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We report three manifestly Lorentz-invariant Hamiltonian formulations of minimally and nonminimally
coupled fermion fields to the Holst action. These formulations are achieved by making a suitable
parametrization of both the tetrad and the Lorentz connection, which allows us to integrate out some
auxiliary fields without spoiling the local Lorentz symmetry. They have the peculiarity that their
noncanonical symplectic structures as well as the phase-space variables for the gravitational sector are
real. Moreover, two of these Hamiltonian formulations involve half-densitized fermion fields. We also
impose the time gauge on these formulations, which leads to real connections for the gravitational
configuration variables. Finally, we perform a symplectomorphism in one of the manifestly Lorentz-
invariant Hamiltonian formulations and analyze the resulting formulation, which becomes the Hamiltonian
formulation of fermion fields minimally coupled to the Palatini action for particular values of the coupling
parameters.

DOI: 10.1103/PhysRevD.103.124030

I. INTRODUCTION

In the first-order formalism, the gravitational variables are
an orthonormal frame of 1-forms eI and a Lorentz con-
nection 1-form ωI

J. Because of its covariant nature under
local Lorentz transformations, fermions couple naturally to
the gravitational field in this framework [1–3]. In particular,
in the self-dual approach to the coupling of fermion fields to
general relativity, the full local Lorentz symmetry is pre-
served, but at the Hamiltonian level the theory involves the
complex-valued Ashtekar connection as the configuration
variable for general relativity that is difficult to deal with at
the quantum level [4,5]. On the other hand, in the real case,
taking the Holst action [6] to describe the gravitational field
and adding to it the fermionic Lagrangian, the resulting first-
order theory is related to the Einstein-Dirac theory supple-
mented with both interaction and boundary terms that
depend on the nature of the coupling between fermions
and gravity once the connection is integrated out in the
action principle [7–10].
It is clear that to better understand the nature of the

gravity-fermion interaction, the local Lorentz symmetry

must be preserved in the Hamiltonian analysis too.
However, some of the canonical approaches involving a
real connection variable for the gravitational field break
local Lorentz symmetry down to SUð2Þ from the very
beginning by imposing the time gauge [11,12]. Therefore,
it is indispensable to perform a manifestly Lorentz-
invariant Hamiltonian analysis of fermion fields coupled
to general relativity that at the same time keeps the
configuration variable of the gravitational field real. This
would allow us to appreciate in depth the nature of the
coupling between fermion and gravitational fields.
Fortunately, a Hamiltonian analysis preserving Lorentz
invariance for the Holst action was carried out recently
[13], and the approach of such a paper will be taken here as
the theoretical tool to study the coupling of fermion fields
to general relativity. Using this approach, we report in
Secs. III–V three manifestly Lorentz-invariant Hamiltonian
formulations of minimally and nonminimally coupled
fermions to the Holst action. In any of the three cases,
the symplectic structure is real and the phase-space
variables that correspond to the gravitational sector are
also real. In particular, the Hamiltonian formulations
contained in Secs. IVand V involve half-densitized fermion
fields. Furthermore, to compare our results with previous
works on the subject, we impose the time gauge on these
Hamiltonian formulations and break the local Lorentz
symmetry down to SOð3Þ [and thus to its double cover
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SUð2Þ] and we give the corresponding Hamiltonian for-
mulations in Sec. VI, which involve real connections.
Finally, we perform a symplectomorphism from the man-
ifestly Lorentz-invariant Hamiltonian formulation of Sec. V
and report the resulting Hamiltonian formulation in
Sec. VII. We also analyze how this latter formulation
simplifies when two particular values of the coupling
parameters are chosen. Remarkably, one of these mani-
festly Lorentz-invariant Hamiltonian formulations corre-
sponds to fermion fields minimally coupled to the Palatini
action (Einstein-Cartan-Dirac). The other corresponds to
fermion fields nonminimally coupled to the Palatini action,
but it is also invariant under parity transformations.

A. Conventions

In the first-order formalism, the fundamental variables
for general relativity are an orthonormal frame of 1-forms
eI and a connection 1-form ωI

J compatible with the metric
ðηIJÞ ¼ diagð−1; 1; 1; 1Þ, dηIJ − ωK

IηKJ − ωK
JηIK ¼ 0,

and therefore ωIJ ¼ −ωJI because Lorentz indices
I; J; K;… (taking the values 0,1,2,3) are raised and lowered
with ηIJ. The totally antisymmetric Lorentz-invariant
tensor ϵIJKL is such that ϵ0123 ¼ 1. The antisymmetric part
of tensors involving Lorentz indices is defined by
t½IJ� ¼ ðtIJ − tJIÞ=2. Furthermore, for any antisymmetric
object UIJ ¼ −UJI , we define its internal dual as �UIJ ≔

ð1=2ÞϵIJKLUKL and also the object U
ðγÞ

IJ ≔ PIJKLUKL with

PIJ
KL ≔ δI½Kδ

J
L� þ

1

2γ
ϵIJKL; ð1Þ

where γ is the nonvanishing real Immirzi parameter. The
weight of a tensor is either indicated with tildes over or
below it, or mentioned explicitly. In particular, the space-
time tensor density η

˜
μνλσ (η̃

μνλσ) is totally antisymmetric and

such that η
˜ t123

¼ 1 (η̃t123 ¼ 1Þ. In addition, we define the

three-dimensional Levi-Civita symbols as η
˜
abc ≔ η

˜
tabc

(η̃abc ≔ η̃tabc) and ϵijk ≔ ϵ0ijk. We assume that the space-
timeM has the topologyR × Σ and that Σ has no boundary.
We foliate M by constant time hypersurfaces Σt diffeo-
morphic to Σ. The coordinate xa labels the points of Σ and t
labels the points of R.

II. FIRST-ORDER ACTION PRINCIPLE

We begin our analysis by considering for gravity the
Holst action [6] with a cosmological constant Λ, given by

SH½e;ω� ¼ κ

Z
M
½PIJ

KL � ðeK ∧ eLÞ ∧ FIJ − 2Λρ�; ð2Þ

where FI
J ≔ dωI

J þ ωI
K ∧ ωK

J is the curvature of the
connection ωI

J, ρ ≔ ð1=4!ÞϵIJKLeI ∧ eJ ∧ eK ∧ eL is the

volume form, and κ ¼ ð16πGÞ−1 with G being Newton’s
gravitational constant.
On the other hand, we consider the coupling of a

Grassmann-valued fermion field ψ to the gravitational field
through the real fermionic action

SF½e;ω;ψ ; ψ̄ � ≔
Z
M

�
1

2
½ψ̄γIEDψ −DψγIE†ψ � ∧ ⋆eI

− χmψ̄ψρ

�
; ð3Þ

where m is the mass of ψ , ψ̄ ≔ iψ†γ0 (i is the imaginary
unit), ⋆ denotes the Hodge dual [and so ⋆eI ¼
ð1=3!ÞϵIJKLeJ ∧ eK ∧ eL], γI denotes Dirac’s matrices
[and so they satisfy γIγJ þ γJγI ¼ 2ηIJ1 and ðγIÞ† ¼
γ0γIγ0], and the covariant derivatives of ψ and ψ̄ are
defined by

Dψ ≔ dψ þ 1

2
ωIJσ

IJψ ; ð4aÞ

Dψ ≔ dψ̄ −
1

2
ωIJψ̄σ

IJ; ð4bÞ

with σIJ ≔ ð1=4Þ½γI; γJ� being the Lorentz generators in the
spin representation. Note that in (3) E ≔ ðχ þ iθÞ1 − iξγ5

denotes the coupling matrix with γ5 ≔ iγ0γ1γ2γ3 and
χ, θ, and ξ being real adimensional parameters. As
a consequence, E† ¼ ðχ − iθÞ1þ iξγ5 since γ5 is a
Hermitian matrix. Also, note that γ5 anticommutes with
γI (γ5γI ¼ −γIγ5). Before going on, let us comment on the
parameters χ, θ, and ξ. At this stage, we note that it is
possible to make a redefinition of the fermion field ψ ↦
χ−1=2ψ and ψ̄ ↦ χ−1=2ψ̄ in the action (3) that transforms E
into E ≔ ð1þ iθχ−1Þ1 − iξχ−1γ5, which means that theory
is really described by two parameters θ=χ and ξ=χ. This
field redefinition is fixed by setting χ ¼ 1, which we do
now. Thus, E ≔ ð1þ iθÞ1 − iξγ5 from now on.
Therefore, the nonminimal coupling of a fermion field to

general relativity in the first-order formalism is given by the
real action

S½e;ω;ψ ; ψ̄ � ≔ SH½e;ω� þ SF½e;ω;ψ ; ψ̄ �: ð5Þ

This action generalizes some of the cases already reported
in the literature. For example, we recover the minimal
coupling of fermion fields studied in Ref. [7] when
θ ¼ 0 ¼ ξ, whereas the nonminimal coupling considered
in Ref. [8] or [9] is obtained when θ ¼ 0 (and ξ ≠ 0) and
ξ ¼ 0 (and θ ≠ 0), respectively. We do not consider the
action of Ref. [10] because we have included a mass term in
our analysis, and this requires an action principle that gives
Dirac’s equation when gravity is turned off [14] (see also
Sec. II A of this paper).
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A. Equations of motion

Computing the variation of the action (5) with respect to
eI , ωI

J, ψ , and ψ̄ , we get the corresponding equations of
motion which are as follows:

2κP�KLIJeJ ∧ FKL − ð2κΛþmψ̄ψÞ⋆eI
þ 1

2
ðψ̄γJEDψ −DψγJE†ψÞ ∧ �ðeI ∧ eJÞ ¼ 0; ð6aÞ

κPIJ
KLD � ðeK ∧ eLÞ − 1

4
ϵIJKLA½K⋆eL�

−
1

2
ðξA½I þ θV ½IÞ⋆eJ� ¼ 0; ð6bÞ

DψγI ∧ ⋆eI þ 1

2
ψ̄γIED⋆eI þmψ̄ρ ¼ 0; ð6cÞ

γIDψ ∧ ⋆eI þ 1

2
γIE†ψD⋆eI −mψρ ¼ 0: ð6dÞ

Note that P�IJKL ≔ PIJ
MN

1
2
ϵKL

MN ¼ PMN
IJ 1

2
ϵKL

MN ≕
�PKL

IJ. Here D stands for the covariant derivative with
respect to the connection ωI

J and we have defined the
vector and axial real currents, respectively, by

VI ≔ iψ̄γIψ ; ð7Þ

AI ≔ iψ̄γ5γIψ : ð8Þ

We now express the equations of motion in an equivalent
form by solving (6b) for ωI

J and then by substituting the
result in the remaining equations of motion. To do this, note
that (6b) can be cast in the form

DeI ¼ TI; ð9Þ

where TI is the torsion of ωI
J,

TI ¼ γ2

8κðγ2 þ 1Þ
�
θVJ þ

�
ξþ 1

γ

�
AJ

�
eI ∧ eJ

þ γ2

4κðγ2 þ 1Þ
�
θ

γ
VJ þ

�
ξ

γ
− 1

�
AJ

�
� ðeI ∧ eJÞ: ð10Þ

The expression for ωI
J that solves (9) is

ωI
J ¼ ΩI

J þ CI
J; ð11Þ

where ΩI
J is the spin connection defined by DeI ≔

deI þ ΩI
J ∧ eJ ¼ 0 and dηIJ −ΩK

IηKJ − ΩK
JηIK ¼ 0

(and so ΩIJ ¼ −ΩJI), while CI
J (CIJ ¼ −CJI) is the

contorsion 1-form defined by TI ≕CI
J ∧ eJ and given by

CI
J ¼−

1

4κ
ðP−1ÞIJKL½ðθV ½Kþ ξA½KÞeL� þ�ðA½KeL�Þ�; ð12Þ

with

ðP−1ÞIJKL ¼ γ2

γ2 þ 1

�
δI½Kδ

J
L� −

1

2γ
ϵIJKL

�
: ð13Þ

Note that the relation between PIJ
KL and ðP−1ÞIJKL is

given by

PIJ
MNðP−1ÞMN

KL ¼ δI½Kδ
J
L�: ð14Þ

Next, we substitute (11) into the equations of
motion (6a), (6c), and (6d). The reader must bear in mind
that FI

J ¼ RI
J þDCI

J þ CI
K ∧ CK

J, where RI
J ≔

dΩI
J þΩI

K ∧ ΩK
J is the curvature of ΩI

J and D is the
covariant derivative with respect to ΩI

J, and that the
Bianchi identity for ωI

J reads DTI ¼ FI
J ∧ eJ while for

ΩI
J it reads 0 ¼ RI

J ∧ eJ. Then, the equations of motion
(6a), (6c), and (6c) become, respectively,

2κ½eJ ∧ �RIJ − Λ⋆eI þ �PIJ
KLeJ ∧ ðDCKL

þ CKM ∧ CM
LÞ� þ

1

2

�
ψ̄γJEDψ −DψγJE†ψ

þ 1

2
CKLψ̄ðγJσKLEþ σKLγJE†Þψ

�
∧ �ðeI ∧ eJÞ

−mψ̄ψ⋆eI ¼ 0; ð15aÞ

−
�
Dψ −

1

2
CJKσ

JKψ

�
γI ∧ ⋆eI þ 1

2
ψ̄γIECJ

I ∧ ⋆eJ
−mψ̄ρ ¼ 0; ð15bÞ

γI
�
Dψ þ 1

2
CJKσ

JKψ

�
∧ ⋆eI − 1

2
γIE†ψCJ

I ∧ ⋆eJ
−mψρ ¼ 0; ð15cÞ

with

DCI
J ≔ dCI

J þΩI
K ∧ CK

J −ΩK
J ∧ CI

K; ð16aÞ

Dψ ≔ dψ þ 1

2
ΩIJσ

IJψ ; ð16bÞ

Dψ ≔ dψ̄ −
1

2
ΩIJψ̄σ

IJ: ð16cÞ

From (5), we conclude that if gravity were turned off, i.e., if
gravity were nondynamical, then the second and third terms
of (15c) that involve the contorsion CIJ would not appear
and (15c) would become Dirac’s equation for a fermion
field propagating on a curved (fixed) background (see also
[14]). This means that the action principle (5) is a suitable
generalization to the case when gravity is dynamical.
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Note also that (15a) implies

RIJ −
1

2
RηIJ þ ΛηIJ ¼

1

2κ
TIJ; ð17Þ

where RIJ is the Ricci tensor, R is the scalar curvature,1 and

TIJ ≔ 2κ½2PK
JLMðD½ICK�LM þ C½ILjNjCK�NMÞ þ ηIJPKL

MNðDKCL
MN þ CK

M
PCL

PNÞ�

−
1

2
ðψ̄γJEDIψ −DIψγJE†ψÞ − 1

4
CIKLψ̄ðγJσKLEþ σKLγJE†Þψ

þ 1

2
ηIJ½ψ̄γKEDKψ −DKψγ

KE†ψ þ 1

2
CKLMψ̄ðγKσLMEþ σLMγKE†Þψ − 2mψ̄ψ �; ð18Þ

with

DKCL
I
J ≔ ∂KCL

I
J þΩK

I
MCL

M
J

−ΩK
M
JCL

I
M −ΩK

M
LCM

I
J; ð19aÞ

DIψ ≔ ∂Iψ þ 1

2
ΩIJKσ

JKψ ; ð19bÞ

DIψ ≔ ∂Iψ̄ −
1

2
ΩIJKψ̄σ

JK: ð19cÞ

The previous definitions arise from expressing dψ ¼
eI∂Iψ , ΩI

J ¼ ΩK
I
JeK , CI

J ¼ CK
I
JeK , and DCI

J ¼
DKCL

I
JeK ∧ eL.

B. Second-order action

The connection ωI
J is an auxiliary field of the first-order

action (5) because, from its own equation of motion (6b),
we can solve for ωI

J in terms of the other fields as was
already shown in (11). Therefore, by integrating out the
connection ωI

J in (5) by using the solution (11), we get an
equivalent second-order action principle

Seff ½e;ψ ; ψ̄ � ¼ κ

Z
M
ðR − 2ΛÞρþ

Z
M

�
1

2
ðψ̄γIDψ

−DψγIψÞ ∧ ⋆eI −mψ̄ψρ

�
þ Sint½e; ψ̄ ;ψ �

−
1

4

Z
∂M

ðξAI þ θVIÞ⋆eI; ð20Þ

where the interaction action Sint is given by

Sint½e; ψ̄ ;ψ � ≔ −
3γ2

32κðγ2 þ 1Þ
Z
M

�
−2θ

�
ξþ 1

γ

�
VIAI

− θ2VIVI þ
�
1 − ξ2 − 2

ξ

γ

�
AIAI

�
ρ: ð21Þ

Thus, the second-order action (20), and hence the first-
order action (5), is in the generic case different from the
Einstein-Dirac theory [15] (see also [1]). In the case of the
minimal coupling of fermions to gravity, defined by
θ ¼ 0 ¼ ξ, the boundary term in (20) vanishes and Sint
only carries the axial-axial interaction modulated by the
Immirzi parameter [7].

III. MANIFESTLY LORENTZ-INVARIANT
HAMILTONIAN FORMULATION

The canonical analysis of the action (5) will be obtained
by following the same approach applied to the Holst action
in Ref. [13]. We remind the reader that the idea behind such
a canonical analysis is very simple: in such a paper, we
performed the canonical analysis of the Holst action using a
suitable parametrization of the orthonormal frame eI and
the connection ωI

J, which allows us to get straightfor-
wardly its Hamiltonian formulation (involving first-class
constraints only) after integrating out the auxiliary fields
involved. Such a procedure has the advantage of reducing
additionally the presymplectic structure to a canonical one
from the very beginning. Once the time gauge is imposed
on such a formulation, Barbero’s formulation [16] for
general relativity arises immediately. In this section, we
will show that the approach of Ref. [13] can also be applied
to the action (5) with the corresponding handling of the
fermionic contribution.
Adapted to the spacetime foliation, the orthonormal

frame eI and the connection ωI
J can be written as eI ¼

etIdtþ eaIdxa and ωI
J ¼ ωt

I
Jdtþ ωa

I
Jdxa, respectively.

We parametrize the 16 components of the tetrad eμI in
terms of the lapse function N, the shift Na, and Π̃aI that is a
tensor density of weight 1 as [13]

1The Ricci tensor and the scalar curvature are defined
by RIJ ≔ RKI

K
J and R ≔ RI

I , respectively, with RI
J ¼

ð1=2ÞRKL
I
JeK ∧ eL.
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etI ¼ NnI þ Nah1=4h
˜̃
abΠ̃bI; ð22aÞ

eaI ¼ h1=4h
˜̃
abΠ̃bI; ð22bÞ

with nI given by

nI ≔
1

6
ffiffiffi
h

p ϵIJKLη
˜ abc

Π̃aJΠ̃bKΠ̃cL; ð23Þ

where h
˜̃
ab is the inverse of

˜̃h
ab ¼ Π̃aIΠ̃b

I and h ≔ detð ˜̃habÞ
is a tensor density of weight 4. Note that the following
properties hold: nInI ¼ −1 and nIΠ̃aI ¼ 0. The map
ðN;Na; Π̃aIÞ ↦ ðeμIÞ given by (22a) and (22b) is invertible
and the inverse map can be found in the Appendix.
Using the 3þ 1 decomposition of eI and ωI

J together
with (22a) and (22b), the action (5) acquires the form

S ¼
Z
R×Σ

dtd3x

�
−2κΠ̃aInJ∂tω

ðγÞ
aIJ þ

1

2
h1=4nIψ̄γIE _ψ

−
1

2
h1=4nI _̄ψγIE†ψ þ ωtIJG̃

IJ − NaṼa − N
˜

˜̃S
�
; ð24Þ

where dtd3x ≔ dt ∧ dx1 ∧ dx2 ∧ dx3, the dot over the
corresponding field denotes ∂t, N

˜
≔ h−1=4N, and

G̃IJ ≔ −2κPIJ
KL½∂aðΠ̃aKnLÞ þ 2ωa

K
MΠ̃a½MnL��

þ 1

4
h1=4nKψ̄ðγKσIJEþ σIJγKE†Þψ ; ð25aÞ

Ṽa ≔ 2κ½−Π̃bInJ∂aω
ðγÞ

bIJ þ ∂bðω
ðγÞ

aIJΠ̃bInJÞ�

þ 1

2
h1=4nIðψ̄γIE∂aψ − ∂aψ̄γ

IE†ψÞ
þ ωaIJG̃

IJ; ð25bÞ

˜̃S ≔ κΠ̃aIΠ̃bJ F
ðγÞ

abIJ þ
1

2
h1=4Π̃aIðψ̄γIEDaψ

−DaψγIE†ψÞ − h1=2ð2κΛþmψ̄ψÞ; ð25cÞ

with

Daψ ≔ ∂aψ þ 1

2
ωaIJσ

IJψ ; ð26Þ

Daψ ≔ ∂aψ̄ −
1

2
ωaIJψ̄σ

IJ; ð27Þ

Fab
I
J ¼ ∂aωb

I
J − ∂bωa

I
J þ ωa

I
Kωb

K
J

− ωb
I
Kωa

K
J: ð28Þ

Following Refs. [17,13], we write the gravitational part
of the presymplectic structure of (24) as

−2κΠ̃aInJ∂tω
ðγÞ

aIJ ¼ 2κΠ̃aI∂tðWa
b
IJKω

ðγÞ
b
JKÞ; ð29Þ

from which we observe that Π̃aI is the momentum
canonically conjugate to the configuration variable CaI ,
which is defined by [13,17]

CaI ≔ Wa
b
IJKω

ðγÞ
b
JK; ð30Þ

where

Wa
b
IJK ≔ −δbaηI½JnK� − nIh

˜̃
acΠ̃c½JΠ̃b

K�: ð31Þ

Once the reduction of the gravitational part of the pre-
symplectic structure has been achieved, it remains to

parametrize ω
ðγÞ

aIJ in terms of the configuration variable
CaI and six additional fields λ

˜ab
(¼λ

˜ba
). This is done by

solving (30), which gives [13]

ω
ðγÞ

aIJ ¼ Ma
b
IJKCb

K þ Ñb
IJλ

˜
ab; ð32Þ

where

Ma
b
IJK ≔ −δban½IηJ�K þ h

˜̃
acΠ̃b½IΠ̃c

J�nK

þ δbaPIJKLnL þ 1

2γ
ϵIJLMh

˜̃
acΠ̃c

KΠ̃bLnM; ð33Þ

Ña
IJ ≔ ϵIJKLΠ̃aKnL: ð34Þ

See the Appendix for the inverse map of (32) and additional
algebraic properties of the objects involved in these maps.
The following step is to substitute (32) into the action

(24), obtaining

S ¼
Z
R×Σ

dtd3x
�
2κΠ̃aI _CaI þ

1

2
h1=4nIðψ̄γIE _ψ

− _̄ψγIE†ψÞ þ ωtIJG̃
IJ − NaṼa − N

˜

˜̃S
�
; ð35Þ

with

G̃IJ ¼ 2κðΠ̃a½ICa
J� þ 2PIJ

KLΠ̃a½KnM�Γa
L
MÞ

þ 1

4
h1=4nKψ̄ðγKσIJEþ σIJγKE†Þψ ; ð36aÞ

Ṽa ¼ 2κð2Π̃bI∂ ½aCb�I − CaI∂bΠ̃bIÞ

þ 1

2
h1=4nIðψ̄γIE∂aψ − ∂aψ̄γ

IE†ψÞ
þ ðP−1ÞIJKLðMa

bKLMCbM þ ÑbKLλ
˜ab

ÞG̃IJ; ð36bÞ
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˜̃S ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�
�
CaICbJ þ 2CaI Γ

ðγÞ
bJKnK þ 1

γ2
qKLΓaIKΓbJL þ

�
ΓaIK þ 2

γ
� ΓaIK

�

× ΓbJLnKnL
�
þ 1

2
h1=4Π̃aIðψ̄γI∇aψ −∇aψγIψÞ þ

1

2
h1=4ðCaI þ Γ

ðγÞ
aIKnKÞnJΠ̃a

Lψ̄ðγLσIJEþ σIJγLE†Þψ

−
3

32κ
h1=2qIJ

�
−AIAJ þ γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
AIVJ − θ2VIVJ þ

�
1 − ξ2 − 2

ξ

γ

�
AIAJ

��

− ðλ
˜ab

−U
˜ ab

fIJ Γ
ðγÞ

fIJÞ
�

κγ2

γ2 þ 1
Gabcdðλ

˜ cd
−U

˜ cd
eKL Γ

ðγÞ
eKLÞ −

1

2
h1=4 � ðP−1ÞKLMNΠ̃a

PΠ̃bMnN

× ψ̄ðγPσKLEþ σKLγPE†Þψ
�
−

1

4κ
G̃IJ

�
G̃IJ − ðP−1ÞIJKLG̃KL − 2nInKG̃JK − h1=4

�
ðP−1ÞIJKLnKðθVL

þ ξALÞ þ �ðP−1ÞIJKLnKAL −
1

2
ϵIJKLnKAL

��
þ 2Π̃aInJ∇aG̃IJ − h1=2ð2κΛþmψ̄ψÞ: ð36cÞ

In the previous expressions, we have introduced the
covariant derivative ∇a defined by

∇aΠ̃bI ≔ ∂aΠ̃bI þ Γb
caΠ̃cI − Γc

caΠ̃bI þ Γa
I
JΠ̃bJ

¼ 0; ð37Þ

and Γa
bc ¼ Γa

cb and ΓaIJ ¼ −ΓaJI . See Ref. [13] for the
explicit solutions of Γa

bc and ΓaIJ. The curvature of ΓaIJ is
given by Rab

I
J≔∂aΓb

I
J−∂bΓa

I
JþΓa

I
KΓb

K
J−Γb

I
KΓa

K
J,

and we have also introduced the following expressions:

∇aψ ≔ ∂aψ þ 1

2
ΓaIJσ

IJψ ; ð38Þ

∇aψ ≔ ∂aψ̄ −
1

2
ΓaIJψ̄σ

IJ; ð39Þ

∇aG̃
IJ ≔ ∂aG̃

IJ − Γb
baG̃

IJ þ Γa
I
KG̃

KJ þ Γa
J
KG̃

IK; ð40Þ

qIJ ≔ δIJ þ nInJ; ð41Þ

Gabcd ≔ ˜̃h
ab ˜̃h

cd − ˜̃h
cða ˜̃hbÞd; ð42Þ

U
˜ ab

cIJ ≔
�
1þ 1

γ2

�
� ðP−1ÞIJKLδcðah≈bÞeΠ̃

e
KnL; ð43Þ

where Gabcd is a tensor density of weight 4. Note that the
reduction map ðωaIJ; Π̃aIÞ ↦ ðCaI; Π̃aIÞ given by (30)
leaves the null directions of the presymplectic structure
(24) out of the symplectic structure, which are clearly
along λ

˜ ab
.

We now integrate by parts the term containing the
covariant derivative of G̃IJ in (36c) and factor out all the
terms involving G̃IJ in (35), which requires to redefine
the Lagrange multiplier ωtIJ as

ωtIJ ≕ − λIJ þ NaðP−1ÞIJKLðMa
bKLMCbM

þ ÑbKLλ
˜ab

Þ − 1

4κ
N
˜

�
G̃IJ − ðP−1ÞIJKLG̃KL

− 2nKn½IG̃J�K − h1=4
�
�ðP−1ÞIJKLnKAL

þ ðP−1ÞIJKLnKðθVL þ ξALÞ

−
1

2
ϵIJKLnKAL

��
− 2Π̃a½InJ�∇aN

˜
: ð44Þ

Note that the map ðCaI; λ
˜ ab

; λIJÞ ↦ ðωμ
I
JÞ given by (32)

and (44) gives the parametrization of ωμ
I
J as a function of

12 configuration variables CaI, 6 fields λ
˜ab

, and 6 Lagrange

multipliers λIJ. Therefore, the action can be equivalently
written as

S ¼
Z
R×Σ

dtd3x

�
2κΠ̃aI _CaI þ

1

2
h1=4nIðψ̄γIE _ψ

− _̄ψγIE†ψÞ − λIJG̃
IJ − 2NaD̃a − N

˜

˜̃Z
�
; ð45Þ

where G̃IJ, D̃a, and
˜̃Z are given, respectively, by

G̃IJ ¼ 2κðΠ̃a½ICa
J� þ 2PIJ

KLΠ̃a½KnM�Γa
L
MÞ

þ 1

4
h1=4nKψ̄ðγKσIJEþ σIJγKE†Þψ ; ð46aÞ

D̃a ≔ κð2Π̃bI∂ ½aCb�I − CaI∂bΠ̃bIÞ

þ 1

4
h1=4nIðψ̄γIE∂aψ − ∂aψ̄γ

IE†ψÞ; ð46bÞ
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˜̃Z ≔ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�
�
CaICbJ þ 2CaI Γ

ðγÞ
bJKnK þ 1

γ2
qKLΓaIKΓbJL þ

�
ΓaIK þ 2

γ
� ΓaIK

�

× ΓbJLnKnL
�
þ 1

2
h1=4Π̃aIðψ̄γI∇aψ −∇aψγIψÞ þ

1

2
h1=4ðCaI þ Γ

ðγÞ
aIKnKÞnJΠ̃a

Lψ̄ðγLσIJEþ σIJγLE†Þψ

−
3

32κ
h1=2qIJ

�
−AIAJ þ γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
AIVJ − θ2VIVJ þ

�
1 − ξ2 − 2

ξ

γ

�
AIAJ

��

− ðλ
˜ ab

−U
˜ ab

fIJ Γ
ðγÞ

fIJÞ
�

κγ2

γ2 þ 1
Gabcdðλ

˜ cd
−U

˜ cd
eKL Γ

ðγÞ
eKLÞ −

1

2
h1=4 � ðP−1ÞKLMNΠ̃a

PΠ̃bMnN

× ψ̄ðγPσKLEþ σKLγPE†Þψ
�
− h1=2ð2κΛþmψ̄ψÞ: ð46cÞ

To cast the action into the desired Hamiltonian form, we
must deal with the variables λ

˜ab
, which appear in the action

(45) in a quadratic fashion. Although we could apply the
cumbersome and lengthy Dirac’s method [18] and define
the momentum canonically conjugate to λ

˜ab
, this way of

proceeding would lead us to the introduction of second-
class constraints, which would still have to be explicitly
solved or handled with the Dirac bracket. Once we solve
such second-class constraints, we would arrive to what is
obtained by simply integrating out the auxiliary field λ

˜ab
.

This is why it makes no sense to follow Dirac’s approach
to handle λ

˜ab
. Therefore, following the approach of

Refs. [13,19], we integrate out λ
˜ ab

in (45). To do so, we

make the variation of (45) with respect to λ
˜ab

, which leads

to its equation of motion

2κγ2

γ2 þ 1
N
˜
Gabcdðλ

˜ cd
−U

˜ cd
eIJ Γ

ðγÞ
eIJÞ

−
1

2
N
˜
h1=4 � ðP−1ÞIJKLΠ̃ða

MΠ̃bÞKnLψ̄ðγMσIJE
þ σIJγME†Þψ ¼ 0: ð47Þ

Therefore, since N
˜
≠ 0, we get

λ
˜ ab

¼ U
˜ ab

cIJ Γ
ðγÞ

cIJ þ
h1=4

4κ

�
1þ 1

γ2

�
� ðP−1ÞIJKL

× ðG−1ÞabcdΠ̃c
MΠ̃dKnLψ̄ðγMσIJE

þ σIJγME†Þψ ; ð48Þ

where ðG−1Þabcd ¼ ð1=2Þðh
≈ab

h
≈cd

− 2h
≈cðah≈bÞdÞ is a tensor

density of weight −4. Note that Gabcd and ðG−1Þabcd
satisfy GabcdðG−1Þcdef ¼ δaðeδ

b
fÞ.

Substituting (48) into the action (45), we get

S ¼
Z
R×Σ

dtd3x
�
2κΠ̃aI _CaI þ

1

2
h1=4nIðψ̄γIE _ψ

− _̄ψγIE†ψÞ − λIJG̃
IJ − 2NaD̃a − N

˜

˜̃H
�
; ð49Þ

where the Gauss G̃IJ, diffeomorphism D̃a, and Hamiltonian
˜̃H constraints are given, respectively, by

G̃IJ ¼ 2κðΠ̃a½ICa
J� þ 2PIJ

KLΠ̃a½KnM�Γa
L
MÞ þ

1

4
h1=4nKψ̄ðγKσIJEþ σIJγKE†Þψ ; ð50aÞ

D̃a ¼ κð2Π̃bI∂ ½aCb�I − CaI∂bΠ̃bIÞ þ 1

4
h1=4nIðψ̄γIE∂aψ − ∂aψ̄γ

IE†ψÞ; ð50bÞ

˜̃H ≔ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�
�
CaICbJ þ 2CaI Γ

ðγÞ
bJKnK þ 1

γ2
qKLΓaIKΓbJL þ

�
ΓaIK þ 2

γ
� ΓaIK

�
ΓbJLnKnL

�

þ 1

2
h1=4Π̃aIðψ̄γI∇aψ −∇aψγIψÞ þ

1

2
h1=4ðCaI þ Γ

ðγÞ
aIKnKÞnJΠ̃a

Lψ̄ðγLσIJEþ σIJγLE†Þψ

þ 3

32κ
h1=2

�
qIJAIAJ þ nInJðθ2VIVJ þ ξ2AIAJ þ 2θξAIVJÞ

−
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
AIVI − θ2VIVI þ

�
1 − ξ2 − 2

ξ

γ

�
AIAI

��
− h1=2ð2κΛþmψ̄ψÞ: ð50cÞ
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The action (49), together with (50a)–(50c), is a mani-
festly Lorentz-invariant Hamiltonian formulation of the
Holst action with a nonminimally coupled fermion field. It
has very appealing properties. It shows that the coupling of
the fermion field to general relativity at the Hamiltonian
level involves a real noncanonical symplectic structure.
Furthermore, the phase-space variables of the gravitational
sector ðCaI; Π̃aIÞ are canonical and real, and they have the
same form than the ones for general relativity with a
cosmological constant [13,17]. Moreover, in the symplectic
structure, there are manifestly Lorentz-covariant nontrivial
interacting terms between the fermion field and the
gravitational momentum.
It is important to remark again that the current approach

is an alternative road to Dirac’s classical analysis. It has the
advantage that simplifies significantly the Hamiltonian
analysis. One of the key aspects of our approach is the

fact that the reduction of the presymplectic structure
encoded in (30) suggests to parametrize the spatial part
of the connection ωa

I
J in the form given by (32), and once

(32) is substituted into the action principle, we realize that
λ
˜ ab

is an auxiliary field that can be simply integrated out. In

this way, we arrive straightforwardly at the Hamiltonian
formulation with only first-class constraints, which gen-
erate the distinctive gauge symmetries of the theory (local
Lorentz transformations and spacetime diffeomorphisms).
We can go one step further and rewrite the constraints by

using the explicit form of the coupling matrix E and the
identity

γIγJγK ¼ ηIJγK − ηIKγJ þ ηJKγI þ iϵIJKLγ5γL; ð51Þ

and we get

G̃IJ ¼ 2κðΠ̃a½ICa
J� þ2PIJ

KLΠ̃a½KnM�Γa
L
MÞþ

1

2
h1=4n½IðθVJ� þξAJ�Þþ1

4
h1=4ϵIJKLnKAL; ð52aÞ

D̃a¼κð2Π̃bI∂ ½aCb�I−CaI∂bΠ̃bIÞþ1

4
h1=4nI½ψ̄γI∂aψ−∂aψ̄γ

Iψþ∂aðθVIþξAIÞ�; ð52bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�
�
CaICbJ þ 2CaI Γ

ðγÞ
bJKnK þ 1

γ2
qKLΓaIKΓbJL þ

�
ΓaIK þ 2

γ
� ΓaIK

�
ΓbJLnKnL

�

þ 1

2
h1=4Π̃aIðψ̄γI∇aψ −∇aψγIψÞ þ

1

2
h1=4ðCaI þ Γ

ðγÞ
aIMnMÞnJ½Π̃aIðθVJ þ ξAJÞ þ ϵIJKLΠ̃aKAL�

þ 3

32κ
h1=2

�
qIJAIAJ þ nInJðθ2VIVJ þ ξ2AIAJ þ 2θξAIVJÞ

−
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
VIAI − θ2VIVI þ

�
1 − ξ2 − 2

ξ

γ

�
AIAI

��
− h1=2ð2κΛþmψ̄ψÞ: ð52cÞ

This formulation explicitly displays the role played by the
coupling parameters θ and ξ.

IV. HAMILTONIAN FORMULATION
INVOLVING HALF-DENSITIZED

FERMION FIELDS

The use of half-densitized fermion fields in the canonical
theory of gravity with fermion fields has been put forward
and championed by Thiemann in both the first-order
formalism [11] (see also [12]) and the second-order
formalism [20]. Motivated by this fact, in this section,
we give a manifestly Lorentz-invariant Hamiltonian for-
mulation for general relativity with fermion fields that uses
half-densitized fermion fields.
The idea is to express the Hamiltonian formulation given

by the action (49) and the constraints (52a)–(52c) in terms
of half-densitized fermion fields. Therefore, we define the
half-densitized fermion fields

ϕ ≔ h1=8ψ ; ð53aÞ

ϕ̄ ≔ h1=8ψ̄ ; ð53bÞ

and we write the noncanonical symplectic structure (49) in
terms of them as

2κΠ̃aI _CaI þ
1

2
h1=4nIðψ̄γIE _ψ − _̄ψγIE†ψÞ

¼ 2κΠ̃aI∂t

�
CaI þ

1

16κ
h
˜̃
abΠ̃b

InJϕ̄γJðE − E†Þϕ
�

þ 1

2
nIðϕ̄γIE _ϕ − _̄ϕγIE†ϕÞ

−
3

8
∂t½nIϕ̄γIðE − E†Þϕ�: ð54Þ

From this, we realize that it is natural to define a new real
configuration variable ΦaI for the gravitational sector as
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ΦaI ≔ CaI þ
1

16κ
h
˜̃
abΠ̃b

InJϕ̄γJðE − E†Þϕ: ð55Þ

Using this definition, the noncanonical symplectic structure
given in (49) acquires the form

2κΠ̃aI _CaI þ
1

2
h1=4nIðψ̄γIE _ψ − _̄ψγIE†ψÞ

¼ 2κΠ̃aI _ΦaI þ
1

2
nIðϕ̄γIE _ϕ − _̄ϕγIE†ϕÞ

−
3

8
∂t½nIϕ̄γIðE − E†Þϕ�: ð56Þ

Note that the last line of (56) is real2 and if we neglect it, the
new symplectic structure is still real (this type of terms have

also been dropped in previous canonical approaches to the
coupling of fermion fields to gravity [11,12] and even for
gravity alone [21]).
Therefore, using half-densitized fermion fields and the

new configuration variable ΦaI for the gravitational sector
[neglecting the last term of (56)], the action (49) becomes

S ¼
Z
R×Σ

dtd3x

�
2κΠ̃aI _ΦaI þ

1

2
nIðϕ̄γIE _ϕ

− _̄ϕγIE†ϕÞ − λIJG̃
IJ − 2NaD̃a − N

˜

˜̃H
�
; ð57Þ

where the first-class constraints are given by

G̃IJ ¼ 2κðΠ̃a½IΦa
J� þ 2PIJ

KLΠ̃a½KnM�Γa
L
MÞ þ

1

2
n½IðθṼJ� þ ξÃJ�Þ þ 1

4
ϵIJKLnKÃ

L; ð58aÞ

D̃a ¼ κð2Π̃bI∂ ½aΦb�I −ΦaI∂bΠ̃bIÞ þ 1

4
nIðϕ̄γI∂aϕ − ∂aϕ̄γ

IϕÞ − 1

4
ΓaIJnIðθṼJ þ ξÃJÞ; ð58bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�
�
ΦaIΦbJ þ 2ΦaI Γ

ðγÞ
bJKnK þ 1

γ2
qKLΓaIKΓbJL þ

�
ΓaIK þ 2

γ
� ΓaIK

�
ΓbJLnKnL

�

þ 1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ þ

1

2
ϵIJKLðΦaI þ Γ

ðγÞ
aIMnMÞnJΠ̃aKÃL

þ 3

32κ

�
qIJÃ

IÃJ −
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
ṼIÃ

I − θ2ṼIṼI þ
�
1 − ξ2 − 2

ξ

γ

�
ÃIÃ

I

��
− 2h1=2κΛ − h1=4mϕ̄ϕ; ð58cÞ

and where we have also introduced the densitized fermion
currents

ṼI ≔ iϕ̄γIϕ ¼ h1=4VI; ð59Þ

ÃI ≔ iϕ̄γ5γIϕ ¼ h1=4AI; ð60Þ

and we have written the covariant derivatives as

∇aϕ ≔ ∂aϕ −
1

2
Γb

baϕþ 1

2
ΓaIJσ

IJϕ; ð61aÞ

∇aϕ ≔ ∂aϕ̄ −
1

2
Γb

baϕ̄ −
1

2
ΓaIJϕ̄σ

IJ: ð61bÞ

We close this section by remarking that the symplectic
structure of the manifestly Lorentz-invariant Hamiltonian
formulation (57) involves explicitly the parameters θ and ξ

in the fermionic part of it through E and E†. We recall that
fermion fields couple nonminimally to gravity (5) when
any of these parameters is nonvanishing. Therefore, one of
the appealing features of this Hamiltonian formulation is
that parameters that mediate the fermion-gravity interaction
are present in the symplectic structure. Nevertheless, this is
not a trivial fact as it might appear because it is possible to
give an alternative Hamiltonian formulation that does not
involve these parameters in the symplectic structure. This is
done in the following section.

V. ALTERNATIVE HAMILTONIAN
FORMULATION INVOLVING

HALF-DENSITIZED FERMION FIELDS

We start again from our original manifestly Lorentz-
invariant Hamiltonian formulation given by the action (49)
and the constraints (52a)–(52c). Like the Hamiltonian
formulation reported in Sec. IV, here we also use half-
densitized fermion fields defined by (53a) and (53b).
Nevertheless, instead of the gravitational configuration
variable CaI present in (49), we use as gravitational
configuration variable φaI that is related to CaI by

2In terms of the real fermion currents, the last line of (56) is
rewritten as

−
3

8
∂t½nIϕ̄γIðE − E†Þϕ� ¼ −

3

4
∂t½h1=4nIðθVI þ ξAIÞ�:
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φaI ≔CaIþ
1

16κ
h
˜̃
abðΠ̃b

InJ−2Π̃b
JnIÞϕ̄γJðE−E†Þϕ: ð62Þ

Note that φaI is also real. In terms of φaI , ϕ, and ϕ̄, the
symplectic structure of the action (49) acquires the form

2κΠ̃aI _CaI þ
1

2
h1=4nIðψ̄γIE _ψ − _̄ψγIE†ψÞ

¼ 2κΠ̃aI _φaI þ
1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ

−
1

8
∂t½nIϕ̄γIðE − E†Þϕ�: ð63Þ

Some remarks are in order. First, due to the fact that the
original symplectic structure (49) is real and the last line of
(63) is also real, the terms in the second line of (63) define a
real symplectic structure if its last line is dropped. Second,

note that this resulting symplectic structure does not
involve the parameters θ and ξ. Therefore, it is remarkable
that these parameters that mediate the nonminimal coupling
of fermions fields to the gravitational field have been
removed from the symplectic structure through a redefini-
tion of the gravitational configuration variable and the use
of half-densitized fermion fields.
Thus, the action (49) becomes

S ¼
Z
R×Σ

dtd3x

�
2κΠ̃aI _φaI þ

1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ

− λIJG̃
IJ − 2NaD̃a − N

˜

˜̃H
�
; ð64Þ

and the first-class constraints are given by

G̃IJ ¼ 2κðΠ̃a½Iφa
J� þ 2PIJ

KLΠ̃a½KnM�Γa
L
MÞ þ

1

4
ϵIJKLnKÃ

L; ð65aÞ

D̃a ¼ κð2Π̃bI∂ ½aφb�I − φaI∂bΠ̃bIÞ þ 1

4
nIðϕ̄γI∂aϕ − ∂aϕ̄γ

IϕÞ; ð65bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�
�
φaIφbJ þ 2φaI Γ

ðγÞ
bJKnK þ 1

γ2
qKLΓaIKΓbJL þ

�
ΓaIK þ 2

γ
� ΓaIK

�
ΓbJLnKnL

�

þ 1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ þ

1

2
ϵIJKLðφaI þ Γ

ðγÞ
aIMnMÞnJΠ̃aKÃL

þ 3

32κ

�
qIJÃ

IÃJ −
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
ṼIÃ

I − θ2ṼIṼI þ
�
1 − ξ2 − 2

ξ

γ

�
ÃIÃ

I

��
− 2h1=2κΛ − h1=4mϕ̄ϕ: ð65cÞ

Note also that the coupling parameters θ and ξ only

appear in the Hamiltonian constraint ˜̃H. As the reader can
notice, the manifestly Lorentz-invariant Hamiltonian for-
mulation (64) can also be obtained from the formulation
(57), contained in Sec. IV, and the fact that the variablesΦaI
of such a formulation and φaI are related by

φaI ¼ ΦaI −
1

8κ
h
˜̃
abnIΠ̃b

Jϕ̄γ
JðE − E†Þϕ: ð66Þ

VI. TIME GAUGE

The Hamiltonian formulations involving only first-class
constraints reported in Secs. III–V are manifestly Lorentz
invariant, i.e., they are invariant under local SOð3; 1Þ gauge
transformations, and thus, the local Lorentz symmetry
has not been spoiled. Nevertheless, loop quantum gravity
[22–24] employs Barbero’s canonical variables, which are
invariant under local SOð3Þ gauge transformations.
Therefore, motivated by loop quantum gravity, we now

study the form of the Hamiltonian formulations of
Secs. III–V when the Lorentz group is broken down to
its compact subgroup SOð3Þ [and thus to its double
cover SUð2Þ].
The time gauge is given by

Π̃a0 ¼ 0; ð67aÞ

G̃i0 ¼ 0: ð67bÞ

Note that Π̃a0 ¼ 0 is equivalent toni ¼ 0 (i ¼ 1, 2, 3) as long
as detðΠ̃aiÞ ≠ 0, which is assumed throughout this section.
From the explicit form of nI given in (23), we observe that the
only nonzero component of nI is n0 ¼ sgn½detðΠ̃aiÞ�.
We now fix some notation that will be used in what

follows. From (37) and (67a), we have Γa0i ¼ 0 and define

Γai ≔ −
1

2
ϵijkΓa

jk; ð68Þ

where Γa
i
j is the spin connection on Σ. The curvature of

Γai is
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Rabi ≔ −
1

2
ϵijkRab

jk ¼ ∂aΓbi − ∂bΓai þ ϵijkΓa
jΓb

k; ð69Þ

and, from (37), we recall that

∇aΠ̃bi¼∂aΠ̃biþΓb
caΠ̃ci−Γc

caΠ̃biþϵijkΓa
jΠ̃bk¼0: ð70Þ

A. Time gauge in the Hamiltonian formulation
of Sec. III

We impose the time gauge on the action (49) with the
constraints from (52a) to (52c). Solving G̃i0 ¼ 0 using
(52a), we get

Ca0 ¼ n0Π̃ai∂bΠ̃bi þ n0
4κ

h1=4Π̃aiðθVi þ ξAiÞ: ð71Þ

Using this and (67a), the action (49) takes the form

S ¼
Z
R×Σ

dtd3x

�
2κΠ̃ai _Cai þ

1

2
h1=4n0ðψ̄γ0E _ψ

− _̄ψγ0E†ψÞ − 2λiG̃
i − 2NaD̃a − N

˜

˜̃H
�
; ð72Þ

with

G̃i ¼ κn0
γ

½∂aΠ̃ai þ ϵijkðn0γCa
jÞΠ̃ak� þ n0

4
h1=4Ai; ð73aÞ

D̃a ¼ κð2Π̃bi∂ ½aCb�i − Cai∂bΠ̃biÞ þ n0
4
h1=4½ψ̄γ0∂aψ − ∂aψ̄γ

0ψ þ ∂aðθV0 þ ξA0Þ�; ð73bÞ

˜̃H ¼ −κϵijkΠ̃aiΠ̃bjRab
k þ 2κΠ̃a½iΠ̃jbjj�

�
Cai −

n0
γ
Γai

��
Cbj −

n0
γ
Γbj

�
þ 1

2
h1=4Π̃aiðψ̄γi∇aψ −∇aψγiψÞ

þ n0
2
h1=4

�
Cai −

n0
γ
Γai

�
½Π̃aiðθV0 þ ξA0Þ þ ϵijkΠ̃ajAk� þ 3

32κ
h1=2

�
AiAi þ ðθV0 þ ξA0Þ2

−
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
VIAI − θ2VIVI þ

�
1 − ξ2 − 2

ξ

γ

�
AIAI

��
− h1=2ð2κΛþmψ̄ψÞ; ð73cÞ

where we have defined λi ≔ −ð1=2Þϵijkλjk, G̃i ≔
−ð1=2ÞϵijkG̃jk, and

∇aψ ¼ ∂aψ −
1

2
ϵijkΓa

iσjkψ ; ð74aÞ

∇aψ ¼ ∂aψ̄ þ 1

2
ϵijkΓa

iψ̄σjk: ð74bÞ

[See (38) and (39)]. From G̃i, we identify the SOð3Þ
connection,

Aai ≔ n0γCai; ð75Þ
and we define its field strength as

Fabi ≔ ∂aAbi − ∂bAai þ ϵijkAa
jAb

k: ð76Þ

[See (87) below to conclude alternatively that Aai is indeed
a connection.] Using the identity (41) of Ref. [13] and
integrating by parts, which requires to replace λi with μi
given by μi ≔ λi − ðn0=γÞΠ̃a

i∇aN
˜
, we obtain the action

S ¼
Z
R×Σ

dtd3x

�
2
κn0
γ

Π̃ai _Aai þ
1

2
h1=4n0ðψ̄γ0E _ψ

− _̄ψγ0E†ψÞ − 2μiG̃
i − 2NaD̃a − N

˜

˜̃C
�
; ð77Þ

where the first-class constraints are given by

G̃i ¼ κn0
γ

½∂aΠ̃ai þ ϵijkAa
jΠ̃ak� þ n0

4
h1=4Ai; ð78aÞ

D̃a ¼
κn0
γ

ð2Π̃bi∂ ½aAb�i − Aai∂bΠ̃biÞ þ n0
4
h1=4½ψ̄γ0∂aψ − ∂aψ̄γ

0ψ þ ∂aðθV0 þ ξA0Þ�; ð78bÞ

˜̃C ¼ κ

γ2
ϵijkΠ̃aiΠ̃bj½Fab

k − ð1þ γ2ÞRab
k� þ 1

2
h1=4Π̃ai

�
ψ̄

�
1 −

i
γ
γ5
�
γi∇aψ −∇aψ

�
1þ i

γ
γ5
�
γiψ

�

þ 1

2γ
h1=4ðAai − ΓaiÞ½Π̃aiðθV0 þ ξA0Þ þ ϵijkΠ̃ajAk� þ 3

32κ
h1=2

�
AiAi þ ðθV0 þ ξA0Þ2

−
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
VIAI − θ2VIVI þ

�
1 − ξ2 − 2

ξ

γ

�
AIAI

��
− h1=2ð2κΛþmψ̄ψÞ: ð78cÞ
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This is the desired Hamiltonian formulation coming
from (49) when the time gauge is imposed on.

B. Time gauge in the Hamiltonian formulation
of Sec. IV

We impose the time gauge on the Hamiltonian formu-
lation given in the action (57) with the constraints from
(58a) to (58c). Solving G̃i0 ¼ 0 using (58a), we get

Φa0 ¼ n0Π̃ai∂bΠ̃bi þ n0
4κ

Π̃aiðθṼi þ ξÃiÞ: ð79Þ

Using this and (67a), the action (57) takes the form

S ¼
Z
R×Σ

dtd3x

�
2κΠ̃ai _Φai þ

1

2
n0ðϕ̄γ0E _ϕ

− _̄ϕγ0E†ϕÞ − 2λiG̃
i − 2NaD̃a − N

˜

˜̃H
�
; ð80Þ

with

G̃i ¼ κn0
γ

½∂aΠ̃ai þ ϵijkðn0γΦa
jÞΠ̃ak� þ n0

4
Ãi; ð81aÞ

D̃a ¼ κð2Π̃bi∂ ½aΦb�i −Φai∂bΠ̃biÞ þ n0
4
ðϕ̄γ0∂aϕ − ∂aϕ̄γ

0ϕÞ; ð81bÞ

˜̃H ¼ −κϵijkΠ̃aiΠ̃bjRab
k þ 2κΠ̃a½iΠ̃jbjj�

�
Φai −

n0
γ
Γai

��
Φbj −

n0
γ
Γbj

�
þ 1

2
Π̃aiðϕ̄γi∇aϕ −∇aϕγiϕÞ

þ n0
2
ϵijk

�
Φa

i −
n0
γ
Γa

i

�
Π̃ajÃk þ 3

32κ

�
ÃiÃ

i −
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
ṼIÃ

I − θ2ṼIṼI

þ
�
1 − ξ2 − 2

ξ

γ

�
ÃIÃ

I

��
− 2h1=2κΛ −mh1=4ϕ̄ϕ; ð81cÞ

where we defined λi ≔ −ð1=2Þϵijkλjk, G̃i ≔ −ð1=2ÞϵijkG̃jk,
and

∇aϕ ¼ ∂aϕ −
1

2
Γb

baϕ −
1

2
ϵijkΓa

iσjkϕ; ð82aÞ

∇aϕ ¼ ∂aϕ̄ −
1

2
Γb

baϕ̄þ 1

2
ϵijkΓa

iϕ̄σjk: ð82bÞ

[See (61a) and (61b).] From G̃i, we identify immediately
the connection

Aai ≔ n0γΦai; ð83Þ

and we define its field strength as

F abi ≔ ∂aAbi − ∂bAai þ ϵijkAa
jAb

k: ð84Þ

After an integration by parts that requires to replace λi with
μi given by μi ≔ λi − ðn0=γÞΠ̃a

i∇aN
˜
, we obtain the action

S ¼
Z
R×Σ

dtd3x

�
2
κn0
γ

Π̃ai _Aai þ
1

2
n0ðϕ̄γ0E _ϕ

− _̄ϕγ0E†ϕÞ − 2μiG̃
i − 2NaD̃a − N

˜

˜̃C
�
; ð85Þ

where the first-class constraints are given by

G̃i ¼ κn0
γ

½∂aΠ̃ai þ ϵijkAa
jΠ̃ak� þ n0

4
Ãi; ð86aÞ

D̃a ¼
κn0
γ

ð2Π̃bi∂ ½aAb�i −Aai∂bΠ̃biÞ þ n0
4
ðϕ̄γ0∂aϕ − ∂aϕ̄γ

0ϕÞ; ð86bÞ

˜̃C ¼ κ

γ2
ϵijkΠ̃aiΠ̃bj½F ab

k − ð1þ γ2ÞRab
k� þ 1

2
Π̃ai

�
ϕ̄

�
1 −

i
γ
γ5
�
γi∇aϕ −∇aϕ

�
1þ i

γ
γ5
�
γiϕ

�

þ 1

2γ
ϵijkðAa

i − Γa
iÞΠ̃ajÃk þ 3

32κ

�
ÃiÃ

i −
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
ṼIÃ

I − θ2ṼIṼI þ
�
1 − ξ2 − 2

ξ

γ

�
ÃIÃ

I

��

− 2h1=2κΛ −mh1=4ϕ̄ϕ: ð86cÞ
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Some remarks follow: first, note that in the Hamiltonian
formulation given in the action (85), the coupling param-
eters θ and ξ appear explicitly in the scalar constraint,
specifically in the terms involving the fermion interaction
of order fourth [cf. (21)]. Second, the connection Aai is
related generically to the connection Aai (75) of the
Hamiltonian formulation of Sec. III through the expression

Aai ¼ Aai þ
γ

8κ
Π̃aiðθṼ0 þ ξÃ0Þ: ð87Þ

Hence, in the minimal coupling of fermions (θ ¼ ξ ¼ 0),
we have Aai ¼ Aai. In the nonminimal coupling of fer-
mions (either θ ≠ 0 or ξ ≠ 0, or both are different from
zero), we have Aai ≠ Aai.

C. Time gauge in the Hamiltonian
formulation of Sec. V

Following the same approach as in the previous sub-
sections, we impose the time gauge on the formulation
given by the action (64). From Gi0 ¼ 0, we have

φa0 ¼ n0Π̃ai∂bΠ̃bi: ð88Þ

Then, identifying

Aai ≔ n0γφai; ð89Þ

we arrive at the action

S ¼
Z
R×Σ

dtd3x
�
2
κn0
γ

Π̃ai _Aai þ
1

2
n0ðϕ̄γ0 _ϕ − _̄ϕγ0ϕÞ

− 2μiG̃
i − 2NaD̃a − N

˜

˜̃C
�
; ð90Þ

where μi ≔ −ð1=2Þϵijkλjk − ðn0=γÞΠ̃a
i∇aN

˜
, and the con-

straints G̃i, D̃a, and
˜̃C are the same as the expressions given

in (86a)–(86c), respectively. Notice that the configuration
variable Aai is the same as the one defined in (83) since, in
the time gauge, Φai ¼ φai [see (66)].

VII. SYMPLECTOMORPHISM

So far, we have reported three manifestly Lorentz-
invariant Hamiltonian formulations for the coupling of
fermion fields to the Holst action described by the action
principle (5), which are contained in Secs. III–V, respec-
tively. We have also reported the resulting Hamiltonian
formulations once the time gauge is imposed on any of
them, which are contained in Sec. VI.
Now, we report another manifestly Lorentz-invariant

Hamiltonian formulation that is obtained from the formu-
lation given by the action (64) of Sec. V by means
of a symplectomorphism that changes the gravitational
configuration variable as

ΨaI ≔ φaI −Wa
b
IJK Γ

ðγÞ
b
JK
; ð91Þ

whereas the remaining phase-space variables Π̃aI , ϕ, and ϕ̄
are left unchanged. That this transformation is indeed a
symplectomorphism can be seen from the fact that

2κΠ̃aI _φaI þ
1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ

¼ 2κΠ̃aI _ΨaI þ
1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ

þ κ∂a

�
−2nI _̃Π

aI −
1

γ
h1=2η̃abch

≈bd
h
≈cf

Π̃f
I
_̃ΠdI

�
: ð92Þ

Thus, due to the fact that Σ has no boundary, the new
Hamiltonian formulation obtained from (64) is given by the
action

S ¼
Z
R×Σ

dtd3x

�
2κΠ̃aI _ΨaI þ

1

2
nIðϕ̄γI _ϕ − _̄ϕγIϕÞ

− λIJG̃
IJ − 2NaD̃a − N

˜

˜̃H
�
; ð93Þ

where the first-class constraints are given by

G̃IJ ¼ 2κΠ̃a½IΨa
J� þ 1

4
ϵIJKLnKÃ

L; ð94aÞ

D̃a ¼ κð2Π̃bI∂ ½aΨb�I −ΨaI∂bΠ̃bIÞ þ 1

4
nIðϕ̄γI∂aϕ − ∂aϕ̄γ

IϕÞ; ð94bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ þ
1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ þ

1

2
ϵIJKLΨaInJΠ̃aKÃL

þ 3

32κ

�
qIJÃ

IÃJ −
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
ṼIÃ

I − θ2ṼIṼI þ
�
1 − ξ2 − 2

ξ

γ

�
ÃIÃ

I

��

− 2h1=2κΛ − h1=4mϕ̄ϕ: ð94cÞ
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Even though the coupling parameters θ and ξ do not
appear in the symplectic structure (93), they appear in the
Hamiltonian constraint (94c). Nevertheless, these con-
straints get a much simpler form by making two particular
choices of the coupling parameters θ and ξ. Let us analyze
them in what follows.

A. Fermion fields minimally coupled
to the Palatini action

When the coupling parameters are chosen as

ξ ¼ −
1

γ
; θ ¼ 0; ð95Þ

which amounts to choose E ¼ 1þ ði=γÞγ5, the constraints
(94a)–(94c) become

G̃IJ ¼ 2κΠ̃a½IΨa
J� þ 1

4
ϵIJKLnKÃ

L; ð96aÞ

D̃a ¼ κð2Π̃bI∂ ½aΨb�I −ΨaI∂bΠ̃bIÞ

þ 1

4
nIðϕ̄γI∂aϕ − ∂aϕ̄γ

IϕÞ; ð96bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ

þ 1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

þ 1

2
ϵIJKLΨaInJΠ̃aKÃL þ 3

32κ
nInJÃ

IÃJ

− 2h1=2κΛ − h1=4mϕ̄ϕ: ð96cÞ

Notice that there is no Immirzi parameter in the first-
class constraints at all. Therefore, the absence of the
Immirzi parameter and the form of the constraints indicate
that this manifestly Lorentz-invariant Hamiltonian formu-
lation corresponds to fermion fields minimally coupled
to the Palatini action [25] (Einstein-Cartan-Dirac), i.e., this
Hamiltonian formulation comes from the action given
by (3) (with θ ¼ 0 and ξ ¼ 0) added to the Palatini action.

B. Fermion fields nonminimally coupled
to the Palatini action

When the coupling parameters are chosen as

ξ ¼ −
1

γ
; θ ¼ ϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ−2

q
; ϑ ∈ R; ð97Þ

which amounts to choose E¼ð1þ iϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þγ−2

p
Þ1þði=γÞγ5,

the constraints (94a)–(94c) become

G̃IJ ¼ 2κΠ̃a½IΨa
J� þ 1

4
ϵIJKLnKÃ

L; ð98aÞ

D̃a ¼ κð2Π̃bI∂ ½aΨb�I −ΨaI∂bΠ̃bIÞ

þ 1

4
nIðϕ̄γI∂aϕ − ∂aϕ̄γ

IϕÞ; ð98bÞ

˜̃H ¼ κΠ̃aIΠ̃bJRabIJ þ 2κΠ̃a½IΠ̃jbjJ�ΨaIΨbJ

þ 1

2
Π̃aIðϕ̄γI∇aϕ −∇aϕγIϕÞ

þ 1

2
ϵIJKLΨaInJΠ̃aKÃL þ 3

32κ
ðϑ2ṼIṼI

þ nInJÃ
IÃJÞ − 2h1=2κΛ − h1=4mϕ̄ϕ: ð98cÞ

This manifestly Lorentz-invariant Hamiltonian formu-
lation involves ϑ as its single real coupling parameter,
which is present in the vector-vector interaction of the
Hamiltonian constraint (98c). Note also that this formu-
lation is invariant under parity transformations since the
Hamiltonian constraint (98c) does not involve the vector-
axial interaction. The only difference of this formulation
with respect to the formulation given in Sec. VII A is
precisely the term involving ϑ. Like that, this formulation
also does not involve the Immirzi parameter. Therefore, the
absence of the Immirzi parameter, the form of the con-
straints, and the presence of the parameter ϑ indicate that
this manifestly Lorentz-invariant Hamiltonian formulation
corresponds to fermion fields nonminimally coupled to the
Palatini action. More precisely, the Hamiltonian formu-
lation given by the constraints (98a)–(98c) comes from the
action given by (3) (with θ ¼ ϑ and ξ ¼ 0) added to the
Palatini action [25].

C. Time gauge

For the sake of completeness, we also impose the time
gauge on the Hamiltonian formulation given by (93). From
G̃i0 ¼ 0, we obtain

Ψa0 ¼ 0: ð99Þ

Thus, under the time gauge, the action (93) becomes

S ¼
Z
R×Σ

dtd3x

�
2κΠ̃ai _Ψai þ

1

2
n0ðϕ̄γ0 _ϕ − _̄ϕγ0ϕÞ

− 2λiG̃
i − 2NaD̃a − N

˜

˜̃H
�
; ð100Þ

where we defined λi ≔ −ð1=2Þϵijkλjk and G̃i ≔
−ð1=2ÞϵijkG̃jk, and the first-class constraints are given by
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G̃i ¼ κϵijkΨa
jΠ̃ak þ n0

4
Ãi; ð101aÞ

D̃a ¼ κð2Π̃bi∂ ½aΨb�i − Ψai∂bΠ̃biÞ þ n0
4
ðϕ̄γ0∂aϕ − ∂aϕ̄γ

0ϕÞ; ð101bÞ

˜̃H ¼ −κϵijkΠ̃aiΠ̃bjRab
k þ 2κΠ̃a½iΠ̃jbjj�ΨaiΨbj þ

1

2
Π̃aiðϕ̄γi∇aϕ −∇aϕγiϕÞ þ

n0
2
ϵijkΨa

iΠ̃ajÃk

þ 3

32κ

�
ÃiÃ

i −
γ2

γ2 þ 1

�
−2θ

�
ξþ 1

γ

�
ṼIÃ

I − θ2ṼIṼI þ
�
1 − ξ2 − 2

ξ

γ

�
ÃIÃ

I

��

− 2h1=2κΛ − h1=4mϕ̄ϕ: ð101cÞ

The reader can check that under the choice of the
parameters given in Sec. VII A, the Hamiltonian constraint
becomes

˜̃H ¼ −κϵijkΠ̃aiΠ̃bjRab
k þ 2κΠ̃a½iΠ̃jbjj�ΨaiΨbj

þ 1

2
Π̃aiðϕ̄γi∇aϕ −∇aϕγiϕÞ

þ n0
2
ϵijkΨa

iΠ̃ajÃk þ 3

32κ
ðÃ0Þ2

− 2h1=2κΛ − h1=4mϕ̄ϕ: ð102Þ

Similarly, under the choice of the parameters given in
Sec. VII B, the Hamiltonian constraint becomes

˜̃H ¼ −κϵijkΠ̃aiΠ̃bjRab
k þ 2κΠ̃a½iΠ̃jbjj�ΨaiΨbj

þ 1

2
Π̃aiðϕ̄γi∇aϕ −∇aϕγiϕÞ

þ n0
2
ϵijkΨa

iΠ̃ajÃk þ 3

32κ
½ϑ2ṼIṼI þ ðÃ0Þ2�

− 2h1=2κΛ − h1=4mϕ̄ϕ: ð103Þ

VIII. CONCLUSIONS

Our first conclusion is that the approach of Ref. [13] is
robust enough because it has allowed us to get the
Hamiltonian formulation involving only first-class con-
straints of minimally and nonminimally coupled fermion
fields to the Holst action leaving intact the local Lorentz
symmetry, all of this by means of first a suitable para-
metrization of the frame and the connection and later by
integrating out the auxiliary fields. We recall that local
Lorentz symmetry is what allows the coupling of fermion
fields to first-order general relativity at the Lagrangian level,
and so it is remarkable that the Hamiltonian analysis of the
theory can be carried out without spoiling this fundamental
symmetry of nature.We consider this fact one of the relevant
results of this paper. From it, we deduce that theHamiltonian
formulation of the coupling of fermion fields to the
n-dimensional Palatini action can also be carried out by
following the same approach reported inRef. [19] (work is in

progress [25]). Furthermore, regarding the manifestly
Lorentz-invariant Hamiltonian formulations reported in
Sec. III–V, we consider them relevant enough in their own
right because their respective symplectic structures are real
and the phase-space variables for the gravitational sector are
also real, although theHamiltonian formulations that employ
half-densitized fermion fields reported in Secs. IV and V
involve simpler expressions for the first-class constraints
than the corresponding one of Sec. III. We consider the three
of them at the same level classically. We also consider
remarkable the fact that it is possible to perform a symplecto-
morphism from the Hamiltonian formulation contained in
Sec. V, which does not involve the coupling parameters of
fermion fields in the symplectic structure, and that the
resulting Hamiltonian formulation contained in Sec. VII
involves simpler expressions for the first-class constraints
than that of Sec. V. This fact allows us to get immediately the
manifestly Lorentz-invariant Hamiltonian formulation of
fermion fields minimally coupled to the Palatini action when
a particular choice of the parameters is made. Additionally,
the Hamiltonian formulation of fermion fields nonminimally
coupled to the Palatini action that is invariant under parity
transformations is easily obtained when another particular
choice of the parameters is made. Hopefully, our findings
might motivate the research in quantumgravity. In particular,
the Hamiltonian formulations obtained once the time gauge
is imposed on might be relevant for researchers working in
loop quantum gravity [22–24].
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APPENDIX: MAPS AND ALGEBRAIC
RELATIONS

We follow the results of Ref. [13]. The map
ðN;Na; Π̃aIÞ ↦ ðeμIÞ given by (22a) and (22b) has the
inverse map ðeμIÞ ↦ ðN;Na; Π̃aIÞ,
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N ¼ −nIetI; ðA1aÞ

Na ¼ qabetIebI; ðA1bÞ

Π̃aI ¼ ffiffiffi
q

p
qabebI; ðA1cÞ

where qab is the inverse of the induced metric on Σ
(qab ¼ eaIebI) and q ¼ detðqabÞ. On the other hand, nI
is given in terms of eaI as

nI ¼
1

6
ffiffiffi
q

p ϵIJKLη̃
abceaJebKecL: ðA2Þ

From this expression, it is clear that nI is a normal vector to
the hypersurface Σ.
The map ðCaI; λ

˜ab
; λIJÞ ↦ ðωμ

I
JÞ given by (32) and (44)

has the inverse map ðωμ
I
JÞ ↦ ðCaI; λ

˜ ab
; λIJÞ composed

by (30) and

λ
˜ ab

¼ U
˜ ab

cIJω
ðγÞ

cIJ; ðA3Þ

λIJ ¼ −ωtIJ þ NaωaIJ − 2Π̃a½InJ�∇aN
˜

−
1

4κ
N
˜

�
G̃IJ − ðP−1ÞIJKLG̃KL − 2nKn½IG̃J�K

− h1=4
�
�ðP−1ÞIJKLnKAL þ ðP−1ÞIJKLnKðθVL þ ξALÞ

−
1

2
ϵIJKLnKAL

��
; ðA4Þ

where U
˜ ab

cIJ is defined back in Eq. (43). The geometrical

objects (projectors) involved in these maps Ma
b
IJK ¼

−Ma
b
JIK , Ña

IJ ¼ −Ña
JI , Wa

b
IJK ¼ −Wa

b
IKJ, and

U
˜ ab

cIJ ¼ U
˜ ba

cIJ ¼ −U
˜ ab

cJI satisfy the orthogonality

relations

Wa
cIKLMc

b
KLJ ¼ δbaδ

I
J; ðA5aÞ

U
˜ ab

cIJÑd
IJ ¼ δcðaδ

d
bÞ; ðA5bÞ

Wa
ðb
IJKÑ

cÞJK ¼ 0; ðA5cÞ

U
˜ ab

cIJMc
d
IJK ¼ 0; ðA5dÞ

and the completeness relation

Ma
c
IJMWc

bMKL þ Ñc
IJU

˜ ac
bKL ¼ δbaδ

K
½Iδ

L
J�: ðA6Þ
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