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One of the primary sources for the future space-based gravitational wave detector, the Laser
Interferometer Space Antenna, are the inspirals of small compact objects into massive black holes in
the centers of galaxies. The gravitational waveforms from such Extreme Mass Ratio Inspiral (EMRI)
systems will provide measurements of their parameters with unprecedented precision, but only if the
waveforms are accurately modeled. Here we explore the impact of transient orbital resonances which occur
when the ratio of radial and polar frequencies is a rational number. We introduce a new effective resonance
model, which is an extension of the numerical kludge EMRI waveform approximation to include the effect
of resonances, and use it to explore the impact of resonances on EMRI parameter estimation. For one-year
inspirals, we find that the few cycle dephasings induced by 3:2 resonances can lead to systematic errors
in parameter estimates, that are up to several times the typical measurement precision of the parameters.
The bias is greatest for 3:2 resonances that occur closer to the central black hole. By regarding them as
unknown model parameters, we further show that observations will be able to constrain the size of the
changes in the orbital parameters across the resonance to a relative precision of 10% for a typical one-year
EMRI observation with signal-to-noise ratio of 20. Such measurements can be regarded as tests of

fundamental physics, by comparing the measured changes to those predicted in general relativity.

DOI: 10.1103/PhysRevD.103.124032

I. INTRODUCTION

Gravity is the weakest of the fundamental interactions
and is particularly challenging to study in a laboratory
experiment. Fortunately, the Universe has plenty of gravi-
tational phenomena which can be observed and used to
improve our understanding. For hundreds of years we have
been studying the cosmos through the observation of
electromagnetic radiation, but in the last few years it finally
became possible to also listen to the Universe through the
observation of gravitational waves (GWs) [1].

In fact, these ripples in the fabric of spacetime allow us to
study gravity and the Universe from a totally new per-
spective. Indirect evidence for gravitational wave emission
was first observed in 1974 by Hulse and Taylor in a study
of the orbital decay of a binary pulsar [2,3]. The first direct
observation of a gravitational wave signal was made in
September 2015 [1], by the ground based laser interfer-
ometer detectors LIGO [4]. This and subsequent detections
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with the LIGO and Virgo detectors [5] have opened up a
new era of gravitational wave observations [6—16], which
have permitted studies of the properties of the astrophysical
population of compact objects, such as black holes and
neutron stars, and have led to some of the most stringent
tests of General Relativity.

The ground based gravitational wave detectors have a
frequency range from about 10 Hz to a few kHz, which
permits observations of merging binaries of stellar mass
compact objects at low redshift, z < 2. The European
Space Agency plans a new space-based gravitational wave
observatory, the Laser Interferometer Space Antenna
(LISA), to open a gravitational window on the Universe
in the low-frequency range of 10~ — 107! Hz. LISA is
expected to resolve thousands of overlapping gravitational
wave signals from a wide variety of sources [17].

The inspiral of a stellar-origin compact object (CO) into
a massive black hole (MBH) in the center of a galaxy is one
of the potential sources of gravitational waves for LISA.
Observations of such Extreme Mass Ratio Inspiral (EMRI)
systems have a huge scientific potential. The compact
object typically completes 10*~10° cycles in band, during
which time it is orbiting in the strong field region close to
the central black hole. Therefore, EMRI signals encode a
detailed map of the background spacetime of the central
MBH and offer a unique opportunity to measure the
properties, evolution and environment of MBHs [18-23],
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to test for deviations from General Relativity (GR) [24,25]
and to constrain cosmological parameters [26,27]. We
expect to observe between a few and a few hundred
EMRIs over the LISA mission duration [28-31], with
the large uncertainty driven by uncertainties in the rates of
the various dynamical processes that can lead to the capture
of compact objects by a MBH [23,32].

In order to realize the scientific potential of these
astrophysical sources we have to correctly detect and
characterize EMRI signals. A sequence of LISA data
challenges showed the feasibility of identifying individual
EMRIs in datasets without other sources, and using narrow
parameter priors [33—35]. However, any EMRI data analysis
technique will rely on the existence of waveforms that are
both accurate enough to faithfully identify astrophysical
EMRI signals and that are quick enough to generate in the
large number required to search the wide parameter space of
potential signals (see for example recent work in [36,37]).

Accurate modeling of EMRI waveforms can be accom-
plished within the framework of black-hole perturbation
theory, regarding the mass ratio 7 ~ 107 — 1077 as a small
expansion parameter. Within this framework, the evolution
of the orbit of the compact object is governed by the Kerr
geodesic equations with a forcing term, called the gravi-
tational self-force, which takes into account the finite size
and mass of the body and its back reaction on the back-
ground Kerr spacetime [38,39]. Generic EMRI orbits have
three fundamental frequencies: the radial frequency w,, the
polar frequency wy and the azimuthal frequency w,. When
the radial and polar frequencies become rational multiples
of each other, a transient orbital resonance occurs and the
motion of the small body is restricted to a subspace within
the full orbital torus [40]. The standard adiabatic approxi-
mation to compute EMRI phase space trajectories, which
involves averaging over the full torus of the orbit in phase
space, is then no longer valid. Instead, additional terms in
the evolution equations must be taken into account, which
cause the system to exhibit a qualitatively different behav-
ior, which has been proven to affect the detectability of
EMRIs [41].

Our work aims to investigate two questions related to
EMRI parameter estimation in the presence of resonances.
The first is to explore the size of parameter biases that arise
when the presence of resonances is ignored while building
a waveform model. The second is to explore with what
precision the effect of the resonance, i.e., the amount by
which the constants describing the orbit change over the
resonance, can be measured from an observation. EMRI
resonances have been studied in a number of previous
works [42—51], but this paper is the first attempt to explore
resonant EMRI parameter estimation.

We achieve this goal using an effective resonance model.
This is a phenomenological model that adds transient
orbital resonances into the numerical kludge (NK) model
framework, which is an approximate waveform model that

can quickly generate generic EMRI inspirals and compute
their GW signals [52,53].

This work is organized as follows: in Sec. II we review
the general approach to EMRI modeling, we briefly
describe the numerical kludge model and we present the
GW data analysis tools we employ. Subsequently, in
Sec. III, we review the theoretical understanding of
transient orbital resonances which will be used to construct
the effective resonance model in Sec. III B. Finally, in
Sec. IV, we show the results of our investigation using the
new resonance phenomenological models. We compute the
dephasings induced by 3:2 resonances over the parameter
space and assess the corresponding parameter biases that
would be induced by ignoring resonances, and we explore
the measurability of resonance effects over a wide range of
resonance strengths.

A. Notation

Throughout, we will use a spacelike signature
(=, +,+,+) for the metric and work with a system of
geometrized units in which G = ¢ = 1. We use the Einstein
summation convention for repeated indices. Greek letters
will be used to indicate a sum over all spacetime indices,
whereas latin letters will be used to indicate a sum over
spatial only.

II. EMRI MODELING

In this section we give a general overview of EMRI
waveform modeling, and highlight how this should be
modified to include the effects of resonances. We will also
summarize how the numerical kludge model is constructed.
Lastly, we will review some tools from gravitational wave
data analysis that we will use to assess the impact of
resonances on gravitational waves from EMRIs.

A. From Kerr geodesics to adiabatic evolution

Kerr geodesics are a good approximation to the evolution
of EMRISs on short time scales (for order of several orbital
periods). Their properties are also a useful basis for
understanding the motion of the compact object at higher
orders in the mass ratio. From the symmetries of the Kerr
spacetime, it is possible to identify four integrals of the
geodesic equations of motion: the energy, E, the axial
angular momentum, L_, Carter’s constant, Q and the mass
of the compact object, u. The first two are direct conse-
quences of the stationarity and axial symmetry of
Kerr spacetime. Carter’s constant is a conserved quantity
associated with a tensorial Killing vector field [54] and,
in the weak field or nonspinning limits, it corresponds to
the squared angular momentum component parallel to the
equatorial plane (Q ~ L7+ L?). The mass is conserved
because of the normalization of the four-momentum
oDy Py = —u?, i.e., because of the conservation of the
Hamiltonian H = g, p,p,/2.

124032-2



ASSESSING THE IMPACT OF TRANSIENT ORBITAL ...

PHYS. REV. D 103, 124032 (2021)

The existence of four constants of motion J; =
(E,L,,Q,u) allows us to reduce the geodesic equations
from four second-order differential equations to four
first-order equations. In Boyer-Lindquist coordinates,
(t,7,0,¢), the first-order equations are

22(r,0) (g)z = [E(r* + a*M?) — aML.)?

— A[r? + (L, — aME)* + Q]

de\\ 2
>2(r,0) (d—> = Q — cot’0L? — a*M?cos’0(1 — E?)

T

d¢ r? + a’M?
X(1,0)' = os?0L. + aME <T —1

a’M>L.
A

d 22U

X(r,0) i E {% - aZMZSinZH]
2 22
+aMLZ<1—%>, (1)

where 2(r,0) = r* + a’?M? cos? 0, A = r* = 2Mr + a*M?
and M and a are the Kerr black hole mass and dimension-
less spin parameter, respectively, and 7 is the proper time.
By using the Carter-Mino time parameter A defined via
dr/dA = Z [54,55], the equations in r and @ decouple and
the radial and polar motion can be determined if constants
and initial conditions are specified.

The trajectory of EMRIs can be modeled with Kerr
geodesics only on a short timescale, of the order of the
orbital timescale ~O(1), compared to the inspiral timescale
~0(1/n). If we want to describe the long inspiral of
EMRISs, it is necessary to take into account the impact of
the gravitational field of the compact object on the back-
ground Kerr spacetime. During the inspiral, the compact
object slowly deviates from geodesic orbits and this can be
interpreted as an effective acceleration or force due to the
so-called gravitational self-force (GSF) acting on the
compact object [56].

By using the action-angle formalism it is possible to
rewrite the geodesic equations to include the effect of the
first order GSF as [56,57]

dq,

dr = a)(l(‘]/)’) =+ ’79(1(%’ rn J/}) + 07727 (Za)
dJ, ,

5 = 0+ 1Galdr g Jo) + O, (2b)

where the evolution of the Boyer-Lindquist coordinates is
described using the angle variables g, = (¢, q,. 90, 94)
[58] and the corrections due to the GSF are encoded in G
and g. We note that here the action variables, J,, are not
precisely the same as the standard constants of motion

introduced earlier, Jj, but are related by a transformation.
This distinction is not important for the present discussion.

At “zeroth” order in # the motion is completely deter-
mined by the fundamental frequencies @, that define the
fundamental modes of the evolution of the system and
reduce to the usual Keplerian frequencies in the Newtonian
limit. Expressions for these quantities can be found in
[59,60]. The radial fundamental frequency w, is associated
with the radial motion and it is zero for circular orbits. The
polar and azimuthal fundamental frequencies, wy and w,,
are associated to precessional motion of the orbit.

The four constants of motion J,, determine the “shape” of
the orbit, whereas the phase variables give information on
the (time dependent) location of the object within the orbit,
and the orbit’s orientation [56]. The action-angle formalism
not only makes the periodicities of the system obvious, but
it also facilitates the decomposition of any dynamical field
as an expansion in the fundamental frequencies.

Equations (2a)—(2b) can be further simplified by using
the rwo-time scale expansion developed by Flanagan and
Hinderer [57], which consists of separating the evolution
of the EMRI into two timescales, a long timescale J /J ~
O(1/n) associated with the evolution of the constants of
motion, and a short timescale ¢/ ~ O(1) associated with
the evolution of the angle variables. By taking an average of
the flux equation (2b) it is possible to simplify the evolution
of the constants of motion:

dJ .
(5) =) +1 X Ginetama,,
4qr40 1#0,m#0

~1nGoo(J). (3)

where we have used an expansion of G,(q,, g9, J,) as a
Fourier series and have introduced the 2-torus average over
the phase variables, defined by

1 2r (2%
<f>q,q€ = )2[) 0 f(Qr’ %)d%dqg

(2z)?

For ergodic trajectories, i.e., phase-space filling trajecto-
ries, the phase variables evolve rapidly and the exponential
term averages to zero <ei<l‘7"+m‘10>>qu9 ~ 0 [57].

The adiabatic approximation consists of using the
averaged equations for the evolution of the constants of
motions. In this way, the evolution of averaged constants
can be found independently of the evolution of the phases.
The resulting J,,(7) can then be used to solve Eq. (2a) for
the phase variables by also dropping the oscillating terms g.

However, if the argument of the exponential does not
rapidly oscillate, the average cannot be taken. As a
consequence, the adiabatic approximation breaks down
and it is necessary to take into account another secular term.
This is precisely what happens when resonances occur, and
we will return to this in Sec. IIL
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B. Numerical kludge model for EMRI waveforms

The numerical kludge [52] is one of a number of fast but
approximate EMRI models that have been developed to
substitute the computationally expensive GSF calculations
when exploring EMRI data analysis. Other models include
the analytical kludge (AK) [18], the augmented analytical
kludge (AAK) [36,37,61] and the near identity transform
(NIT) [62].

The numerical kludge generates a waveform for a one-
year generic EMRI inspiral, sampled with a 10 s time step,
in about 1 min and its implementation is well suited to
include resonances. Here we briefly summarize how the
NK is constructed. The model uses a Keplerian para-
metrization of the orbit to simplify the treatment of turning
points in the » and € motion [59,63]:

pM
r=— r,<r<r,
1+ ecosy P
cos@ = cosO_cosy 0_<0<rn-0_ (4)

Here r, and r, denote the turning points of the orbits at
periapsis and apoapsis, and we have introduced the eccen-
tricity, e, and semi-latus rectum, p, which are defined in
terms of the turning points through r, = p/(1 +e),
ro = p/(1 —e). We denote the relativistic anomaly by
and the “polar phase” by y. The latter two are 2z periodic but
they are not canonical phase variables. If we replace the Carter
constant by an inclination angle' defined by tan: = \/Q/L.,
the motion can be described in terms of (p, e, 1) instead of
(E,L,, Q) and the flux evolution becomes

dJ

5 = Iwla Mo pe.). (5)

The computation of the gravitational waveform proceeds via
the following steps:
(i) The parameters defining the waveform can be grouped
in the following sets:
—intrinsic parameters:

(p/M’ 10g7’], lOgM, €, X0s lﬂW07a)’

where y,, y, are the initial phases and a is the
dimensionless spin parameter of the central BH.
The mass M of the central MBH is the mass observed
in the detector frame and it is related to the source
mass M, through the redshift z by M = (1 + z)M,.
—extrinsic parameters:

(9K7 ¢K’95’ ¢Sv ¢07 DL),

'Prograde orbits have 0 <1 < /2, retrograde orbits /2 <
1 < &, equatorial 1 =0, 6_ = /2 and polar orbits 1 = 7/2,
0_=0.

where the two sky-position angles (0, ¢b5) are the co-
latitude and azimuth in an ecliptic based coordinate
system, the two angles (6, ¢x ) define the direction of
the spin of the massive black hole, with respect to the
same coordinate system as the sky position,2 ¢y 1s the
azimuthal initial phase and D; [Mpc]| is the luminosity
distance.

—the length of the inspiral f,,., and the sampling
interval At.

(i) The evolution of the constants of motion J =
(E,L,,Q) is computed using the adiabatic approxi-
mation, i.e., replacing the first order radiative self-force
G with its 2-torus averaged value fng = (G), ,,» and
neglecting the conservative piece of the GSF. The
two torus average is approximated with the dissipa-
tive part of the first order self-force, obtained from
second order post-Newtonian formulas and fits of
Teukolsky-based inspirals [53,64]. We will have to
modify this flux evolution equation to take into
account resonances.

(iii) The inspiral trajectory is calculated by integrating the
Kerr geodesic equations, evaluated for the instanta-
neous constants of the motion computed from the
evolution equations and dropping all the forcing terms
g, in Eq. (2). Then, we identify the Boyer-Lindquist
coordinates (rgy, Opp, Ppr.) = (Fsph» Osphs Ppn) With a
set of flat-space spherical polar coordinates. By doing
this, the particle is effectively forced to move along a
curved path in flat spacetime.

(iv) The gravitational waveform is then calculated by apply-
ing the quadrupole formula in the TT gauge to the
pseudo-flat-space particle orbit, obtaining 4 __, i, which
can then be projected into the observer direction.

(v) The low-frequency approximation to the LISA re-
sponse function, described in [18,65], is then used to
transform the waveform polarizations /1, , into the two
LISA response functions Ay and hy;.

Despite the several approximations, the NK waveforms
have been shown to be remarkably faithful, for periastron
r, = 5M, when compared to Teukolsky-based inspirals
[52]. The NK procedure works well because it takes into
account the most important physics, allowing phenomeno-
logical waveforms for generic EMRIs to be quickly
generated without losing too much faithfulness [52].

C. Waveform analysis methods

Detection and parameter estimation of gravitational
wave signals employs a wide range of techniques used
to identify and characterize one or more signals, h(r),
present in the output, s(7), of a gravitational wave detector.
We assume that the output of a gravitational wave detector

*This is the direction on the sky to which the spin would point,
if the black hole was transported to the Solar System Barycenter.
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is composed of a signal h(t;A4), dependent on the source
parameters, A, and instrumental noise n(z):

s(1) = h(t:A) + n(2). (6)

By assuming that the noise is weakly stationary, Gaussian
and ergodic with zero mean, we can write the likelihood for
the parameters A as [66]

pOla) cexp| -3 (s = hiais=ha) | ()

where we have introduced the inner product (-|-)

(a(0)[b(1)) = 4Re / ”

The tilde indicates the continuous Fourier transform and
S,(f) is the one-sided spectral density of noise in the
detector. From a practical point of view the spectral density
represents our information on the detector sensitivity. In
this work we adopt the LISA PSD described in Ref. [67].

Given a waveform h, the optimal matched filtering
signal-to-noise ratio (SNR) is defined by

= h(f)
Su(f)

SNR:p:\/W:PA df]é.

This is a measure of the detectability of a particular signal.
The precision with which observations will be able to
determine the parameters of a system can be estimated
using the Fisher Information Matrix, which is

r, = E{%%} — (D:h(5:2)|0h(5:4)),  (8)

where [ is the log-likelihood, E is the expected value, 0; =
0/04; and to obtain the second line we have used the
likelihood given in Eq. (7). Formally, the Fisher matrix
provides a lower bound on the variance of any unbiased
estimator 4 of the parameters of the signal, but it is also
provides a Gaussian approximation to the shape of the
likelihood, valid in the high SNR limit. The square-roots
of the diagonal elements of the inverse Fisher matrix
thus provide an estimate of the precision with which the
corresponding parameter can be measured in an observa-
tion, AA = /(T 1),

If we use an approximate waveform model A,,(A) to
estimate the parameters A, of a signal actually described by
amodel £,(1), the recovered parameters will be affected by
systematic errors. In the linear signal approximation, the
shift in the peak of the likelihood due to statistical and
systematic errors is given by [68]:

55 — (F_l)ki<6kh<lo) |I’l>
statistical error=5A%

+ (T (0kh(R0)|hi(Ro) = hn(Agg)).  (9)

systematic error=52%

The statistical error is determined by the noise realization
and scales with the SNR as 4% ~ 1/p. By contrast, the
systematic error does not depend on the SNR and encodes
the bias on the recovered parameters that arises from mis-
modeling. If the bias from ignoring a resonance is smaller
than the statistical error, then the effects of the resonance
are negligible.

The inner product can be used to define an overlap
O(a, b) in the usual way:

alb)
(ala) /{b16)

This expresses how “similar” two signals a(z) and b(¢) are.
If two signals are identical then the overlap is 1. We define
also the mismatch M as M = |1 — O]

We will often compare two kinds of waveforms: resonant
waveforms which are signals produced with the NK
including the effective resonance model and nonresonant
waveforms which are produced with the standard NK
model. We will focus on a specific subset:

Ola,b) =

A= (p/M,logn,logM,e,1,a,E, L., Q),

of the full parameter space, where the resonance coeffi-
cients C = (&, L,, Q) will be defined in the next section.
These are new parameters of the waveform, which are set to
zero for nonresonant waveforms, i.e., if we want to ignore
resonances. Note that we are not including the phase angles
or extrinsic parameters in this list. This is for computational
convenience, as the accurate evaluation of a Fisher matrix
on the full EMRI parameter space is very challenging.
While the phase angles will correlate with other parameters,
we expect our conclusions to be minimally impacted by
ignoring them. Passing through a resonance leads to a
change in the orbital frequencies relative to a nonresonant
trajectory, and hence a growing phase discrepancy after the
resonance. This growing phase difference is likely to
dominate over any small phase differences that accumulate
during the resonance itself, and will not be degenerate with
phase offsets encoded in y and y,.

In all the studies reported here we have set the noise
realization, n = 0, since our focus is on the systematic
biases rather than the statistical ones. We also set to zero
the initial phases and choose the extrinsic parameters
to be (HK’¢K19S7¢S7DL) = (7[/8,0,ﬂ'/4,0, 200 MpC)
After computing a waveform with these parameters, we
then rescale the distance in order to fix the signal-to-noise
ratio to 20. This is thought to be roughly the detection
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threshold for EMRIs and hence will be a fairly typical
value for observed systems. For the remainder of this
study all events will have SNR of 20. For further technical
details and a report of tests used to validate our Fisher
matrix calculations, we refer the reader to the
Appendixes VA and V B.

III. TRANSIENT ORBITAL RESONANCES

Resonances are a common phenomenon in nature in
which there is a change in the evolution of some physical
quantity due to coherent superposition of a forcing term.
When two frequencies of a system become commensurate,
1.e., their ratio is a rational number, a resonance can occur
and induce a distinctive change in the evolution. Flanagan
and Hinderer found that transient orbital resonances occur
in EMRIs when the radial frequency w, and the polar
frequency w, become commensurate [40]. During a reso-
nance, the phase-space trajectory is not space-filling and
therefore the averaging procedure of the adiabatic approxi-
mation breaks down. This leads to a deviation of the
evolution of the orbital constants from the adiabatic
trajectory. The phase evolution also shifts away from the
standard evolution leading to an overall dephasing in the
emitted gravitational waves. To study the impact of these
resonances, it is necessary to build a model that takes them
into account and that can be quickly used to study their
impact. To this end, we review in the next sections the main
features of transient orbital resonances in EMRIs and use
them as a basis to construct an effective resonance model.
This phenomenological model for resonances is then
implemented in the NK model framework and used to
investigate the impact of these phenomena on parameter
estimation.

A. Properties

The evolution of the constants of motion [Eq. (2b)] can
be decomposed in a Fourier series in the radial and polar
angle variables, ¢, and g,. Using this expansion, the change
in the fluxes is manifestly expressed by two terms: the
secular term Gy, and the rapidly oscillating term. The latter
one can be averaged out using the adiabatic approximation
for ergodic trajectories. However, if the phase ¥ = lg, +
mq, of the oscillatory term is stationary, the adiabatic
approximation is no longer valid and additional contribu-
tions add up to the secular term Gj,. By expanding the
phase variables in terms of the fundamental frequencies, we
can understand when this occurs:

Y, phase at resonance resonance condition

Y= lg,+mgep + (log+mwg)(r—1)
| )
+§(la),0+ma)go)(r—ro)2 + (10)
-—

—2
KTpes

The phase ¥ becomes stationary in the proximity of a
resonance, i.e., when the resonance condition: *w, +
m*wgy = 0 is satisfied around 7 = 7, for a given Fourier
mode [*, m* € Z. Therefore, when the ratio of the radial
and polar fundamental frequencies, m*/l*, is a rational
number, the respective term Gy, and all the higher
harmonic terms s/*, sm*, for s € Z, (i.e., integer multiples
of I*, m*) are also approximately secular and the adiabatic
approximation breaks down. In fact, during a resonance,
the phases ¢,, gy cover only a specific nonergodic
trajectory and the phase-space average of the normally
oscillating term is nonzero. The flux equation (3) during a
resonance becomes

dJ is(I*q,+m*
<E>q . =n |:G0,0(‘]) + ZGSZ*.sm* (‘])e ("4, o)
rd6 s#0

=70

=nGoo(J) + ”Gl*,m*e,-lp%z:ri(%s ? + . (11)

The resonance ends when the phase VW starts oscillating
again, therefore, when the third term in Eq. (10) is
significantly different from zero. Thus we can define the
duration of the resonance as

2r
Tres — 2ﬁ
|l @ +m 6060|

We want to stress that there is not a sharp transition between
the resonance regime and adiabatic regimes but a smooth
one and, therefore, the resonance duration is somehow an
arbitrary definition up to overall factors.

Since the resonance condition could be satisfied for
every pair of integers (/, m), one might think that an EMRI
is basically always on resonance. However, only the low
order resonances are significant. In fact, if the resonance
order is high it means that the number of cycles in r with
respect to the cycles in € is high enough that the average
over the 2-torus is effectively done. Furthermore, the
duration of the resonance scales as the inverse of the order
of the resonance |/| + |m| and only low order resonances
are long enough to affect the evolution.

The fundamental frequencies and the constants of
motion change typically on a timescale of J/J ~ w/d ~
1/5. When an EMRI system passes through a resonance,
the evolution of the constants of motion deviates from the
standard adiabatic evolution. This deviation is caused by
the additional contributions to the fluxes in Eq. (11) and its
size is of order AJ ~ Jrres ~ /1, and analogously for the
fundamental frequencies Aw ~ /5. Therefore, the evolu-
tion of the constants of motion receives a “kick,” which can
be either positive or negative depending on the phase at
resonance ¥, and on G- ,,-. This deviation is bigger than
any higher order corrections in the mass ratio. The exact
expression for the total change in the constants of motion
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after resonance [*:m* can be found in [40,41]. The jumps in
the constants cause the phases to shift away from the
standard adiabatic evolution. This leads to a cumulative
dephasing of order Ag = Aw7 ~ 1/,/n by the end of the
inspiral, where the inspiral timescale 7 ~ 1/#. These shifts
of the phases can be particularly large in small mass ratio
systems, which motivates investigating their effect on
EMRI parameter estimation. To do so we need to build
a model for resonances.

B. Effective resonance model

Here we develop a phenomenological model of reso-
nances based on the main features of transient orbital
resonances discussed in the previous section. This is done
without reducing the computational efficiency of the
numerical kludge. We build our model with two main
ingredients: a criterion to specify when a resonance starts,
and a modification of the flux equation during resonance.
The numerical kludge evolves firstly the phase-space
trajectory of the constants of motion J = (E,L_, Q) and,
since the fundamental frequencies are only functions of J,
the condition for resonance can be checked at each time
step. If it is satisfied, we modify the flux evolution to
include the effects of the resonance.

The 3:2 resonances are considered to have the strongest
impact on the inspiral [41], and are encountered by EMRI
systems long enough before plunge that a significant phase
shift can accumulate [48]. We will therefore explain how to
construct the effective resonance model for the case of a 3:2
transient orbital resonance, but the extension to other
resonances is straightforward. All frequencies and times
will refer to coordinate time, unless clearly stated otherwise.

The resonance condition is satisfied when the ratio of the
polar and radial frequency is 3/2: wyy/®,o = 1.5 at a given
7 = 7. However, the adiabatic approximation does not
break down at the specific instant of time 7 = 7, where
wgo/w,0 = 3/2, but in the neighbourhood of the resonance.
The question is where?

Due to the symmetry of the phase around 7z, we assume
that the start of the resonance, 7, is half the resonance
duration before the resonance condition is satisfied at 7,
1.e., Tgart = To — Tres/2. Since we do not know 7 before-
hand, we use the following approach to trigger the start of
the resonance in our model. If we define a threshold
function as & = wy/w, — 1.5, which is zero at 7, it is
possible to find the value of this function at 7y, = 7y —
Tres/2 such that the total duration of the resonance is 7.
To do this, we expand the threshold function around 7, up
to the first order

d)g @y .
~NO4 (2220 -
0 =0+ (2% )| (=)
262)90 - 360,0 T—17
N——— (1 — =2 . 12
2a)r() (T TO) ﬂTrzeswr() ( )

Thus, the threshold function at 7y, = 79 — Tres/2 1S
6* = é:(TO - Tres/z) = _”/<Treswr0)' Assuming that Tres
and w,( are approximately constants in the neighborhood
of the resonance, we can compute & = wy/w, — 1.5 and
& = —7/(7sw,9) and will trigger the start of the reso-
nance when & > £*. This is a universal choice which is
independent of the specific EMRI system since the thresh-
old is dimension-free. We verified that by using this
criterion to turn on the resonance correction, the ratio
3/2 was reached exactly at 7, as expected.

So, if |wgg/w,0 — 1.5| < |&*| and if the orbit is non-
circular and nonequatorial, we modify the flux evolution of
the numerical kludge by implementing an effective reso-
nance in coordinate time:

dJ

a:fNK{l +Cw(1)}, (13)

where we define the resonance coefficients C = (&, L., Q)
as the fractional change in flux on resonance, and the
“impulse” function w as

1-+cos[4r(529)2)

Tres

fol 1+cos[4mx]dx

re [Tstart’ Tstart 1 Tres]

w(t) = . (14)

0 elsewhere

to represent the evolution of the second term in the flux
equation (11) due to the resonance.

In Fig. 1 it is shown how the effective model changes the
evolution of J and implements a smooth deviation in the
constants of motion during the resonance. The size of
the changes are different for each of the constants of motion
and they are of order ~0.5% by the end of the resonance.

C. Resonance coefficients

Determining the resonance coefficients C as a function of
the EMRI parameters is possible, but is very challenging.
The value of C for a specific trajectory can be estimated by
using Eq. (11) following the procedure described in [47].
However, this procedure is currently too computationally
expensive for our purposes. As far as we are aware, the only
available resonance coefficient estimates are given in [47]
and their largest values reach ~0.01.

We can check that the effective resonance model
reproduces an evolution of the orbital constants and phases
similar to that one given in [40]. There, Flanagan
and Hinderer found a dephasing of 15 cycles by the end
of the inspiral and a change in constants of
AJ/(J\/n) ~0.02-0.10. The effective resonance model
reproduces also the same order of magnitude deviations
if we set C = (—0.01,-0.01,-0.01).

The sign of C can be positive or negative according to the
phase ¥, at which the compact object reaches the reso-
nance. Determining the correct phase W, at resonance can
be problematic since it would require the waveform model
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FIG. 1. Transient orbital resonances modify the evolution of the

constants of motion and lead to a deviation AJ from the standard
adiabatic evolution. Here we show the relative changes in the
constants of motion from the start to the end of a 3:2 resonance in
an EMRI system with resonance coefficients C = (—0.01, —0.01,
—0.01) and parameters =3 x 1075, M = 10 My, p/M = 8.55,
e=0.7,1=120, a=0.95.

to be perfectly in phase from the beginning of the inspiral
up to the start of the resonance. Therefore the resonance
coefficients C are considered as parameters of our effective
resonance model. Once we have predictions from the GSF,
the resonance coefficients could be used as a new way to
test GR. For the time being we take as fiducial values
C = (-0.01,-0.01,-0.01).

D. Impulse function

The “impulse” function w(f; Ty, Tyat) €Xpresses the
rising and the disappearing of the additional term during
the resonance, and its functional form has been chosen
such that
(1) it is symmetric with respect to 7p = Tyun + Tres/2;
(i1) it is smooth, positive and normalized to 7.;

(iii) it rises from zero with zero slope W (t = 7y,y) = 0,
and symmetrically it decays to zero with zero slope
W/(t = Tstaﬂ + Tres) = O;

(iv) it resembles the functional form of the correction in
Eq. (11): exp(ix?) ~ cos x%;

The first condition (i) is imposed to preserve the symmetry
with respect to 7 as expressed in Eq. (11). The impulse
function is normalized to 7., because the total change in the
constants of motion is proportional to the resonance
duration. Condition (iii) and (ii) avoid abrupt behaviors
in the evolution of the constants. Conditions (i),(ii),(iii) are
chosen according to the study of the semi-analytic solution
of resonances given in [69]. Condition (iv) is suggested
by the functional form of the equations regulating the
resonances.

Since condition (iv) is guided by our intuition, we test
that the final waveform is not affected by this choice.
Therefore, we compute the mismatch M between one-year
EMRI waveforms with different impulse functions in the

TABLE 1. Mismatch M between one-year waveforms gener-
ated with different impulse functions and different resonance
coefficients C. Notice that if we halve the value of the resonance
coefficient, the mismatch gets 4 times smaller. Since the two
polarizations show the same mismatch, we report the results only
for h,.

C -0.01 -0.005 -0.0025

M(hs,hgn)  1.67x 107  4.18x 107 1.046 x 1075
M(hg, hgyy)  1.74x 1074 438x 105  1.094 x 1073
M(hg, ht) 416x 107  1.04x 107° 2.60 x 107°
M(hg, hy) 179 x 107* 449 x 1075 1.12 x 1073

effective resonance model (initial conditions given in [40]).
In Table I we report the mismatch between the waveforms
generated with our standard (S) impulse function w
of Eq. (14) and four different impulse functions:
BlackmanNuttall window (B-N), BlackmanHarris window
(B-H), Tukey window (T) and Nuttall window (N) [70-72].
We also report the mismatches for different resonance
coefficients C. As shown from Table I, the mismatches are
particularly low for all the considered cases, ~10™* — 107°.
Interestingly, the value of the mismatch is quadrupled
if the resonance coefficients is doubled. An explanation
for this behavior will be provided in Sec. IV B. Since
the largest expected resonance coefficients C =
(=0.01,—-0.01,—0.01) lead to a mismatch of order 107,
there is little difference between using different impulse
functions.

We conclude that the functional form of the impulse
function does not matter too much, as long as the phase
immediately after resonance is correctly modeled. In fact,
we do not aim to exactly describe the evolution of the
inspiral during the resonance, but to correctly account for
their effects afterward, which is where large dephasings can
accumulate. As long as we are back in phase after the
resonance, and the resonance duration is relatively short,
we can use the effective resonance model to match
astrophysical resonant EMRIs without significant loss of
signal-to-noise ratio. We will use the impulse function of
Eq. (14) for the rest of this work

Our aim is to study how resonances influence the
gravitational wave signals from EMRIs and how parameter
estimation could be affected. Even though we are using a
phenomenological model and we do not use the exact value
of the resonance coefficients, this model is a reasonable
starting point to understand at which order of magnitude
resonances are going to affect the gravitational waves and
EMRI parameter estimation. In addition, it provides a new
tool for observing and measuring resonances. The numeri-
cal kludge combined with this phenomenological model
has the advantage that it is fast enough to scan a large EMRI
parameter space and to capture the crucial physics of
resonances and EMRI evolution.
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IV. RESULTS

A. Dephasing caused by 3:2 resonances

The gravitational wave of an EMRI system consists of a
superposition of multiple modes. Each mode is characterized
by an amplitude and an oscillating sinusoid. The phase
evolution of this oscillating term depends on a particular
combination of the three Keplerian phases (y,y, ¢) asso-
ciated with the EMRI. The overall gravitational wave phase
of an EMRI system thus consists of a complex combination
of the evolution of the phases (y, y, ¢). Resonances cause
these phases to depart from the standard adiabatic evolution.
In this section we will quantify the size of these dephasings
in terms of how many cycles the resonant evolution deviates
from the nonresonant evolution, (Ay, Ay, Ag)/(2x), by the
end of the one-year observation.

This analysis will serve as a verification of the effective
resonance model, and allow comparison with prior work,
but we will also try to quantify the dephasings in a different
way. Previous investigations have considered a limited set
of EMRI configurations and analysed the dephasings
induced by resonances using a post-Newtonian model
for the resonant force [40,41]. The post-Newtonian force
model predicts a particular relationship between the param-
eters of the EMRI at resonance and the size of the flux
changes on resonance, which may or may not be a good
approximation to the true impact of the GSE. In the
effective resonance model, by contrast, the size of the flux
changes is set by hand, and so we can compare the
dephasing with these fixed and thus decouple the effect
of the size of the flux change from the timing of the
resonance within the inspiral. These results can thus be
more easily reused once GSF calculations have accurately
computed the on-resonance flux changes. In the following,
we will use our fiducial resonance coefficients C =
(-0.01,-0.01,-0.01) to estimate the dephasings. This
can be regarded as a worst case scenario, but these
dephasings can be readily rescaled to other choices.

By studying which regions of the EMRI parameter
space lead to the largest dephasings, we can understand
which EMRI configurations are mostly likely to be affected
by 3:2 resonances. Thus, we evolve several EMRI systems
with initial conditions e € [0.1,0.8], € [0.1,3.1],
a €1[0.8,0.95], with steps, Ae=0.1, Ar=0.3 and
Aa = 0.05. The initial semi-latus rectum p/M is deter-
mined using the black hole perturbation toolkit [73] to start
the inspiral near the resonance, more precisely at |£| =
3/2 —1.498 (see Appendix V C for the parameter space
location of the 3:2 resonance). We limit our analysis to
configurations that have an initial periastron r, > 5SM for
consistency with the limitations of the NK model. These
parameter ranges are chosen such that they span the range
of eccentricities e, inclination angle parameters 1 and spins
a expected for astrophysical EMRIs [30,74-76]. We fix the
mass ratio and the mass of the central black hole to

n =107, M = 10° M, respectively, and we set the initial
phases to zero. For most of these configurations, the
dephasing was computed over an observation time of
one year. For systems with 1 < 1.3 the location of the
resonance in parameter space is such that the systems
plunge in less than one year. In those cases the dephasing
was calculated at plunge.

The dephasings for these systems are shown in Fig. 2.
They mildly depend on the spin parameter and span a wide
range of values from ~0.3 increasing up to (Ay, Ay, Ag)/
(27) = (14.8,12.2,2.0). The largest shifts due to resonan-
ces are located around ¢ ~ 1.2 as shown in Fig. 2.

The dephasing for fixed inspiral length scales like AwT?,
where A is the change in the frequency derivative that
accumulates over the resonance, and 7 is the time between
the resonance and the end of the inspiral. The change in
frequency derivative depends on the difference in the
energy flux at resonance, and on the duration of the
resonance. So, the largest phase shifts will be for systems
that have large changes in the flux on resonance and long
resonance durations. The longest resonance durations are
for systems with high eccentricities and high iz, but the
biggest phase shifts are for systems with smaller . These
latter systems have resonances which occur closer to the
central black hole, where the absolute magnitude of the
dissipation rate is higher. For fixed 7', this leads to a higher
AJ (75 + Tgarr) compared to other configurations and, as a
consequence, higher phase shifts (A, Ay, Ap)/(2x), as
we can see from Fig. 2. The turnover in the dephasing for
configurations with 1 < 1.0 is due to the fact that these
systems plunge within one year. The total time over which
the dephasing can accumulate decreases as  decreases from
~1.0 to zero, and this decrease compensates for the
increased strength of the resonance effect to give a total
dephasing that is decreasing.

Overall we conclude that, for fixed inspiral length, we
expect the strongest impact on the waveform from the 3:2
resonances located in the strong field regime, i.e., closer to
the central black hole.

B. Mismatch as a function of resonance strength

The dephasing due to a resonance accumulates over the
inspiral, which means the overlap between a resonant and
nonresonant waveform drops over time (or equivalently the
mismatch increases). This has been shown to affect the
detection of EMRI systems [41]. The size of the accumu-
lated mismatch will depend also on the strength of the
resonance. Here, we study the evolution of the mismatch,
M, as a function of the resonance coefficients, C, for
different EMRI initial conditions. By doing this we can
assess which values of C lead to a significant dephasing.

We consider a one-year inspiral of an EMRI system with
n = 1075 and M = 10° M,. For simplicity we set the three
resonance coefficients to be equal £ = £, = O, but have
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FIG. 2. The dephasing between a resonant and nonresonant
orbit in the phases y (top panel), y (middle panel) and ¢ (bottom
panel). The dephasings are computed for EMRI systems with
parameters 7 = 107>, M = 10® M and resonance coefficients
C = (-0.01,-0.01, —0.01). Since the phases oscillate quickly we
take the average over the last 1000 s. Some small variations in the
dephasing pattern may arise from this procedure.

verified that the results are not significantly influenced by
this choice. As we increase the size of the resonance
coefficients, we calculate the mismatch M (%, h™) between
nonresonant and resonant waveforms for the two LISA
channels. Since the results of the two channels are basically
identical we show the results in Fig. 3 for channel 7 only.

,t=13,a=0.8
,1=28,a=0.8
,t=13,a=0.8
,1=28,a=0.8
,e=13,a=09
,1=28,a=09
,t=13,a=09
1=28,a=09

FIG. 3. Mismatch M of resonant and nonresonant waveforms
as a function of the resonance coefficients C = (£, L., Q). We
considered a one-year waveform generated for an EMRI system
with 7 = 107>, M = 10° M, and different initial conditions. The
dashed and solid lines correspond to systems with spin a = 0.9
and a = 0.8, respectively. The lines with the same color have the
same 1.

These results reflect some of the previous findings. The
region of the parameter space where the dephasings are
larger have a larger mismatch. In fact, prograde orbits
(dash-dot-dotted green and dotted blue lines) show a larger
mismatch than retrograde (dashed orange and, solid and
dash-dotted red lines). The spin parameter mildly affects
the overall behavior. For higher eccentricity systems, the
mismatch begins to increase significantly for smaller
absolute values of the resonance coefficients. We find a
direct proportionality between the mismatch log | M| and
the resonance coefficients logC for C < 3 x 107*. This is
due to the fact that the mismatch scales like the dephasing
squared, and, as previously discussed, the dephasing at the
end of the inspiral scales approximately like ~Aw ~ C.
Therefore the scaling log | M| « log C is not unexpected.

A common criterion for assessing if two waveforms are
indistinguishable is that the norm of the waveform differ-
ence, (6h|6h) < 1. This criterion was first introduced in
[77,78], but was popularized by [79]. The mismatch is
approximately (5h|6h)/(2p?) and so the indistinguishabil-
ity criterion is satisfied for M < 1/(2p?), which is approx-
imately 1073 for the p ~ 20 systems considered here. From
Fig. 3 we conclude that for resonance coefficients smaller
than ~107> the waveforms are indistinguishable, regardless
of the choice of system parameters, and so the effects of the
resonance can be neglected. Furthermore, we infer that the
mismatch strongly depends on the parameter space location
of the EMRI system and that the largest mismatches, for a
fixed size of the resonance coefficients, occur for high
eccentricity, prograde orbits in the small resonance strength
regime |C| < 1073,

We have considered a worst case scenario for the
mismatch because we did not maximize over the initial
time, phases or other model parameters in order to find
the best-fit template, as is normally done in GW data
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analysis. However, we do not expect the above results to
drastically change with this maximization, as already
demonstrated in [41].

C. Systematic errors

The use of an approximate waveform model causes
biases in parameter estimation. Therefore, the scientific
potential of EMRI systems can be undermined if the
systematic error 6A®® induced by inaccurate waveform
modeling is larger than the size of the typical statistical
error [Eq. (9)] [68]. Statistical errors arise due to noise
fluctuations and are therefore unavoidable, but are
accounted for in the width of posterior distributions on
parameters. Requiring the systematic error to be smaller
than the statistical error ensures that the true parameters
remain consistent with the posterior for single events,
although errors can accumulate for populations [80]. The
statistical error can be estimated as the square root of the
diagonal elements of the inverse of the Fisher matrix A/
and so we are interested in the ratio

<5/1bias>i _ Ty + T) ' (by + b))

Al [(Ty +Top) ™"
by, = (Ochen| 5™ = H5) |13,

ch=LI, (15)

where there is no sum over the index i, h,, and h, refer
to the approximate and true waveforms respectively,
and each i refers to one of the considered parameters
A= (p/M,logn,logM,e,1). The subscript I,II on the
Fisher matrices mean that they have been calculated for
the respective detector channels. Here we investigate the
size of the errors that arise from ignoring the presence of
resonances in the waveform model. The approximate
waveform, 4,,, will be the NK waveform without resonance
and the true waveform, /,, will be the waveform produced
with the effective resonance model.

We consider a fiducial EMRI configuration = 107>,
M =10° Mg, e =0.1, 1= 1.3, p/M = 9.0447, a = 0.9.
The resonance coefficients, C, are in principle a function of
the waveform parameters and can be computed using the
GSF. However, such calculations are beyond the scope of
this paper and so we draw random values for the resonance
coefficients from a uniform distribution (€~ L, ~ Q ~
U[-0.01,0.01], where each resonance coefficient is inde-
pendently sampled). Then, we look at the distribution of
biases over repeated random draws of this kind. The
domain of the uniform distribution is chosen to cover all
the expected resonance coefficient values. To explore the
impact of the other waveform parameters we repeat this
procedure for other EMRI systems which differ from the
fiducial system by the change of one parameter at a time.
For each system, the semi-latus rectum was adjusted to
ensure the 3 :2 resonance was encountered close to the start
of the inspiral, i.e., at the start of the inspiral we had

|E| =3/2—1.498. In all cases the EMRI did not plunge
within the one-year observation time used.

We show the cumulative distribution of the biases for the
various EMRI systems in Fig. 4. The cumulative distribu-
tion of 5% /A for the fiducial configuration (blue solid
lines) shows that more than 95% of the biases are more than
twice the statistical uncertainty, A4, (“two sigma away”).
Reducing the spin (red dash-dotted lines) or the mass ratio 5
(violet dashed lines) does not significantly change the
cumulative distribution. For these configurations we con-
clude that EMRI waveform models need to account for
resonances. For the EMRI systems with higher eccentricity
(orange dotted lines) and larger i (green dash-dot-dotted
lines), the proportion of systems with biases above 2 sigma
is lower, but these proportions still exceed ~85% and
~25% respectively. These results are consistent with the
mismatch analysis presented earlier, where we found
typically lower mismatches for more retrograde systems.

Overall, the conclusion from Fig. 4 is that it is important
to use waveform models that include resonances when
performing EMRI parameter estimation. The biases will be
less severe for retrograde and higher eccentricity systems,
although even there the biases are not negligible and will
continue to accumulate if the observation time is increased
beyond one year.

The bias estimates here were calculated using the
approximate formalism described in [68] and its validity
will degrade for large biases, 51°% /A1 > 10. This does not
invalidate our findings but it is likely to affect the reliability
of our estimate of the tails of the cumulative distribution
of biases. The tails could be more accurately resolved by
computing posterior distributions for each configuration.
This is computationally expensive and so is beyond the
scope of the current work, but we do not expect the
conclusions to be significantly different in such an analysis.

D. Measurability of resonances

We now investigate two things: the measurability of
resonances and how the inclusion of the resonance coef-
ficients C as unknown model parameters change the
measurement precision of other intrinsic parameters.
This is assessed using the Fisher information matrix. If
AA/A <1 then the parameter is measurable. For details
about the validation and checks of our Fisher matrix
calculations we refer the reader to Appendix V B.

As before, we consider a fiducial EMRI configuration
and we calculate the relative measurement precision A4/A
for uniformly randomly drawn resonance coefficients. We
repeat this for the same set of reference systems considered
in the previous section, which vary one parameter at a time
away from the fiducial model. All the waveforms have been
normalized to SNR = 20 and we compute measurement
precisions for the parameters (p/M,n, M, e, 1,a,E, L., Q).
We show the results for the distribution of parameter
measurement precision in Fig. 5.
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FIG. 4. Cumulative distribution of the biases (or systematic
errors) induced by resonances for different intrinsic parameters
and configurations. The ratio 54" /A between the size of the
systematic and statistical errors is calculated for one-year inspiral
by randomly drawing resonance coefficients. For 64" /A1 > 1
the bias induced by inaccurate modeling is larger than the bias
induced by the typical noise fluctuations. This figure shows how
the bias is distributed over many resonance strength realizations
(resonance coefficient realizations). For the fiducial EMRI
configuration (solid blue line), more than 95% of the biases
are larger than two sigma, i.e., the cumulative distribution reaches
~0.05 at 5AP% /A) = 2.

Measurement precisions, A1/4, for the intrinsic param-
eters (p/M,n,M,e,1,a) are at the subpercent level in all
cases, and vary by a factor of a few across the distribution
of resonance coefficient values. This shows that the
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FIG. 5. Distribution of the fractional measurement precision
A2/ 2 of intrinsic parameters and resonance coefficients, £, £, Q.
The counts represent the fraction of times a given EMRI system
has a particular measurement precision over random draws of the
resonance coefficients. All the signals have been normalized to
SNR = 20. Parameters can be considered measurable if
AA/A < 1. This figure shows how the measurement precision
is distributed over many resonance strength realizations (reso-
nance coefficient realizations). For the fiducial EMRI configu-
ration (filled blue histogram), the resonance coefficients &£, £, Q
are determined in median with relative precision (0.15,0.23,0.07).

inclusion of the resonance coefficients as additional param-
eters does not significantly degrade the measurement
precision for the intrinsic parameters. In addition, we find
that these precision estimates are in agreement with the
typical values found in [30].
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It is clear from Fig. 5 that the resonance coefficients
cannot be constrained for the high : configuration (green
dash-dotted curve). In fact as previously noticed, the
parameter space location of the 3:2 resonance for high :
is particularly far (p/M ~ 12) from the strong field regime
and this leads to smaller dephasings with respect to the
other configurations. Since the time to plunge for this
configuration (green dash-dotted curve) is three years, we
expect that if we had evolved such an EMRI system for a
longer time, the measurement precision of the resonance
coefficients for this system would improve.

On the other hand, the most precise measurement
estimates are obtained for the smaller mass ratio system
(violet solid curve). This is probably due to the choice of
increasing the observation time for this system. While that
was done to ensure the amount of inspiral was comparable,
it means that twice as many waveform cycles are also
observed so we expect to measure parameters somewhat
better. We find that for this EMRI configuration the
resonance coefficients £, £, Q are determined with relative
precision better than 0.1, respectively, 54%, 35%, 81% of
the time. Here, we report the median relative precision of
the three resonance coefficients, (Md[£], Md|[L.], Md[Q]).
The medians are computed for the distributions of each
of the three resonance coefficients and are (0.15,0.23,0.07)
for the fiducial configuration (blue filled), (0.11,0.68,0.21)
for the more eccentric one (orange dotted), and
(0.20,0.35,0.13) for the low spin one (red dashed).

V. DISCUSSION AND FUTURE OUTLOOK

Extreme mass ratio inspirals are modeled using pertur-
bation theory in the small mass ratio . The effects of
transient orbital resonances on the EMRI phase evolution
scale as ~#~'/2, therefore contributing more than post-
adiabatic corrections which scale as ~#°. It has been shown
how resonances affect detection [41]. However, the impact
of these phenomena on parameter estimation had not
previously been investigated.

In this work we have explored this question by implement-
ing a phenomenological model for transient orbital resonan-
ces: the effective resonance model. This model allows us to
efficiently study a wide variety of EMRI systems avoiding
expensive gravitational self-force calculations, but at the cost
of introducing three additional model parameters: the reso-
nance coefficients C = (&€, L., Q). These encode the relative
flux changes for each of the constants of motion that occur
during resonance, and, therefore represent the resonance
strength. Since the largest estimated resonance coefficients
in the literature are of order ~0.01, we adopt the fiducial values
C = (-0.01,-0.01, —0.01) to study the dephasings induced
by 3:2 resonances over the parameter space. For a one-year
EMRI inspiral with parameters n = 1075, M = 10° M, we
find that the maximum dephasings amount to (14.8,12.2,2.0)
cycles for (, y, ¢) respectively, and occur for prograde orbits.
This is due to the fact that the 3:2 resonances of these

configurations are located closer to the central MBH where the
absolute magnitude of the fluxes is higher.

We have also investigated how the mismatch between a
resonant and nonresonant waveform depends on the res-
onance coefficients, finding a proportionality between the
logarithm of the mismatch and the logarithm of the
resonance coefficients. The study of the mismatch was
consistent with the behavior of the dephasings over the
parameter space. In addition, it revealed that more eccentric
systems might be more affected by resonances in the small
resonance strength regime |C| < 1073, We also inferred that
resonance coefficients with absolute values less than ~107
lead to waveforms that are indistinguishable from the
waveforms without resonances and hence there is no
measurable effect in the phase evolution.

We conducted a study of the systematic errors that would
arise in estimates of the intrinsic parameters from neglect-
ing resonances. We found that for the considered EMRI
configurations the biases can reach values up to a dozen
times larger than the statistical errors arising from noise
fluctuations. Over all the resonant coefficient realizations,
we find that more than 95% of the biases are larger than 2
sigma, for our fiducial EMRI configuration. This suggests
that parameter estimates of resonant EMRISs are likely to be
biased if resonances are not taken into account in models
used for parameter estimation. We also expect an increase
in the parameter bias for longer signals.

Finally, we used the effective resonance model to assess
the measurability of parameters with resonant EMRIs. The
EMRI systems which are mostly affected by resonances
provide measurements of the resonance coefficients with a
relative precision ranging from 0.07-0.68 (median values).

The effective resonance model presented here has a
number of potential uses, beyond being used to scope out
the impact of resonances as done in the current paper. A
model similar to this could be used in analysis of LISA data
to match EMRI signals over resonances, mitigating the
induced biases without requiring expensive GSF calcula-
tions of the resonance coefficients. Furthermore, due to its
general implementation, the effective resonance model can
also be adapted to represent tidal resonances [44], which
have a similar form to transient orbital resonances but are
caused by the tidal perturbation of a third object. Finally,
such a model can be used to measure resonance coefficients
in EMRI observations. Comparing the measured values to
the self-force prediction of the resonance coefficients
would provide a test of general relativity.

There are a number of ways in which this work could be
extended. We have explored only 3:2 resonances here, so it
would be interesting also to analyze higher order resonances,
or systems that pass through multiple strong resonances.
In addition, our parameter estimation and bias results were
based on the linear signal approximation, and it would be
useful to verify these using full Bayesian posterior calcu-
lations. Finally, once full GSF waveforms with resonances
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are available, the ability of the effective resonance model to
detect and characterize such systems should be assessed.

While the development of an accurate self-force wave-
form model will be necessary to have more precise and
quantitative results, the effective resonance model has
provided a first step towards an understanding of the impact
of transient orbital resonances on parameter estimation.
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APPENDIX A: DATA ANALYSIS CAVEATS

The numerical kludge produces approximate numerical
waveforms expressed as an array of data points spaced
by a constant time sampling interval, Az. Since we are not
dealing with continuous and analytical signals, we are
going to briefly discuss different caveats that can occur
when calculating Fourier transforms and derivatives.

The choice of a too large sampling interval can lead
to aliasing and it imposes a limit on the maximum
resolvable frequency f.. = 1/(2Af) as prescribed by
the NyquistShannon sampling theorem. On the other hand,
a too small sampling interval requires a higher computa-
tional cost. Throughout this work we fixed At =10 s,
which is sufficient to resolve the frequencies accessible to
the LISA sensitivity band without unduly increasing the
computational time.

The waveform derivatives 0;h are calculated numerically
using the five-point stencil formula to ensure a high stability
of the derivatives and a numerical error that scales at fourth
order in the derivative spacing. In order to avoid spectral
leakage and to sample over the minimum possible frequency
range we apply a Tukey window function with shape
parameter 0.05 to every waveform and then zero-pad them
to exploit the efficiency of the fast Fourier transform [81].

APPENDIX B: FISHER MATRIX VALIDATION

We make use of the following result, valid for high SNR
in the linear signal approximation regime, to check the
correctness of the Fisher matrix results and numerical
derivative approximations:

OUh(A+7).h) = 1 =537 Tyrl + 0. (BI)
The choice of the perturbation ¥ must be small enough to
respect the linear signal approximations but also big enough
to test the 1o region. We follow a similar approach to those
described in [82,83], taking y to be a linear combination of
the eigenvectors, v',, and corresponding eigenvalues, wy, of
the Fisher matrix, I, where the index A runs over the N

different eigenvectors. We draw coefficients ¢, from an N
dimensional unit sphere and we define y as follows:

1

i =N e, A B2
/4 ; A N (B2)
For every computed Fisher matrix, we calculate separately
the left-hand side and right-hand side, neglecting terms of
order O(p™*) and higher in Eq. (B1). By taking the ratio
between the two sides, we find a maximum deviation of
order 107>, This is a way of checking both the validity of the
Fisher matrix and the linear signal approximation.

The Fisher matrices encountered in EMRI data
analysis are known for having a high condition number,
k = max(wy, )/ min(w,), which is the ratio between the
maximum and minimum eigenvalue. A small perturbation
in a Fisher matrix with high condition number « can be
amplified by a factor of « in the inversion. Therefore, if we
have inaccuracies in our Fisher matrix, I', for instance
due to our numerical derivative approximation, they can
lead to a wrong value of AA' = /(I'"!)¥, invalidating our
measurability conclusions. We perturb each element
of every Fisher matrix with a deviation matrix F/, where
each element is drawn from a uniform distribution
U[-1073,1073], and we calculate

max {max [((F+ )7 - F_I)U] } — 0.08.

all configurations ij (F_l ) ij

This confirmed the stability of our Fisher matrix results.

APPENDIX C: PARAMETER SPACE LOCATION
OF 3:2 RESONANCES

In Fig. 6 we show the parameter space location of 3:2
resonances, calculated using the Black Hole Perturbation
Toolkit [73]. The values of p/M, e, 1, a just before reso-
nance can be calculated by searching the roots of
wg/w, = 1.498. These values are used as initial conditions
to evolve EMRI system through resonances.

0.94
0.92
0.90

4 0.88
14 <

0.86

p/M

0.84

0.82

FIG. 6. Parameter space location of 3:2 transient orbital
resonances.
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