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We present a new study of remnant black hole properties from 13 binary black hole systems,
numerically evolved using the Spectral Einstein Code. The mass, spin, and recoil velocity of each remnant
were determined quasilocally from apparent horizon data and asymptotically from Bondi data
ðh;ψ4;ψ3;ψ2;ψ1Þ computed at future null infinity using SpECTRE’s Cauchy characteristic evolution.
We compare these independent measurements of the remnant properties in the bulk and on the boundary of
the spacetime, giving insight into how well asymptotic data are able to reproduce local properties of the
remnant black hole in numerical relativity. We also discuss the theoretical framework for connecting
horizon quantities to asymptotic quantities and how it relates to our results. This study recommends a
simple improvement to the recoil velocities reported in the Simulating eXtreme Spacetimes waveform
catalog, provides an improvement to future surrogate remnant models, and offers new analysis techniques
for evaluating the physical accuracy of numerical simulations.
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I. INTRODUCTION

One particularly important object of study for gravita-
tional-wave astronomy is the remnant black hole that results
from a compact binary coalescence. We are now regularly
observing gravitational-wave events, with 50 detections on
record so far [1–4]. Identifying the properties of the remnants
from observational data can have important astrophysical
implications [5–11], and remnant properties have already
been used in tests of general relativity (GR) [12–18]. It is
therefore critical for numerical simulations to compute these
properties with sufficient accuracy. The increased sensitivity
of third-generation gravitational-wave detectors will require
more accurate waveforms from numerical relativity (NR)
[19]. This motivates analyses that not only test numerical
convergence but also provide an estimate of the error that
corresponds to the underlying physics.
The most common approach for providing remnant

properties in NR waveform catalogs uses only local
measurements on the remnant apparent horizon [20–23].

The issue with this approach is that the apparent horizon is
inherently gauge dependent, and the mass and spin are
properly defined only for a Kerr spacetime [24]. It has been
shown that numerical simulations do approach a Kerr
spacetime during ringdown [25–27], which has allowed
for computation of a reliable quasilocal mass and spin in
NR [24,28–34]. An accurate and robust computation of the
recoil velocity is more complicated [33,35], since a
horizon-based definition is entirely dependent on simula-
tion coordinates.
An alternative approach to quasilocal horizon-based

definitions is to use conservation laws at future null
infinity Iþ to compute the remnant properties asymp-
totically. The high degree of symmetry in an asymptoti-
cally flat region allows for a greater understanding of the
gauge freedoms and their effects on the remnant properties
[36,37]. This would provide a more reliable measure of
the recoil velocity and provide an independent test of the
horizon-based mass and spin measures. While some work
has been done to compute the recoil velocity using only
the strain waveform of a numerically evolved spacetime
[29,38–42], the lack of curvature information from the
Weyl scalars at the asymptotic boundary has prevented a
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more complete and robust analysis. Most recently, com-
puting the recoil velocity from an asymptotic strain
waveform has been applied in the construction of surro-
gate remnant models [38,39,43].
Recent developments have established reliable procedures

for computing the gravitational-wave strain h and the Weyl
scalars ðψ4;ψ3;ψ2;ψ1;ψ0Þ at Iþ from an NR simulation
[44–46]. These asymptotic quantities, collectively known as
Bondi data or asymptotic data, are subject to an infinite-
dimensional group of gauge freedoms described by the
Bondi-Metzner-Sachs (BMS) group [47,48], which is an
enlargement of the Poincaré group. The elements of the
BMS group act by transforming the frame of measurement
of the asymptotic data, i.e., the Bondi frame. By a careful
selection of the Poincaré freedom of the Bondi frame, we can
use the BMS charges to determine the remnant properties
asymptotically [49–52].
We present the first asymptotic measurements of the mass,

spin, and recoil velocity of remnant black holes in NR using
the full set of asymptotic data. We are able to determine the
mass and recoil velocity of the remnant from the Bondi
energy-momentum vector. The total angular momentum
charge contains a spin contribution and an orbital angular
momentum contribution. By isolating the spin contribution
we can compute the spin vector of the remnant. These
asymptotic remnant properties are compared to the horizon-
based remnant properties. For this study, we use the same
procedure for computing the horizon-based remnant proper-
ties as is used for the Simulating eXtreme Spacetimes (SXS)
waveform catalog [22,30,53].
Comparing the remnant properties measured in the bulk

of the spacetime from the remnant apparent horizon and on
the boundary of the spacetime provides a test of how well
the asymptotic data are able to reproduce local properties of
the remnant black hole. We perform this comparison on a
set of 13 binary black hole (BBH) systems numerically
evolved using the Spectral Einstein Code (SpEC) [54]. The
initial parameters of these systems have been selected to
cover a range of mass ratios and initial spin configurations.
The asymptotic data are computed using SpECTRE’s [44]
next-generation Cauchy characteristic extraction (CCE)
code [45,55–57].
We find that the measurement of the recoil velocity and

the spin from the asymptotic data demonstrates a nontrivial
sensitivity to Poincaré transformations. This sensitivity
becomes problematic because of the drift of the center
of mass (CoM) during the numerical evolution [22,58–61],
which results in the horizon-based recoil velocity, the
asymptotic recoil velocity, and the asymptotic spin being
measured in an undesirable Poincaré frame. We demon-
strate the effectiveness of an established procedure to
correct for the CoM drift [58].
Further, through this study we show a good agreement

between the horizon-based and asymptotic measurements,
especially for the mass and spin. We argue that our

asymptotic recoil velocity provides a much more reliable
measurement than both the horizon-based one and the
one computed for surrogate remnant models [39].
Unfortunately, the SXS simulation catalog [53] does not
yet contain the full set of asymptotic data that is necessary
to properly compute the asymptotic recoil velocity. Until
the full set of asymptotic data is available, we suggest a
simple and temporary improvement to the horizon-based
recoil velocity currently being reported in the catalog.
In this paper, we identify a four-vector with lowercase

Latin indices Ya, a three-vector with an arrow Y⃗, and a unit
three-vector with a circumflex Ŷ. The Euclidean norm of a
previously identified three-vector Y⃗ will be written as Y.

II. COMPARISON OF REMNANT PROPERTIES

The three remnant black hole properties of interest for this
study are the mass, the recoil velocity, and the dimensionless
spin. These three properties are currently computed by SpEC
from the apparent horizon data and made available1 as part
of the SXS catalog of NR simulations [22,53]. Although the
mass and spin provided in the catalog are expected to be
accurate, the recoil velocity is subject to a far greater host of
issues since it is computed from a linear fit to the coordinate
trajectory of the horizon.
An independent measurement of the remnant properties

cannot be determined from the asymptotic gravitational
wave strain h alone. Rather, the asymptotic Weyl scalars
ðψ4;ψ3;ψ2;ψ1Þ are required for computing appropriate
BMS charges and for transforming the asymptotic data into
a suitable Poincaré frame. The asymptotic Weyl scalar ψ0 is
not required because ψ1 is the lowest index Weyl scalar
used to compute the BMS charges [49–52]. Although ψ4

and ψ3 are not used directly to define the remnant proper-
ties, a BMS transformation of a Weyl scalar requires all
higher index Weyl scalars [49,62,63]. We apply a boost and
translation to correct for the CoM drift of the numerical
BBH evolution, as discussed in Sec. III.
The asymptotic data ðh;ψ4;ψ3;ψ2;ψ1Þ on Iþ are

determined from SpEC NR simulations by computing
the metric and its derivatives on a worldtube of finite
radius, and then using the SpECTRE CCE code [44,45]
to solve the full Einstein equations in the region between
that worldtube andIþ. Consequently, as shown below, we
are now able to determine the remnant properties from the
asymptotic data itself, independent from any horizon-based
measurements.

A. Local remnant properties

The values for the dimensionless remnant spin χ⃗H and
remnant mass MH in the SXS catalog are currently
computed from the properties of the remnant apparent

1These remnant properties are available in the metada-
ta.txt and metadata.json files for each simulation.
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horizon H. Before proceeding to identify the properties of
the remnant black hole, we first define the properties
computed from an apparent horizon in general.
The black hole during ringdown is highly dynamical and

not axially symmetric. Late into ringdown it settles down
sufficiently to allow meaningful horizon-based quantities to
be defined [25–27]. However, during the ringdown we
can still find the three approximate rotational Killing
vector fields (KVFs), tangent to H, that are closest to
satisfying the Killing equation [22,64,65]. We then com-
pute the three components of the spin angular momentum,
ðSð1Þ; Sð2Þ; Sð3ÞÞ, generated by the three approximate
rotational KVFs. With this, the spin magnitude S of the
apparent horizon is defined by

S≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ð1Þ þ S2ð2Þ þ S2ð3Þ

q
: ð1Þ

Unlike the spin magnitude, the spin axis cannot be defined
unambiguously because of the coordinate freedom of
GR [30]. The measure of the spin axis in SpEC is

χ̂K ¼ 1

N

Z
H
r⃗ImðKÞdA; ð2Þ

where r⃗ is the Euclidean position vector in simulation
coordinates, N is a normalization factor, and K is the
Penrose-Rindler complex curvature of H [30,66].
Together, S and χ̂K can be used to define the dimensionless
spin once a mass quantity has been defined.
We may then define the Christodoulou mass, which is

derived from the apparent horizon area [67]. The
Christodoulou mass is only properly defined for stationary
spacetimes, but the Christodoulou-Ruffini equation is
used here to define at least a quasilocal measure of the
horizon mass,

M2
Ch ≡M2

irr þ
S2

4M2
irr

; ð3Þ

where the irreducible mass Mirr is computed by an area
integral over the horizon,

M2
irr ≡ 1

16π

Z
H
dA: ð4Þ

The Christodoulou mass is also used for defining the mass
of the BBH system M, which is the sum of MCh for each
black hole as measured at the earliest time in the simulation
after the junk radiation passes the outer boundary of the
domain.2

To identify the values of spin and mass of the remnant
black hole, we compute a time-average of the values late

into the ringdown when the black hole is approximately
Kerr. At such a late time in the ringdown, the values of mass
and spin are approximately constant in time to a fraction of
a percent, so time-averaging is not strictly necessary;
nevertheless, we use the time-average procedure to remove
the need to choose a particular time and to average over any
remaining numerical noise. The ringdown phase of the
simulation starts when the earliest common apparent
horizon is detected (at simulation time t ¼ tRD) and ends
when most of the radiation leaves the domain. In practice,
the final time of the simulation is

tf ¼ tRD þ rmax þ 100M; ð5Þ

where rmax is the radius of the outer boundary of the
computational domain. The values of S, χ̂K, and MCh are
computed on a densely sampled set of times in the last third
of the ringdown phase. The dimensionless remnant spin χ⃗H
and remnant mass MH are defined to be the time-averaged
values on this dense set of times,

MH ¼ 1

tf − t0

Z
tf

t0

MChðtÞdt; ð6aÞ

χ⃗H ¼ 1

tf − t0

Z
tf

t0

SðtÞ
MChðtÞ2

χ̂KðtÞdt; ð6bÞ

where t0 is the start of the last third of the ringdown phase.
The velocity of the apparent horizon is defined by the

coordinate trajectory of the horizon center. It is therefore
more susceptible to gauge effects than the mass and spin.
The apparent horizon coordinate center x⃗ðtÞ is defined to be
the surface-area weighted average of the location of the
spatial cross-section of the horizon Ht,

x⃗ðtÞ ¼ 1

A

Z
Ht

r⃗dA; ð7Þ

where A is the surface area ofHt. Over the last third of the
ringdown phase, we model x⃗ðtÞ with a least-squares fit to a
linear function of time. The time derivative of this fit is the
coordinate recoil velocity

V⃗H ¼ ∂thx⃗iðtÞ; ð8Þ

where hx⃗iðtÞ is the linear least-squares fit of x⃗ðtÞ.

B. Asymptotic remnant properties

In contrast to the quasilocal definitions of the horizon
properties, we can compute the properties of the remnant
black hole using information stored in the asymptotic data
on Iþ [49]. The asymptotic remnant mass M∞ and recoil
velocity V⃗∞ can be identified from the Bondi energy-
momentum vector Pa

B, which is computed from ψ2 and the
asymptotic Newman-Penrose shear σ. The asymptotic

2This time is known as the reference time in the SXS catalog
metadata [22].
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remnant spin χ⃗∞ can be identified from the Bondi angular
momentum vector J⃗B, computed from ψ1 and σ. Using our
conventions,3 we can identify the asymptotic gravitational-
wave strain with the complex conjugate of the Newman-
Penrose shear: h ¼ σ̄.
Consider a foliation ofIþ parametrized by a Bondi time

coordinate u such that each slice is an S2 surface of constant
u≡ t − r. This foliation is not unique; other foliations on
constant ũ ¼ uþ αðθ;ϕÞ for any smooth function αðθ;ϕÞ
are also possible. The transformations that take the constant
u foliation into the constant ũ foliation are called super-
translations and form an important subgroup of the BMS
group.4 On each of the S2 slices, we can define the Bondi
mass aspect

m ¼ −Reðψ2 þ σ _̄σÞ; ð9Þ

where the overdot signifies a derivative with respect to u. By
projectingm along the different components of the outgoing
null tetrad vector la¼ð1;sinθcosϕ;sinθsinϕ;cosθÞ, we can
compute the Bondi energy-momentum vector

Pa
B ¼ 1

4π

Z
lamdΩ: ð10Þ

From here, it is straightforward to compute the Bondi rest
mass

MB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Pa

BP
b
Bηab

q
; ð11Þ

where ηab is the ð−;þ;þ;þÞMinkowski metric. Analogous
to the energy-momentum vector in special relativity, a Bondi
velocity V⃗B can be defined by

V⃗B ¼ P⃗B

P0
B
: ð12Þ

The calculation of the asymptotic spin vector is more
involved. The total angular momentum charge J⃗B contains
a contribution from both the orbital and spin angular
momenta. The orbital contribution arises when the remnant
is boosted and translated with respect to the origin.
Additionally, if the recoil velocity is not aligned with
the spin axis then the components of the spin orthogonal to
the velocity will be Lorentz transformed. In a center-of-
momentum (CoMom) frame, however, the orbital contri-
bution will vanish and the total angular momentum vector
can be identified as the spin vector determined in the
expected frame.

We can use the transformation of angular momentum
under a boost to compute the angular momentum vector
in a CoMom frame. Along with V⃗B, this procedure
requires the total angular momentum charge J⃗B and the
boost charge K⃗B,

J⃗B ¼ 1

4π

Z
Imðð̄r̂ NÞdΩ; ð13aÞ

K⃗B ¼ 1

4π

Z
Reðð̄r̂ NÞdΩ; ð13bÞ

where r̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, ð is the Geroch-
Held-Penrose spin-weight raising operator [68], and N is
the “Lorentz aspect”,

N ¼ −
�
ψ1 þ σðσ̄ þ 1

2
ððσσ̄Þ þ uðm

�
: ð14Þ

With these charge vectors in hand, we can now compute
the asymptotic dimensionless spin vector

χ⃗B ¼ γ

M2
B
ðJ⃗B þ V⃗B × K⃗BÞ −

γ − 1

M2
B

ðV̂B · J⃗BÞV̂B; ð15Þ

where γ is the Lorentz factor [69]. In general, Eqs. (13) and
(15) depend on the Bondi frame, but as the asymptotic data
approaches stationarity at late times, Eq. (15) stops depend-
ing on the frame and becomes unambiguous. See the
Appendix for details.
It turns out that the values of MB, V⃗B, and χ⃗B computed

from CCE waveforms are relatively constant over the last
half of the ringdown phase in the simulation. The deviation
is almost two orders of magnitude smaller than the
differences between the asymptotic and horizon quantities
we are interested in comparing. Therefore, we take the
values of MB, V⃗B, and χ⃗B on the last available time in the
data, uf, to be the remnant properties,

M∞ ¼ MBðufÞ; ð16aÞ

V⃗∞ ¼ V⃗BðufÞ; ð16bÞ

χ⃗∞ ¼ χ⃗BðufÞ: ð16cÞ

An alternative approach is used to compute the asymp-
totic recoil velocity for surrogate remnant models. These
models only had access to the asymptotic strain,5 which can
be used to compute the momentum flux [38,39,43,73],

3This relation is only valid asymptotically. Yet even then it is
not valid in every convention. See Appendix C of [46] for details.

4The spacetime translations are the supertranslations for which
αðθ;ϕÞ is a linear combination of the l ≤ 1 spherical harmonics.

5The asymptotic strain used by these models was extracted
directly from NR simulations using Regge-Wheeler-Zerilli ex-
traction [22,70–72]. If one is instead computing the strain from
ψ4, then it would be more straightforward to use Eq. (17) with a
time-integral of ψ4 instead of _σ.
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_P⃗F ðuÞ ¼
1

16π

Z
⃗lj _σðuÞj2dΩ: ð17Þ

While it is straightforward to numerically integrate the
momentum flux, a constant of integration must be chosen.
For the surrogates, the antiderivative of the momentum flux
P⃗F ðuÞ is computed using fifth order splines. The integra-
tion constant is taken to be the mean value of P⃗F ðuÞ over
the interval ½u0; u1�, chosen to be the first 1000M of time
after the junk radiation has passed. This amounts to a frame
choice in which the average value of the momentum is zero
for the early part of the waveform. The remnant velocity is
then defined to be

V⃗F ¼ 1

MH

�
P⃗F ðufÞ −

1

u1 − u0

Z
u1

u0

P⃗F ðu0Þdu0
�
: ð18Þ

The issue here is that P⃗F ðuÞ can be significantly
oscillatory in the interval ½u0; u1�. The mean value, and
hence the value of V⃗F , is therefore undesirably sensitive to
the length of the interval. The sensitivity of V⃗F on the
interval length is dependent on how oscillatory P⃗F ðuÞ is.
Conversely, the frame of V⃗∞ is chosen so that the initial
BBH CoM is at rest. As discussed in Sec. III, the CoM drift
in the simulation is corrected by transforming V⃗∞ to a
frame in which CoM drift averaged over 90% of the inspiral
is set to zero [58]. The CoM drift is far less oscillatory and
is averaged over a longer interval than P⃗F ðuÞ. We therefore
expect that V⃗F will not be as robust as V⃗∞, but still more
accurate than V⃗H.

C. Connecting the horizon to infinity

It is not immediately obvious why the horizon-based
quantities ðMH; V⃗H; χ⃗HÞ defined on H should agree with
the asymptotic quantities ðM∞; V⃗∞; χ⃗∞Þ defined on Iþ.
However, since the spacetime asymptotes to Kerr at late
times,6 we can use Killing symmetries to show why the two
definitions of mass and total spin angular momentum agree.
The argument for the agreement between the two defini-
tions of remnant velocity and spin direction is less rigorous
but still provides a plausible explanation that lends a deeper
insight into the simulation coordinates.
For the two Killing symmetries of Kerr (time translation

and axisymmetry), we can use the Noether charge con-
struction, following [76–79]. This construction starts from
a variation of the Lagrangian 4-form L for GR (boldface
will denote differential forms). This first order variation is
of the form δL ¼ Eδϕþ dΘ, where ϕ denotes all field
variables, E ¼ 0 are the equations of motion as a 4-form,

and the (pre)symplectic potential 3-form Θ, which is built
from ϕ and δϕ, is the “boundary term” that arises from
integrating by parts.
Every diffeomorphism, with generator ξa, has an asso-

ciated Noether current 3-form

jξ ¼ Θðϕ;LξϕÞ − ξ · L: ð19Þ

Here Lξ is the Lie derivative along ξa, and ξ · L denotes
contracting ξ into the first slot of L. The conservation law
for this current is

djξ ¼ −ELξϕ; ð20Þ

which vanishes when the equations of motion are satisfied,
E ¼ 0. There is therefore a charge 2-form Qξ satisfying

jξ ¼ dQξ þ ξaCa; ð21Þ

where Ca are constraints that vanish on shell, i.e., when the
equations of motion are satisfied. Then from the general-
ized Stokes theorem, if Σ is a 3-surface with boundary ∂Σ,
we have the equality

Z
Σ
jξ ¼

Z
∂Σ

Qξ; ð22Þ

when evaluated on shell.
Note that while Qξ is ambiguously defined, we make the

choice to define it as in [80] with

Qξ ¼ −
1

8π
⋆dξ; ð23Þ

where ⋆ is the Hodge star operator.
So far this formalism applies to any diffeomorphism, but

something special happens for isometries in vacuum GR.
When ξ is a KVF, Lξϕ ¼ 0 for all fields. This makes the
first term in Eq. (19) vanish. Also, the Lagrangian is
proportional to the Ricci scalar, which vanishes in vacuum.
This makes the second term in Eq. (19) vanish, so jξ ¼ 0 on
shell. Additionally, while Eq. (22) in general depends on
the vector field off Iþ, or is “gauge dependent,” this
problem does not arise for Killing vectors [81].
Now choose Σt to be a spacelike hypersurface as

depicted in Fig. 1. The surface Σt intersects the horizon
H and asymptotes to null as it approaches r → ∞, so that it
intersects Iþ. If we now excise the region inside H,
the boundary ∂Σt has two spherical components:
Ht ¼ Σt ∩ H and ℬt ¼ Σt ∩ Iþ. Inserting this into the
result from Stokes’ theorem in Eq. (22), and using the fact
that jξ vanishes for an isometry, we see that

6Beyond the case of quasistationary spacetimes discussed here,
connecting a dynamical horizon to Iþ is discussed in [74,75].
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0 ¼ −
Z
Ht

Qξ þ
Z
ℬt

Qξ; ð24Þ

where the sign flip on the first term is because the sphere
Ht has normal pointing toward increasing r, which is
negatively oriented in the sense that it points into Σt. Since
Eq. (23) is closed for Killing vectors in vacuum, the
integrals are independent of the cross-sections picked for
Ht and ℬt.
The question remains as to how these integrals are

related to the horizon and BMS charges. While for
asymptotic symmetries at Iþ the relation of the integral
to the BMS charges is highly nontrivial, for Killing vectors
it is straightforward [81], where we get half the Bondi rest
mass for time translation and the Bondi angular momentum
for the rotations [80]. On the other hand the quasilocal
horizon charges are only defined in the presence of the
Killing fields inspired by such charge integrals.
From this result, we can show that the horizon and

asymptotic definitions of mass and total spin angular
momentum should agree. At sufficiently late times, as
the spacetime approaches that of a boosted Kerr black hole
with a decaying amount of radiation, the spacetime will
acquire the symmetries of Kerr, namely time translation and
axisymmetry. The appropriately normalized generator ∂ϕ

will give the Euclidean norm of the Bondi angular
momentum when Q∂ϕ is evaluated on ℬt, and the magni-
tude S given in Eq. (1) when evaluated onHt. Although in
practice we may use a different ∂ϕ to define angular
momentum at ℬt in Eq. (13a) (due to the supertranslation
freedom), all choices of ∂ϕ give the same angular momen-
tum, as discussed in the Appendix. Similarly, if we take the
∂t generator, we will find the equality between the Bondi
mass and the Christodoulou mass.

A different argument is necessary to explain the agree-
ment of the remnant velocity and the direction of the spin
vector. For example, one could imagine coordinates that
have an r-dependent rotation between the horizon and
infinity. Apparently, our gauge choice makes the coordinate
system sufficiently rigid that there is no such relative
rotation to offset the horizon and asymptotic spin vectors.
We can speculate that this is due to two properties of
damped harmonic (DH) gauge [82–84]. First, in a sta-
tionary region ofIþ, like at late times, there is a canonical
Poincaré subgroup of the BMS group. As we approach
r → ∞, the DH coordinates approach harmonic Cartesian
coordinates, which are compatible with the preferred
Poincaré subgroup. Second, in the strong-field, the DH
gauge source functions are dominated by their dependence
on metric components, rather than explicitly on coordinate
functions. This suggests that there are no preferred direc-
tions introduced by the DH gauge choice, though it may be
affected by physically preferred directions; for example,
frame dragging can affect coordinates. Together, these two
properties may explain how the DH gauge rigidly connects
coordinates in the strong field region to the preferred
coordinates of asymptotic infinity, and thus may explain
why horizon and asymptotic definitions of spin direction
and remnant velocity agree.

III. RESULTS

For this study, 13 binary black hole mergers were
numerically evolved using SpEC [54]. The initial param-
eters of these BBH systems are listed in Table I, and each
system was evolved with three different levels of reso-
lution to ensure the convergence of the results. The results
presented in this paper are from the highest resolution
simulations. For the purpose of estimating the numerical
error, we have included comparisons of the highest
resolution with the second-highest resolution simula-
tions. The second-highest resolution results will be
marked by a superscript “LowRes”. To obtain the asymp-
totic data, the metric and its derivatives were first
computed on a worldtube of radius 8.5ƛ0, where ƛ0 is
the initial reduced gravitational wavelength as deter-
mined by the orbital frequency of the binary from the
initial data. Then Einstein’s equations were solved
between this worldtube and Iþ using the SpECTRE
CCE code [44,45], and the asymptotic data were com-
puted using the CCE solution at Iþ. All calculations
involving asymptotic quantities were performed with the
scri python module [62,85–87].
There is a known center-of-mass (CoM) drift during the

Cauchy evolution in SpEC [22,58–61]. This drift results in
a boost and a translation of the numerical coordinate system
(including coordinates onIþ) relative to the CoM, and this
boost and translation will affect the asymptotically-
measured remnant spin and recoil velocity (but not the
remnant mass, which is defined as the Lorentz-invariant

FIG. 1. A diagram of a BBH spacetime, showing the inner
boundary formed by the horizon H and the outer boundary
formed by future null infinity Iþ. Integrating Eq. (22) over the
spacelike hypersurface Σt justifies the equality of the horizon
quantities and asymptotic quantities.
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rest mass). To ensure that the remnant spin and recoil
velocity are being measured in the CoM frame, the
procedure outlined in Ref. [58] has been applied to all
the asymptotic data used in this study, before any asymp-
totic remnant properties are computed. This procedure
attempts to transform the asymptotic data to the CoM
frame and reduce these gauge effects.
Regarding the apparent horizon properties, even though

the CoM drift does not affect MH and χ⃗H, it does have
an effect on V⃗H because V⃗H is purely coordinate defined. To
correct for the effects ofCoMdrift on V⃗H, we apply the boost
used in the CoM correction for the asymptotic data to
V⃗H [see Eq. (25) below]. At the time of writing, such a
CoM correction has not previously been applied to recoil
velocities in the SXS waveform catalog,7 so the current
recoil velocity in the catalog is actually V⃗H;raw (the subscript
“raw” will be used to signify recoil velocity measurements
without a CoM correction).
In all of the following plots, the ordering of the

simulations on the horizontal axis is sorted by the value
of V∞ from smallest to largest.

A. Mass comparison

The relative difference between the remnant black hole
mass computed from the horizon data MH and from the
asymptotic data M∞ for each of the 13 BBH simulations is
plotted in Fig. 2. Overall, we find that there is good
agreement on the value of the remnant mass. For nearly
equal-mass systems with low spin, we find a relative
difference of about Oð10−7Þ between MH and M∞. For

more complicated systems, we find the relative difference
ranging between Oð10−6Þ and Oð10−5Þ. Because the value
of the asymptotic remnant mass is defined to be the Bondi
rest mass, we can expect this quantity to be invariant to the
Poincaré transformation of a CoM correction. That being

TABLE I. Initial parameters of the BBH systems studied in this paper. The mass ratio is q ¼ MA=MB, and the
initial dimensionless spins of the two black holes are χ⃗A and χ⃗B. These systems all begin orbiting in the x − y plane.
For further details, see [88]. The waveforms from these systems are made publicly available at [53].

Name q χ⃗A∶ðx̂; ŷ; ẑÞ χ⃗B∶ðx̂; ŷ; ẑÞ
q1_nospin 1.0 (0, 0, 0) (0, 0, 0)
q1_aligned_chi0_2 1.0 (0, 0, 0.2) (0, 0, 0.2)
q1_aligned_chi0_4 1.0 (0, 0, 0.4) (0, 0, 0.4)
q1_aligned_chi0_6 1.0 (0, 0, 0.6) (0, 0, 0.6)
q1_antialigned_chi0_2 1.0 (0, 0, 0.2) (0, 0, −0.2)
q1_antialigned_chi0_4 1.0 (0, 0, 0.4) (0, 0, −0.4)
q1_antialigned_chi0_6 1.0 (0, 0, 0.6) (0, 0, −0.6)
q1_precessing 1.0 (0.487, 0.125, −0.327) (−0.190; 0.051, −0.227)
q1_superkick 1.0 (0.6, 0, 0) (−0.6; 0, 0)
q4_nospin 4.0 (0, 0, 0) (0, 0, 0)
q4_aligned_chi0_4 4.0 (0, 0, 0.4) (0, 0, 0.4)
q4_antialigned_chi0_4 4.0 (0, 0, 0.4) (0, 0, −0.4)
q4_precessing 4.0 (0.487, 0.125, −0.327) (−0.190; 0.051, −0.227)

FIG. 2. The relative difference between the remnant mass
computed by horizon-based quantities and by asymptotic quan-
tities for several different numerically evolved BBH systems.
The data represented by yellow dots provide a measure of the
numerical error by comparing the asymptotic remnant mass
between resolutions. This plot shows whether the dominant
source of error comes from numerical resolution or the methods
used to compute the mass. See Table I for the initial parameters of
each system.

7In the SXS waveform catalog’s metadata.txt files, the
value for the new entry coord-remnant-velocity will be
CoM-corrected but the value for raw-coord-remnant-
velocity (called remnant-velocity at the time of writ-
ing) is not.
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the case, it makes a negligible difference whether the
asymptotic data were CoM-corrected or not.
The numerical error is taken to be the difference of the

asymptotic mass between simulations with different
numerical resolutions. Because of the rapid convergence
of spectral methods, this error measure usually overesti-
mates the actual error in the highest-resolution simulation,
but it can nonetheless provide general insight in comparing
horizon-based and asymptotic mass with respect to the
resolution error. The numerical error in the mass is not
consistent across the BBH systems. The difference between
horizon-based and asymptotic mass is substantially larger
than the resolution error for fewer than half of the systems.
As discussed in Sec. II C, we can expect a good agree-

ment between the horizon-based and asymptotic mass. At
the same time, however, there is no clear indication which
is the more “physically accurate” value of the mass. Thus,
Fig. 2 primarily identifies whether the dominant source of
error is from numerical resolution of the simulation or from
the computation of the mass itself.

B. Recoil velocity comparison

The recoil velocity V⃗H computed from a linear fit of the
apparent horizon trajectory is entirely dependent on the
definition of the simulation coordinates. As such, it is not
expected that a velocity measured with respect to some local
coordinates will be comparable to that same velocity mea-
sured with respect to an entirely different coordinate system
set up onIþ. In fact, it has been shown that the naive choice
of retarded time u ¼ t − r� in simulation coordinates (where
r� is the radial tortoise coordinate) actually fails to para-
metrize null rays for BBH spacetimes [46,89].
The CoM drift during the simulation only complicates

the issue. The black hole remnant of a system with no
expected recoil velocity may still have an apparent horizon
with some coordinate velocity because of this drift. In this
case, wewould obtain a misleading value of V⃗H for systems
with recoil velocities expected to be minimal or zero.
Applying the boost from the CoM correction to V⃗H is
expected to mitigate this particular issue. To do this, we
evaluate the horizon trajectory recoil velocity V⃗H;raw with
respect to the CoM drift velocity V⃗CoM using relativistic
velocity addition,

V⃗H ¼ 1

1 − ðV⃗CoM · V⃗H;rawÞ

�
V⃗H;raw

γ
− V⃗CoM

þ γ

1þ γ
ðV⃗CoM · V⃗H;rawÞV⃗CoM

�
: ð25Þ

The CoM drift also affects the measurement of the recoil
velocity from asymptotic data, if the asymptotic data is not
given the appropriate boost and translation to correct for
the CoM drift. However, applying a CoM correction to

asymptotic data is straightforward and is routinely per-
formed for all waveforms in the SXS waveform catalog
[22]. We can therefore expect the most reliable recoil
velocity to be determined by the CoM-corrected asymptotic
data, V⃗∞. In the following analysis, we also include the
recoil velocities computed without the CoM correction
(V⃗∞;raw and V⃗H;raw) and the recoil velocity V⃗F as computed
for surrogate remnant models in Eq. (18).
In the upper plot of Fig. 3, we compare the magnitudes of

the different measurements of the recoil velocity against the
CoM-corrected asymptotic measurement V∞. The lower
plot of Fig. 3 shows the misalignment of the directions of
the different recoil velocity measurements compared to V⃗∞.
The angle between one of the recoil velocity measurements
with V⃗∞ is given by ΔΘ.
The first four systems, (q1_aligned_chi0_2,

q1_aligned_chi0_6, q1_aligned_chi0_4, q1_nospin), are
expected to have zero recoil velocity because of the
symmetry of the systems. Instead, we see that VH;raw

and V∞;raw for these systems are still as high as 10−8 (with
c ¼ 1). When using the CoM-corrected data, we find the
much smaller recoil velocity of roughly 10−10. When the
recoil velocity is not substantially larger than the velocity of
the CoM drift, we can expect a large relative error in both
VH;raw and V∞;raw.
For the other nine systems, the recoil velocity should

be much larger than the velocity of the CoM drift, so
CoM correction is expected to have little effect. Indeed we
find a relative difference of Oð10−2Þ in the recoil velocity
determined from horizon trajectory, regardless of CoM
correction. For V∞;raw, we see even smaller relative
differences down to Oð10−4Þ for systems with high recoil
velocity. The large relative difference for VH highlights the
overall lack of reliability in using horizon trajectory for
determining recoil velocity, even when CoM-corrected.
For the systems with nonzero expected recoil velocity,

we find that the magnitude of the recoil velocity VF agrees
with V∞ better than VH does by up to two orders of
magnitude in some cases. Only for the systems with no
expected recoil does VH outperform VF , which is most
likely due to the lack of precision in choosing the
integration constant for VF , cf. Eq. (18). When the
numerical error is taken into account, we can see that
there is a noticeable improvement that can be made by
using V∞ instead of VF for most systems. However,
surrogate remnant models are currently using numerical
resolutions even coarser than “LowRes”, so such an
improvement would be important only for future models.
The CoM correction also does not have a significant

impact on the direction of the recoil velocity. We can see
that V̂∞;raw is more aligned with V̂∞ than V̂H is, even
though the latter is CoM-corrected. On the other hand,
when we consider the misalignment of the recoil velocity
from the different measurements, the differences here are at

DANTE A. B. IOZZO et al. PHYS. REV. D 103, 124029 (2021)

124029-8



or below the error from numerical resolution. Only for the
q1_superkick system do we find that the CoM correction
makes an improvement above numerical resolution.

C. Spin comparison

To get the dimensionless spin of the black hole from
the Bondi angular momentum, we compute the angular

momentum in the center of momentum (CoMom) frame. If
the asymptotic data is not in a CoMom frame, then the
values that would be reported as spin would contain
contributions from the orbital part of the angular momen-
tum or be Lorentz transformed from the recoil velocity.
Even systems with no expected recoil velocity would still
be in a non-CoMom frame because of the CoM drift.
However, for these special cases, the CoM correction itself
would transform the asymptotic data to a CoMom frame.
For all other systems, we will be far from a CoMom frame
even with a CoM correction. In general, we need to apply
the procedure described in Sec. II B to compute the
dimensionless spin vector of the remnant χ⃗∞.
A comparison of the remnant spin computed from the

horizon, χ⃗H, and from the asymptotic data, χ⃗∞, is presented
in Fig. 4. All the asymptotic data have been CoM-corrected.
In the same figure, we also present a comparison of χH and
J∞=M2

∞ (i.e., the angular momentum computed only in the
CoM frame, not necessarily in a CoMom frame) to
demonstrate the importance of using a CoMom frame.
Any differences in the comparison between χ⃗H and χ⃗∞
and between χ⃗H and J⃗∞=M2

∞ would be due to J⃗∞ being
computed in an undesirable frame. We need to divide J∞ by
M2

∞ in to render it dimensionless for comparing to the spin
magnitude.
In general, there is remarkable agreement between the

asymptotic and horizon-based spin vectors, χ⃗∞ and χ⃗H. The
relative difference in the magnitude is typically Oð10−9Þ,
and the misalignment sinΔΘ is below Oð10−8Þ for non-
precessing systems, where ΔΘ is now the angle between
the spin vectors. The points representing χ̂∞ and Ĵ∞ in the
lower plot (but not the upper plot) are very similar to each
other in all cases. Therefore, transforming to the CoMom
frame does not seem to make a large impact on the direction
of the spin vector.
There is a noticeably larger misalignment between the

asymptotic and horizon-based spin vectors for precessing
systems. For these two systems, the final spin is still
predominantly in the þẑ direction. Since both χ⃗∞ and χ⃗H
should produce precise spin measurements, one possible
source of discrepancy could be that they do not correspond
to the same definition of the spin axis [30]. It is also likely,
however, that the difference is caused by the lack of
numerical resolution for these two runs compared to the
other systems, since the difference is on the same order as
the difference between the high and low resolution χ⃗H.
The four systems with no recoil velocity after a

CoM correction, (q1_aligned_chi0_2, q1_aligned_chi0_6,
q1_aligned_chi0_4, q1_nospin), show no improvement
from the CoMom correction. This is because the remnants
are already in a CoMom frame. The other systems with
remnants that are not in a CoMom frame show an improve-
ment of two to four orders of magnitude by using Eq. (15)
to compute the spin vector. The only exception to this is the
q1_superkick system. The symmetries of this system result

FIG. 3. A comparison of the CoM-corrected asymptotic recoil
velocity V⃗∞ with the CoM-corrected apparent horizon recoil
velocity V⃗H and the same recoil velocity measurements without
the CoM correction, V⃗∞;raw and V⃗H;raw. A comparison with the

recoil velocity V⃗F as computed for surrogate remnant models is
also shown. The upper plot shows the absolute difference in
magnitude. For reference, the value of V∞ has been plotted as
well. The lower plot shows the misalignment sinΔΘ, where ΔΘ
is the angle between the one of the recoil velocity vectors and V⃗∞.
For most systems, errors in the methods used to compute the
recoil velocity dominate over the numerical resolution.
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in a trajectory, velocity, and spin vector pointing almost
exactly along theþz axis. Therefore, even when we are not
in the CoMom frame the orbital angular momentum and the
component of the velocity orthogonal to the spin are both
negligible for this system.
The dominant source of error in determining the remnant

spin is still the numerical resolution. Even the largest
differences in spin measurements are not above the

numerical error. Consequently, the arguments presented
in Sec. II C appear to hold very well for the remnant spin.

IV. CONCLUSION

The availability of accurate and reliable measurements of
quantities atIþ from numerical simulations has opened up
a new arena of applications and analysis tools provided by
the BMS group. In this paper, we have explored using
asymptotic data to provide accurate measurements of the
mass, spin, and recoil velocity of a remnant black hole from
a set of numerically evolved binary black hole mergers.
These asymptotic remnant properties have been compared
against independent quasilocal measurements from the
remnant apparent horizon.
Overall, there is remarkable agreement between the mass

and spin measured from the remnant apparent horizon and
on the boundary of the spacetime. For nearly equal-mass
BBH systems with low total spin, the relative difference
between the two measurements of remnant mass is around
Oð10−7Þ, and for more extreme systems the relative differ-
ence does not rise above Oð10−5Þ.
The agreement on the spin is even better. By computing

the spin from the angular momentum evaluated in a
CoMom frame, the horizon-based and asymptotic spin
magnitudes agree to Oð10−9Þ, with only one of our 13
chosen example BBH configurations showing a relative
difference as high as Oð10−8Þ. The misalignment sinΔΘ
between the horizon-based and asymptotic spin vectors
is Oð10−6Þ for precessing systems and consistently
between Oð10−11Þ and Oð10−8Þ for nonprecessing sys-
tems. Although evaluating the angular momentum in a
CoMom frame does not have a large impact on the
direction of the spin vector, using a CoMom frame affords
a considerable improvement on the spin magnitude for
systems without a high degree of symmetry. For such
systems, evaluating the angular momentum in the
CoMom frame lowered the relative difference between
the horizon-based and asymptotic spin magnitude by up to
four orders of magnitude.
The recoil velocity showed worse agreement between the

horizon-based and asymptotic measurements. The BBH
system’s CoM is known to drift during the course of the
simulation, which erroneously contributes to naive mea-
surements of the recoil velocity. However, this effect is not
a dominant source of error when the recoil velocity is much
larger than the CoM drift velocity. For these cases, the
relative difference between the horizon-based and asymp-
totic recoil velocity magnitude is around Oð10−2Þ. For
systems with no expected recoil velocity, the computed
recoil velocities are two orders of magnitude smaller when
a CoM correction has been applied.
The SXS waveform catalog does not currently apply

a CoM correction to the coordinate recoil velocity.
This correction is straightforward and computationally

FIG. 4. A comparison of the dimensionless remnant spin
computed from the apparent horizon and asymptotic data. The
upper plot shows the relative difference of spin magnitudes χH
and χ∞. It also shows the relative difference between χH and the
magnitude of the dimensionless angular momentum J∞=M2

∞.
The lower plot shows the misalignment sinΔΘ between the χ̂H
and χ̂∞ and between χ̂H and Ĵ∞, where ΔΘ is the angle between
the vectors. These plots show that the error in the spin vector is
dominated by numerical resolution.
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inexpensive to perform, and it will provide a significant
improvement to the reported remnant velocity for highly
symmetric BBH systems. However, as the complete set of
asymptotic data becomes more widely available in the
catalog, the CoM-corrected asymptotic recoil velocity V⃗∞
should be reported instead. To this end, an improved CoM
correction is a high priority and would immediately yield a
more precise measure of the recoil velocity.
Such an improved correction would have an important

application for constructing surrogate remnant models,
which compute a recoil velocity from the asymptotic strain
alone. Although we have demonstrated that the procedure
currently used in surrogate remnant models provides a
recoil velocity that is generally closer to V⃗∞ than V⃗H is, the
precision is limited by a frame choice determined by time-
averaging an oscillating quantity over a short interval.
Using the asymptotic recoil velocity computed from
asymptotic data would be far more reliable and robust
for the construction of surrogates. A detailed comparison of
how the two measurements of recoil velocity impact the
results of surrogate remnant models is an avenue of
future work.
Although the asymptotic recoil velocity should be more

accurate than the horizon-based measurement, we can
expect a far better agreement between the horizon-based
and asymptotic measurements of remnant mass and spin, as
we discussed in Sec. II C. As such, it cannot be determined
from our analysis whether an asymptotic or a horizon-based
measurement of mass and spin is more accurate. Rather, the
comparison made here provides us with a consistency test
for these two remnant properties, and this test is another
valuable analysis tool for providing estimates of the error
with regards to the underlying physics.
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APPENDIX: A NOTE ON THE ANGULAR
MOMENTUM AND BOOST CHARGES

When defining the charges J⃗B and K⃗B in Eqs. (13) for
computing the spin vector in Eq. (15), it is important to
note that these charges are are not uniquely defined. The
charges defined above are adapted to the Bondi frame in
question [90], as described below. Consequently, if we

supertranslate the frame, the charge transforms accordingly.
However as we will see below, these ambiguities vanish for
charges of interest in stationary spacetimes and hence they
do not affect the remnant quantities.
First we discuss rotations. The angular momentum is

adapted to the Bondi frame in the sense that the generators
of the corresponding rotations L⃗a are taken to be tangential
to the u ¼ const surfaces atIþ, hence the rotation does not
transform the time coordinate.8 However, consider a super-
translated foliation of constant u0 ¼ u − αðθ;ϕÞ. Then the
rotations L⃗0a adapted to the new Bondi frame are given by

L⃗0a ¼ L⃗a þ ðL⃗b∇bαÞna; ðA1Þ

with na ¼ ð∂uÞa.
Now, using the fact that the charge at Iþ corresponding

to a generator ξ is linear in ξ, we have that

J⃗0B ¼ J⃗B þQ½ðL⃗b∇bαÞna�; ðA2Þ

where we used Q½L⃗a� ¼ J⃗B and the charges are evaluated
implicitly at some time u. Further we use

Q½fna� ¼ 1

4π

Z
fmdΩ ðA3Þ

to evaluate the transformation of the adapted angular
momentum [50]. Note that this leads to the familiar
transformation of angular momentum under translations
if α contains only l ¼ 1 modes. The transformation is now
generalized to supertranslations. While Eq. (A2) leads to an
ambiguity in the notion of angular momentum, as the
spacetime approaches stationarity there is a simplification.
If we are in the rest frame of the stationary spacetime we
have that

mðθ;ϕÞ ¼ MB; ðA4Þ

that ismðθ;ϕÞ is a constant function. Because ðL⃗b∇bαÞ has
only l ≥ 1 spherical harmonic components, at late times
we find

Q½ðL⃗b∇bαÞna� ¼
1

4π

Z
ðL⃗b∇bαÞMBdΩ ¼ 0: ðA5Þ

Hence, at late times we have

J⃗∞
0 ¼ J⃗∞: ðA6Þ

Therefore the ambiguity in the definition of angular
momentum is irrelevant for the analysis of remnants.

8L⃗a is a list of three 4-vectors generating rotations in the x, y
and z directions.
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Crucially, this is true only in the CoMom frame, where
Eq. (A4) holds. This explains why the argument in Sec. II C
holds even though we did not use the azimuthal Killing
vector to define the angular momentum: The angular
momentum of the Killing vector is equal to that of any
rotation around the same axis at Iþ.
Unlike rotations, boosts cannot be tangential to the

u ¼ const foliation. They can only be tangential at one
time slice. Conventionally the generators adapted to a
Bondi frame are defined to be the ones tangential to the

u ¼ 0 time slice. Thus the boost generators ξ⃗a transform
under time translation, as is to be expected from special
relativity. Also unlike rotations, the boost charge trans-
forms in stationary spacetimes in the CoMom frame. This
transformation does not concern us because the charge in
Eq. (15), which is a linear combination of boost and
rotation charges in the simulation frame, is precisely the
charge corresponding to a rotation in the CoMom frame.
Thus Eq. (15) does not transform under supertranslations.
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