strictly speaking, the amplitude discrepancies between differ-
ent components of ðaÞT μ̂ ν̂ may emerge in the nonrelativistic limit,
where the stress components ðaÞTî ĵ, as well as the momentum
density ðaÞT 0̂ î, could be suppressed relative to the energy density
ðaÞT 0̂ 0̂. Note that ðaÞT μ̂ ν̂ ≡ a−2ðaÞTμν denotes the physical matter
stress tensor observed in a co-moving orthonormal frame.
However, we will not take into consideration the distinction
between the relativistic and nonrelativistic cases and only assume
they are of the same order in our estimates here.
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received solely over the course of the GW generation
process—a physical estimation scheme employed in [12].
Since the gravitational radiation is physically attributed to
the pressure of the astrophysical system due to the work
done within itself, the GW signals are expected to peak at
some time η� in the past, within a finite duration Δt ∼R
peak width dηa½η� of the active GW production from the
source. Hence, as far as the radiation process is concerned,
with the assumption that the scale factor does not change
appreciably over the active period Δt, the dominant spin-2
light-cone amplitude (57) is roughly bounded by

jδ1CðgjDLCÞ½η; x⃗�j ≲ GN

τ2c�r
·
η5�
ηη40

����
Z
R3

d3x⃗0Ŝ½η�; x⃗0�
����; ð65Þ

whereas the tail ones in Eqs. (60)–(62) are, respectively,
bounded by

jδ1Cðgjtail−1Þ½η; x⃗�j ≲GNΔt ·
1

η3η0

����
Z
R3

d3x⃗0Ŝ½η�; x⃗0�
����; ð66Þ

jδ1Cðgjtail−2Þ½η; x⃗�j ∼ jδ1CðΨjtailÞ½η; x⃗�j

≲GNΔt
r3

·
ðη3 − η3�Þ
η3η0

����
Z
R3

d3x⃗0Ŝ½η�; x⃗0�
����; ð67Þ

where the far-zone limit has been taken, τc� denotes the
timescales of the source at the peak time η�, and Ŝ ¼ a−2S
refers symbolically to the physical ðaÞT μ̂ ν̂ ¼ a−2ðaÞTμν

observed by a comoving observer. As it turns out, the tail
bounds (66) and (67), in the far-zone regime, are highly
suppressed relative to their leading null-cone counterpart
(65) by the following ratios,

���� δ1Cðgjtail−1Þ½η; x⃗�
δ1CðgjDLCÞ½η; x⃗�

���� ∼ ðH½η��τc�Þ2 ·H½η��Δt

·H½η�ða½η�rÞ · a½η��
a½η� ; ð68Þ

���� δ1Cðgjtail−2Þ½η; x⃗�
δ1CðgjDLCÞ½η; x⃗�

����∼
���� δ1CðΨjtailÞ½η; x⃗�
δ1CðgjDLCÞ½η; x⃗�

����
∼
�

τc�
a½η��r

�
2

·H½η��Δt ·
a½η�
a½η��

×

�
1 −

�
a½η��
a½η�

�
3
�
: ð69Þ

Note also that the additional suppression factor H½η��Δt
scales as (duration of active source)/(cosmic age) at around
the peak time η�. Strictly speaking, the ratio (69) could still
be enhanced if the active period of the source took place in
the extremely early universe.
Now, having neglected the subdominant direct and tail

terms in Eq. (47), the asymptotic far-zone behavior of

δ1Cð4D radÞi
0j0 can be further recast into a local-in-space

“transverse-traceless” (tt) form, upon integrations by parts
and invoking the conservation law of the energy-momentum
tensor (∇̄μðaÞTμν ¼ 0) at leading order,

∂i
ðaÞTij ¼ ðaÞ _T0jð1þO½Hτc�Þ; ð70Þ

∂j
ðaÞT0j ¼ ðaÞ _T00ð1þO½Hτc�Þ: ð71Þ

That is, taking into account the scaling estimates performed
above, and at leading order, we find that the far-zone JWKB
limit of δ1Cð4D radÞi

0j0 is simply proportional to the accel-
eration of the transverse-traceless “tt” spatial metric pertur-
bation χij defined in Eq. (73) below. By placing x⃗ ¼ 0⃗within
the source, so that R ≈ r≡ jx⃗j in the far zone:

δ1Cð4DradÞi
0j0½η; x⃗�

¼−
1

2
χ̈ðttj4DradÞ
ij ½η; x⃗�

�
1þO

�
τc

a½ηr�r
;H½ηr�τc;

rc
a½ηr�r

;H½ηr�rc;

×

�
τc�

a½η��r
�

2

·H½η��Δt ·
a½η�
a½η��

�
1−

�
a½η��
a½η�

�
3
���

; ð72Þ

where the size rc and the timescale τc of the source are,
strictly speaking, evaluated at the retarded time ηr, and

χðttj4D radÞ
ij is given by

χðttj4D radÞ
ij ½η; x⃗�≡ Pð4DÞ

ijmn
4GN

r

�
η − r
η

�

×
Z
R3

d3x⃗0ðaÞTmn½η − rþ x⃗0 · r̂; x⃗0�; ð73Þ

with r̂≡ x⃗=jx⃗j and Pð4DÞ
ijmn being the 4D tt projection tensor

defined in the position space,

Pð4DÞ
ijmn ≡ PmðiPjÞn −

1

2
PijPmn; Pij ≡ δij − r̂ir̂j: ð74Þ

Because of this tt projector, χðttj4D radÞ
ij obeys the conditions

δijχðttj4D radÞ
ij ¼ 0 ¼ r̂iχðttj4D radÞ

ij , where the tracelessness is
consistent with that of the Weyl components δ1Ci

0j0,
and the transversality implies, at leading order [see
Eq. (72)], r̂iδ1Ci

0j0 ¼ 0 ¼ r̂jδ1Ci
0j0. At this order, we

reiterate that the GW tidal forces described in Eq. (72)
are exclusively dependent on the spin-2 gravitons, to which
the acoustic contributions are highly suppressed in com-
parison. Moreover, the dominant far-zone behavior of
δ1Cð4D radÞi

0j0, except the extra redshift factor ðη − rÞ=η in
Eq. (73), is closely analogous to its flat-spacetime counter-
part. [See, e.g., Eqs. (52) and (199) of [11], and recall
in Eq. (84) that Cμ

νρσ and Rμ
νρσ , in Minkowski back-

ground, are equivalent in a source-free region.]
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Thus, one would expect the far-zone spin-2 polarization
pattern, determined by Eq. (74), to look the same as the
Minkowski predictions, which will be further elaborated
below. Finally, it is worth highlighting that, the limit taken in
Eq. (72) to extract the dominant tidal forces, in essence,
coincides with the high-frequency regime of GWs in light of
the JWKB approximation. In particular, all the wave tails,
encoded in Eqs. (51)–(55), become irrelevant within such
a limit.
If the astrophysical system is nonrelativistic, rc=τc → 0,

the tt perturbations in Eq. (73) may also be reexpressed in
terms of the quadrupole moment ðaÞImn, by virtue of
the energy-momentum conservation given in Eqs. (70)
and (71),

χðttj4DradÞ
ij ½η;x⃗�

≈Pð4DÞ
ijmn

2GN

a½η�r
1

a½η−r�2
ðaÞÏmn½η−r� ðnonrelativisticÞ; ð75Þ

where the mass quadrupole moment ðaÞImn is defined as

ðaÞImn½η�≡
Z
R3

d3x⃗a½η�3ða½η�xiÞða½η�xjÞðaÞT 0̂ 0̂½η; x⃗�

¼
Z
R3

d3x⃗a½η�3xixjðaÞT00½η; x⃗�: ð76Þ

2. Scalar acoustic-gravitational tidal forces

Although the Bardeen scalars contribute sub-dominantly
to the far-zone δ1Cð4D radÞi

0j0, their mere presence does raise
the question of how many dynamical degrees of freedom
there are within the linearized Einstein-fluid equations at
hand. The nontrivial acoustic tidal forces also point to their
potential impact on the large scale structure of the universe.
To this end, we may continue to extract the explicit far-zone
behavior of their contribution (56),

δ1CðΨj4D radÞi
0j0½η; x⃗�

¼ −
1

2

�
SðΨjdirectÞij ½η; x⃗�

�
1þO

�
rc

a½ηr;ac�r
;

τc
a½ηr;ac�r

��

þ SðΨjtailÞij ½η; x⃗�
�
1þO

�
rc

a½ηr;ac�r
;
rc�
Δt

���
; ð77Þ

with the leading acoustic direct SðΨjdirectÞ
ij and tail SðΨjtailÞ

ij

portions defined by

SðΨjdirectÞ
ij ½η; x⃗�

≡ ðδij − 3r̂ir̂jÞ
4GN

rη2

Z
R3

d3x⃗0ððaÞT00½η−
ffiffiffi
3

p
ðr− x⃗0 · r̂Þ; x⃗0�

þ ðaÞTll½η−
ffiffiffi
3

p
ðr− x⃗0 · r̂Þ; x⃗0�Þ; ð78Þ

SðΨjtailÞ
ij ½η; x⃗�

≡ ðδij − 3r̂ir̂jÞ
4GN

3r3

Z
R3

d3x⃗0
Z

η−
ffiffi
3

p
r−0þ

0

dη0
ðη3 − η03Þ

η3η0

× ððaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ; ð79Þ

respectively, where the (acoustic) retarded time ηr;ac ≡ η −ffiffiffi
3

p
r at which rc and τc are both evaluated, while the rc� is

the source’s size at the peak time η�, and the suppression
factor rc�=Δt corresponds to the ratio of the additional
acoustic-cone piece coming from Taylor expanding the
exact tail portion of Eq. (56) to the leading tail effect of the
latter itself, namely, Eq. (79).
Similarly, in the nonrelativistic limit as rc=τc → 0, we

may rewrite these far-zone expressions in terms of the mass
monopole and quadrupole moments defined in Eqs. (63)
and (76), respectively,

SðΨjdirectÞ
ij ½η; x⃗�

≈ðδij−3r̂ir̂jÞ
4GN

rη2
η0

ðη− ffiffiffi
3

p
rÞ

×

�
ðaÞM½η−

ffiffiffi
3

p
r�þ1

2

�
η0

η−
ffiffiffi
3

p
r

�
2ðaÞÏll½η−

ffiffiffi
3

p
r�
�
; ð80Þ

SðΨjtailÞ
ij ½η; x⃗�

≈ ðδij − 3r̂ir̂jÞ
4GN

3r3

Z
η−

ffiffi
3

p
r−0þ

0

dη0
η0ðη3 − η03Þ

η3η02

×

�
ðaÞM½η0� þ 1

2

�
η0
η0

�
2ðaÞ̈Ill½η0�

�
; ð81Þ

where ðaÞIll ≡ δijðaÞIij and the first-order conservation laws
(70) and (71) have been employed.
As already alluded to in the previous section, the acoustic

tail effect, in the far-field regime, is not always suppressed
in comparison with its acoustic-cone counterpart, as can be
seen in the following acoustic tail-to-cone ratio,

���� δ1CðΨjtailÞ½η; x⃗�
δ1CðΨjdirectÞ½η; x⃗�

���� ∼ Δt
a½η��r

·
1

H½η�ða½η�rÞ

·
a½η�
a½η��

�
1 −

�
a½η��
a½η�

�
3
�
; ð82Þ

whose amplitude, in fact, depends on the hierarchy of the
scales involved. The minimum tail-to-direct ratio, to be of
the order Δt=ða½η��rÞ, is reached when the peak production
of GWs happens near the retarded time ηr;ac, i.e., η� ≈ ηr;ac.
In this scenario, if the physical observer-source distance at
peak time, a½η��r, is sufficiently greater than the duration of
the GW source, Δt, then the acoustic direct signals could
still dominate over their tail counterpart. On the other hand,
if the active period of GW production occurs fairly early in
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the past, as long as the factor Δt=ða½η��rÞ is not as small as
the order of H½η�ða½η�rÞ, the acoustic tail signals could
actually comprise a large proportion of the scalar tidal
forces.

B. Far-zone JWKB limit: Space distortions and
polarization patterns

Having studied the high frequency limit of the traceless
geometric tidal forces in a radiation dominated universe, let
us now turn to a closely related issue. What is the
corresponding JWKB limit of the distortion of space driven
by gravitational radiation, as experienced by free-falling
co-moving test masses sprinkled within such a cosmology;
and quantified via Eq. (5)? Of course, the spin-2 polari-
zation patterns are well known in a Minkowski back-
ground. We shall not only extend these tensor results to the
w ¼ 1=3 cosmological case—but also uncover the acous-
tic-gravitational ones, which have no counterpart in flat
spacetime, de Sitter, nor in matter dominated w ¼ 0
universes.

1. Synchronous-Weyl relation

The key object within the fractional distortion formula of
Eq. (5) is the synchronous gauge metric perturbation χðsÞij .
Let us first explain why, the dominant term of δ1Ci

0j0 is in
fact its acceleration; namely,

δ1Ci
0j0 ≈ −

1

2
χ̈ðsÞij : ð83Þ

Since the linearized Weyl tensor is gauge invariant, in the
high frequency ω limit, we may then proceed to use the
JWKB results for the Weyl tensor components obtained in

Sec. III A above, to solve for χðsÞij —i.e., by equating the
dominant contributions to Weyl from Eqs. (72) and (77) to
the right-hand side of Eq. (83).
We begin with the “on-shell” relationship between the

Riemann and Weyl tensors,

Cρ
σμν ¼ Rρ

σμν − 8πGN

×

�
δρ½μTν�σ − gσ½μTν�ρ −

2

3
δρ½μgν�σg

αβTαβ

�
; ð84Þ

where, on the right-hand side, the Einstein’s equation
Gμν ¼ 8πGNTμν has been imposed on the trace parts of
the Riemann tensor, with Tμν referring to the energy-
momentum tensor of the total matter content—both the
perfect fluid and the isolated astrophysical system.
Exploiting the a2ðημν þ χμνÞ form of our cosmological
geometry, we perform a conformal transformation of the
Riemann tensor to reveal, in the synchronous gauge,

Ri
0j0 ¼ −δij _H −

1

2
χ̈ðsÞij þ 1

2
H_χðsÞij þO½ðχðsÞmnÞ2�: ð85Þ

At the background level, H is governed by the Friedmann
equations,

H2 ¼ 8πGN

3
T̄00; ð86Þ

_H ¼ −
4πGN

3
ðT̄00 þ 3a2p̄Þ; ð87Þ

where T̄μν, being the zeroth-order total stress tensor,
involving only the background perfect fluid, so it takes a
diagonal form with isotropic pressure T̄ij ≡ δija2p̄.
Plugging Eqs. (85)–(87) into Eq. (84), one would now

obtain, up to first order in χðsÞij and δ1Tμν:

δ1Ci
0j0 ¼ −

1

2
χ̈ðsÞij þ 1

2
H_χðsÞij þ 4πGN

�
ðδ1Tij − a2p̄χðsÞij Þ

−
δij
3
ðδ1T00 þ 2ðδ1Tll − a2p̄χðsÞll ÞÞ

�
: ð88Þ

Notice from Eq. (88) that the linear-order piece of Tμν,
denoted by δ1Tμν, consists not just of the compact astro-
physical sources, i.e., ðaÞTμν, but also of the first-order
perturbations of the fluid that drives the cosmic expansion.
In other words, even at linear order in perturbations, the
precise connection between the synchronous gauge gravi-
tational perturbation and that of the Weyl tensor compo-
nents requires not only understanding gravitational
dynamics; but those of the first order perturbed fluid
as well.
Nonetheless, let us argue that the first term on the right-

hand side of Eq. (88) is the dominant one—i.e., Eq. (83) is
justified—as long as the characteristic timescale of χðsÞij ,
which in turn is associated with that of the GW source(s), is
much smaller than the age of the universe. For, we may

estimate χ̈ðsÞij , H_χðsÞij , and GNδ1Tμν in Eq. (88), respectively,
to scale as

χ̈ðsÞij ∼ τ−2χ a2χðsÞij ð1þO½Hτχ �Þ; ð89Þ

H_χðsÞij ∼Hτ−1χ a2χðsÞij ; ð90Þ

GNδ1Tμν ∼ GNðT̄χðsÞÞμν ∼H2a2ðχðsÞÞμν; ð91Þ

where τχ denotes the timescale of the synchronous-gauge
perturbations in terms of the cosmic time t ¼ R

dηa½η�, and
δ1Tμν ∼ ðT̄χðsÞÞμν. As the Hubble parameter is also
inversely related to the age of the universe, the factor
Hτχ appears to be a small ratio of the two scales, i.e.,
Hτχ ≪ 1, indicating Eqs. (90) and (91) are both Hτχ
suppressed relative to Eq. (89). To sum, we have arrived
at the estimate:
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δ1Ci
0j0 ¼ −

1

2
χ̈ðsÞij ð1þO½Hτχ �Þ: ð92Þ

From Eq. (85), we may in turn infer that

δ1Ci
0j0 ≈ δ1Ri

0j0: ð93Þ

Physically speaking, the Weyl components δ1Ci
0j0 provide

the dominant contributions to the first-order tidal forces.

2. Monochromatic waves

To identify the radiative behaviors of Eqs. (72) and (77),
and characterize their oscillatory polarization patterns, we
shall now focus on the monochromatic component waves
associated with these far-zone solutions. This also serves as
a practical approximation to the observed signals, for
realistic GW detectors are only sensitive to a limited range
of frequencies. However, unlike the Minkowski spin-2
waveforms, the frequency-Fourier transform cannot be
directly exploited to decompose Eqs. (72) and (77) into
their individual frequency modes, due to the overall time-
dependent amplitudes, as well as the constraint for con-
formal time to be strictly positive η > 0.8 Nevertheless, at
high frequencies, we may instead Fourier decompose the
δ-functions encapsulated within Eqs. (73) and (78), the direct
parts of the signals, to have them reexpressed in terms of the
superpositions of the outgoing JWKB spherical waves
propagating on the null and acoustic cones, respectively,

χðttj4DradÞ
ij ½η; x⃗�≈Pð4DÞ

ijmn
8GN

rη

×Re

�Z
∞

0

dω
2π

ðaÞ ˜̄T mn½ω;ωr̂�e−iωðη−rÞ
�
; ð94Þ

SðΨjdirectÞ
ij ½η; x⃗� ¼ ðδij − 3r̂ir̂jÞ

8GN

rη2

× Re

�Z
∞

0

dω
2π

ðaÞT̃ ½ω;
ffiffiffi
3

p
ωr̂�e−iωðη−

ffiffi
3

p
rÞ
�
;

ð95Þ

where
ðaÞ ˜̄T mn and ðaÞT̃ are defined, respectively, as

ðaÞ ˜̄T mn½ω;ωr̂�≡
Z

∞

0

dη0η0
Z
R3

d3x⃗0eiωðη0−x⃗0·r̂ÞðaÞTmn½η0; x⃗0�;

ð96Þ
ðaÞT̃ ½ω;

ffiffiffi
3

p
ωr̂�≡

Z
∞

0

dη0
Z
R3

d3x⃗0eiωðη0−
ffiffi
3

p
x⃗0·r̂Þ

×ððaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ: ð97Þ

For each ω mode in Eqs. (94) and (95), denoted by

χ̃ðttj4D radÞ
ij ½η; x⃗�≡ Pð4DÞ

ijmn
8GN

rη
Re½ðaÞ ˜̄T mn½ω;ωr̂�e−iωðη−rÞ�;

ð98Þ
S̃ðΨjdirectÞ
ij ½η; x⃗�≡ðδij−3r̂ir̂jÞ

×
8GN

rη2
Re½ðaÞT̃ ½ω;

ffiffiffi
3

p
ωr̂�e−iωðη−

ffiffi
3

p
rÞ�; ð99Þ

ω is physically related to the GW frequency ωgw, as
measured by a comoving observer, via the redshift relation-
ship ωgw½η� ¼ ω=a½η� in the high-frequency JWKB limit.
Furthermore, with ωgw½ηr� ∼ τ−1c identified for the null
propagation, the far-zone condition τc=ða½ηr�rÞ ≪ 1,
together with the suppression factor H½ηr�τc ≪ 1, will
translate into the limits ωr ∼ a½ηr�r=τc ≫ 1 and ωη ∼
1=ðH½ηr�τcÞ ≫ 1 in “frequency space,” which applies to
its acoustic counterpart as well.
In terms of these monochromatic JWKB waves, i.e.,

Eqs. (98) and (99), the dominant (spin-2) GW tidal forces
now read [cf. Eq. (72)]

δ1Cð4D radjωÞi
0j0½η; x⃗�≡ −

1

2
̈χ̃ðttj4D radÞ
ij ½η; x⃗�;

≈ Pð4DÞ
ijmn

4GN

rη
ω2

× Re½ðaÞ ˜̄T mn½ω;ωr̂�e−iωðη−rÞ�; ð100Þ
whereas the direct portion of the leading scalar ones (77)
gives

δ1CðΨ;directj4D radjωÞi
0j0½η; x⃗�

≡ −
1

2
S̃ðΨjdirectÞ
ij ½η; x⃗�;

¼ ð3r̂ir̂j − δijÞ
4GN

rη2
Re½ðaÞT̃ ½ω;

ffiffiffi
3

p
ωr̂�e−iωðη−

ffiffi
3

p
rÞ�: ð101Þ

In these expressions, the ðHτcÞ2 suppression in amplitude
found in Eq. (59), can roughly be accounted for by a factor
of 1=ðωηÞ in their prefactors, with another 1=ðωη0Þ within
the integrands of ðaÞT̃ and ω

ðaÞ ˜̄T mn in terms of Eqs. (96)
and (97).

3. Matching of inhomogeneous
and homogeneous solutions

If Eqs. (100) and (101) were both considered to be
dynamical propagating waves, one would expect them to
coincide with their homogeneous counterparts in the far-
field regime. The exact plane-wave-like solution of the
linearized Weyl tensor, denoted by δ1CðPWÞi

0j0, can be
readily obtained for all d ≥ 4 by solving the source-less
counterparts of Eqs. (19) and (16) for Dij and Ψ, respec-
tively, followed by inserting them and Φ ¼ ðd − 3ÞΨ
into Eq. (36),

8Here, we are primarily interested in the propagating mono-
chromatic waves in “frequency space.” This is not be to confused
with the spatial Fourier transform commonly exploited in the
cosmology literature, in which some cosmological observables
are expressible in terms of the Fourier modes.
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δ1CðPWÞi
0j0½η; x⃗� ¼ k2ðkηÞ12−d−2

qw Re

�
ϵij½k⃗�

�
Hð2Þ

3
2
þd−2

qw

½kη� − 1

kη
Hð2Þ

1
2
þd−2

qw

½kη� − 1

d − 3
Hð2Þ

−1
2
þd−2

qw

½kη�
�
eik⃗·x⃗

�

þ ððd − 1Þk̂ik̂j − δijÞk2ðkηÞ−
1
2
−d−2

qw Re

�
b½k⃗�Hð2Þ

1
2
þd−2

qw

½kη�eik⃗· x⃗ffiffi
w

p
�
; k≡ jk⃗j: ð102Þ

The unit vector k̂≡ k⃗=jk⃗j points towards the direction of

the wave propagation; Hð2Þ
ν is the Hankel function of the

second kind; the spin-2 polarization tensor ϵij½k⃗� obeys the
traceless-transverse constraints δijϵij ¼ 0 ¼ kiϵij; whereas

the scalar amplitude b½k⃗� remains arbitrary. Note that the
first line of Eq. (102) comes from the spin-2 gravitons Dij,
while its second line is due to the Bardeen scalar potentials
Ψ and Φ; the vector mode Vi does not contribute at all.
Within the JWKB approximation, where the GW wave-

length λgw ¼ 2πa=k ≪ H−1, or, equivalently, kη ≫ 1, we

may employ the asymptotic expansion of Hð2Þ
ν ½kη� for large

arguments,

Hð2Þ
ν ½kη� ¼

ffiffiffiffiffiffiffiffi
2

πkη

s
e−iðkη−νπ

2
−π
4
Þ
�
1þO

�
1

kη

��
; ð103Þ

to extract the asymptotic behavior of Eq. (102):

δ1CðPWÞi
0j0½η; x⃗� ¼ ðδ1CðPWjgÞi

0j0½η; x⃗�

þ δ1CðPWjΨÞi
0j0½η; x⃗�Þ

�
1þO

�
1

kη

��
:

ð104Þ

The spin-2-only δ1CðPWjgÞi
0j0 and spin-0-only δ1CðPWjΨÞi

0j0

tidal forces now denote their leading order expressions,

δ1CðPWjgÞi
0j0½η; x⃗�≡ k2ðkηÞ−d−2

qw Re½ϵij½k⃗�e−ikðη−k̂·x⃗Þ�; ð105Þ

δ1CðPWjΨÞi
0j0½η; x⃗�≡ ððd − 1Þk̂ik̂j − δijÞk2ðkηÞ−1−

d−2
qw

× Re½b½k⃗�e−ikðη−k̂· x⃗ffiffi
w

p Þ�; ð106Þ

with all the numerical coefficients absorbed into redefini-
tions of ϵij½k⃗� and b½k⃗�. We observe from Eqs. (105) and

(106) that, apart from the undetermined amplitudes ϵij½k⃗�
and b½k⃗�, the prefactor of the latter is already 1=ðkηÞ
suppressed relative to that of the former for all relevant
spacetime dimensions.
When we specialize to 4D radiation domination, the

leading spin-2 null waves (105) and the scalar acoustic ones
(106) are, respectively,

δ1CðPWjgj4D radÞi
0j0½η; x⃗� ¼

k
η
Re½ϵij½k⃗�e−ikðη−k̂·x⃗Þ�; ð107Þ

δ1CðPWjΨj4D radÞi
0j0½η; x⃗� ¼ ð3k̂ik̂j − δijÞ

1

η2

× Re½b½k⃗�e−ikðη−
ffiffi
3

p
k̂·x⃗Þ�: ð108Þ

Comparing these results with their inhomogeneous coun-
terparts (100) and (101), we find that the matching of both
the null or acoustic far-zone JWKB waveforms can indeed
be established by the following correspondence between
the two sides:

k⃗ ↔ ωr̂; ð109Þ

ϵij½k⃗� ↔
4GN

r
Pð4DÞ
ijmnω

ðaÞ ˜̄T mn½ω;ωr̂�; ð110Þ

b½k⃗� ↔ 4GN

r
ðaÞT̃ ½ω;

ffiffiffi
3

p
ωr̂�: ð111Þ

In other words, the remaining free parameters in the
homogeneous solutions (107) and (108) can, in fact, be
fixed through this matching procedure in Eqs. (110) and
(111), and furthermore, it is the acoustic-cone part of the
scalar tidal forces, instead of the acoustic tails (79), that
agrees with the JWKB plane waves in the far zone, despite
the potentially larger magnitude of the latter [recall
Eq. (82)]. On physical grounds, this identification does
further support the assertion that the Bradeen scalars, like
the spin-2 TT gravitons, should be regarded as part of
gravitational radiation in cosmology.

4. Gravitational polarization patterns

Finally, let us now study the polarization patterns tidally
induced by the gravitational tensor and scalar radiation.
From Eqs. (83), (100), and (101), we may solve for χðsÞij
required in fractional distortion formula of Eq. (5) within
the high-frequency limit, by first splitting it into the spin-2
and scalar sectors,

χðsÞij ¼ χðsjgÞij þ χðsjΨÞij ; ð112Þ

with the ansatz that the former takes the same JWKB form

as χ̃ðttj4D radÞ
ij in Eq. (98) and the latter as S̃ðΨjdirectÞ

ij in
Eq. (99), followed by equating their accelerations to
Eqs. (100) and (101), which then reveals that, at high
frequencies,
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χðsjgÞij ½η; x⃗� ≈ χ̃ðttj4D radÞ
ij ½η; x⃗�

¼ Pð4DÞ
ijmn

8GN

rη
Re½ðaÞ ˜̄T mn½ω;ωr̂�e−iωðη−rÞ�; ð113Þ

χðsjΨÞij ½η; x⃗� ≈ −
1

ω2
S̃ðΨjdirectÞ
ij ½η; x⃗�

¼ ð3r̂ir̂j − δijÞ
8GN

rðωηÞ2
× Re½ðaÞT̃ ½ω;

ffiffiffi
3

p
ωr̂�e−iωðη−

ffiffi
3

p
rÞ�: ð114Þ

The amplitude of the scalar portion in Eq. (114) is likewise
suppressed compared to that of its spin-2 counterpart (113).
If the GW wavelength is sufficiently larger than the

proper size of the hypothetical GW detector employed to
probe the cosmological tidal distortion, we may drop the
integral over λ in Eq. (5) as the perturbations (113) and
(114) are approximately constant from one end to the other.
Then, with the unit vector n̂ in Eq. (5) parametrized in terms
of the spherical coordinates as follows:

n̂i ¼ sin½θ� cos½ϕ�êix þ sin½θ� sin½ϕ�êiy þ cos½θ�r̂i; ð115Þ

where êx and êy are the mutually orthogonal unit vectors
lying on the two-dimensional spatial plane perpendicular to
the radial direction r̂, along which the wave is propagating,
the strain (5) generated by the spin-2 waves of Eq. (113) is
given by�

δL
L0

�
spin-2

≈
1

2
n̂in̂jχðsjgÞij

¼ sin2θ
2

Re½ðhþ½ω;ωr̂� cos½2ϕ�
þ h×½ω;ωr̂� sin½2ϕ�Þe−iωðη−rÞ�; ð116Þ

where L0 denotes the original proper distance between two
test masses before a GW impinges on the detector, and the
two independent polarizations hþ and h× are, respectively,
defined as

hþ½ω;ωr̂�≡ 4GN

rη
ððaÞ ˜̄T xx½ω;ωr̂� − ðaÞ ˜̄T yy½ω;ωr̂�Þ; ð117Þ

h×½ω;ωr̂�≡ 8GN

rη
ðaÞ ˜̄T xy½ω;ωr̂�; ð118Þ

with
ðaÞ ˜̄T AB ≡ êiAê

j
B
ðaÞ ˜̄T ij, A;B ∈ fx; yg. The result (116)

clearly demonstrates the familiar spin-2 polarization pat-
tern, which apart from the redshift factor 1=a ∝ 1=η, is very
similar to its Minkowski counterpart. Specifically, the
proper spatial displacement between the test masses will
not be affected when the pair are aligned with the wave
propagation, i.e., θ ¼ 0, and the overall distortion

amplitude reaches its maximum at θ ¼ π=2.
Furthermore, for a fixed inclination angle θ ≠ 0, the
maximum distortion of the hþ polarization occurs at ϕ ¼
0 and ϕ ¼ π=2, oscillating in a “þ” shape, whereas the h×
type of polarization has the maximum distortion at ϕ ¼
�π=4 instead. One mode will coincide with the other under
a rotation of π=4 about the radial direction.
The scalar-GW-induced strain is obtained by plugging

Eqs. (114) and (115) into Eq. (5), with the λ integral
discarded in the long-wavelength limit,�

δL
L0

�
scalar

≈
1

2
n̂in̂jχðsjΨÞij

¼ 4GN

rðωηÞ2 ð3cos
2θ − 1Þ

× Re½ðaÞT̃ ½ω;
ffiffiffi
3

p
ωr̂�e−iωðη−

ffiffi
3

p
rÞ�: ð119Þ

This shows that the resulting polarization pattern, unlike the
tensor one, is isotropic with respect to the azimuthal angle
ϕ; moreover, it reaches the maximum distortion when the
pair of test masses are collinear with the wave propagation
(θ ¼ 0) and remains undistorted at θ ¼ arccos½1= ffiffiffi

3
p �. In

other words, the scalar Ψ waves would give rise to an extra
but subleading “longitudinal” mode in the gravitational
polarization patterns.
We also observe that, within the nonrelativistic limit, the

scalar polarization pattern (119) involves both the mass
monopole and quadrupole moments of the GW source,
revealed by Eq. (80) and the fact that S̃ðΨjdirectÞ

ij in Eq. (114)
is the corresponding single “frequency” mode; whereas the
spin-2 pattern (116) only involves the mass quadrupole
moment, as can be seen in Eqs. (75) and (113).

IV. SUMMARY, DISCUSSIONS,
AND FUTURE DIRECTIONS

The primary physical results of this paper are the far zone
high frequency trace-free tidal forces induced by the
acoustic-gravitational perturbations found in Eq. (77); as
well as the corresponding fractional distortion of space in
the freely-falling frame of co-moving observers, as encoded
within the formula (119). We highlight the scalar results
over their tensor spin-2 cousins, because the latter are
largely redshifted Minkowski solutions whereas the former
do not exist in the flat background, nor even in de Sitter
w ¼ −1 or matter dominated w ¼ 0 cosmologies.
Within the scalar-acoustic tidal forces, the astrophysical

energy density ðaÞT00 appears to source δ1CðΨÞi
0j0 on an

equal footing with the pressure term ðaÞTll. This suggests,
isolated astrophysical systems may lose their mass through
these acoustic-gravitational radiation—a possibility already
raised in [10]. (Our results here are also consistent with the
point made in [10]; that mass loss will occur as long as the
sum of the astrophysical source(s)’ internal pressures is
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nonzero.) In the same vein, notice in the nonrelativistic
limit, scalar radiation involves both monopole and quadru-
pole moments [see Eq. (80)]; whereas the tensor one only
involves quadrupole one [see Eq. (75)]. Even though we are
already calling these acoustic-gravitational perturbations
“scalar radiation,” to be certain they do indeed carry
energy-momentum away from their emitter; we would
have to embark on a nonlinear calculation of the quadratic
piece of the Einstein-fluid equations, so as to extract the
stress-energy (pseudo-)tensor of the gravitational perturba-
tions. Perhaps this computation could shed light on the
meaning of the acoustic tail versus cone terms; in particular,
why the former appears to yield stronger signals than the
latter in many circumstances.
Finally, the concrete results in this work focused exclu-

sively on the radiation dominated w ¼ 1=3 phase of our 4D
universe. This is, of course, an important epoch; and we
hope to further extend our analysis here by considering
specific GW sources of potential physical relevance—
cosmic strings [13,14] and binary primordial black
holes, for instance. But we also wish to push our analytic
understanding of cosmological gravitational waves to other
relativistic equations of state 0 < w ≤ 1, and generalize
the works of [1–4] in de Sitter to other constant-w
cosmologies.

ACKNOWLEDGMENTS

Y. Z. C. is supported by the Ministry of Science and
Technology of the R.O.C. under the Grant No. 106-2112-
M-008-024-MY3. Y. Z. C. thanks Beatrice Bonga, Wayne
Hu, Glenn Starkman, and Richard Woodard for discus-
sions. Y.W. L. is supported by the Ministry of Science and
Technology of the R.O.C. under Project No. MOST 108-
2811-M-008-589. This work was also supported in part by
the Ministry of Science and Technology of the R.O.C.
under Project No. MOST 108-2811-M-008-503.

APPENDIX: LINEARIZED WEYL TENSOR IN
DE SITTER AND MATTER-DOMINATED

UNIVERSES

Lying within the physical range of the constant equation
of state w, w ¼ −1 (de Sitter) and w ¼ 0 (matter domina-
tion) are the two discrete points where the Bardeen scalar
potentials Ψ and Φ have nondynamical characters [10]. In
both cases, their sole purpose in describing the tidal forces
is only to preserve the causality of δ1Ci

0j0 with respect to
their respective background spacetimes.

1. De Sitter

In the de Sitter case (w ¼ −1), the background perfect
fluid behaves trivially as a cosmological constant, and
while the field equations (17), (18), and (19) still hold here,
the Bardeen scalar Ψ is instead governed by a Poisson-type
equation [Eq. (226) of [11]],

ðd − 2Þ∇⃗2Ψ ¼ 8πGNðρþ ðd − 1ÞHΣÞ; ðA1Þ

which can be readily solved to yield [Eq. (249) in [11]]

Ψ½η; x⃗� ¼ 8πGN

d − 2

Z
Rd−1

dd−1x⃗0ðGðEÞ
d

ðaÞT00½η; x⃗0�

þ ðd − 1ÞH½η�∂jDd
ðaÞT0j½η; x⃗0�Þ; ðA2Þ

where H ¼ −1=η. This weighted superposition of the
matter stress tensor over the constant-time hypersurface
clearly indicates the acausal nonradiative nature of Ψ and
Φ, which along with Vi, do conspire to eliminate the
acausal signals from the dynamical spin-2 field Dij within
Eq. (36) for δ1Ci

0j0 [11].
Following the same procedure leading up to Eq. (37), the

resulting expression of de Sitter δ1Ci
0j0 obtained in

Eqs. (266) and (267) of [11] can in fact be rewritten in
an analytic compact form for all d ≥ 4, given by

δ1CðΛÞi
0j0½η; x⃗� ¼ 8πGN

Z
Rd−1

dd−1x⃗0
Z

0

−∞
dη0

�
a½η0�
a½η�

�d−2
2

��
G̈ðgjΛ;þÞ

d − ðd − 3ÞH½η� _GðgjΛ;þÞ
d

þ ðd − 2Þðd − 6Þ
4

H½η�2GðgjΛ;þÞ
d

��
ðaÞTij½η0; x⃗0� þ

δij
d − 2

ððaÞT00½η0; x⃗0� − ðaÞTll½η0; x⃗0�Þ
�

− 2a½η�d−42 ∂ηða½η�−d−4
2 ∂ðiG

ðVjΛ;þÞ
d ÞðaÞTjÞ0½η0; x⃗0� þ

δij
d − 2

H½η0�a½η�d−42 ∂ηða½η�−d−4
2 GðVjΛ;þÞ

d Þ

× ððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ þ
1

d − 2
∂i∂jG

ðSjΛ;þÞ
d ððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ

�

þ 8πGN

d − 2

�
ðaÞTij½η; x⃗� −

δij
d − 1

ððd − 3ÞðaÞT00½η; x⃗� þ 2ðaÞTll½η; x⃗�Þ
�
; ðA3Þ
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where a½η� ¼ −1=ðHηÞ and the scalar Green’s functions

GðgjΛ;þÞ
d ,GðVjΛ;þÞ

d , andGðSjΛ;þÞ
d are the de Sitter counterparts

of Gðg;þÞ
d , GðV;þÞ

d , and GðS;þÞ
d . Specifically, their even-

dimensional forms are given in Eqs. (22), (40), and (41)
with w set to −1, namely,

GðgjΛ;þÞ
evend≥4½η;η0;R�

¼−Θ½T�
�
1

2π

∂
∂σ̄

�d−2
2

�
Θ½σ̄�
2

Pd−2
2

�
1þ σ̄

ηη0

��
;

σ̄¼ðη−η0Þ2−R2

2
; ðA4Þ

GðVjΛ;þÞ
evend≥4½η;η0;R�

¼−Θ½T�
�
1

2π

∂
∂σ̄

�d−2
2

�
Θ½σ̄�
2

P−d−2
2

�
1þ σ̄

ηη0

��
; ðA5Þ

GðSjΛ;þÞ
evend≥4½η; η0;R�

¼ −Θ½T�
�
1

2π

∂
∂σ̄

�d−2
2

�
Θ½σ̄�
2

P−d−4
2

�
1þ σ̄

ηη0

��
: ðA6Þ

The derivation of Eq. (A3) then accounts for the result
(271) in [11].
It is worth noting that, of all the scalar Green’s functions,

only the GðgjΛ;þÞ
d contains the nonzero tail effect in even

dimensions,

GðgjΛ;þjtailÞ
even d≥4 ½η; η0;R� ¼ −

Θ½T − R�
2ð2πηη0Þd−22 ; ðA7Þ

obtained by acting with all the differential operators on the
Legendre polynomial Pd−2

2
in Eq. (A4). However, despite

this occurrence, the linearized Weyl tensor δ1CðΛÞi
0j0 is

actually comprised of pure null-cone signals for all even
d ≥ 4, as one can readily check by inserting the exact tail
function (A7) into Eq. (A3) and inferring that the latter is
devoid of tails.

2. Matter domination

Next, we turn to the δ1Ci
0j0 in a matter-dominated

universe (w ¼ 0), which also supplements the causality
analysis performed in [11]. In this case, the field equa-
tions (17), (18), and (19) retain the same forms, whereas the
Bardeen scalar Ψ, according to [10], obeys an ordinary
second-order differential equation in time [see Eq. (124) of
[10]],

Ψ̈þ ð2d − 5ÞH _Ψ ¼ 8πGN

� ∂0ðad−2ΣÞ
ðd − 2Þad−2 þH _ϒ

�
; ðA8Þ

which is nondynamical and consistent with the limit of
Eq. (16) as w → 0. If the initial value of Ψ and its initial
velocity _Ψ are both negligible in the asymptotic past, then

Ψ½η; x⃗� ¼ 8πGN

d − 2

Z
Rd−1

dd−1x⃗0
�ðd − 1Þ

2
GðEÞ

d

Z
η

0

dη0H½η�H½η0�
�
a½η�−ðd−2Þ

Z
η

η0
dη1a½η1�d−2

�
ððd − 3ÞðaÞT00½η0; x⃗0�

þðaÞTll½η0; x⃗0�Þ þGðEÞ
d

ðaÞT00½η; x⃗0� þ ðd − 1Þð∂jDdÞH½η�ðaÞT0j½η; x⃗0�
�
; ðA9Þ

where the surface terms at spatial infinity and at η ¼ 0
incurred from integrations by parts have been discarded.
The former is justified by the isolated character of the
astrophysical system; while the latter by the fact that the
boundary term at η → 0þ is actually a homogeneous
solution—whereas what we are after here is the inhomo-
geneous one. We have massaged Ψ into the form in

Eq. (A9) in order to make more transparent the exact
cancellation between the acausal portions of the gauge-
invariant variables.
Now, inserting the solutions (A9), (35), (30), and (20) for

w ¼ 0 into Eq. (36), and following the same reducing
process in the spin-2 sector laid out before, we arrive at, in
matter domination,

δ1CðMÞi
0j0½η; x⃗� ¼ 8πGN

Z
Rd−1

dd−1x⃗0
Z

∞

0

dη0
�
a½η0�
a½η�

�d−2
2

��
G̈ðgjM;þÞ

d − ðd − 3ÞH½η� _GðgjM;þÞ
d

þ ðd − 2Þð2d − 7Þ
4

H½η�2GðgjM;þÞ
d

��
ðaÞTij½η0; x⃗0� þ

δij
d − 2

ððaÞT00½η0; x⃗0� − ðaÞTll½η0; x⃗0�Þ
�

− 2a½η�d−42 ∂ηða½η�−d−4
2 ∂ðiG

ðVjM;þÞ
d ÞðaÞTjÞ0½η0; x⃗0� þ

δij
d − 2

H½η0�a½η�d−42 ∂ηða½η�−d−4
2 GðVjM;þÞ

d Þ
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× ððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ þ
1

d − 2

�
2ðd − 3Þ
3d − 7

�
∂i∂jG

ðSjM;þÞ
d þ

�
d − 1

2ðd − 3Þ
�
∂i∂jG

ðgjM;þÞ
d

�

þ ðd − 3Þðd − 1Þ
2

H½η�H½η0�∂i∂jQ
ðVjM;þÞ
d

�
ððd − 3ÞðaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ

�

þ 8πGN

d − 2

�
ðaÞTij½η; x⃗� −

δij
d − 1

ððd − 3ÞðaÞT00½η; x⃗� þ 2ðaÞTll½η; x⃗�Þ þ
�
d − 3

3d − 7

�
δij

×
Z

η

0

dη0
�
H½η�

�
a½η0�
a½η�

�
d−2

−H½η0�
�
ððd − 3ÞðaÞT00½η0; x⃗� þ ðaÞTll½η0; x⃗�Þ

�
; ðA10Þ

where GðgjM;þÞ
d , GðVjM;þÞ

d , and GðSjM;þÞ
d are, again, the three

types of massless scalar Green’s functions; analogous to
those occurring within the Weyl components for other

equations of state.QðVjM;þÞ
d , in particular, is defined parallel

to Eq. (42),

QðVjM;þÞ
d ½η; η0;R�≡ a½η�−d−2

2

Z
η

η0
dη2a½η2�d−2

×
Z

η2

η0
dη1a½η1�−d−2

2 GðVjM;þÞ
d ½η1; η0;R�:

ðA11Þ

From Eq. (A10) we find that, even though the Bardeen
scalars leave some additional local-in-space source terms in
the last line, the Weyl components δ1CðMÞi

0j0 are still

causally dependent on the matter stress tensor, and may be
entirely attributed to the spin-2 gravitons—as is the case in
Minkowski and de Sitter spacetimes whenever the observer
is well away from the source. Moreover, like the relativ-
istic-w case in the main text, the integrals involved in
Eq. (A11) cannot be generally performed in a closed form,
which in turn prevents δ1CðMÞi

0j0 from being completely
analytic. However, within some physical scenarios of
cosmological interest, e.g., 4D matter domination,

QðVjM;þÞ
d can be worked out explicitly.

a. 4D matter domination

In a 4D matter-dominated universe, a½η� ¼ ðη=η0Þ2 and
H½η� ¼ 2=η, the δ1CðMÞi

0j0 components of the linearized
Weyl curvature (A10) reads

δ1CðMÞi
0j0½η; x⃗� ¼ 8πGN

Z
R3

d3x⃗0
Z

∞

0

dη0
�
η0

η

�
2
��

G̈ðgjM;þÞ
4 −

2

η
_GðgjM;þÞ
4 þ 2

η2
GðgjM;þÞ

4

�

×
�

ðaÞTij½η0; x⃗0� þ
δij
2
ððaÞT00½η0; x⃗0� − ðaÞTll½η0; x⃗0�Þ

�
− 2∂ði _G

ðVjM;þÞ
4

ðaÞTjÞ0½η0; x⃗0�

þ δij
η0

_GðVjM;þÞ
4 ððaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ þ

�
1

5

�
∂i∂jG

ðSjM;þÞ
4 þ 3

2
∂i∂jG

ðgjM;þÞ
4

�

þ 3

ηη0
∂i∂jQ

ðVjM;þÞ
4

�
ððaÞT00½η0; x⃗0� þ ðaÞTll½η0; x⃗0�Þ

�

þ 4πGN

�
ðaÞTij½η; x⃗� −

δij
3
ððaÞT00½η; x⃗� þ 2ðaÞTll½η; x⃗�Þ þ

2δij
5

Z
η

0

dη0
1

η0

��
η0

η

�
5

− 1

�

× ððaÞT00½η0; x⃗� þ ðaÞTll½η0; x⃗�Þ
�
; ðA12Þ

where the scalar Green’s functions GðgjM;þÞ
4 , GðVjM;þÞ

4 , and GðSjM;þÞ
4 are given by Eqs. (22), (40), and (41); with w ¼ 0 and

d ¼ 4:

GðgjM;þÞ
4 ½η; η0;R� ¼ −

δ½T − R�
4πR

−
Θ½T − R�
4πηη0

; ðA13Þ
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GðVjM;þÞ
4 ½η; η0;R� ¼ −

δ½T − R�
4πR

−
3Θ½T − R�
4πηη0

�
1þ ðη − η0Þ2 − R2

2ηη0

�
; ðA14Þ

GðSjM;þÞ
4 ½η; η0;R� ¼ −

δ½T − R�
4πR

−
3Θ½T − R�
8πηη0

�
5

�
1þ ðη − η0Þ2 − R2

2ηη0

�
2

− 1

�
: ðA15Þ

The QðVjM;þÞ
4 in Eq. (A11) can now be explicitly evaluated,

QðVjM;þÞ
4 ½η; η0;R� ¼ Θ½T − R�

160πη2η02

�
3R4 − 10R2ðη2 þ η02Þ þ 5ð3η4 þ 2η2η02 þ 3η04Þ − 8ðη5 − η05Þ

R

�
; ðA16Þ

which is a pure tail signal. From these exact expressions, we notice that all relevant Green’s functions have nonzero tails.

Moreover, according to (A13), the tail portion of GðgjM;þÞ
4 is space independent.
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