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Hamiltonian analysis of fermions coupled to the Holst action
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We report three manifestly Lorentz-invariant Hamiltonian formulations of minimally and nonminimally
coupled fermion fields to the Holst action. These formulations are achieved by making a suitable
parametrization of both the tetrad and the Lorentz connection, which allows us to integrate out some
auxiliary fields without spoiling the local Lorentz symmetry. They have the peculiarity that their
noncanonical symplectic structures as well as the phase-space variables for the gravitational sector are
real. Moreover, two of these Hamiltonian formulations involve half-densitized fermion fields. We also
impose the time gauge on these formulations, which leads to real connections for the gravitational
configuration variables. Finally, we perform a symplectomorphism in one of the manifestly Lorentz-
invariant Hamiltonian formulations and analyze the resulting formulation, which becomes the Hamiltonian
formulation of fermion fields minimally coupled to the Palatini action for particular values of the coupling

parameters.
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I. INTRODUCTION

In the first-order formalism, the gravitational variables are
an orthonormal frame of 1-forms e/ and a Lorentz con-
nection 1-form @';. Because of its covariant nature under
local Lorentz transformations, fermions couple naturally to
the gravitational field in this framework [1-3]. In particular,
in the self-dual approach to the coupling of fermion fields to
general relativity, the full local Lorentz symmetry is pre-
served, but at the Hamiltonian level the theory involves the
complex-valued Ashtekar connection as the configuration
variable for general relativity that is difficult to deal with at
the quantum level [4,5]. On the other hand, in the real case,
taking the Holst action [6] to describe the gravitational field
and adding to it the fermionic Lagrangian, the resulting first-
order theory is related to the Einstein-Dirac theory supple-
mented with both interaction and boundary terms that
depend on the nature of the coupling between fermions
and gravity once the connection is integrated out in the
action principle [7-10].

It is clear that to better understand the nature of the
gravity-fermion interaction, the local Lorentz symmetry
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must be preserved in the Hamiltonian analysis too.
However, some of the canonical approaches involving a
real connection variable for the gravitational field break
local Lorentz symmetry down to SU(2) from the very
beginning by imposing the time gauge [11,12]. Therefore,
it is indispensable to perform a manifestly Lorentz-
invariant Hamiltonian analysis of fermion fields coupled
to general relativity that at the same time keeps the
configuration variable of the gravitational field real. This
would allow us to appreciate in depth the nature of the
coupling between fermion and gravitational fields.
Fortunately, a Hamiltonian analysis preserving Lorentz
invariance for the Holst action was carried out recently
[13], and the approach of such a paper will be taken here as
the theoretical tool to study the coupling of fermion fields
to general relativity. Using this approach, we report in
Secs. I1I-V three manifestly Lorentz-invariant Hamiltonian
formulations of minimally and nonminimally coupled
fermions to the Holst action. In any of the three cases,
the symplectic structure is real and the phase-space
variables that correspond to the gravitational sector are
also real. In particular, the Hamiltonian formulations
contained in Secs. IV and V involve half-densitized fermion
fields. Furthermore, to compare our results with previous
works on the subject, we impose the time gauge on these
Hamiltonian formulations and break the local Lorentz
symmetry down to SO(3) [and thus to its double cover

© 2021 American Physical Society
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SU(2)] and we give the corresponding Hamiltonian for-
mulations in Sec. VI, which involve real connections.
Finally, we perform a symplectomorphism from the man-
ifestly Lorentz-invariant Hamiltonian formulation of Sec. V
and report the resulting Hamiltonian formulation in
Sec. VII. We also analyze how this latter formulation
simplifies when two particular values of the coupling
parameters are chosen. Remarkably, one of these mani-
festly Lorentz-invariant Hamiltonian formulations corre-
sponds to fermion fields minimally coupled to the Palatini
action (Einstein-Cartan-Dirac). The other corresponds to
fermion fields nonminimally coupled to the Palatini action,
but it is also invariant under parity transformations.

A. Conventions

In the first-order formalism, the fundamental variables
for general relativity are an orthonormal frame of 1-forms
e! and a connection 1-form @’ ; compatible with the metric
(1) = diag(=1, 1,1,1),  dnyy — &g, — o i = 0,
and therefore w;; = —w;; because Lorentz indices
1,J,K, ... (taking the values 0,1,2,3) are raised and lowered
with #;;. The totally antisymmetric Lorentz-invariant
tensor €7,k 1s such that €y;,3 = 1. The antisymmetric part
of tensors involving Lorentz indices is defined by
i) = (t;7 — t;7)/2. Furthermore, for any antisymmetric

object U;; = —U/;, we define its internal dual as +xU;; :=

)
(1/2)€IJKL UKL and also the ObjeCt U[J = P[JKLUKL with
PIJ — 5] 5] 1 1J 1
KL= Og L]+2_y€ KL> (1)

where y is the nonvanishing real Immirzi parameter. The
weight of a tensor is either indicated with tildes over or
below it, or mentioned explicitly. In particular, the space-
time tensor density 7,,,, (i#“**) is totally antisymmetric and

such that » =1 (7"'** = 1). In addition, we define the

~1123
three-dimensional Levi-Civita symbols as Nave = Mrape

(%€ = 7j"“>¢) and €;j; == €p;;;. We assume that the space-
time M has the topology R x X and that ¥ has no boundary.
We foliate M by constant time hypersurfaces %, diffeo-
morphic to X. The coordinate x“ labels the points of  and ¢
labels the points of R.

II. FIRST-ORDER ACTION PRINCIPLE

We begin our analysis by considering for gravity the
Holst action [6] with a cosmological constant A, given by

Sule,w] = "/ [PV (e A eb) AFryp=20pl,  (2)
M

where F!; :=dw'; + o'y A @F; is the curvature of the
connection @', p == (1/4)e kel N el A eK A el is the

volume form, and x = (162G)~! with G being Newton’s
gravitational constant.

On the other hand, we consider the coupling of a
Grassmann-valued fermion field y to the gravitational field
through the real fermionic action

i 1. L
Srle. o,y ] = L{E[WVIEDW — Dyy'Efy] A xe;

—)(ml/‘/l//p}, (3)

where m is the mass of v, = iyy? (i is the imaginary
unit), * denotes the Hodge dual [and so xe; =
(1/3Ver ke’ A e A et], y' denotes Dirac’s matrices
[and so they satisfy y'y’ +y/y! =241 and (y))' =
y°7'y°], and the covariant derivatives of y and i are
defined by

1
Dy :=dy + 3 wpey, (4a)

Dy = diy - %wuy'm”, (4b)
with 6!/ := (1/4)[y, y'] being the Lorentz generators in the
spin representation. Note that in (3) E = (y +160)1 —i&y’
denotes the coupling matrix with > =iy%'y?y® and
y, 0, and & being real adimensional parameters. As
a consequence, E' = (y —i0)1 +ify> since y° is a
Hermitian matrix. Also, note that y° anticommutes with
v' (°y! = —y'y>). Before going on, let us comment on the
parameters y, 0, and £. At this stage, we note that it is
possible to make a redefinition of the fermion field y
1~ "2y and @ — y~ /iy in the action (3) that transforms E
into E := (1 +i0y~")1 —i&y 'y, which means that theory
is really described by two parameters 6/y and &/y. This
field redefinition is fixed by setting y = 1, which we do
now. Thus, E := (1 +i6)1 —i&y° from now on.

Therefore, the nonminimal coupling of a fermion field to
general relativity in the first-order formalism is given by the
real action

5[670)7 v, l/_/} = SH[E’G)} + SF[E,CO, v, l/_/] (5)

This action generalizes some of the cases already reported
in the literature. For example, we recover the minimal
coupling of fermion fields studied in Ref. [7] when
60 = 0 = £, whereas the nonminimal coupling considered
in Ref. [8] or [9] is obtained when € = 0 (and & # 0) and
£ =0 (and 6 # 0), respectively. We do not consider the
action of Ref. [10] because we have included a mass term in
our analysis, and this requires an action principle that gives
Dirac’s equation when gravity is turned off [14] (see also
Sec. IT A of this paper).
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A. Equations of motion

Computing the variation of the action (5) with respect to

e, o'y, w, and , we get the corresponding equations of

motion which are as follows:
2kP*KL el A Frp — (2kA + mijpy ) *e;

1 _ _
+5 7' EDy = Dyy E'y) A (e A ej) =0, (6a)

1
kP g D x (eK A eb) — ZGHKLA[K*eL]

1
-5 (EA + v xe!l =0,
Pl 1o -
Dyy' A xe; —I—El//]/ EDxe; + myp = 0, (6¢)

1
Y Dy A xe; + Ey’ETy/D*e, —myp=0. (6d)

Note that P*]JKL = PIJMN%GKLMN = PMNIJ%GKLMN =:
*Pg . Here D stands for the covariant derivative with
respect to the connection w’; and we have defined the
vector and axial real currents, respectively, by

V= igry'y, (7)

Al = iy yhy. (8)

We now express the equations of motion in an equivalent

form by solving (6b) for @’; and then by substituting the

result in the remaining equations of motion. To do this, note
that (6b) can be cast in the form

Del =TI, 9)

where 7' is the torsion of @/,

T! :’;—2 [9V,+ <§+1>A,
8k(y*+1) Y

r? [QVJJF (g_l)AJ} x (el Ael).  (10)

_l’_i
4k(r* +1) |y

el A e’

The expression for @, that solves (9) is

o'y =9, + 1, (11)
where Q; is the spin connection defined by De’ :=
d€I+QIJ/\€J:O and di’]IJ—QKli’]KJ—QKJl’[IK:O
(and SO Q[J - _Qj[), while CIJ (CIJ = _CJI) is the
contorsion 1-form defined by 77 =: C/; A ¢’ and given by

1
Cly= = (P g [(OVIK +EaIK) et (AR )],

4k (12)

with

2
- 4 !
(s = (Sl =5 ) (13

Note that the relation between Py, and (P~')V, is
given by

Py (PN ) = 5f1<5£]-

(14)

Next, we substitute (11) into the equations of
motion (6a), (6¢), and (6d). The reader must bear in mind
that F/; =R, +DC!, + Cly A CK;, where RI;:=
dQ!; + Q' A QK is the curvature of Q/; and D is the
covariant derivative with respect to Qf;, and that the
Bianchi identity for @’; reads DT! = F!; A ¢’ while for
Q! it reads 0 = R!; A ¢’. Then, the equations of motion
(6a), (6¢), and (6¢) become, respectively,

2kle! A *Rpy — Axep + xPKLe! A (DCky

11 _
+ Cxn A CYL)] 43 [w’ EDy — Dyy E'y

1 .
+ ECKLU_/O/JGKLE +o* Y E )’/’] A x(ep A ey)
— mypyxe; =0, (15a)

1 1
- (@y/—ECJKoJKl//)yI A xe; +Ey7y’ECJI A ey

—myp =0, (15b)
1 1 .
v (53‘// + ECJKGJKW> N *ep— EVIE"//CJI A ey
—myp =0, (15¢)
with
@Cl‘/ = dC1J+QIKACKJ_QKJAC1K, (163_)
1 1
Dy = dy + 50"y, (16b)
I _ 1 _
Dy = dy/—EQUl;m”. (16¢)

From (5), we conclude that if gravity were turned off, i.e., if
gravity were nondynamical, then the second and third terms
of (15c¢) that involve the contorsion C;; would not appear
and (15¢) would become Dirac’s equation for a fermion
field propagating on a curved (fixed) background (see also
[14]). This means that the action principle (5) is a suitable
generalization to the case when gravity is dynamical.
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Note also that (15a) implies

1 1
Ry — 59{’711 + Anyy =Ty, (17)

2K

. .. . 1
where R;; is the Ricci tensor, R is the scalar curvature, and

Ty = 2k[2P% ;1 (D Cf™M + C[IL‘MCK]NM) + 1 PK iy (D CLMN + CMpCLY)]

1 — 1 _
—3 Wy, EDw — Dy, Ely) — 1 Crxrw(ys0" E + o*Ly  ENy

2

with

DkCyly = 0xCr!y + Q' CL™,

- QM Cly = QM Cyt s (192)
1 JK
Dy =0y + EQIJKO- v, (19b)
&, _ - JK
Dy =0 — 5 Qo™ (19¢)

The previous definitions arise from expressing dy =
elaﬂll, QI_] = QKIJeK, CI_/ = CKIjeK, and @Cl‘/ =
@KCLljeK A\ EL.

B. Second-order action

The connection ', is an auxiliary field of the first-order
action (5) because, from its own equation of motion (6b),
we can solve for @’; in terms of the other fields as was
already shown in (11). Therefore, by integrating out the
connection @’ in (5) by using the solution (11), we get an
equivalent second-order action principle

Settle.w. ] = K/

M

1
(R-2A)p + / [5 (7r' Dy
M
— Dyy'y) A xep - mlifl//p] + Sincle. . w]

1
-2 A . (EAT + OV )xey, (20)

where the interaction action S, is given by

'The Ricci tensor and the scalar curvature are defined
by R, :=RgX, and R:= RN/, respectively, with R/, =
(I/Z)S{KLIJEK AN E‘L.

1 _ — 1 _ _
+ 3y EDy = Dy E'y + 5 Cpu@ (8 o™ E + "My E )y — 2miry], (18)

Sile. .y 37 / 2w0(e+L)v,ar
. e, s == _ —_
nt v,y 32’((7/2 1) M y 1

— PV, V! + (1 —&- 2§>A,A’} p. (21)

Thus, the second-order action (20), and hence the first-
order action (5), is in the generic case different from the
Einstein-Dirac theory [15] (see also [1]). In the case of the
minimal coupling of fermions to gravity, defined by
0 =0 = ¢, the boundary term in (20) vanishes and S;,
only carries the axial-axial interaction modulated by the
Immirzi parameter [7].

III. MANIFESTLY LORENTZ-INVARIANT
HAMILTONIAN FORMULATION

The canonical analysis of the action (5) will be obtained
by following the same approach applied to the Holst action
in Ref. [13]. We remind the reader that the idea behind such
a canonical analysis is very simple: in such a paper, we
performed the canonical analysis of the Holst action using a
suitable parametrization of the orthonormal frame e’ and
the connection ’;, which allows us to get straightfor-
wardly its Hamiltonian formulation (involving first-class
constraints only) after integrating out the auxiliary fields
involved. Such a procedure has the advantage of reducing
additionally the presymplectic structure to a canonical one
from the very beginning. Once the time gauge is imposed
on such a formulation, Barbero’s formulation [16] for
general relativity arises immediately. In this section, we
will show that the approach of Ref. [13] can also be applied
to the action (5) with the corresponding handling of the
fermionic contribution.

Adapted to the spacetime foliation, the orthonormal
frame e/ and the connection @', can be written as e/ =
e/ldt + e, dx* and o' ; = w,! ;dt + w,! ;dx?, respectively.
We parametrize the 16 components of the tetrad e,/ in
terms of the lapse function N, the shift N¢, and 1 that is a
tensor density of weight 1 as [13]
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e,/ = Nn' + NOn'/*h,, 11", (22a)
el = h'/4h, 1%, (22b)
with n; given by
1 SRR
— aJY1bKY]cL
ny:= 6\/E€1JKLl]abCH I1°*IT N (23)

where £, is the inverse of A = et yand h = det(fzab)

is a tensor density of weight 4. Note that the following
properties hold: n;n' = —1 and n,1¢ =0. The map
(N,N“T1) > (e,!) given by (22a) and (22b) is invertible
and the inverse map can be found in the Appendix.
Using the 3 + 1 decomposition of ¢/ and ', together
with (22a) and (22b), the action (5) acquires the form

. 1
S = A . dtd®x [—ZKH“InJE)l(c](/))aU + Eh'/“n,lify’Elj/
1 . . - - z
- §h1/4n1y’/}/’E‘y/ + 00" =NV, -NS|, (24)

where dtd?x = dt A dx' A dx® A dx3, the dot over the
corresponding field denotes d,, N == h~'/*N, and

GIJ = —2K.'P1JKL [851 (f[aKnL) -+ zwaKMﬁu[MnL]]

1 .
—|—Zh1/4nK1/7(yKa”E—|—a”yKE')y/, (25a)
o bl T (r) (r) ~bl T
V= 211" 0y 1y + Oy (@ 41,117 0]
1 _ _
+ 50y EQuy — 0apy'E'w)
+ @,,G", (25b)
fS = b7 1 1/4¥yal (-
S = klI“TI" F 15 + Eh N @y ED oy
—Dayy E'w) = h'>(2kA + mipy), (25¢)
with
1 I
Dal// = aal// + Ewalla v, (26)
_ _ 1 _
Daw = 8al// - Ea)alﬂlja ’ (27)
Fo'ly = 0.0," ) = 0y, ) + 0 ko,
- wbIKa’aKJ- (28)

Following Refs. [17,13], we write the gravitational part
of the presymplectic structure of (24) as

—2Kﬁalnjaz(g))au = 2Kﬁalaz(Wab1/K(£bJK)’ (29)

from which we observe that I1 is the momentum
canonically conjugate to the configuration variable C,,
which is defined by [13,17]

(r)
Cour = WabIJKa)bJK’ (30)
where
WabIJK = —52711[1"1(] - n1@acﬁc[1ﬁb1<]- (31)

Once the reduction of the gravitational part of the pre-
symplectic structure has been achieved, it remains to

. . . .
parametrize @,;; in terms of the configuration variable
C,; and six additional fields 1,, (=4,,). This is done by

solving (30), which gives [13]

()

a1y =M 1k CpE + NP 1jd . (32)
where
M, = =60 + h, JIP 1T
a 1JK a Mk T AT g
1 -
+ 4Pkt + 2_y€IJLMIZacHCKHbLnM’ (33)
N“IJ = €IJKLfIaKnL- (34)

See the Appendix for the inverse map of (32) and additional
algebraic properties of the objects involved in these maps.

The following step is to substitute (32) into the action
(24), obtaining

. 1
S = / dtd®x | 2kX14 C oy 4+ = h'/*n, (! By
RxX 2
- II}YIETW) + wtllgu - Naf}a - NS ’ (35)

with

Gl! — 2K<ﬁa[1caj] 4 2PIJKLfIa[KnM]FaLM)

1
+ Wi (R E + oy KE Ny, (362)
V, = 2x(20170,,Cpy; — C 10,117
1 ) _
+ 50y EQuy = 0upry'E'w)
+ (P (MPKEM Cpy + NPKEQ )GY . (36D)
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L o (r) 1 2
S = kI19TIY Ry + 211U TV [Calcw +2C, I pgn® + y_quLFaIKFhJL + <Fa1K + ; * Fa1K>

1 Lo N 1 ) .
X FhJLnKnL:| + §h1/4nal(‘/’7’1vallf - Varwy) + §h1/4(Cu1 + T g™ )n 11 g (yh 6" E + UU}’LET)V/

3

32k 7’

(r) K]/z
- (/}ab - Uabf”FfIJ) L/z

+1 -

2 1
—h1/2q,,{—A’AJ + 7+ ; [—29<§+)A’V’ -0*vViv/ 4+ <1 - - Zé)A’AJ} }
v v

) 1 L
Gabcd(/lwl _ UCdeKL FeKL) _ E h1/4 % (P—1>KLMNHaPHthN

_ . 1 - - B - N ~
X W(?’PUKLE + UKLVPEI )l//] - chn{gu - (P 1)IJKLgKL —2nn*G g — /4 [(P 1)1JKL”K(9VL

1

+ EAL) + #(P71) g R AL — EGIJKLHKAL:| } + 201/ .Gy — V2 (2kA + mipy).

In the previous expressions, we have introduced the
covariant derivative V, defined by

vaﬁbl = aaﬁhl -+ Fbcaﬁd _ l—*ccaﬁbl + l—*aljﬁbJ
=0, (37)

and I'%,, =T1%,, and I'y;; = —I',;;. See Ref. [13] for the
explicit solutions of I'“;,. and I',;;;. The curvature of I ;; is
given by Ry, =0,y =0,/ +T kT, % =T, /x5,
and we have also introduced the following expressions:

1
val// = aall/ + zraljo-ljl//’ (38)
Y ., o1 7~
val// = aal// - Erallwa ’ (39)

VG = 0,8~ TG + TG 1 T (G, (40)

qu = 55 + I’lll’lj, (41)
Gabed . o Fed _ jelafnd (42)
1 ~
Uabcu — (1 +7> « (P-1)11kL5c(aQb)€HeknL, (43)

where G is a tensor density of weight 4. Note that the
reduction map (@, 1) > (C,;, 11¢) given by (30)
leaves the null directions of the presymplectic structure
(24) out of the symplectic structure, which are clearly
along 4.

We now integrate by parts the term containing the

covariant derivative of G in (36¢) and factor out all the

terms involving G" in (35), which requires to redefine
the Lagrange multiplier w,;; as

(36c¢)

|
Wiy = = Ay + NP i (MPKEMC g

- 1 - -
+ NPKL) ) — @N{gu - (P kG
- 2”K”[1QJ]K — hl/4 [*(P_I)I]KLHKAL
+ (P71 g™ (OVE + EAT)

1

— ESIJKLHKAL] } — Zﬁ“[lnj]valy. (44)

Note that the map (C,7,4,,.41;) = (»,;) given by (32)

and (44) gives the parametrization of )’ ; as a function of

12 configuration variables C,, 6 fields 4 ,, and 6 Lagrange

multipliers 1;;. Therefore, the action can be equivalently
written as

. 1
S = / dtd3x [21<H”’Ca, +5 hY4n, (@ry! Evr
RxX

~ Y ENw) = 2,6 —2N“D, N Z|, (45)

where G, f)a, and 2:,7 are given, respectively, by

QIJ _ 2K(ﬁa[lCul] + 2PIJKL1:[a[KnM]FaLM)

1
. 7 W40 (YKo E + oM yKE )y, (46a)
f)a = K(2ﬁbla[gcb]1 - Calabﬁbl)
1 B _
+ Wy EQw = 04py'Ely),  (46D)

124030-6



HAMILTONIAN ANALYSIS OF FERMIONS COUPLED TO THE ... PHYS. REV. D 103, 124030 (2021)

I~ ~ o~ ~ ~ (r) 1 2
Z = k1T R 4y + 2614 TPV [Calcbj +2Cq T pygn® + PqKLFaIKFbJL + <Fa1K + " * FalK)

1 Lo E— 1 ) .
x Ty nk HL} + Ehl/ T (@ Vaw = Vawry) + Ehl/ WCur + T g )n 11 15 (y 6™ E + 6" y“EN )y

32k

(r) Kyz
— (- U, ) {

7+ ;

x y(yPoXLE + GKLyPET)y/} — W22k + myy).

To cast the action into the desired Hamiltonian form, we
must deal with the variables 1 ,, which appear in the action
(45) in a quadratic fashion. Although we could apply the
cumbersome and lengthy Dirac’s method [18] and define
the momentum canonically conjugate to 4 ,, this way of

proceeding would lead us to the introduction of second-
class constraints, which would still have to be explicitly
solved or handled with the Dirac bracket. Once we solve
such second-class constraints, we would arrive to what is
obtained by simply integrating out the auxiliary field 4 ,.

This is why it makes no sense to follow Dirac’s approach
to handle . Therefore, following the approach of

Refs. [13,19], we integrate out 4, in (45). To do so, we

3 2 1
- —hl/zq,,{—A’AJ + % [—26 (.»: + —> AV — VIV + (1 -£ - 2§)A1A1] }
v Y v

] ) L
GuhLd(lCd _ UCdeKL FeKL) _ 5/,ll/4 % (P—I)KLMNHaPHanN

1
(46¢)
|
Therefore, since N # 0, we get
() hi/4 1

Aoy = U™ ey + I (1 + P) * (P 1ykr

X (G gpeally M1 nlip (yMo! E

+ oYME )y, (48)

where (G™)pcq = (1/2)(havhea = 2he(ahp)a) is a tensor

~

density of weight —4. Note that G*“? and (G™'),p.4
satisfy G**“/(G™) 4o = 5?65?).
Substituting (48) into the action (45), we get

make the variation of (45) with respect to 4 ,, which leads

. . . . 1
to its equation of motion S — A . dtd3x |:2KHaICa1 + 3 W'/, (57! Evr

2](72 2be . (r)
SLING ey = U )

ed —yy'Ety) — ;G = 2N“D,, — Nﬂ , (49)
1 =0 _

- ENhIM * (P_l)IJKLH(uMHb)K”LW(VMUUE ST 1 . .

where the Gauss G, diffeomorphism D,, and Hamiltonian

+"yME )y = 0. (47)

|

 constraints are given, respectively, by

- N - 1
gIJ _ 2K(Ha[lca./] + 2PIJKLHa[KnM]FaLM) + Z]’ll/4nKl/_/(}/K0”E + GIJ}/KET)I/I, (503)
- N - 1 _ _
Dy = k(2010,Cpjy = CorOp 1) + 2 0oy (Fy EQuyr = Duipy' E'y), (50Db)
= . o (r) 1 2
H = k[T Ry + 2xT14UTTOV] [Calcbj +2C, T pyxn® + FqKLFaIKFbJL + <Fa1K + " * FaIK)FbJLnKnL]
L apar - VA [ W kN ma L1 17, L
5 WP Gy Yoy = Vayy ) +5 1 (Cop + Uagen® )1 ip (yF o E+ oMy ET)yr
3
+ ﬁhl/z{q, JATAT + nny (PVIVT 4 EATAT 4 206ATV)
7 1 ¢
g [—29 <.§ + ;)A,V’ - 6?2V, VI + (1 -£ - 2;)A,A1] } — W22k + myy). (50c)
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The action (49), together with (50a)—(50c), is a mani-
festly Lorentz-invariant Hamiltonian formulation of the
Holst action with a nonminimally coupled fermion field. It
has very appealing properties. It shows that the coupling of
the fermion field to general relativity at the Hamiltonian
level involves a real noncanonical symplectic structure.
Furthermore, the phase-space variables of the gravitational
sector (C,;, TT*!) are canonical and real, and they have the
same form than the ones for general relativity with a
cosmological constant [13,17]. Moreover, in the symplectic
structure, there are manifestly Lorentz-covariant nontrivial
interacting terms between the fermion field and the
gravitational momentum.

It is important to remark again that the current approach
is an alternative road to Dirac’s classical analysis. It has the
advantage that simplifies significantly the Hamiltonian
analysis. One of the key aspects of our approach is the

|

~ . . 1 1
g”:ZK(Ha[ICuJ]+2PHKLH[1[KI’ZM]FHLM)+§hl/4l’l[l(evj]+§AJ])+Zh1/4€UKLnKAL,

- . . 1
Da :K(anla[a Cb]l - Calabnb]) +Zh1/4nl [l/_/y[aal//_ 8(11/_/7/11//"'_ aa (6‘/1 +§AI)] ’

fact that the reduction of the presymplectic structure
encoded in (30) suggests to parametrize the spatial part
of the connection w,’; in the form given by (32), and once
(32) is substituted into the action principle, we realize that
A, 18 an auxiliary field that can be simply integrated out. In

this way, we arrive straightforwardly at the Hamiltonian
formulation with only first-class constraints, which gen-
erate the distinctive gauge symmetries of the theory (local
Lorentz transformations and spacetime diffeomorphisms).

We can go one step further and rewrite the constraints by
using the explicit form of the coupling matrix E and the
identity

}/1}’J}/K — 7]”71( _ ’,IIK},J + I’]‘IK}/I + ieIJKLySyL’ (51)

and we get

Lo L ) 1 2
H = kITIP Ry + 2611412V [Calcbj +2C o T pygn® + y_quLFaIKFbJL + <FalK + p * FalK) FhJLnKnL:|

1 o [ 1 ) . .
+ 5 R (ry Vo = Voyyyr) + 5 R4 (Cop + T appn™)ny 9 (OV7 4 EAT) + €, TTOK AL]

3
+ —hl/z{q, JATAT - nny (2VIVT 4 E2ATAT 4 206ATV7)

32k

RS y

This formulation explicitly displays the role played by the
coupling parameters € and &.

IV. HAMILTONIAN FORMULATION
INVOLVING HALF-DENSITIZED
FERMION FIELDS

The use of half-densitized fermion fields in the canonical
theory of gravity with fermion fields has been put forward
and championed by Thiemann in both the first-order
formalism [11] (see also [12]) and the second-order
formalism [20]. Motivated by this fact, in this section,
we give a manifestly Lorentz-invariant Hamiltonian for-
mulation for general relativity with fermion fields that uses
half-densitized fermion fields.

The idea is to express the Hamiltonian formulation given
by the action (49) and the constraints (52a)—(52c) in terms
of half-densitized fermion fields. Therefore, we define the
half-densitized fermion fields

2 1
’ [—2e<§+ )V,A’—92V1V1+<1—§2—2

(52a)

(52b)

y)A,AI] } — W22k + myy). (52¢)
|

¢ = h'y, (53a)

¢ = h'/%y, (53b)

and we write the noncanonical symplectic structure (49) in
terms of them as

L 1 _ ..
21 Cop 45 1oy (v Ejr =y E'w)

- 1 - _
=210, | C,y + ﬁ@ahnbﬂjfﬁl’J(E —E")¢

1 _ . K
+om(br'Eg — by E'p)

~ 20y (E - E")g). (54)

From this, we realize that it is natural to define a new real
configuration variable ®,; for the gravitational sector as
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1 ~ _
D, :=Cy + ﬁ@abnbm/@’]@ - ET)¢- (55)

Using this definition, the noncanonical symplectic structure
given in (49) acquires the form

U 1 L
21 Cop 5 1y (v By — iy E'y)
. 1 _ . -
=204 ®,, + §n1(¢7’E¢ —¢r'E'p)
3. - .
= g lmdy'(E = EN)). (56)

Note that the last line of (56) is real” and if we neglect it, the
new symplectic structure is still real (this type of terms have
|

~ . _ 1 - ~ 1 ~
gIJ _ 2K(Ha[lq>aj] + 2P1JKLHa[KnM]FaLM) + 5n[l(evl] + é:AJ]) + ZEHKLnKALa

. - - 1 - - 1 - ~
Da = K(anla[aq)b]l - cI)alabl_lbl) + Z n1<¢ylaa¢ - aa¢71¢> - Zraljnl(gvj =+ gAJ)a

(r)

also been dropped in previous canonical approaches to the
coupling of fermion fields to gravity [11,12] and even for
gravity alone [21]).

Therefore, using half-densitized fermion fields and the
new configuration variable @ ,; for the gravitational sector
[neglecting the last term of (56)], the action (49) becomes

O 1 - .
S = / dtd3x |:2K'Ha1q)a1 + _n1(¢71E¢
RxXZ 2

- (ZVIE%) - AyG” —2N“D, - Nﬁf . (57)

where the first-class constraints are given by

(58a)

(58b)

N Y (r) 1 2
H = k[T R, + 2«T1°UTTV] [(qu)bj + 20, T xn® + P g T kT + (FalK =+ ; * Fa1K>erLnKnL]

1~ . - — 1 L
+ Enal(ﬁbhvaqﬁ - va¢7’1¢) + EeuKL((I)aI =+ FaIMnM)nJHaKAL

]/2

¢

.~ 1\ ~ ~ "~ -~ _
+i qA'AT — — 20+~ |V,A -2V, VI + (1= =22 |AAT| b =201 2kA — W' *meppp,  (58¢)
32k y-+1 y y

and where we have also introduced the densitized fermion
currents

Vi=igy!p = n'/*V1, (59)
Als=idy’y'd = h' AL, (60)
and we have written the covariant derivatives as

vu¢ = aa¢ - 1l—‘hhuq5 + 11—‘a116[‘]¢’

5 5 (61a)

v_u¢ = aa(} - lFb})uq_5 - 1I_‘aIJ&aIJ'

: : (61b)

We close this section by remarking that the symplectic
structure of the manifestly Lorentz-invariant Hamiltonian
formulation (57) involves explicitly the parameters € and &

’In terms of the real fermion currents, the last line of (56) is
rewritten as

~ 2O,y (B~ E)g) = =3 0,0 0V + A1)

[

in the fermionic part of it through E and E'. We recall that
fermion fields couple nonminimally to gravity (5) when
any of these parameters is nonvanishing. Therefore, one of
the appealing features of this Hamiltonian formulation is
that parameters that mediate the fermion-gravity interaction
are present in the symplectic structure. Nevertheless, this is
not a trivial fact as it might appear because it is possible to
give an alternative Hamiltonian formulation that does not
involve these parameters in the symplectic structure. This is
done in the following section.

V. ALTERNATIVE HAMILTONIAN
FORMULATION INVOLVING
HALF-DENSITIZED FERMION FIELDS

We start again from our original manifestly Lorentz-
invariant Hamiltonian formulation given by the action (49)
and the constraints (52a)—(52c). Like the Hamiltonian
formulation reported in Sec. IV, here we also use half-
densitized fermion fields defined by (53a) and (53b).
Nevertheless, instead of the gravitational configuration
variable C,; present in (49), we use as gravitational
configuration variable ¢,; that is related to C,; by
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1 . - _
®ar=Car +1—6K13ab(nblnl =201 ;) gy’ (E— ET)h.

(62)
Note that ¢,; is also real. In terms of ¢,;, ¢, and ¢, the
symplectic structure of the action (49) acquires the form

21 Cop + 5 1oy (" By — o' E'y)
R L
=2cH4¢,, + 5”1(457](15 - ¢71¢)

1 -
~ 5Oy (E = EN)g). (63)
Some remarks are in order. First, due to the fact that the
original symplectic structure (49) is real and the last line of
(63) is also real, the terms in the second line of (63) define a
real symplectic structure if its last line is dropped. Second,
|

~ . - 1 ~
gIJ _ ZK(Ha[l(pal] + 2PIJKLHa[KnM]FaLM) + ZSIJKLHKAL’

~ - - 1 - _
Da = K(znbla[awb]l - (palabnbl) + Z ny (¢718a¢ - aa¢y1¢),

()

note that this resulting symplectic structure does not
involve the parameters @ and &. Therefore, it is remarkable
that these parameters that mediate the nonminimal coupling
of fermions fields to the gravitational field have been
removed from the symplectic structure through a redefini-
tion of the gravitational configuration variable and the use
of half-densitized fermion fields.

Thus, the action (49) becomes

~ 1 _. K
5= / drdx [2:<H“’¢u1 (@ - ')
RxX

—2,GY —2N“D, —N H} , (64)

and the first-class constraints are given by
(65a)
(65b)

= - o ) 1 2
H = k[T R,y + 2«10 TV [(ﬂaﬂﬂw + 204 T pyxn® + F g Tk pyr, + (FaIK =+ ; * Fa1K>FbJL”KnL]

1~ - — 1 Y
+ EH“’((MIV“(;& - va¢7’1¢) + §€UKL ((ﬂal + FaanM)nJHaKAL

3 ~ 7
- AlAY —
3 {q” 711

Note also that the coupling parameters 8 and & only

appear in the Hamiltonian constraint 7. As the reader can
notice, the manifestly Lorentz-invariant Hamiltonian for-
mulation (64) can also be obtained from the formulation
(57), contained in Sec. IV, and the fact that the variables ®,;
of such a formulation and ¢,; are related by

1 - -
P = Dy — S =uhn1HbJ¢yJ(E - ET)‘f’- (66)

VI. TIME GAUGE

The Hamiltonian formulations involving only first-class
constraints reported in Secs. [II-V are manifestly Lorentz
invariant, i.e., they are invariant under local SO(3, 1) gauge
transformations, and thus, the local Lorentz symmetry
has not been spoiled. Nevertheless, loop quantum gravity
[22-24] employs Barbero’s canonical variables, which are
invariant under local SO(3) gauge transformations.
Therefore, motivated by loop quantum gravity, we now

¢

[—29(5+;) VAl -2V, V! + <1 - & —2;>A,A1} } —2h'2kA — W' *mepppp.  (65¢)

|
study the form of the Hamiltonian formulations of
Secs. III-V when the Lorentz group is broken down to
its compact subgroup SO(3) [and thus to its double
cover SU(2)].

The time gauge is given by

10 = 0, (67a)

G =o. (67b)
Note that [T°* = 0 is equivalentton; = 0 (i = 1,2, 3)aslong
as det(I1%) # 0, which is assumed throughout this section.
From the explicit form of n; given in (23), we observe that the
only nonzero component of 7, is ny = sgn[det(TT%)].

We now fix some notation that will be used in what
follows. From (37) and (67a), we have I',o; = 0 and define

1 "
L= —§€ijkra’ )

(68)

where I/ ; 1s the spin connection on X. The curvature of
Fai is
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1 ) .
Rpi = _Eeiijab]k = 0,0y — OpTyi + €T /THF, (69)

and, from (37), we recall that

V10 = 0, [T 4 T 11 ~ ¢ [T ¢, T T =0, (70)

A. Time gauge in the Hamiltonian formulation

C.o = noll 9,11 + %hl/“nm(evi A, (T1)
K

at

Using this and (67a), the action (49) takes the form

L. 1
S = A . dtd®x [2;<Hmcm. + Eh‘/“no(lpyOEl;f

of Sec. I1I — iy Efy) — 20,6 — 2N“D, — 1}77?( ’ (72)
We impose the time gauge on the action (49) with the
constraints from (52a) to (52c). Solving G = 0 using
(52a), we get with
G = % (DT €l (g C,)TI] + SL A/ AY, (73a)
D, = k(2M179,,Cy); — Coi0,117) + %h'/ Ny 0ay — 057"y + 0, (V0 + EA°)], (73b)
S S L 1 L. -
H = —keyj 1T Ry + 241 TP (ca,- - @Fm) (cb,» - @Fb,») + S W Gy Vaw = Vawriv)
14 14
L. U 3 .
+ % h'/4 <Cai - @Fa,) [I9(OVO + EA®) + €, TTV AF] + ihlﬂ{AiA' + (VO + £A)?
Y K
72 1 ¢
— yz T 1 |:—29 (é + ;) V]A[ — 62V]VI —+ <1 - 52 — 27—/>A1AI:| } - h]/z(ZKA + ml/_/l//), (73C)
|
where we have defined ;= —(1/2)¢,; 4%, G = Fapi = 0,Ap — OpAyi + €11 A ALK (76)

—(1/2)€' 3, G*, and

1 o
Vo =0.w — 5 €ijkralgjkl//7 (748')

= 1 L
Vaw = aal/_/ + 7€ijkrall/_/6]k'

5 (74b)

[See (38) and (39)]. From G, we identify the SO(3)
connection,
Aai = nO}/Cah (75)

and we define its field strength as

[See (87) below to conclude alternatively that A,; is indeed
a connection.] Using the identity (41) of Ref. [13] and
integrating by parts, which requires to replace 4; with y;
given by u; = A; — (ny/y)11%;V,,N, we obtain the action

L. 1
= / didx [2@11%0,. = WV (y By
RxX 4 2
— i E'y) - 24,G — 2N“D, - N . (77)

where the first-class constraints are given by

G — % (0,11 + ¢ A ITT9H] + %humi’ (78a)
D, = % M0, Ap; — Ay 011" + %’“/4 [#7°0ay = 0aipy"w + 04 (OV° + EA°)], (78b)
C= %eukﬁ”"ﬁb’[&b" = (L+ )R + % R4 [t/‘/(ﬂ - %ys) 7iVay — W(ﬂ + %75> Vi‘//:|
+ zi},hl/ét(Aai — ) [T (0VO + EA°) + ¢l [T AK] + %hl/z{f\#\i + (VO + £A0)?
- yzﬁ 1 [-20 (e: + %) VAL 62V, V! 4 <1 -& - 25) AIA’} } = W2 (2kA + mipy). (78¢)
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This is the desired Hamiltonian formulation coming
from (49) when the time gauge is imposed on.

B. Time gauge in the Hamiltonian formulation
of Sec. IV

We impose the time gauge on the Hamiltonian formu-
lation given in the action (57) with the constraints from
(58a) to (58c). Solving G’=0 using (58a), we get

D, = noll 0,117 + Z—"Um(evl’ A (79)
K

Kng

G = =2 (0117 + €l (nor @, )I] + 402\’}

D, = k(21170 ®); — ®,,0,11") o

(¢7°<9 ¢ —0.97°P).

Using this and (67a), the action (57) takes the form

.. |
S = / dtd?x | 2kT14 D ,; + ~ ny(¢y E
RxX 2

= . e s n n 1. . - I
= —ke; 1R, + 21T (cbm - 7°ra,»> (d>b,- - 7"%) + 10y V ot = Vadby i)

n .n N\ ~ .~ 3 o~
+ ?"e,»jk (@al - fral)numk + e {A,»A’

K

+ (1 — & - 25)2&,2\’] } — 20 2kA — mh\ 4,

where we defined ; == —(1/2)e; A%, G = —(1/2)€ijkgjk,
and
1
Vu¢ = 8a¢ 2 ba¢ l]kF 6 ¢ (8221)
1 - 1 .
va¢ 8a¢ A hu¢ + Eeijkralfl)ajk' (82b)

[See (61a) and (61b).] From G, we identify immediately
the connection

— $1°E'p) —24,G' —2N“D, - NH|.  (80)
with

(81a)
(81b)

7’ I _ 277 Ol

_y2+1 { 29(4‘—1— )V,A e 74%
(81c¢)
abz =0 Abz a17"4111‘ + eijkAajAbk' (84)

After an integration by parts that requires to replace 4; with
u; given by p; = A; — (ny/y)14;V,N, we obtain the action

U T
S = / dtd3x[2@H“’Aa,-+—no(¢7°E¢
RxX Y 2

- $1°E'$) = 2T~ 2N“D, - N C|. (83)
Aai = nqu)ui’ (83)
and we define its field strength as where the first-class constraints are given by
G = KZO (Ol + AT 4+ 20 A (86a)
Dy = 0 (201710, Ay — A0y + 22 (100, — D
a v ( bli ai“b ) + Z (d)y a¢ - a¢7 ¢)’ (86b)
3 oI . L .
C = el T (F = (14 7)Rayf] 51 [qb(ﬂ —;ﬁ)nm—m(n +;y5)y,¢}
e i —rieiak 4 = Laai - (e s D val— v i+ (1-2 - 28) A,
2]/ ijk\va a 3% i 7/2 41 v I I ]/ I
—2h' 2k — mh' 4. (86¢)
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Some remarks follow: first, note that in the Hamiltonian
formulation given in the action (85), the coupling param-
eters @ and & appear explicitly in the scalar constraint,
specifically in the terms involving the fermion interaction
of order fourth [cf. (21)]. Second, the connection A,; is
related generically to the connection A, (75) of the
Hamiltonian formulation of Sec. III through the expression

Aai = Aai + 81Hai(9‘70 + SAO) (87)
K

Hence, in the minimal coupling of fermions (6 = & = 0),
we have A, = A,. In the nonminimal coupling of fer-
mions (either 8 # 0 or £ # 0, or both are different from
zero), we have A, # A,;.

C. Time gauge in the Hamiltonian
formulation of Sec. V

Following the same approach as in the previous sub-
sections, we impose the time gauge on the formulation
given by the action (64). From G° = 0, we have

Pa0 = ”aniabﬁbi‘ (88)
Then, identifying

-Aai =NoYPais (89)

we arrive at the action
o e 1 _ . B
s= [ [2@H¢“AM Lo @1 - i)
RxZ 4 2
—2u,G' = 2N“D, — Né] , (90)

where y; == —(1/2)e; 3 A% — (ny/y)1%,V,N, and the con-

straints G, D,, and C are the same as the expressions given
in (86a)—(86c), respectively. Notice that the configuration
variable A,; is the same as the one defined in (83) since, in
the time gauge, ®,; = ¢, [see (66)].

G = oxltely I 4 % e o nKAL,

@u = K(zﬁbla[a‘{,b]l - qjalabﬁb[) + %nl(éylaaqi) - aa$Y1¢),

},2

VII. SYMPLECTOMORPHISM

So far, we have reported three manifestly Lorentz-
invariant Hamiltonian formulations for the coupling of
fermion fields to the Holst action described by the action
principle (5), which are contained in Secs. III-V, respec-
tively. We have also reported the resulting Hamiltonian
formulations once the time gauge is imposed on any of
them, which are contained in Sec. VI.

Now, we report another manifestly Lorentz-invariant
Hamiltonian formulation that is obtained from the formu-
lation given by the action (64) of Sec. V by means
of a symplectomorphism that changes the gravitational
configuration variable as

(r) JK
Vo= @a — WabIJKFb ) (91)

whereas the remaining phase-space variables [T, ¢, and ¢
are left unchanged. That this transformation is indeed a
symplectomorphism can be seen from the fact that

N |
2«1, + 3 ni(dy'd — dy'p)
. 1 - . *
= 21, + Enl((/)y’qb —d7')

ta 1 A
+ k0, [—2”11_[ ! —;hl/zﬁabcilbd}écfnflnd[ - (92)

Thus, due to the fact that £ has no boundary, the new
Hamiltonian formulation obtained from (64) is given by the
action

. 1 - . -
S = / dtd’x [2KH”"PM + En,(qbyltﬁ )
RxX

— G —2NeD, — NH} , (93)

where the first-class constraints are given by

(94a)

(94b)

Lo U 1~ . - = 1 L~
H = I Ry + 241UV W, + Enal(@’lvafﬁ = Vdyi9) + §€IJKLTa1”JHaKAL

3 o 1 - ~ - E\ « -
+32{q,,A’Af— o [—29<§+) VAL - 0>V, V! + (1 —52—2)A,A1]}
K r’+ Y Y

— 20" 2k = B A mgp.

(94c)
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Even though the coupling parameters 6 and £ do not
appear in the symplectic structure (93), they appear in the
Hamiltonian constraint (94c). Nevertheless, these con-
straints get a much simpler form by making two particular
choices of the coupling parameters 0 and &. Let us analyze
them in what follows.

A. Fermion fields minimally coupled
to the Palatini action

When the coupling parameters are chosen as
E=——, 0=0, (95)

which amounts to choose E = 1 + (i/y)y’, the constraints
(94a)—(94c) become

~ - 1 ~
glj = ZKHQ[I‘“PaJ] + Z€IJKLI’£KAL, (963)

D, = k(21170 }; — P, 0,11°)

1 - .
+ (@ 0 = 0ufr'§). (96b)

H = KﬁalﬁbJRablj + 2Kﬁa[1ﬁ\b\-/]lya1lpbj
1~ _ N

+ EH“’(¢]/]V“¢) - vu¢y1¢)
1 L~ 3 -~

+ —GHKL\PaII’lJHaKAL +— nanAIAJ
2 32k

—2n'2kA — W A mgep. (96¢)

Notice that there is no Immirzi parameter in the first-
class constraints at all. Therefore, the absence of the
Immirzi parameter and the form of the constraints indicate
that this manifestly Lorentz-invariant Hamiltonian formu-
lation corresponds to fermion fields minimally coupled
to the Palatini action [25] (Einstein-Cartan-Dirac), i.e., this
Hamiltonian formulation comes from the action given
by (3) (with @ = 0 and & = 0) added to the Palatini action.

B. Fermion fields nonminimally coupled
to the Palatini action

When the coupling parameters are chosen as

9:19\/1+y_2,

which amounts to choose E= (1+i8+/1+y2)1+(i/y)r°,
the constraints (94a)—(94c) become

f=——, 9eR, (97)

~ - 1 -
GM = axI1lhy ) + ZeleLnKAL, (98a)

T)a = K(2ﬁb18[a‘1-‘b]1 — Talabﬁb[)

1 _ _
+ Z n1(¢y18a¢ - 8a¢y1¢)’ (98b)
H = k[T R, + 2T T,

1~ _ _
+ E Ha[ (¢y1va¢ - va¢y1¢)

1 I 3 L
+ E €IJKLlPa[nJHaKAL + ﬁ (&ZV[VI
+ nyn ATAT) = 20" 2k — W' A mgep. (98¢)

This manifestly Lorentz-invariant Hamiltonian formu-
lation involves & as its single real coupling parameter,
which is present in the vector-vector interaction of the
Hamiltonian constraint (98c). Note also that this formu-
lation is invariant under parity transformations since the
Hamiltonian constraint (98c) does not involve the vector-
axial interaction. The only difference of this formulation
with respect to the formulation given in Sec. VII A is
precisely the term involving J. Like that, this formulation
also does not involve the Immirzi parameter. Therefore, the
absence of the Immirzi parameter, the form of the con-
straints, and the presence of the parameter J indicate that
this manifestly Lorentz-invariant Hamiltonian formulation
corresponds to fermion fields nonminimally coupled to the
Palatini action. More precisely, the Hamiltonian formu-
lation given by the constraints (98a)—(98c) comes from the
action given by (3) (with 8 =9 and £ = 0) added to the
Palatini action [25].

C. Time gauge
For the sake of completeness, we also impose the time

gauge on the Hamiltonian formulation given by (93). From
G = 0, we obtain

¥, =0. (99)

Thus, under the time gauge, the action (93) becomes

. 1 _ . -
S = / dtd®x [ZKH“"Pai + Eno((ﬁ}/oqﬁ — ¢7°9)
RxX

— 22,5 —2N“D, — NH] : (100)

where we defined 1, :=—(1/2)e;u A% and G =

—(1/2)é jijk, and the first-class constraints are given by
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G = Ke"jk‘l‘ufﬁ”k + %Ai,

~ o .. ny - -
Da = K(2tha[alpb]i - ‘Paiabnbl) + IO (¢}/Oaa¢ - 8a¢y0¢),

(101a)

(101b)

= o i 1. . - — .
H = —key TP R ¢ + 241U, W), + Enm(@/ivafﬁ = Vurip) + %eijkwalHaJAk

3 [~ . y?
— JAA—
+32K’{ ' rP+1

— 212k — B A mepgp.

The reader can check that under the choice of the
parameters given in Sec. VII A, the Hamiltonian constraint
becomes

'ﬁ{ = —K€ijkﬁaiﬁbjRahk + 2Kﬁa[iﬁ‘h‘j]‘{’ailphj
1~ . - _
+ Enm((ﬁ%’vaqﬁ - va¢yi¢)
n e 3 -
+ Eoeijk‘Pa’H“JAk + (A0)2

32k

— 20" 2k — W A mg. (102)

Similarly, under the choice of the parameters given in
Sec. VII B, the Hamiltonian constraint becomes

’ﬁ( = —K€ijkﬁaiﬁbjRabk + 2Kﬁa[iﬁ|h‘jhpailpbj

1~ . - _
+ Enm(d)yivad) - va¢yi¢)
o
2
— 20" 2k = ' A mgp.

e 3 o~ ~
+ 5 € Vo VA + 2 [92V, V! - (A%)7]

(103)

VIII. CONCLUSIONS

Our first conclusion is that the approach of Ref. [13] is
robust enough because it has allowed us to get the
Hamiltonian formulation involving only first-class con-
straints of minimally and nonminimally coupled fermion
fields to the Holst action leaving intact the local Lorentz
symmetry, all of this by means of first a suitable para-
metrization of the frame and the connection and later by
integrating out the auxiliary fields. We recall that local
Lorentz symmetry is what allows the coupling of fermion
fields to first-order general relativity at the Lagrangian level,
and so it is remarkable that the Hamiltonian analysis of the
theory can be carried out without spoiling this fundamental
symmetry of nature. We consider this fact one of the relevant
results of this paper. From it, we deduce that the Hamiltonian
formulation of the coupling of fermion fields to the
n-dimensional Palatini action can also be carried out by
following the same approach reported in Ref. [19] (work is in

[_29(5 +%) Al -6, 7+ (1 e 25)21,21’} }

(101c)

|
progress [25]). Furthermore, regarding the manifestly
Lorentz-invariant Hamiltonian formulations reported in
Sec. II-V, we consider them relevant enough in their own
right because their respective symplectic structures are real
and the phase-space variables for the gravitational sector are
also real, although the Hamiltonian formulations that employ
half-densitized fermion fields reported in Secs. IV and V
involve simpler expressions for the first-class constraints
than the corresponding one of Sec. III. We consider the three
of them at the same level classically. We also consider
remarkable the fact that it is possible to perform a symplecto-
morphism from the Hamiltonian formulation contained in
Sec. V, which does not involve the coupling parameters of
fermion fields in the symplectic structure, and that the
resulting Hamiltonian formulation contained in Sec. VII
involves simpler expressions for the first-class constraints
than that of Sec. V. This fact allows us to get immediately the
manifestly Lorentz-invariant Hamiltonian formulation of
fermion fields minimally coupled to the Palatini action when
a particular choice of the parameters is made. Additionally,
the Hamiltonian formulation of fermion fields nonminimally
coupled to the Palatini action that is invariant under parity
transformations is easily obtained when another particular
choice of the parameters is made. Hopefully, our findings
might motivate the research in quantum gravity. In particular,
the Hamiltonian formulations obtained once the time gauge
is imposed on might be relevant for researchers working in
loop quantum gravity [22-24].
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APPENDIX: MAPS AND ALGEBRAIC
RELATIONS

We follow the results of Ref. [13]. The map
(N,N“.T1) > (e,’) given by (22a) and (22b) has the
inverse map (e,’) > (N, N¢ 1),
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N = —nje,/, (Ala)
N¢=q"e/ ey, (Alb)
0 = \/qq* ey, (Alc)

where ¢ is the inverse of the induced metric on X
(qup = e, ep;) and g = det(q,,). On the other hand, n,
is given in terms of e,/ as

1 ~abc , J, K, L

ny :@5111@’7 €q €p €. (A2)

From this expression, it is clear that n; is a normal vector to
the hypersurface .
The map (Cyr. 4. 417) = (@,';) given by (32) and (44)

has the inverse map (w,’;) = (Cus. 4y, Ary) composed

by (30) and

(r)

{lub = Uabcuwcu’ (A3)

Ay = =5 + Nwyyy — 2004 n, V,N

1 = ~ ~
- Z(N{gu - (P_l)IJKLgKL - ann[IgJ]K

—h'/4 |:*(P_1)1JKLnKAL + (P71 g n® (OVE + £AL)

1
- 2€IJKLnKAL] }» (A4)

where U,/ is defined back in Eq. (43). The geometrical

objects (projectors) involved in these maps M’ ;x =

b Ja N b b
Mk, NYy=-Ny, W,k =-W,x;, and
u,"”=u,"=-U,“" satisfy the orthogonality
relations

W KM Py = 5,5, (A5a)
U, VN, = 5@5%, (ASb)
W, NVE =0, (A5c)
UMk =0, (A5d)
and the completeness relation
Mac”MWCbMKL + NC]JUachL — 526{;55] (A6)
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