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We present a new family of exact black hole configurations, which is a solution to a generalized Einstein-
Maxwell-Dilaton setup in arbitrary dimension. These solutions are asymptotically Lifshitz for any
dynamical critical exponent z ≥ 1. It turns out that the existence of a nontrivial scalar field is a direct
consequence of breaking the spacetime isotropic scaling symmetry. This black hole family accepts various
interesting limits that link it to well-known solutions in both the isotropic and anisotropic cases. We study
the thermodynamics of these field configurations showing that the first law is satisfied and providing the
corresponding Smarr formula, both of these relations account for an electric contribution. Furthermore, we
show that for a certain parameter region, the anisotropic field configuration with a nonzero scalar field is
thermodynamically preferred. This observation, together with a direct verification of the so-called
scalarization conditions, suggest that the emergence of the dilaton field is due to a mechanism similar
to spontaneous scalarization.
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I. INTRODUCTION

A remarkable characteristic of the black hole solutions
in Einstein’s gravity is the fact that, despite the complexity
involved, each configuration is defined by a reduced set
of parameters. For asymptotically flat spacetimes, Israel
initiated in the pursue of the so-called uniqueness theorems
five decades ago [1]. In short, they state that the most
general stationary and axisymmetric electrovacuum black
holes with a positive mass reduce to the Kerr-Newman
class [2]. In the same line, the emergence of no-hair
conjectures, first hinted by Ruffini and Wheeler [3], takes
care of sorting out the type of matter fields allowed to exist
around regular black holes. As a result, increasing the
number of effectively independent parameters is restricted
to very specific circumstances. In more detail, the classical
no-hair theorems later formalized by Bekenstein [4]
provide arguments—independent of the gravitational
dynamics—asserting that black holes are characterized
only by conserved charges subject to Gauss-like laws such
as the mass, angular momentum, and electromagnetic
charge. Coupling a scalar fields (either massless or mas-
sive), a Proca field, or a massive spin-2 field around an
stationary black hole is shown to fail. Further refinement

on the arguments [5] and extensions to explore different
asymptotes and matter self-interactions appeared over the
years; see [6] for a few examples. However, the reach and
efficacy of no hair theorems are heavily dependent on the
assumptions under which forged. Therefore, alongside the
derivation of such conjectures, many counter examples of
black holes or compact objects supporting nongauge fields
in their exterior have been reported, the so-called hairy
configurations.
When a field not associated to a conservation law is

regular everywhere in the exterior of the black hole, it is
called a hair. The first and most celebrated candidates to be
hairy configurations were found not much after the no-hair
conjectures were introduced. In [7], a conformal coupling
between a scalar field and the curvature proved an effective
mechanism to evade the conjecture’s axioms. Similarly, in
[8] and later in [9], a family of so-called colored back holes
were reported. In these cases, the spherical solutions are
supported by a SUð2Þ Yang-Mills field. It was afterwards
shown that both a priori appealing solutions suffer from
undesirable properties such as instabilities under linear
perturbations, [10,11], respectively. Further, an ADM mass
formula for the solitons of the Einstein-Yang-Mills system
in terms of black hole horizon properties was obtained by
using the isolated horizon formalism [12]. These models
for colored black holes settled the basis for general
strategies to overcome the no-hair impossibilities previ-
ously established. This fact, together with new theoretical
frameworks, gave rise to a very active search for genuinely
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hairy black holes. For a nice review on the recent progress,
we refer the reader to [13].
Closely related to the hairy scenario, a more recent

phenomenon has gained plenty of attention from the
community: spontaneous scalarization. Originally dis-
cussed in the context of neutron stars [14,15], it was noted
that a tensor-scalar configuration could become nontrivial
for a specific range of parameters—the total mass in that
particular case. Furthermore, the finite scalar configuration
turned to be preferable, energetically speaking, as com-
pared to the scalar-free case. A detailed analysis and review
can be found in [16]. It was spotted in the original works
[14] that spontaneous scalarization can leave the weak
gravity limit untouched and be fitted to manifests itself only
in strong gravity processes. This means of course that the
standard solar system tests would be blind to it. Actually,
the machinery is ready to compare and probe the possible
scalarized nature of black holes. For instance, forthcoming
gravitational wave interferometry—the LISA observatory
in particular—seems capable of shedding some light on the
issue [17]. In a similar fashion, the new achievements in
black hole shadow imaging can, in principle, provide
evidence on possible scalar imprints [18].
Spontaneously scalarized spacetimes are field configu-

rations that are smoothly connected with a scalar-free
solution to a given theory. A generic characteristic of such
setups is that over the scalar-free background, the propa-
gation of the scalar field would exhibit a tachyonic mode.
The mechanisms driving spontaneous scalarization come
from an effective nonminimal coupling between the scalar
field and either additional (matter) fields, the geometry or
both. Such a setup is well captured by the action,

S½gμν;ϕ;Ψ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R − 2λ

2κ
þ LSFðgμν;ϕ;∇μϕÞ

þ hðϕÞIðgμν;Ψ; Rα
βμνÞ

�
; ð1:1Þ

defined over D spacetime dimensions in the presence of a
cosmological constant λ and where κ is the Einstein’s
gravitational constant. The function I can depend on a
standard Lagrangian for the fields Ψ and the curvature, and
the arbitrary function h measures the nonminimal coupling
between the scalar field and it. Notice that the dynamics of
the scalar can be as generic as desired, and it is given by the
Lagrangian LSF. During the past two decades, numerous
examples fitting in (1.1) have been reported. To mention a
few of the most notorious, when I is taken as the Gauss-
Bonnet term, static spherical black holes have been shown
to scalarize for various nonminimal coupling functions [19]
as well as rotating configuration[20]. More related to this
work is the case when I is a function of the Maxwell term,
thus exhibiting scalarization when the scalar field is non-
minimally coupled to a gauge field [21–23]. As a particular
application, in [24], it was argued that spontaneous

scalarization in compact objects (polytropic fluids) is
accompanied by a spontaneous violation of the weak
energy condition. However, in [25], it was further shown
that the negativeness of such energy densities is not generic
of scalar-tensor theories of gravity by using realistic models
of dense matter. Further examples and a review on the topic
can be found in [26,27], respectively.
Very recently, in [28], the idea of achieving spontaneous

scalarization through breaking scale invariance was worked
out. There, quantum corrections to the Einstein-Maxwell
theory are added in the form of a quartic term in the field
strength, breaking thus the natural Weyl invariance of
Maxwell’s theory. In this work, we find that a similar
effect—yet not identical, as later made precise—can be
achieved by breaking the spacetime isotropy, that is, the
scaling symmetry between the timelike and spatial direc-
tions. Backgrounds with this property are called aniso-
tropic, and the most iconic example is the Lifshitz
spacetime, which we proceed to describe.
A good motivation to delve into anisotropic spaces is the

cornerstone problem of the quantization of gravity. There
are various problems arising in the UV regimes of gravi-
tational theories. Among them, the dimensions carried by
the coupling (Newton’s) constant ½GD¼4� ∼ L2 spoil its
renormalizability [29]. This can be corrected to the case of
dimensionless coupling at the cost of introducing an scaling
asymmetry between time and space, as explored in Horava-
like gravities [30]. The natural setup for it to take place is a
Lifshitz spacetime. Originally introduced in [31], it is
understood as a gravitational dual to non-Lorentz invariant
quantum field theories. Therein, the deviation from
spacetime isotropy is measured by the so-called critical
dynamical exponent z. The metric of a Lifshitz spacetime
takes the form,

gLifshitz ¼ −
�
r
l

�
2z
dt2 þ dr2�

r
l

�
2
þ
�
r
l

�
2 XD−2

k¼1

dx2k: ð1:2Þ

In these coordinates, it turns out to be invariant under the
anisotropic scaling transformations Dz,

t ↦ λzt; r ↦
r
λ
; xk ↦ λxk; ð1:3Þ

as well as under space and time translations and spatial
rotations,

H∶ t → t0 ¼ tþ a;

Pi∶ xi → x0i ¼ xi þ ai;

Lij∶ xi → x0i ¼ Li
jx

j: ð1:4Þ

Lifshitz spacetimes are anisotropic generalizations of anti–
de Sitter (AdS) that also have constant negative curvature
and share many of the geometrical and physical properties.
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For instance, the existence of a boundary and the
corresponding confining character as well as a
Breitenlohner-Freedman (BF) bound for the energy—or
mass spectrum—of fields dynamically coupled to gravity.
We shall consider the parameter z ≥ 1 to be continuous for
the purposes of our work. Inviting to us, the idea that
Lorentz invariance is the a low energy effect of a more
fundamental anisotropic theory has been entertained [32].
In the same line of thought, we can consider that the
anisotropic parameter z that encodes the measure of
Lorentz symmetry violation, achieves the relativistic limit
when z ¼ 1, recovering the isotropy between space and
timescaling transformations.
Naturally, while breaking the Lorentzian symmetry,

Lifshitz backgrounds are not expected solutions to standard
gravitational theories. Therefore, the occurrence of non-
trivial gravitational phenomena such as black holes requires
either a modification on the dynamics or an enhancement
through additional matter fields. For example, the first
asymptotically Lifshitz back holes were reported in
[33–35], one in the context of Einstein–Maxwell–Dilaton
theory and the latter in gravities with quadratic corrections.
In the present manuscript, we show how the spacetime

anisotropy can be supplemented by a more generic matter
arrangement than theMaxwell-Dilaton case. By assuming a
simple static Lifshitz ansatz, we find a novel exact charged
black hole configuration. A nontrivial scalar field configu-
ration manifests itself as one deviates from the isotropic
case; i.e., z > 1. As we will explore in detail, these
solutions are thermodynamically favorable under the exist-
ence of the scalar field. In this sense, we argue on favor of a
scalarization phenomenom akin to the spontaneous scala-
rization reviewed above.
Organization of the paper. In Sec. II, we introduce the

theoretical framework describing the nonminimal coupling
between the scalar and a Maxwell field. For it, we find a
four-dimensional solution shown to accommodate an event
horizon in Sec. II B. Later, in Sec. III, we extend the result
to a higher dimensional black hole and prove in Sec. III C
that it fulfils the scalarization conditions. The conserved
charges and corresponding thermodynamics is provided in
Sec. IV. With these results, we finally discuss thermody-
namical arguments favoring the scalarized (anisotropic)
configuration in Sec. V. We conclude with some important
remarks and a discussion in Sec. VI.

II. LIFSHITZ BLACK HOLES

The existence of scalarized solutions conceded by an
adequate source term in the scalar field equation. This
source originates from the nonminimal coupling between
the scalar mode and either additional matter or the
curvature, as depicted in (1.1). For our purposes, we will
track down the first possibility. In particular, we will
introduce a vector field Aμ such that I is chosen as the
Maxwell’s kinetic term. Being the nonminimal coupling

function arbitrary, our starting point results in a generali-
zation of the standard Einstein-Maxwell-Dilaton theory in
four spacetime dimensions.1 Namely, the action of our
framework reads

S½gμν; Aμ;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2λ

2κ
−
1

2
∂μϕ∂μϕ

−
hðϕÞ
4

FμνFμν

�
; ð2:1Þ

where Fμν ≔ ∇μAν −∇νAμ is the field strength, and we
recall that hðϕÞ is a nonminimal coupling function. The
coupling does not carry derivatives of the scalar so that the
number of degrees of freedom is trivially preserved.
Following the standard notation, R is the scalar curvature,
λ is a cosmological constant, and κ is the Einstein’s
gravitational constant. Notice that in order to preserve an
smooth decoupling limit between the scalar and the vector,
the minimal requirement is that hðϕ0Þ ¼ const for a trivial
(ground) value ϕ0 of the scalar field. When hðϕÞ ¼ e−αϕ,
with α and arbitrary constant, the Einstein-Maxwell-
Dilaton theory is recovered.
The field equations derived from (2.1) through the action

principle read

Eμν ≔ Rμν −
1

2
Rgμν þ λgμν − κTμν ¼ 0;

∇νðhFμνÞ ¼ 0; □ϕ −
1

4

dh
dϕ

FμνFμν ¼ 0; ð2:2Þ

where the total energy-momentum tensor contains infor-
mation from both matter fields, and it is conformed by

Tμν ¼ Tϕ
μν þ hTA

μν; ∇μTμν ¼ 0; ð2:3Þ

with Tϕ
μν the free scalar field energy-momentum tensor and

TA
μν the one for the Maxwell field; i.e.,

Tϕ
μν ¼ ∂μϕ∂νϕ −

1

2
ð∂αϕ∂αϕÞgμν;

TA
μν ¼ FμαFν

α −
1

4
FαβFαβgμν: ð2:4Þ

We point out that the first scrutiny of this system in the
context of scalarization was in [21]. There, it was first
observed that the nonminimal coupling between the scalar
field and the Maxwell invariant can trigger the spontaneous
scalarization of the asymptotically flat Reissner-Nordström
black hole. In this section, we will follow a similar

1Pioneer research on black hole solutions to Dilaton gravity is
reported in [36,37]. Also relevant in this context is the Lifshitz
solution in [33–35].
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approach by exploring solutions with the difference that we
will build upon an asymptotically Lifshitz background.

A. The D= 4 black hole

In contrast to the numerical solutions [21,23] known to
the model (2.1), we are interested in the pursuit of exact
configurations. It will suffice to take the static ansatz,

g ¼ −
�
r
l

�
2z
fðrÞdt2 þ dr2�

r
l

�
2
fðrÞ

þ
�
r
l

�
2

ðdx2 þ dy2Þ:

ð2:5Þ

Cast in this manner, the metric is ensured to be asymp-
totically Lifshitz as long as limr→∞ fðrÞ ¼ 1. It is well
known that, for the Dilatonic coupling, the theory accepts a
solution of this type supported by a purely electrical vector
field and a logarithmic scalar field [33]. Following these
lines, here we construct the most general nonminimal
coupling hðϕÞ and its geometry describing static Lifshitz
black holes. We consider the fields to inherit the spacetime
isometries such that they are functions of the r coordinate
only. The vector potential is taken to be of the purely
electrical form; thus, the field ansätze are

ϕ ¼ ϕðrÞ; A ¼ AðrÞdt: ð2:6Þ

Plugging it into the field equations (2.2), one has that, as
a consequence of this ansatz, the Maxwell equations accept
a trivial first integral,

∂rð
ffiffiffiffiffiffi
−g

p
hFrtÞ ¼ 0 ⇒ A0ðrÞ ¼ Q

h

�
l
r

�
3−z

; ð2:7Þ

being Q an arbitrary integration constant which, for a
minimal coupling hðrÞ ¼ 1, takes the role of the electric
charge. For the rest of the equations, we can take simplify-
ing linear combinations in order to solve the truly inde-
pendent ones. For instance, the combinations,

Et
t − Er

r ¼
�
r
l

�
2

f

�
ðϕ0Þ2 − 2ðz − 1Þ

r2

�
¼ 0; ð2:8Þ

Er
r þ Ex

x ¼
1

2

�
r
l

�
2
�
f00 þ 3zþ 5

r
f0

þ 2ðzþ 2Þðzþ 1Þ
r2

f þ 4λl2

r2

�
¼ 0; ð2:9Þ

decouple the system as a simple first order nonlinear
equation for the scalar field and an inhomogeneous Euler
equation for the metric function. The general solution is

fðrÞ ¼ −
2λl2

ðzþ 2Þðzþ 1Þ þ
a

rzþ2
þ b

r2ðzþ1Þ ;

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þ

κ

r
ln

�
r
l

�
þ ϕ0; ð2:10Þ

where a, b, and ϕ0 are arbitrary integration constants all
carrying length units, and z ≥ 1 to preserve the reality of the
scalar field.
The remaining field equations constitute an algebraic

condition for the nonminimal coupling function with the
solution,

hðϕÞ¼−
2κðzþ1ÞQ2l6e−

ffiffiffiffiffiffi
2κ

ðz−1Þ
p

ðϕ−ϕ0Þ

ðz−1Þλl2−bl−2ðzþ1Þzðzþ1Þe−
ffiffiffiffiffiffi
2κ

ðz−1Þ
p

ðzþ1Þðϕ−ϕ0Þ
:

ð2:11Þ

Notice that when the scalar acquires a trivial value ϕ ¼ ϕ0,
the coupling indeed reduces to a finite constant. More
interestingly, for very small values of the constant b
satisfying bl−2ðzþ1Þ → 0, the coupling becomes dilatonic
h ∼ expð−2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κ=ðz − 1Þp ðϕ − ϕ0ÞÞ, and the whole configu-
ration reduces exactly to the Taylor black hole [33]. Note
that the metric—as well as the curvature invariants—are
singular at r ¼ 0. With the coupling function determined,
the Maxwell field can be explicitly integrated from
Eq. (2.7),

AðrÞ ¼ −
b

2κQl2zþ3

�
l
r

�
z
þ ðz − 1Þ

4κQl3

�
r
l

�
zþ2

: ð2:12Þ

Altogether, the solutions (2.10)–(2.12) satisfy, in the
present form, the whole set of equations of motion.
However, one needs to ensure the proper asymptotic limit
of the metric limr→∞ g ¼ gLifshitz. This imposes a constraint
on the cosmological constant,

λ ¼ −
ðzþ 2Þðzþ 1Þ

2l2
: ð2:13Þ

As it is customary for Lifshitz black holes, the metric
function depends in powers on the dynamical critical
exponent. Nonetheless, most of the reported examples
involve a simple binomial in r such that the horizon is
straightforwardly tractable; see, for instance, [33]. In our
case, we have a trinomial with powers of r, which are not
even guaranteed to be integers or rational numbers.
Therefore, a careful determination of the horizons is needed.

B. Existence of an event horizon

1. General case

The metric function f as given by Eq. (2.10) and
specialized to the asymptotic condition takes the form,
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fðrÞ ¼ 1þ a
rzþ2

þ b

r2ðzþ1Þ : ð2:14Þ

The existence of a event horizon requires that f has a
simple zero for a fixed value of r ≠ 0. As it stands, we
might regard f as parametrized by the critical exponent z
such that it needs to be fixed in order to obtain a well-
defined polynomial problem fðr; zÞ ¼ 0. For an integer
value of z ¼ n with n ∈ N, f becomes a polynomial with
2ðnþ 1Þ as the highest power. In principle, this case would
have an exact radical solution up to n ¼ 1, according to the
Abel-Ruffini theorem. In any other case, given a specific
value of z, the existence of the roots of f has to be
considered individually, requiring in most of the cases a
numerical approach. Yet, it is possible to characterize the
conditions under which the horizons exist. In the Appendix,
we determine that a maximum of two real roots of f can
exist. Thus, the existence of an event horizon and a Cauchy
horizon is hinted.

2. Ensuring the existence of an event horizon

There is an alternative to single out one root r ¼ rH of
the metric function for an arbitrary value of the critical
dynamical exponent. This is achieved at the cost of fixing
one of the integration constants in terms of the other, such
that, with the particular redefinition,

a ¼ −½1þ br−2ðzþ1Þ
H �rHzþ2; ð2:15Þ

fðrHÞ ¼ 0 is trivially satisfied. Considering this informa-
tion, one can show indeed that the vanishing of

fðrÞ ¼ 1 −
�
rH
r

�
zþ2

½1þ br−2ðzþ1Þ
H � þ b

r2ðzþ1Þ ; ð2:16Þ

defines a null hyperspace whose generator satisfies the
Frobenius integrability conditions. Accordingly, there is an
event horizon with radius rH. We will refer to the solution
with condition (2.15) implemented as the black hole
configuration.

C. Scalar-free z= 1 solution

Inspecting the equation for the scalar field, Eq. (2.8), one
can already see that the z ¼ 1 asymptotically AdS will
enforce a trivial scalar field configuration ϕ ¼ ϕ0. This
is also evident from the field solution where the only
condition one can impose to turn it off is the isotropic limit
z ¼ 1. Nonetheless, the limit is smooth as opposed to what
the form of the coupling (2.11) suggests, and the system is
still solvable. Concretely, we find

fðrÞ ¼ −
λl2

3
þ a
r3

þ 2κl6Q2

r4
; AðrÞ ¼ Ql2

r
;

hðϕÞ ¼ 1; ϕðrÞ ¼ ϕ0; ð2:17Þ

up to a redefinition of the integration constant b appearing in
the anisotropic solution. In this case, if the cosmological
constant is set to λ ¼ −3=l2, the asymptotic spacetime will
be AdS. The configuration (2.17) describes a known charged
black hole dubbed as the planar Reissner-Nordström-AdS
black hole (pRN-AdS) [38]. The name planar comes from
the spatial foliation at the horizon coming from the ðt; rÞ-
constant spatial sector ds2 ¼ ðr=lÞ2ðdx2 þ dy2Þ. We recall
that the usual Reissner-Nordström spacetime has a D-2-
dimensional sphere instead. For further details on black
holes with a flat foliation, we refer the reader to [39,40].

III. HIGHER-DIMENSIONAL GENERALIZATION

The action in Eq. (2.1) can be straightforwardly gener-
alized to an arbitrary dimension,

S½g; A;ϕ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R − 2λ

2κ
−
1

2
∂μϕ∂μϕ

−
hðϕÞ
4

FμνFμν

�
: ð3:1Þ

On its own merit, higher dimensional gravities are
worth attention. Yet, a more interesting motivation is their
connection with the gauge/gravity duality connecting a
bulk D-dimensional theory with a D-1 boundary conformal
theory. The canonical example is the celebrated AdS/CFT
correspondence [41], where the gravitational dual resides
in a type IIB string theory over AdS5 × S5. From the
Lifshitz anisotropic side, the breaking of the Lorentz
invariance allows one to relate through duality nonrelativ-
istic quantum systems as those pertinent for condensed
matter physics [42]. Therefore, higher-dimensional Lifshitz
gravities open a window that extends the applicability of
the gauge/gravity duality to a wide plethora of quantum
systems under the so-called gravity/condensed matter
theory correspondence [43]. From now on, we will focus
only in the gravitational side and expect to push ahead the
understanding of the dual quantum field theory side.

A. The D ≥ 3 black hole

We might proceed to explore the arbitrary dimensional
generalization of the problem discussed in Sec. II A. The
appropriate Lifshitz ansatz for this case is given by

g ¼ −
�
r
l

�
2z
fðrÞdt2 þ dr2�

r
l

�
2
fðrÞ

þ
�
r
l

�
2 XD−2

k¼1

dx2k: ð3:2Þ

Again, the asymptotic condition limr→∞ fðrÞ ¼ 1 secures
the desired asymptotic behavior limr→∞ g ¼ gLifshitz.
The role of the dimension D as an additional parameter

does not turn out to be of greater complication. The field
equations can be decoupled in a similar fashion as
elaborated around (2.8)–(2.9), resulting in the solution,

SCALARIZATION-LIKE MECHANISM THROUGH SPACETIME … PHYS. REV. D 103, 124025 (2021)

124025-5



fðrÞ ¼ 1þ a
rzþD−2 þ

b

r2ðzþD−3Þ ; ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2Þðz − 1Þ

κ

r
ln

�
r
l

�
þ ϕ0;

AðrÞ ¼ −
bðD − 2Þ

4κQl2ðDþzÞ−5

�
l
r

�
zþD−4

þ ðz − 1Þ
4κQl3

�
r
l

�
zþD−2

; λ ¼ −
ðzþD − 3ÞðzþD − 2Þ

2l2
: ð3:3Þ

Notice that, despite depending on the dimension, the functional dependence of f on r is always decaying for z > 1, D > 3.
The case z ¼ 1, D ¼ 3 is peculiar and is treated separately in the next section. We might apply the same reasoning of
Sec. II B to ensure the existence of an event horizon. Doing so, leads to the metric function describing the black hole,

fðrÞ ¼ 1 −
�
rH
r

�
zþD−2

ð1þ br−2ðzþD−3Þ
H Þ þ b

r2ðzþD−3Þ : ð3:4Þ

Additionally, the unique nonminimal coupling function which supports this configuration is

hðϕÞ ¼ −4κðzþD − 3ÞQ2l2ðD−1Þe
−2

ffiffiffiffiffiffiffiffi
κðD−2Þ
ðz−1Þ

q
ðϕ−ϕ0Þ

2ðz − 1Þλl2 − bl−2ðzþD−3ÞðD − 2ÞðzþD − 3ÞðzþD − 4Þe−2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

κ
ðz−1ÞðD−2Þ

p ðzþD−3Þðϕ−ϕ0Þ
: ð3:5Þ

For arbitrary dimension D > 3, we have the associated
scalar-free solution when the isotropy of spacetime is
recovered. This is, for z ¼ 1, the scalar field is trivialized
ϕ ¼ ϕ0. Under that circumstances, the configuration takes
the form,

fðrÞ ¼ 1þ a
rD−1 þ

b

r2ðD−2Þ ; λ ¼ −
ðD − 2ÞðD − 1Þ

2l2
;

AðrÞ ¼ −
bðD − 2Þ

4κQlDrðD−3Þ ; ð3:6Þ

where the nonminimal coupling function becomes a
constant,

hðϕÞ ¼ 4κQ2l2ðD−1Þ

bðD − 2ÞðD − 3Þ ; ð3:7Þ

which normalizes the charge to the standard Maxwell case,

AðrÞ ¼ −
Q

lðD − 3ÞrðD−3Þ : ð3:8Þ

Just as in the four-dimensional case, after some redefinition
of constants, the isotropic limit corresponds to the
pRN-AdS black hole [38]. It is worth mentioning that
an interesting research line consists in exploring the
implications of the constructed Lifshitz black hole solution
(3.2)–(3.5) for its dual quantum field theory within the
gravity/condensed matter theory correspondence.

B. Degenerate case: z= 4−D
When the dynamical exponent takes the particular

value z ¼ 4 − D, the metric function f (3.6) exhibits a
degeneracy in the powers of the coordinate r. This is a

consequence of the Euler equation governing the dynamics
of the metric function. Under such a situation, f acquires a
logarithmic branch of solution.
Considering that we are interested in Lifshitz spaces with

z ≥ 1, this degeneracy occurs only for D ¼ 2; 3 dimen-
sions. We exclude D ¼ 2 as it is well known GR is not
appropriate to model gravity in a 1þ 1 framework. Thus,
the degeneracy occurs exclusively for D ¼ 3, where the
dynamical exponent is set to z ¼ 1. As pointed out in
Eq. (2.17), this value has the effect of turning off the scalar
field regardless of the dimension. Under these consider-
ations, the solution is

fðrÞ ¼ 1þ a
r2

þ b lnðrÞ
r2

; λ¼ −
1

l2
;

hðϕÞ ¼ −
4κl4Q2

b
; AðrÞ ¼ −

b lnðrÞ
4κl3Q

þA0: ð3:9Þ

After some redefinition of constants, one finds that
Eq. (3.9) corresponds to the charged (nonrotating) BTZ
solution that was presented originally in [44] and with
ulterior precision in [45] after avid discussions in the
literature. A further discussion on the charged and rotating
BTZ solution is available in [46,47].

C. A hint of scalarization

As we have adverted from the general solution of the
nonminimal coupling function, (3.5), both the action and
the solution are continuously connected to the pRN-AdS.
However, the more contemporary understanding of scala-
rization, in contrast to the standard hairy case, demands a
more thorough analysis of the different limits between
the scalarized and the scalar-free configurations. Thus, the
aforementioned condition is just the first among three
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clearly stated in previous works, e.g., [48]. We prove next
that our novel solution satisfies all of them as a first
criterion to deem it scalarized or not.

1. Smooth limit

The formal condition that ensures the connectedness
between the scalar-free solution and the configuration with
a nontrivial scalar requires that the field equations (2.2)
decouple from the scalar mode without trivializing the
vector configuration. When the scalar acquires a trivial
value ϕ ¼ ϕ0, the scalar equation has the following
implication:

�
□ϕ−

1

4

�
dh
dϕ

�
FμνFμν

�				
ϕ¼ϕ0

¼0⇒

�
dh
dϕ

�				
ϕ¼ϕ0

FμνFμν¼! 0;

ð3:10Þ

which, in order to preserve a generic vector value
FμνFμν ≠ 0, needs ðdhdϕÞjϕ¼ϕ0

¼ 0. The nonminimal cou-

pling function (2.11) allows for the implementation of this
condition at the cost of restricting the parameter space.
Namely, fulfilling the relation,

ðzþD − 3ÞðzþD − 4Þbl−2ðzþD−3Þ þ 2λl2 ¼ 0; ð3:11Þ

solves condition (3.10) as desired. The whole expression
(3.11) is presented dimensionless such that the dimensions
of b are evident. We shall refer to (3.11) as the smoothness
condition hereafter.

2. Tachyonic modes over the scalar-free solution

Again, the object of interest is the scalar field equation.
We consider its perturbations around the ground value
ϕ ¼ ϕ0. If we also use the above information, then the only
contributions up to linear order in the Klein-Gordon
equation are

ð□ −m2
effÞδϕ ¼ 0;

where m2
eff ≔ −

1

4

�
d2h
dϕ2

FμνFμν

�				
ϕ¼ϕ0;g¼gz¼1

: ð3:12Þ

In arbitrary dimension, the effective mass of the field
perturbations turns out to be

m2
eff ¼ −

ðD − 2ÞðD − 1Þ
2l2

�
l
r

�
2ðD−2Þ

; ð3:13Þ

revealing the existence of tachyonic modes (particles with
their negative mass square) in the isotropic (scalar-free)
solution. It is well known that these tachyons can arise in
spacetimes with negative curvature (like AdS and Lifshitz),
generating an instability if their squared mass falls below
a negative bound. Thus, the allowed range of negative

squared mass values is obtained by computing the
Breitenlohner-Freedman bound, guaranteeing the energy
positivity of the system and, hence, its stability [49,50].
Though the effective mass displayed in (3.13) seems of a
local character, the D’alembertian comes with the same
power of r in (3.12); thus, the inhomogeneity to the Klein-
Gordon equation ends up being a constant.

3. Consequence of the smoothness condition

As noted before, our configuration (3.3) is continuously
connected with the dilatonic black hole [33] through
b → 0. In this limit, the condition (3.11) makes evident
that the latter configuration, unlike our solution, does not
accept a smooth limit to the scalar-free case. A second
consequence of the smoothness condition is due to the fixed
value that the parameter b attains. Recall from (2.11) that
the coupling function incorporates b explicitly. Therefore,
for our configuration to be supported, h ¼ hðϕ; zÞ gets
parametrized in terms of the critical dynamical exponent.
What it means is that for a given z, not only the background
is fixed but also the coupling constants, and thus, the theory
are. This characteristic will play later an important role in
the interpretation of the scalarization effect in the present
context.

IV. GLOBAL CHARGES AND BLACK HOLE
THERMODYNAMICS

The thermodynamics of black holes with different to flat
asymptotics has been a major field of investigation. For our
concrete case of interests, a Lifshitz asymptote, the study of
the thermodynamics was initiated in[51] and vastly devel-
oped later [52]. In these works, it is determined how the
critical dynamical exponent plays a major role in the form
of the conserved charges. As a consequence, the first law
and other relevant thermodynamical properties get modi-
fied by the spacetime anisotropy.
We proceed to compute the quantities characterizing the

horizon. The Hawking temperature, defined in terms of the
surface gravity κ̃, is given by means of the relation,

TH ≡ κ̃

2π
; with κ̃2 ¼ −

1

2
ð∇μχνÞð∇μχνÞ; ð4:1Þ

where χ ¼ χμ∂μ ¼ ∂t is the generator of the event horizon.
Accordingly, the Hawking temperature associated with the
D-dimensional configuration (3.3) reads

TH ¼ 1

4π

ðzþD−2ÞrzH −bðzþD−4Þr−ðzþ2D−6Þ
H

lzþ1
; ð4:2Þ

whereas the Wald entropy results proportional to the event
horizon area A and takes the form,
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S ≡ A
4GD

¼ VD−2

4GD

�
rH
l

�
D−2

; ð4:3Þ

where GD ¼ κ=8π is the D-dimensional gravitational con-
stant and VD−2 represents the Euclidean volume of the
spatial sector. The electric charge can be computed through
a Gaussian integral over a spatial hypersurface Σ at
asymptotic infinity,

Qe ¼
Z
Σ
dD−2x

ffiffiffiffiffi
jγj

p
nμuνhðϕÞFμν ¼ QVD−2; ð4:4Þ

where γ is the induced metric on Σ, with u and n its timelike
and spacelike normal unit vectors,

uμ ¼ 1ffiffiffiffiffiffiffiffiffi
fðrÞp

�
l
r

�
z
; nμ ¼

ffiffiffiffiffiffiffiffiffi
fðrÞ

p r
l
: ð4:5Þ

The electrostatic potential associated with the Maxwell
field is defined as

Φe ≔ AðrHÞ

¼ 1

4lQκ

�
ðz − 1Þ

�
rH
l

�
zþD−2

− ðD − 2Þ b

l2ðzþD−3Þ

�
rH
l

�
4−z−D

�
: ð4:6Þ

Next, in order to compute the total energy carried by our
black hole configuration, we exploit the so-called gener-
alized ADT quasilocal method, foremost introduced in
[53]. This method has been implemented and proved to be
well suited in the construction of conserved charges in
higher order gravity theories (see, for instance, [54–57]), as
well as Einstein-Maxwell-Dilaton theories [58]. In this
method, the conserved charge corresponding to a killing
vector field ξ is given by

QðξÞ ¼
Z

dD−2xμν

�
ΔKμνðξÞ − 2ξ½μ

Z
1

0

dsΘν�ðξ; sÞ
�
;

ð4:7Þ

with dD−2xμν ≔
ϵμνμ1μ2…μD−2
2ðD−2Þ! dxμ1 ∧ … ∧ dxμD−2 . Here,

ϵμνμ1μ2…μD−2
corresponds to the totally antisymmetric

Levi-Civita symbol in D-2 dimensions. On the other hand,
s stands for a parameter allowing an interpolation of the
black hole configuration between the solution of interest
(s ¼ 1) and the asymptotic one (s ¼ 0). Furthermore,
ΔKμνðξÞ ¼ Kμν

s¼1ðξÞ − Kμν
s¼0ðξÞ stands for the total differ-

ence of the Noether potentials between the two end points
of the path, s ¼ ½0; 1�. Finally, Θν is the surface term
usually disregarded during the variation of the action but
that has an instrumental role in the construction of the off
shell Noether current [53]. In general, it has a nontrivial

contribution to the quasilocal global charges, and it is
particularly important in our calculations of the mass. The
Noether potential and the surface terms associated to our
model are found to be

KμνðξÞ¼ 2
ffiffiffiffiffiffi
−g

p �∇½μξν�

2κ
−
1

2

∂L
∂ð∂μAνÞ

ξσAσ

�
; ð4:8Þ

Θμðδg; δϕ; δAÞ ¼ 2
ffiffiffiffiffiffi
−g

p �
gα½μ∇β�δgαβ

2κ
þ 1

2

∂L
∂ð∂μAνÞ

δAν

þ 1

2

∂L
∂ð∂μϕÞ

δϕ

�
: ð4:9Þ

To compute the mass according to (4.7), the timelike
Killing vector takes the form η ¼ ημ∂μ ¼ ∂t. This expres-
sion, together with the nontrivial contributions coming
from (4.8) and (4.9), lead subsequently to

M ¼ VD−2

2κl
ðD − 2Þ½1þ br−2ðzþD−3Þ

H �
�
rH
l

�
zþD−2

: ð4:10Þ

By making use of the expressions (4.10), (4.2), (4.3), (4.6),
and (4.4), it is easy to check that the first law of
thermodynamics is satisfied

dM ¼ THdS þΦedQe; ð4:11Þ

where there is not any effective contribution from the
electric work since Qe is independent of rH.

2 However, it
will be relevant for the Smarr-like formula below. The
following integral relation between the thermodynamical
quantities holds

M −
�

D − 2

zþD − 2

�
TS

¼ b
ðD − 2ÞðzþD − 3Þ

ðzþD − 2Þ
VD−2

κlzþD−1 r
−ðzþD−4Þ
H ; ð4:12Þ

which reduces to the previously reported [33,58] when
the parameter b goes to zero. The last expression can be
translated to a Smarr-like formula,

M ¼ D − 2

D − z
ðTHS − 4QeΦeÞ: ð4:13Þ

One must observe that there is no contribution of a scalar
charge neither in the first law or the Smarr formula,
contrary to similar reported results [48]. This is conse-
quence of the nondecaying character of our field, but a
more subtle analysis is needed since we are not in an
asymptotically flat case.

2The Gibbs free energy (G) representation of the first law dG ¼
QedΦe − SdTH indeed has an explicit electrical contribution.
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Since the horizon radius is chosen as an independent and
arbitrary parameter, there are no further reality or positivity
restrictions to impose. Thus, the charge Qe, massM or the
coupling b need not obey further restrictions. Nonetheless,
thermodynamical quantities still need to satisfy reasonable
conditions such as a positive temperature and an always
increasing entropy. In terms of rH, the later condition,
the second law is well posed according to (4.3). On the
other hand, demanding a non-negative temperature puts a
bound to the possible values of rH, giving then a sense of
domain of existence for physically meaningful black holes.
From (4.2), we have that the condition,

TH ≥ 0; ðzþD − 2Þ
��

rH
l

�
2ðzþD−3Þ

− 1

�
≥ 0; ð4:14Þ

implies that the domain of existence corresponds to
rH ∈ ½l;∞Þ. This region is depicted in Fig. 1. Notice that
the temperature is nondecreasing with the radius regardless
of the dimension for z ≥ 1.

V. LIFSHITZ SCALARIZATION

In Sec. III C, we showed how our solution meets the
sufficient conditions to be a scalarized version of the planar
Reissner-Nordstrom-AdS black hole. This phenomenon
can be further explored and made evident by the compari-
son of the thermodynamics of the scalar-free and hairy
configurations. For the following discussion, recall that
the scalarized and scalar-free black holes are connected
through the continuous limit z → 1.

We will consider the relevant thermodynamical quan-
tities ðT; S;MÞ as given in (4.2), (4.3), and (4.10), respec-
tively. For simplicity, we will take scale factor l and the
integration volume V as being fixed to a unitary value. Bear
in mind that the coupling constant b has to satisfy the
smoothness condition (3.11). The idea is to determine the
effect of the dynamical critical exponent in the evolution of
the thermodynamical variables; thus, we will leave z as the
parameter characterizing the thermodynamics.
First, in Fig. 2, we display the curves of energy versus

temperature for different values of z and different dimen-
sions. The most remarkable information provided by
this plot is the fact that the energy for a given temperature
value—with the rest of the variables fixed—is always
higher for the isotropic (scalar-free) black hole with respect
to any other scalarized (z > 1) configuration,

MðT; z ¼ 1Þ > MðT; z > 1Þ: ð5:1Þ

An extension of the plot Fig. 2 to the region of negative
temperatures displays a crossing point below which, the
behavior is the inverse. Of course, we discard this region in
compliance with the third law.
Looking for supplementary evidence, we portray the curves

of reduced entropy versus reduced temperature in Fig. 3,
similarly as done in [22,48]. These quantities are defined as

Tred ≔ MTH; Sred ≔
S

M2
: ð5:2Þ

Probing different dimensions, we realized that for D ¼ 4, 5, 6
the reduced entropy at given value of the reduced temperature

FIG. 1. Behavior of the Hawking temperature (TH) as a function of the normalized horizon radius (rH=l). We plot two cases, D ¼ 4
(left) and D ¼ 5 (right), as well as different values of the critical exponent. We highlight the isotropic case z ¼ 1 with a dashed red line.
Observe that, independent of the dimension, the temperature becomes positive for rH > l and is always increasing. This is true for all
values of z.
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is always higher in the scalarized (anisotropic) configuration
compared to the scalar-free. This result is in agreement with
the qualitative behavior of the energy curves, indicating that
the anisotropic configuration are preferred,

SredðTred; z ¼ 1Þ < SredðTred; z > 1Þ: ð5:3Þ

However, the plot inD ¼ 11 shows an exchange regionwhere
the behavior is interchanged but it is recovered soon after. The
crossing places of all different curves correspond to a single
point which suggest a physical transition that urges for a
deeper analysis.
The lower dimensional solution D ¼ 3 is left aside of the

scalarization discussion. There is a main drawback in that
case originated by the possible degeneracy of the scalar-
free solution as discussed in Sec. III B. Actually, it is
reflected in the smoothness condition (3.11), which breaks

down in said dimension and for z ¼ 1. Therefore, the
comparison of the thermodynamical quantities for isotropic
and anisotrpic configurations might be not well posed.

VI. CONCLUSIONS AND FINAL REMARKS

As a solution to a generalized Einstein-Maxwell-Dilaton
theory, we have constructed a new family of exact Lifshitz
black hole configurations. In such configurations, the
existence of a nontrivial scalar field is a direct consequence
of breaking the isotropic scaling symmetry between space
and time (z > 1). The scalar field trivializes at z ¼ 1 and
becomes imaginary for z < 1. The scalar-vector nonmini-
mal coupling is mediated by the function (3.5), which is the
most general for the given setup: a one-function static
metric ansatz, and a purely electric vector potential. The
obtained coupling can be understood as a nonlinear

FIG. 2. We display the energy as a function of the temperature taking all other thermodynamical quantities fixed. In order, from left to
right, we display different dimensions: D ¼ 4, 5, 6, 11. The dashed red line pictures the isotropic case z ¼ 1. The scalarized solutions
appeared energetically favored in all the region TH ≥ 0 since they have a lower black hole mass.
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deviation from the standard dilaton coupling measured by
the order of the new parameter b. In contrast to the limiting
solution [33], the generalized dilaton coupling upholds a
second horizon in our black hole, allowing then extremal
configurations. It turns out that this solution passes the
minimal tests to exhibit (spontaneous) scalarization at the
cost of fixing the value of b according to the smoothness
condition (3.11). If it is imposed, the dilaton limit is lost,
and the effective couplings of the action obtain an unavoid-
able dependence on the critical exponent.
We have shown how the anisotropic black hole with a

nontrivial scalar is energetically favored and, for a certain
parameter region, it is also entropically favored as compared
to the gravitating configuration with no scalar field. The
region where the configurations are physically meaningful
follows from the imposition of positive temperature, which
exclude undesired thermodynamical behavior such as

ill-defined physical quantities. Both cases, the one with a
nontrivial scalar and the scalar-free black holes are contin-
uously connected through the limit z → 1. The other way
around, the sudden emergence of a scalar field and a
preferred thermodynamics are driven by a deviation from
the isotropic scaling symmetry measured by z > 1. More
precisely, the amplitude of the scalar field and the entropy
grow with a larger critical exponent. This phenomenon is
remarkably similar to that of spontaneous scalarization,
where the evolution of the parameter into a threshold region
triggers the transition of the configuration to a scalarized
one. However, the analogy is not exact. To speak of
spontaneous scalarization, the smoothness condition should
be fulfilled, and therefore, z will be effectively introduced in
the action. As a result, varying the critical exponent means
also changing the theory, and the scalarization process would
not take place in the same moduli space.

FIG. 3. We plot the reduced entropy as a function of the reduced temperature while all other thermodynamical quantities are fixed. In
order, from left to right, we display different dimensions: D ¼ 4, 5, 6, 11. The dashed red line pictures the isotropic case z ¼ 1. In this
picture, scalarized solutions are entropically favored in all the region TH ≥ 0 for D ¼ 4, 5, 6. In D ¼ 11, there is a small region of
interchange which is shown zoomed in.
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Likewise, by regarding the dynamical exponent z as a
continuous parameter that can be varied towards the
critical relativistic value z ¼ 1—in which the scalar field
vanishes—one can span several nonrelativistic quantum
field theories with different physical properties. Since the
scalarization phenomenon involves the emergence of a
second order phase transition for the perturbations of the
scalar field, it is interesting to explore its implications
within the framework of the gravity/condensed matter
theory correspondence. Work is currently in progress to
elucidate the field theory physical meaning of this remark-
able effect.
Despite the subtlety impeding the identification of the

presented result as an analytical example of spontaneous
black hole scalarization, our result suggests that breaking
the isotropic scaling can be also a source for this effect
such as rotation [20] or the violation of conformal
invariance [28]. Of course, there are many directions to
be explored as possible candidates capable of making
compatible such scenarios. The most immediate one
would be generalizing the scalar field dynamics, with
the easiest case of including a self-interaction potential.
This additional freedom could in principle remove the z
dependence from the action and allow the coexistence of
both the scalarized and the scalar-free solution for a fixed
coupling function.
Some words are in order relating to the stability of the

quite general family of scalarizing asymptotically Lifshitz
black hole configurations here constructed. In this regard,
in [59], the authors studied real scalar field fluctuations
about a D-dimensional family of black holes with Lifshitz
asymptotics and generic critical exponent z. They showed
that the latter are stable under scalar field perturbations for
suitable boundary conditions. The study was performed
by assuming a stationary separable ansatz for a probe
scalar field in the background of an asymptotically Lifshitz
black hole. The strategy was to compute the quasinormal
mode frequencies and to impose incoming modes
boundary conditions at the horizon and Dirichlet boundary
conditions—equivalent to a vanishing scalar field—at
infinity. It turns out that the imaginary part of these
frequency modes always becomes negative, yielding a
damping-off scalar field perturbation, provided a suitable
Breitenlohner-Freedman bound is satisfied. Thus the sta-
bility of Lifshitz black holes is secured under this kind of
perturbations. A similar result was accomplished in [60]
for D-dimensional dilaton Lifshitz black holes coupled
to Born-Infeld electrodynamics. Moreover, in [61], the
authors numerically probed the stability of a D ¼ z ¼ 3
Lifshitz black hole under both scalar and spinorial pertur-
bations, making use of quasinormal mode frequencies.
Our asymptotically Lifshitz black hole field configuration
possesses the required properties to ensure the kind of
stability proved in [59] since our scalar field effective mass
also obeys a Breitenlohner-Freedman bound. However, a

complete stability analysis of asymptotically Lifshitz black
hole spacetimes requires addressing the tensor perturba-
tions as well, an interesting open question that deserves
further attention. In this sense, we would like to mention
that it seems feasible to carry out such an enterprise given
that our gravitational action is simply the Einstein-Hilbert
term. The task would become more arduous when consid-
ering higher-curvature terms, involving ghost fields, that
have been considered previously in the literature.
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APPENDIX: GENERAL ANALYSIS OF THE
HORIZONS IN D= 4

We recall the generic form of the metric function
preserving the Lifshitz asymptote in four dimensions,

fðrÞ ¼ 1þ a

�
l
r

�
zþ2

− b

�
l
r

�
2ðzþ1Þ

; ðA1Þ

where we have stripped the integration constant of length
dimensions as compared to (2.10), and we chose b → −b
without loss of generality. As we have already mentioned, it
is not possible to give closed form expressions for all the
roots of f due to the indefinite character of the powers
of r. Actually, there are few known examples of asymp-
totically Lifshitz geometries that could admit more than
one horizon. For instance, the solutions presented in [62]
constitute another case. Anyhow, studying the critical
points (A1) is still handleable. Taking the first derivative
of (A1) yields two extrema,

rext ¼


0;
�
−
2aðzþ 1Þ
bðzþ 2Þ

�
1=z

l
�
: ðA2Þ

Clearly, the first value is excluded because it coincides with
the singularity. We proceed to evaluate the second deriva-
tive of f in the only sensible critical point,

d2f
dr2

				
r¼rext

¼ 1

2

�
b
al

�
2
�
2a
b

�
−4=z ðzþ 2Þ2ðzþ2Þ=z

ðzþ 1Þðzþ4Þ=z

× ½a2ðzþ 3Þ − b2ð2zþ 3Þ�: ðA3Þ
Observe that to determine the sign the above expression,
we can factor out one of the integration constants, say a for
example, such that the only relevant quantity is their ratio
β ≔ b=a. In order to generate at least one horizon at
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rH > 0, the only physically acceptable case is for rext to be
a minimum, demanding then

zþ 3 − β2ð2zþ 3Þβ > 0 ⇒ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3

2zþ 3

r
< β <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3

2zþ 3

r
:

ðA4Þ

Additionally, it is necessary that fðrextÞ ≤ 0 such that there
is at least one real root. When fðrextÞ ¼ 0, there is one
unique event horizon given by rH ¼ rext. The case allowing
for two roots is met when fðrextÞ < 0. If this condition and
(A3) are simultaneously satisfied, the black hole displays
both, an event horizon and a Cauchy horizon.
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