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Non-singular black hole geometries typically come with two spacetime horizons: an (outer) event horizon
and an (inner) Cauchy horizon. This nurtures the speculation that theymay be subject to amass-inflation effect
which renders the Cauchy horizon unstable.We analyze the dynamics associated with spherically symmetric,
regular black holes taking the full backreaction between the infalling matter and geometry into account.
On this basis, we identify the crucial features taming the growth of the mass function and diminishing the
curvature singularity at the Cauchy horizon. It is demonstrated explicitly that the regular black hole solutions
proposed by Hayward and obtained from Asymptotic Safety satisfy these properties.
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I. INTRODUCTION

The detection of gravitational waves emitted from the
merger of two black holes [1–3] and the first picture of an
event horizon published by the event horizon telescope [4]
have moved black holes into the focus of observational
science. This raises the intriguing question of whether the
black holes observed in nature are indeed the black holes
known from general relativity or black hole “mimickers”
resembling these objects. From the viewpoint of classical
general relativity the theoretical description of black holes
is very simple: a Schwarzschild black hole includes a
spacetime singularity, creating the curvature of spacetime,
which is hidden behind an event horizon. The latter realizes
the cosmic censorship hypothesis [5], stating that spacetime
singularities cannot be observed by exterior observers.
Moreover, the no-hair theorem [6–8] states that black holes
in general relativity are characterized completely by their
mass, charge, and angular momentum. Any perturbation
created, e.g., during the formation of a black hole in a
stellar collapse, dies off quickly, ensuring that the con-
figuration settles to the simple, stationary solution.
The occurrence of singularities is often taken as an

indicator that general relativity is incomplete and should be
generalized to a quantum theory expelling this feature. In
anticipation of such a theory, various ad hoc modifications
of the Schwarzschild solution have been proposed [9–14],
also see [15,16] for reviews. Commonly, these modifica-
tions respect the limiting curvature hypothesis [17–20]
and replace the black hole singularity by a regular piece
of de Sitter space. As a consequence, the (outer) event
horizon is supplemented by an (inner) Cauchy horizon.

The consistency of these models is challenged by the
observation that the Cauchy horizon is generally unstable to
external perturbations [21]. In particular, the self-consis-
tency arguments forwarded in [22] suggest that regular
black hole geometries are not viable models for describing
the black holes observed in nature since the effect of mass
inflation renders the Cauchy horizon exponentially unsta-
ble against perturbations. In this work, we perform the first
complete dynamical analysis of this instability. In con-
clusion, we show that there are specific regular black hole
solutions where the divergence of the mass function is
suppressed before the Cauchy horizon is reached at very
large advanced times. While this weakens the singularity at
the Cauchy horizon, the resulting geometries violate strong
cosmic censorship and may therefore not be globally
hyperbolic. In this situation, it becomes crucial to also
account for the energy loss due to Hawking radiation which
may radically change the interior geometry.

II. SETUP AND GENERAL FRAMEWORK

A generic spherically symmetric line element can always
be written as ds2 ¼ gabdxadxb þ r2dΩ2, a, b ¼ 0, 1,
where r ¼ rðxaÞ is the radius of the 2-spheres with xa

being constant. It is convenient to introduce a generalized
Schwarzschild mass function MðxaÞ by means of the
gradient of rðxaÞ,1

1In the sequel, we set Newton’s constant G ¼ 1, implying that
all dimensionful quantities are measured in Planck units.
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gab∂ar∂br ¼ fðxaÞ ¼ 1 −
2MðxaÞ

r
: ð1Þ

The taxonomy of different static black hole geometries is
encoded in the radial behavior of MðrÞ. For a
Schwarzschild black hole M ¼ m where m is the mass
of the object at large distances r ≫ m. In the physical
picture proposed by Sakharov [23], a phase transition to a
false vacuum occurs at Planckian distances from the center
so that a de Sitter core eventually develops [11,24] and
MðrÞ ∼ r3 for small r. An explicit model realizing such a
phase transition is the Hayward model [13] where

MðrÞ ¼ mr3

r3 þ 2ml2
: ð2Þ

Here l is a free parameter whose value should be fixed by
the underlying quantum gravity model. Other suggestions
for regular black hole geometries include the Bardeen black
holes [9,25], the asymptotically safe black holes [26,27],
Planck stars [28–30], and the loop black hole described in
[31], also see [17] for additional references and discussion.
The occurrence of a de Sitter core induces a nontrivial

topology change in the black hole geometry. In variance
with the Schwarzschild case, the horizon condition
fðrÞ ¼ 0 now has two solutions: beside the event horizon
(EH) located at rþ there is also an inner, Cauchy horizon
(CH) at a smaller radius r− < rþ. For the Hayward model
(2) these are given by the two positive roots of

2l2m − 2mr2 þ r3 ¼ 0: ð3Þ

As a consequence of the modified horizon structure, the
spacetime is no longer globally hyperbolic. We define the
surface gravity κ� at the horizons by

κ� ≡� 1

2

∂fðrÞ
∂r

����
r¼r�

; ð4Þ

where the sign ensures κ� > 0. The event horizon emits
Hawking radiation with temperature TEH ¼ κþ=ð2πÞ.
Owing to the resulting energy loss, the coordinate distance
between the event and Cauchy horizon decreases. A
complete evaporation is attained in an infinite time, as
measured by an stationary observer at asymptotic infinity.
The final, asymptotic configuration is a regular, extremal
black hole with vanishing surface gravity. The mass mcr of
the remnant follows form the condition that the position of

r� coincide. For the Hayward model, mcr ¼ 3
ffiffi
3

p
4
l.

A classical analysis reveals that the Cauchy horizon is
generally unstable to external perturbations [21]. For this
reason there have been doubts about the consistency of
regular black hole models [32]. The physical picture
underlying the analysis is as follows: the collapse of a
mass distribution to form a black hole will lead to the

emission of a stream of gravitational waves when the black
hole settles into its final “hairless” state. A part of this wave
tail will be reflected by the gravitational potential at r > rþ,
creating an ingoing flux of positive energy crossing the
event horizon. In the vicinity of the Cauchy horizon a part
of this flux will again be backscattered by the gravitational
potential in the black hole interior, creating an outgoing
positive energy flux. A consistent calculation which takes
into account the combined effect of the ingoing radiation
from the collapsing star and the backscattered gravitational
radiation near the CH shows that a genuine scalar singu-
larity develops at the Cauchy horizon [33]. This situation is
illustrated in Fig. 1.
Technically, it is convenient to formulate this analysis in

terms of the coordinates ðv; rÞ where time is parametrized
by the ingoing Eddington-Finkelstein coordinate v, defined
by the condition that radially ingoing light rays follow
curves with v ¼ const. One then introduces a time-
dependent perturbation in the mass function MðrÞ →
Mðr; vÞ describing a shell of outgoing lightlike dust on
the interior geometry of the black hole. The corresponding
energy flux is encoded in the Isaacson effective energy-
momentum tensor [34] and its decay follows Price’s law
[35,36]. The behavior of the curvature invariants near the
Cauchy horizon is rather insensitive to the details of the
local fields trapped inside the event horizon. The rate of
divergence of the Coulomb component of the Weyl

FIG. 1. The Ori model of the interior of a regular black hole.
The r ¼ 0 hypersurface is not singular in these models. Radiation
enters the black hole backscattered from the outer potential
barrier as ingoing null rays. Outgoing radiation is schematically
represented by a thin shell Σ which crosses the Cauchy horizon.
The “corner” H is a singular point of the conformal diagram. At
variance with the classical Ori model, no singularity develops in
the future sector of the shell.
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curvature2 [37], Ψ2 ≡ Cμνρσlμmνm̄ρnσ, can then be char-
acterized by the anomalous dimension of the instability

ν ¼ d ln jΨ2j
d ln v

: ð5Þ

In the limit v → ∞, Ψ2 ≃ c1v−peκ−v with c1 being a v-
independent constant, entailing that the anomalous dimen-
sion behaves as ν ≃ κ−v − p.3 Since the divergence inΨ2 is
triggered by the exponential increase ofMðr; vÞ, this effect
has been dubbed mass inflation. It is difficult to imagine an
efficient self-regulator mechanism at work before the
curvature has curbed the core at Planckian levels
[38,39]: at variance with Petrov type-N, type-D curvatures
cannot be confined in thin layers, and it is reasonable to
expect that the complete past evolution of the three-
dimensional hypercylinder r ¼ r− is singular.
This conclusion is less compelling, however, if the

backreaction of the Hawking radiation in the interior is
taken into account. In this case, the Cauchy horizon also
receives a blue shifted influx of negative energy density
originating from the event horizon. This flux could halt the
contraction of the generators of the Cauchy horizon well
before the curvature has reached Planckian levels, at least
for mini black holes [40]. Drawing a definite conclusion
therefore requires comparing the characteristic time scales
of the evaporation process and the growth time of the mass-
inflation instability.
Such an analysis has recently been presented in [22],

describing the evaporation process of the regular black hole
through a sequence of quasiadiabatic states for which

νE ≡ −
d ln κþ
d ln v

≪ ν ð6Þ

always. This led to the conclusion that the characteristic
timescale associatedwith the evaporationprocess is too small
to efficiently act as a self-regulator for the interior geometry.
The estimation of the exponent ν, controlling the time

scale on which the instability builds up, is however more
delicate than in the original Poisson-Israel model because
of the nonlinear functional form of the quasilocal mass
function Mðr; vÞ in these models. A simple self-consistent
estimation of the mass dynamics based on the Dray-
’t Hooft-Redmount (DTR) relations [41] might therefore
not be sufficient to consistently describe the contraction of
the generators spanning the Cauchy horizon and the energy
influx near the “corner” region H in Fig. 1. In fact, the
Cauchy horizon singularity of the classical Poisson-Israel
model is rather weak: the metric coefficient are still regular

and the integrated tidal forces are bounded. This neces-
sitates a consistent calculation of the backreaction of the
radiation on the Cauchy horizon of a regular black hole,
taking both the positive energy influx due to classical
perturbations and the backreaction of the regular geometry
into account. This work presents the results of this analysis,
describing the dynamics of a realistic gravitational collapse
based on the Ori model [42] of the classical Poisson-Israel
model [6,7].
In the Ori model the outgoing energy flux is modeled by

a thin pressureless null shell Σ which divides the spacetime
in two regions M�, inside (þ) and outside (−) the shell.
This shell acts as a catalyst to trigger the divergence of the
mass function. Assuming spherical symmetry, the metric in
each sector of spacetime can be written as

ds2 ¼ −f�ðr; v�Þdv2� þ 2drdv� þ r2dΩ2; ð7Þ

where f� ¼ 1–2M�ðr; v�Þ=r. The equality of the induced
metric on Σ forces r to be the same onM�. For this reason
it is convenient to choose r as a parameter (not necessarily
affine) along the null generators sμ� ¼ dxμ�=dr ¼ ð2=f�;
1; 0; 0Þ of Σ. Since the shell moves lightlike, we have

f−dv− ¼ 2dr: ð8Þ

Einstein’s equations on each sector of the spacetime can
then be expressed in terms of the mass function Mðr; vÞ,

∂M
∂r ¼ −4πr2Tv

v;
∂M
∂v ¼ 4πr2Tv

r; ð9Þ

together with Trr ¼ 0. Continuity of the flux across Σ
requires [43]

½Tμνsμsν� ¼ 0; ð10Þ
where the square brackets indicate the “jump” of a scalar
quantity across the shell. This condition is consistent with
the assumption of Σ being pressureless. In terms of the
lapse and mass function, Eq. (10) then reads

1

f2þ

∂Mþ
∂vþ

����
Σ
¼ 1

f2−

∂M−

∂v−
����
Σ
; ð11Þ

with the derivatives evaluated before substituting the
position of the shell. In general vþ and v− have to be
distinguished because vþ is not just the continuation of v−
to Mþ. The functional dependence of the two is fixed by
noting that the position of the null hypersurface Σ in the
two coordinate systems is

fþdvþ ¼ f−dv− alongΣ: ð12Þ

In the following we shall use (12) to express all physical
quantities in terms of v≡ v−. Equation (11) can then be
recast as

2Here Cμνρσ denotes the Weyl tensor and flμ; nμ; mμ; m̄μg is a
complex null-tetraed with lμnμ ¼ −1, mμm̄μ ¼ 1. Ψ2 is the only
nonzero scalar for a Petrov type-D spacetime.

3Here and in the following we use the ≃ symbol to denote the
asymptotic behavior of a quantity in the limit v → ∞.
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1

fþ

∂Mþ
∂v

����
Σ
¼ FðvÞ ð13Þ

where

FðvÞ≡ 1

f−

∂M−

∂v
����
Σ
: ð14Þ

Denoting the position of the shell by RðvÞ and derivatives
with respect to v by a dot, Eq. (8) provides a geodesic
equation encoding the motion of the shell as a function of v

_RðvÞ ¼ 1

2
f−j

Σ
: ð15Þ

This relation allows to eliminate f− from (14), yielding

FðvÞ≡ 1

2 _R

∂M−

∂v
����
Σ
: ð16Þ

III. MASS-INFLATION EFFECT IN REGULAR
BLACK HOLES

The framework developed in the previous section allows
to study the mass-inflation effect for a wide class of
modified black hole solutions. The present discussion will
focus on static, nonextremal black holes and neglects
effects related to the black hole evaporation process.4

We first exemplify the analysis for the case of the
Hayward geometry (2). The analysis of other regular black
holes follows the same lines and we summarize our results
in Table I.

A. The Hayward geometry

The Hayward geometry corresponds the mass function
Mðr; vÞ given in (2), entailing

f� ¼ 1 −
2m�ðv�Þr2

r3 þ 2m�ðv�Þl2
: ð17Þ

Substituting f− into (15) gives a geodesic equation deter-
mining the position of the shell

_RðvÞ ¼ 1

2
−

m−R2

R3 þ 2l2m−
; ð18Þ

where it is understood that R and m� are v-dependent
functions specifying the position of Σ and the mass density.
Equation (13) furthermore gives a differential equation for
the mass function mþ

R6 _mþ
ðR3 þ 2l2mþÞðR3 − 2mþðR2 − l2ÞÞ ¼ FðvÞ; ð19Þ

where the explicit form of FðvÞ reads

FðvÞ ¼ R6 _m−

ðR3 þ 2l2m−ÞðR3 − 2m−ðR2 − l2ÞÞ : ð20Þ

The system (18) and (19) is a coupled system of nonlinear
differential equations encoding the evolution of RðvÞ
and mþðvÞ.
We are now going to discuss the dynamics entailed by

the system in detail. The boundary condition at the event
horizon is determined by the Price’s tail behavior so that in
the past sector of the shell the mass function m−ðvÞ can be
written as

m−ðvÞ ¼ m0 −
β

ðv=v0Þp
: ð21Þ

Herem0 is the black hole mass and β > 0 is a quantity with
the dimension of a mass and v0 is the initial value of v
which is set to one in the sequel. Since the dynamics of the
shell is independent ofmþðvÞ, we can first study the motion
of the shell based on (18). Since the horizons r� are, by
definition, zeros of f, they constitute fixed points for RðvÞ.
Placing the shell between the event and the Cauchy
horizon, it will move inward and settle at r− for asymp-
totically large time. The position of the shell for asymp-
totically large values v can be determined analytically by
applying the Frobenius method. Substituting the asymp-
totic expansion

TABLE I. Asymptotic values of the mass function mþðvÞ for various regular black hole geometries. For the Reissner-Nordström and
Bardeen solutions,mþðvÞ grows exponentially while for the Hayward and RG-improved geometries it remains finite. The quantities l, ω
and a appearing in the lapse function are free parameters which should be determined from quantum gravity.

fðrÞ F∞ mþðvÞ mþ dependence Mass inflation

Reissner-Nordström 1 − 2m
r þ e2

r2
− r−κ−

2
≃c1eκ−vv−p Linear Yes

Hayward solution [13] 1 − 2mr2

r3þ2ml2
− r−κ−

2 ≃ − r3−
2l2

Quadratic No

RG improved black holes [26] 1 − 2mr2

r3þωð2rþ9mÞ − r−κ−
2 ≃ − r3−þ2r−ω

9ω
Quadratic No

Bardeen black hole [9,25] 1 − 2mr2

ðr2þa2Þ3=2 − r−κ−
2

≃c1eκ−vv−p Linear Yes

4The effect of Hawking radiation will be discussed else-
where [44].
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RðvÞ ¼ r− þ 1

vs
X∞
k¼0

ak
vk

; ð22Þ

with s > 0 and a0 being nonzero by construction, into
Eq. (18) and equating powers of v shows that a nontrivial
solution requires s ¼ p. The coefficients ak can be deter-
mined recursively, revealing that the asymptotics of RðvÞ
for large values v (and p > 2) has to follow

RðvÞ − r− ≃
r−βv−p

4m2
0κ−

�
1þ p

κ−v
þ � � �

�
: ð23Þ

Substituting Eq. (21) and the asymptotics (23) into
Eq. (20) yields the asymptotic behavior of FðvÞ:

FðvÞ ≃ −
r−κ−
2

�
1 −

pþ 1

κ−v
þ � � �

�
: ð24Þ

Thus the right-hand side of (18) tends to a finite, negative
limit F∞ < 0 as v → ∞. The asymptotic behavior of mþ
can then be deduced from the Frobenius method

mþðvÞ ≃ −
r3−
2l2

�
1þ 3βv−p

4m2
0κ−

þ � � �
�
: ð25Þ

Most remarkably, mþ approaches a constant, negative
value as v → ∞. This is the key difference to the standard
mass-inflation scenario [42], where mþðvÞ grows exponen-
tially. In this sense, the Hayward geometry does not
experience a mass-inflation instability. This feature can
readily be traced back to the denominator appearing at the
right-hand side of Eq. (19): for the Reissner-Nordström

solution considered in [42] the denominator is linear in mþ
indicating that the equation is solved by exponential
functions. In contrast to this, the Hayward geometry leads
to a quadratic dependence in mþ. Asymptotically, the
solution then approaches a root of this polynomial which
ensures that mþ remains bounded.
The asymptotic behavior (25) can be confirmed from

(19) directly by substituting the asymptotic values RðvÞ ∼
r− and FðvÞ ∼ − r−κ−

2
and solving the simplified equation

analytically

mþðvÞ ≃ −
r3−
2l2

eκ−v − l2e2r
5
−c

eκ−v þ e2r
5
−cðr2− − l2Þ ; ð26Þ

where c is an integration constant. For v → ∞ both the
numerator and denominator grow exponentially andmþðvÞ
remains finite. This asymptotic behavior is also readily
confirmed by integrating Eqs. (18) and (19) numerically for
varying initial conditions, see the left panel of Fig. 2 for
explicit examples.
In order to exhibit the physical consequences of our

findings, we first study the v dependence of the mass
function (2) evaluated at r−

Mþðr−; mþðvÞÞ ≃
2r3−κ−m2

0

3l2β
vp þ � � � : ð27Þ

Notably, Mþ diverges as v → ∞ with the anomalous
dimension (5) being

ν ≃ p: ð28Þ

FIG. 2. Left: the dynamical evolution of mþ in the future sector of the shell for various initial conditions and l ¼ 1=2 and p ¼ 11. In
the past sector of the shell m0 ¼ 2. For v → ∞ the solution settles on its asymptotic value −r3−=ð2l2Þ. Right: the asymptotic behavior of
the Kretschmann scalar K ¼ RαβγδRαβγδ in logarithmic scale, for l ¼ 1=2, m0 ¼ 2 and p ¼ 11. Note that the limiting behavior is
insensitive to the initial condition for mþ.
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In comparison to the standard mass-inflation scenario, this
divergence is no longer exponential though. Mþ grows
polynomially in v only. This feature propagates into the
curvature invariants constructed from the geometry.
Evaluating the general expression for the Kretschmann
scalar (A3) for the Hayward geometry yields

K¼48m2ð32l8m4−16l6m3r3þ72l4m2r6−8l2mr9þr12Þ
ð2l2mþr3Þ6 ;

ð29Þ

where m ↦ mþðvÞ is the v-dependent mass function. Our
interest is in the late-v behavior of the curvature. This may
readily be inferred by substituting the asymptotic expan-
sion (25). Notably, the leading term of this expansion
cancels in the denominator. As a result

K ≃
4

9l4

�
m2

0κ−v
p

β

�
6

ð30Þ

is power-law divergent as v → ∞. Again, this is at variance
with the standard mass-inflation scenario where K grows
exponentially in v. The two cases are compared in the right
panel of Fig. 2 showing the asymptotic v dependence of K.
We also observe that in our analysis the lapse function in
the past sector of the shell approaches zero as a power law,
at variance with what has been assumed in [22] when
discussing the DTR relations.

B. Physics consequences of the modified mass function

A consequence of this modified behavior is that the
singularity building at the Cauchy horizon becomes inte-
grable. This can be seen as follows. Using the advanced
coordinate in the future sector of the shell vþ, the
asymptotic form of the metric near the Cauchy horizon
reads

ds2 ≃ 2
dvþ
r

ðrdrþmþðvþÞdvþÞ þ r2dΩ2: ð31Þ

The new coordinate u, defined through the relation
du ¼ ðrdrþmþðvþÞdvþÞ, is regular at the Cauchy hori-
zon. The line element (31) then becomes [45]

ds2 ≃ 2
dvþdu

r
þ r2dΩ2: ð32Þ

This expression is manifestly regular at the Cauchy
horizon. Since it is possible to find a coordinate system
where the metric is regular, the singularity building up at
the CH is rather weak. This fact has profound conse-
quences: as already realized by Ori [42], and further
investigated by Burko [46], the mass-inflation singularity
does not satisfy the necessary conditions to be strong in the

Tipler sense [47].5 A measure of the tidal distortion
experienced by an observer is obtained by integrating
the square of the Weyl curvature twice. In the case of
the standard mass-inflation scenario one finds

CμνρσCμνρσ ∝
1

V2ðlogð−VÞÞ2p ; ð33Þ

where V ≡ −e−κ−v is a Kruskal coordinate adapted to the
inner horizon and V ∝ τ in this case. The tidal distortion is
obtained by twice integrating (33) and is therefore finite. It
has further been argued by Ori that this behavior could be
sufficient to determine a C1 extension of the spacetime
beyond the Cauchy horizon [42]. However, according to
Krolak, Eq. (33) still signals a strong singularity, as the
expansion of the congruence is divergent [48]: if the
components of the Riemann tensor are integrated only
once, the integral does not converge on the singularity.
In the case of the Hayward geometry, the divergence of

the Weyl curvature is further weakened

CμνρσCμνρσ ∝ ðlogð−VÞÞ6p: ð34Þ

Notably, already the first integral of this quantity is finite at
the singularity. At variance with the original Poisson-Israel
model, the singularity developing in the Hayward geometry
comes with a finite volume of the congruence and
expansion so that it is a weak singularity in both the
Tipler and the Krolak definition. We take this as strong
evidence that the Hayward geometry admits a C1 extension
of the spacetime beyond the singularity. While the inves-
tigation of this point is beyond the scope of the present
work this certainly warrants a more detailed analysis in the
future.

C. Final state of the regular geometry

We now compare the result (28) and the rate of
evaporation νE, cf. Eq. (6). The mass loss due to
Hawking radiation follows from the Stefan-Boltzmann law,

−
dm−ðvÞ

dv
¼ σSB

�
κþðvÞ
2π

�
4

AEHðvÞ; ð35Þ

where AEH and κþ are the area and the surface gravity of the
event horizon. Equation (35) can be explicitly solved in the
large v limit,

m−ðvÞ ¼ mcr þ const=vþOðv−2Þ; ð36Þ

5According to Tipler, a null singularity is called “strong” if
there exists at least one component of the Riemann tensor (in a
parallel propagated frame) which does not converge when
integrated with respect to the affine parameter τ twice. The
physical meaning of this requirement is that the tidal distortion is
not finite as an observer crosses the singularity.
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where mcr is the mass of the asymptotic configuration.
Substituting Eq. (36) into Eq. (4) shows that the outer
surface gravity κþðvÞ ∼ v−1=2 so that the exponent con-
trolling the evaporation time asymptotes to νE ∼ 1=2.
Therefore we conclude that for the Hayward geometry
the backreaction of the Hawking radiation acts on time-
scales similar to the growth of the mass function. The final
state of the geometry at v → ∞may then be given by a cold
extremal black hole which is not destabilized by the mass-
inflation effect. Notably, this asymptotic configuration is
only reached after an infinite time span, as measured by a
static observer situated at asymptotic infinity. Whether the
formation of the remnant entails the loss of information, as
suggested in [49], or the information leaks out of the black
hole during the evaporation process, as recently been
suggested in [50], is currently open to debate and beyond
the scope of our work.

D. Other regular black hole geometries

The asymptotic analysis of the previous subsections is
readily generalized to other black hole geometries exhibit-
ing a Cauchy horizon. Our results are summarized in
Table I, which also contains the Reissner-Nordström
analysis for reference. The most remarkable feature
revealed by this analysis is that regular black hole solutions
may or may not suffer from the mass-inflation effect:
depending on whether the denominator appearing on the
right-hand side of Eq. (19) is linear or quadratic, the
Misner-Sharp mass diverges either exponentially or as a
power-law in v. Hence regular geometries of the Hayward
and renormalization group (RG)-improved type are safe
from mass inflation while Bardeen-type geometries exhibit
the same instability as the Reissner-Nordström black hole.
This shows that there is no relation between the presence of
a de Sitter core characterizing a regular geometry and the
mass-inflation effect. It is the nonlinear relation between
the Misner-Sharp mass and mþ which is the decisive
feature.

IV. OUTLOOK

The existence of regular black holes free from the mass-
inflation effect warrants a more elaborate analysis about the

final state which takes into account the effect of Hawking
radiation at the full, dynamical level. Moreover, it would be
interesting to see whether the regularization mechanism
discovered in this work is also operative in other types of
regular black hole solutions including the black holes
discussed by Dymnikova [11,12,51]. We hope to come
back to these points in the future.
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APPENDIX: CURVATURE INVARIANTS

All geometries investigated in this work are of the form

ds2 ¼ −fðr; vÞdv2 þ 2drdvþ r2dΩ2: ðA1Þ

The lapse function fðr; vÞ is related to the Misner-Sharp
mass Mðr; vÞ by

fðr; vÞ ¼ 1 −
2Mðr; vÞ

r
: ðA2Þ

The Kretschmann scalar K ≡ RμνρσRμνρσ resulting from the
metric (A1) is conveniently expressed in terms of Mðr; vÞ
and reads

K ¼ 48M2

r6
−
64MM0

r5
þ 32ðM0Þ2

r4

þ 16MM00

r4
−
16M0M00

r3
þ 4ðM00Þ2

r2
: ðA3Þ

Here the primes denote partial derivatives with respect to r
and we suppressed all arguments for the sake of readability.
Since K does not contain derivatives with respect to v, its v
dependence may be obtained by substituting m ↦ mðvÞ.

[1] B. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (LIGO Scientific and VIRGO
Collaborations), Phys. Rev. Lett. 118, 221101 (2017);
121, 129901(E) (2018).

[4] K. Akiyama et al. (Event Horizon Telescope Collaboration),
Astrophys. J. 875, L1 (2019).

[5] S. Hawking and G. Ellis, The Large Scale Structure of
Space-Time, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
2011).

[6] W. Israel, Phys. Rev. 164, 1776 (1967).

REGULAR BLACK HOLES WITH STABLE CORES PHYS. REV. D 103, 124027 (2021)

124027-7

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1103/PhysRev.164.1776


[7] W. Israel, Commun. Math. Phys. 8, 245 (1968).
[8] B. Carter, Phys. Rev. Lett. 26, 331 (1971).
[9] J. M. Bardeen, in Proc. Int. Conf. GR5, Tbilisi, Vol. 174

(Tbilisi University Press, Tbilisi, U.S.S.R., 1968).
[10] A. Borde, Phys. Rev. D 55, 7615 (1997).
[11] I. Dymnikova, Gen. Relativ. Gravit. 24, 235 (1992).
[12] I. Dymnikova, Classical Quantum Gravity 19, 725 (2002).
[13] S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).
[14] V. P. Frolov and A. Zelnikov, Phys. Rev. D 95, 124028

(2017).
[15] V. P. Frolov, J. High Energy Phys. 05 (2014) 049.
[16] S. Ansoldi, in Spherical Black Holes with Regular Center: A

Review of Existing Models Including a Recent Realization
with Gaussian Sources, arXiv:0802.0330.

[17] V. P. Frolov, Phys. Rev. D 94, 104056 (2016).
[18] M. A. Markov, ZhETF Pisma Redaktsiiu 36, 214 (1982),

https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/
abstract.

[19] M. Markov, Ann. Phys. (N.Y.) 155, 333 (1984).
[20] J. Polchinski, Nucl. Phys. B325, 619 (1989).
[21] R. Penrose, in Battelle Rencontres—1967 Lectures in

Mathematics and Physics: Seattle, WA, USA, 1967 (Benja-
min, New York, USA, 1968), pp. 121–235.

[22] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, and
M. Visser, J. High Energy Phys. 07 (2018) 023.

[23] A. D. Sakharov, Sov. J. Exp. Theor. Phys. 22, 241 (1966),
http://www.jp-petit.org/papers/cosmo/Sakharov/1966-JETP
.pdf.

[24] V. P. Frolov, M. Markov, and V. F. Mukhanov, Phys. Rev. D
41, 383 (1990).

[25] E. Ayon-Beato and A. Garcia, Phys. Lett. B 493, 149
(2000).

[26] A. Bonanno and M. Reuter, Phys. Rev. D 62, 043008
(2000).

[27] B. Koch and F. Saueressig, Int. J. Mod. Phys. A 29, 1430011
(2014).

[28] C. Rovelli and F. Vidotto, Int. J. Mod. Phys. D 23, 1442026
(2014).

[29] T. De Lorenzo, C. Pacilio, C. Rovelli, and S. Speziale, Gen.
Relativ. Gravit. 47, 41 (2015).

[30] F. Saueressig, N. Alkofer, G. D’Odorico, and F. Vidotto,
Proc. Sci., FFP14 (2016) 174 [arXiv:1503.06472].

[31] E. G. Brown, R. Mann, and L. Modesto, Phys. Rev. D 84,
104041 (2011).

[32] V. P. Frolov, EPJ Web Conf. 168, 01001 (2018).
[33] E. Poisson and W. Israel, Phys. Rev. Lett. 63, 1663 (1989);

Phys. Rev. D 41, 1796 (1990).
[34] R. A. Isaacson, Phys. Rev. 166, 1263 (1968); 166, 1272

(1968).
[35] R. H. Price, Phys. Rev. D 5, 2419 (1972).
[36] R. H. Price, Phys. Rev. D 5, 2439 (1972).
[37] I. Novikov and V. P. Frolov, Physics of Black Holes, Vol. 27

(Kluwer Academic, Dordrecht, Netherlands, 1989).
[38] W. G. Anderson, P. R. Brady, W. Israel, and S. M. Morsink,

Phys. Rev. Lett. 70, 1041 (1993).
[39] A. Bonanno and M. Reuter, Phys. Rev. D 60, 084011

(1999).
[40] R. Balbinot, P. R. Brady, W. Israel, and E. Poisson, Phys.

Lett. 161A, 223 (1991).
[41] T. Dray and G. ’t Hooft, Commun. Math. Phys. 99, 613

(1985); I. H. Redmount, Prog. Theor. Phys. 73, 1401 (1985).
[42] A. Ori, Phys. Rev. Lett. 67, 789 (1991).
[43] C. Barrabes and W. Israel, Phys. Rev. D 43, 1129 (1991).
[44] A. Bonanno et al. (to be published).
[45] A. Bonanno, S. Droz, W. Israel, and S. M. Morsink, Proc. R.

Soc. A 450, 553 (1995).
[46] L. M. Burko, Phys. Rev. D 60, 104033 (1999).
[47] F. J. Tipler, Phys. Lett. 64A, 8 (1977).
[48] A. Krolak, J. Math. Phys. (N.Y.) 28, 138 (1987).
[49] S. B. Giddings, Phys. Rev. D 49, 4078 (1994).
[50] G. ’t Hooft, Found. Phys. 46, 1185 (2016).
[51] A. Platania, Eur. Phys. J. C 79, 470 (2019).

BONANNO, KHOSRAVI, and SAUERESSIG PHYS. REV. D 103, 124027 (2021)

124027-8

https://doi.org/10.1007/BF01645859
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevD.55.7615
https://doi.org/10.1007/BF00760226
https://doi.org/10.1088/0264-9381/19/4/306
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevD.95.124028
https://doi.org/10.1103/PhysRevD.95.124028
https://doi.org/10.1007/JHEP05(2014)049
https://arXiv.org/abs/0802.0330
https://doi.org/10.1103/PhysRevD.94.104056
https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/abstract
https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/abstract
https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/abstract
https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/abstract
https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/abstract
https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/abstract
https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/abstract
https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/abstract
https://ui.adsabs.harvard.edu/abs/1982ZhPmR..36..214M/abstract
https://doi.org/10.1016/0003-4916(84)90004-6
https://doi.org/10.1016/0550-3213(89)90499-9
https://doi.org/10.1007/JHEP07(2018)023
http://www.jp-petit.org/papers/cosmo/Sakharov/1966-JETP.pdf
http://www.jp-petit.org/papers/cosmo/Sakharov/1966-JETP.pdf
http://www.jp-petit.org/papers/cosmo/Sakharov/1966-JETP.pdf
http://www.jp-petit.org/papers/cosmo/Sakharov/1966-JETP.pdf
https://doi.org/10.1103/PhysRevD.41.383
https://doi.org/10.1103/PhysRevD.41.383
https://doi.org/10.1016/S0370-2693(00)01125-4
https://doi.org/10.1016/S0370-2693(00)01125-4
https://doi.org/10.1103/PhysRevD.62.043008
https://doi.org/10.1103/PhysRevD.62.043008
https://doi.org/10.1142/S0217751X14300117
https://doi.org/10.1142/S0217751X14300117
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1007/s10714-015-1882-8
https://doi.org/10.1007/s10714-015-1882-8
https://arXiv.org/abs/1503.06472
https://doi.org/10.1103/PhysRevD.84.104041
https://doi.org/10.1103/PhysRevD.84.104041
https://doi.org/10.1051/epjconf/201816801001
https://doi.org/10.1103/PhysRevLett.63.1663
https://doi.org/10.1103/PhysRevD.41.1796
https://doi.org/10.1103/PhysRev.166.1263
https://doi.org/10.1103/PhysRev.166.1272
https://doi.org/10.1103/PhysRev.166.1272
https://doi.org/10.1103/PhysRevD.5.2419
https://doi.org/10.1103/PhysRevD.5.2439
https://doi.org/10.1103/PhysRevLett.70.1041
https://doi.org/10.1103/PhysRevD.60.084011
https://doi.org/10.1103/PhysRevD.60.084011
https://doi.org/10.1016/0375-9601(91)90007-U
https://doi.org/10.1016/0375-9601(91)90007-U
https://doi.org/10.1007/BF01215912
https://doi.org/10.1007/BF01215912
https://doi.org/10.1143/PTP.73.1401
https://doi.org/10.1103/PhysRevLett.67.789
https://doi.org/10.1103/PhysRevD.43.1129
https://doi.org/10.1098/rspa.1995.0100
https://doi.org/10.1098/rspa.1995.0100
https://doi.org/10.1103/PhysRevD.60.104033
https://doi.org/10.1016/0375-9601(77)90508-4
https://doi.org/10.1063/1.527795
https://doi.org/10.1103/PhysRevD.49.4078
https://doi.org/10.1007/s10701-016-0014-y
https://doi.org/10.1140/epjc/s10052-019-6990-2

