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We consider a spherically symmetric line element which admits either a black hole geometry or a
wormhole geometry and show that in both cases the apparent horizon or the wormhole throat is partially
characterized by the zero set of a single curvature invariant. The detection of the apparent horizon by this
invariant is consistent with the geometric horizon detection conjectures and implies that it is a geometric
horizon of the black hole, while the detection of the wormhole throat presents a conceptual problem for the
conjectures. To distinguish between these surfaces, we determine a set of curvature invariants that fully
characterize the apparent horizon and wormhole throat. Motivated by this result, we introduce the concept
of a geometric surface as a generalization of a geometric horizon and extend the geometric horizon
detection conjectures to geometric surfaces. As an application, we employ curvature invariants to
characterize three important surfaces of the line element introduced by Simpson, Martin-Moruno, and
Visser, which describes transitions between regular Vaidya black holes, traversable wormholes, and black
bounces.
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I. INTRODUCTION

Black holes and wormholes are fascinating and strange
solutions of many gravitational theories. The defining
feature of black hole solutions is the presence of an event
horizon, the boundary of the region from which no
information can be sent to a distant asymptotic external
region [1]. In contrast, wormholes are objects that connect
two or more distant regions of spacetime, or even separate
universes, whose distinct regions are bounded by a worm-
hole throat [2,3]. While the interpretations of these two
classes of solutions are drastically different, they do share a
common property. They both admit a hypersurface that
demarcates important regions of such solutions—i.e., the
event horizon or the wormhole throat.
The standard definitions of both event horizons and

wormhole throats can be difficult to implement in practice.
The definition of the event horizon relies on the global
structure of the spacetime and not just the local geometry.

Due to this, determining the location of an event horizon
requires knowledge of the entire evolution of null curves. In
particular, one must have knowledge not only of their local
behavior, but of the null curve’s asymptotic future as well.
Since the definition and determination of event horizons
depends on the entire history and evolution of a spacetime,
they are teleological objects [4].
Wormholes are not teleological; however, their definition

also relies on global geometry. The topology of the entire
spacetime manifold must be determined in order to dis-
tinguish between wormholes that connect distinct regions
of the same spacetime and wormholes that connect two
distinct spacetimes [5]. Since it is impossible for any
observer to have global knowledge of a spacetime, it is
natural to posit that there may be some local method of
determining a quasilocal surface which will characterize
and distinguish a black hole or wormhole.
For stationary black hole solutions, the event horizon can

be identified with the Killing horizon, which is a local
surface. However, for dynamical black hole solutions, the
event horizon is not quasilocal, and other quasilocal
hypersurfaces must be used to define the boundary for
such black holes. Two types of quasilocal surfaces, margin-
ally trapped tubes (MTTs) and trapping horizons (THs),
have played an important role in the literature [4,6]. In this
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paper, we will focus on an extension of MTTs known as
future outer trapped horizons (FOTHs; also called apparent
horizons), and these will be defined in Sec. I A. While
apparent horizons and other quasilocal surfaces based on
(marginally) trapped surfaces have been used in numerical
general relativity [7], they are foliation dependent and
therefore nonunique [4].
The nonuniqueness of quasilocal horizons of black holes

motivates the determination of invariant hypersurfaces that
are independent of the choice of foliation. It has been
conjectured that dynamical black holes admit a quasilocal
hypersurface on which the curvature tensor and its covar-
iant derivatives become more algebraically special. Such a
hypersurface, called a geometric horizon (GH), can be
invariantly defined by the vanishing of a particular set of
curvature invariants [8,9]. While several examples of
dynamical black hole solutions have been shown to admit
GHs, the exact definition of a GH has not been fully
determined in terms of a particular set of curvature
invariants. However, in the case of spherically symmetric
black holes, the apparent horizon is a GH [9] and hence is
unique.
In a similar manner to the quasilocal horizons of black

holes, the definition of a wormhole throat has an issue with
foliation dependence. In the case of stationary or static
wormhole solutions, the throat can be determined locally
[10]. However, for dynamical wormholes, there are several
throat definitions that arise from imposing conditions on
the expansion of ingoing or outgoing null geodesics and
their derivatives [5,11,12]. As in the case of apparent
horizons, such definitions of the wormhole throat depend
on the foliation of spacetime and hence are nonunique. In
this paper, we will consider the definition of a wormhole
throat introduced by Hochberg and Viser [5] which
describes the throat as the minimal two-surface where light
rays focus as they enter the surface and expand on the other
side once they have passed through the throat [5]. We will
call such surfaces Hochberg-Visser (HV) wormhole throats
and define them in more detail in Sec. I A.
While apparent horizons play an important role in

gravitational wave astronomy [13,14], wormholes remain
theoretical objects, since they require exotic matter that
violates local energy conditions [2,3]. Apparent horizons
and wormholes are equally important for the understanding
of gravity and spacetime physics [10,15] and have led to the
refinement of definitions for special quasilocal surfaces in
the literature [4]. Since both apparent horizons and HV
wormhole throats are defined in a similar manner using the
expansion of null geodesics, it is natural to conjecture that
there may be an invariant description of a wormhole throat
similar to the GH conjecture. However, the current defi-
nition of a GH has two significant problems.
The first problem is a matter of implementation. The

definition of a GH is often given in terms of Cartan
invariants [16] which must be calculated in a certain

prescribed coframe. In practice, determining such a
coframe can be extremely difficult. It is possible that scalar
polynomial curvature invariants (SPIs), which are truly
frame independent, may be easier to use to define GHs in
practice. SPIs have previously been used to examine the
curvature structure of both black hole and wormhole
solutions [17–20].
The second problem is more significant and concerns the

interpretation of these surfaces. For spherically symmetric
solutions, the definition of a GH implies that a HVwormhole
throat is a GH. From the GH conjectures, we would then
erroneously conclude that a wormhole solution is in fact a
black hole. More generally, the definition of a GH cannot
distinguish betweenKilling horizons, cosmological horizons
[such as in the Reisner-Nordstrom (anti–)de Sitter solutions],
or the ergosphere in Kerr metrics [18]. Furthermore, a
dynamical black hole solution may admit multiple GHs
defined by the vanishing of distinct SPIs. For example, when
a dynamical black hole solution is constructed by making a
conformal transformation from a stationary black hole, the
event horizon is determined by an SPI [21,22], but a second
GH can also appear [23]. Noting that the above surfaces are
characterized as the zero set of curvature invariants, we will
introduce the concept of a geometric surface (GS), which is a
surface defined by the vanishing of a particular set of
curvature invariants and further characterized by inequalities
on additional nonzero curvature invariants.
The outline of the paper is as follows: In the remainder of

Sec. I, we briefly define apparent horizons and HV
wormhole throats. In Sec. II, we introduce the line element
for the imploding spherically symmetric spacetime and
review the geometric preliminaries to define the apparent
horizon, the GH, and the HV wormhole throat. In Sec. III,
we implement the Cartan-Karlhede (CK) algorithm to
generate a set of Cartan invariants which define the GH
and HV wormhole throat. In Sec. IV, we determine ratios of
SPIs that characterize the GH and HV wormhole throat. In
Sec. V, we introduce an improved set of conjectures for GSs
and illustrate the conjectures by considering the class of
dynamical spherically symmetric metrics which describe
the transitions between black bounces, regular Vaidya black
holes, and traversable wormholes. In Sec. VI, we summa-
rize our results and discuss future work.

A. Apparent horizons and wormhole throats

In order to define these apparent horizons and wormhole
throats, we introduce a complex-null frame basis
fl; n; m; m̄g and its dual coframe fn;l; m̄; mg such that
the metric takes the form

gab ¼ 2ðmðam̄bÞ − lðanbÞÞ; ð1Þ

where round brackets around indices denote symmetriza-
tion. The expansions of the null directions θðlÞ and θðnÞ are
then
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θðlÞ ¼ q̄ab∇alb and θðnÞ ¼ q̄ab∇anb; ð2Þ

where q̄ab ¼ gab þ 2lðanbÞ is a local two-metric.
In the process of defining MTTs and THs, we will first

introduce the concept of a trapped surface, S. This is a
closed two-surface such that the expansions, θðlÞ and θðnÞ,
along each of the two future-pointing null vectors normal to
the surface, la and na, are everywhere negative:

θðlÞ < 0; and θðnÞ < 0: ð3Þ

In this case q̄ab is the induced two-metric on the surface
S for which la and na are normal vectors. As in Eq. (1), la

and na are normalized to ensure they are outward/inward-
pointing null vector fields.
Using trapped surfaces, the original definition of an

apparent horizon is given as the boundary of the union of all
points that lie on some trapped surface [24]. Working with
this definition is problematic in practice, as it relies on
assumptions about asymptotic flatness and has problems
with the smoothness of the apparent horizon [4]. It is more
common to work with marginally trapped surfaces
(MTSs), which are closed two-surfaces for which the
expansions θðlÞ and θðnÞ, along each of the two future-
pointing null vectors normal to the surface, satisfy

θðlÞ ¼ 0 and θðnÞ < 0: ð4Þ

If the MTSs can be combined to produce a three-surface
foliated by the MTSs, this is called a marginally trapped
tube (MTT). If we additionally impose that LnθðlÞ < 0,
then the MTT is a future outer trapping horizon (FOTH),
which is frequently referred to as an apparent horizon in
the literature, where it is used as a quasilocal analogue of a
future event horizon [15,25]. In summary, an apparent
horizon is a smooth hypersurface that is foliated by MTSs
such that the expansions relative to the ingoing and out-
going null foliation normal vector fields satisfy

θðlÞ ¼ 0; θðnÞ < 0; and LnθðlÞ ¼ na∇aθðlÞ < 0:

ð5Þ

If the third condition is dropped, this becomes a dynamical
horizon [4].
The HV wormhole throat can be characterized in a

similar manner using the expansion of ingoing and out-
going null geodesics. The HV wormhole throat is defined
as the minimal two-surface where light rays focus as they
enter the mouth of the wormhole and expand on the other
side once they have passed through the throat. This can be
restated in terms of the expansion of the outward/inward-
pointing null vector fields which are normal to the surface:

θðlÞ ¼ 0 and la∇aθðlÞ ≥ 0; or

θðnÞ ¼ 0 and na∇aθðnÞ ≥ 0: ð6Þ

In the cases considered here, it is not possible to have
both expansions vanish simultaneously. Throughout this
paper, we will deliberately construct null frames such that
la is the null direction with vanishing expansion.

II. SPHERICALLY SYMMETRIC WORMHOLES
AND BLACK HOLES

The imploding spherically symmetric metric in advanced
coordinates is given as [6]

ds2 ¼ −e2βðv;rÞ
�
1 −

2mðv; rÞ
RðrÞ

�
dv2

þ 2eβðv;rÞdvdrþ RðrÞ2dΩ2; ð7Þ

where mðv; rÞ is the mass function, βðv; rÞ is an arbitrary
function, and dΩ2 is the line element for the two-sphere.
The remaining function RðrÞ is of the form

RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
; ð8Þ

where the parameter c is a non-negative real-valued
constant that determines if the metric is regular. In this
form, all gauge freedom has been used, and in general,
further simplification of the Einstein tensor is not possible.
For example, in a perfect fluid solution, the fluid (or dust)
will not, in general, be comoving.
We choose the two future-pointing, radial, null, geo-

desic, contravariant vector fields as part of the frame basis

l ¼ ∂v þ
1

2

�
1 −

2m
R

�
eβ∂r; n ¼ −e−β∂r ð9Þ

and complete the noncoordinate basis using the complex
contravariant spatial vector

m ¼ 1ffiffiffi
2

p
R
∂θ þ

iffiffiffi
2

p
R sinðθÞ ∂ϕ ð10Þ

and its complex conjugate m̄. Relative to this null frame,
the future null expansions are

θðlÞ ¼
eβR;r

R

�
1 −

2m
R

�
; θðnÞ ¼ −

2e−βR;r

R
: ð11Þ

If the line element represents a spherically symmetric
black hole solution, the apparent horizon is defined
according to Eq. (5). If instead, we suppose the line
element describes a wormhole, then the wormhole throat
is characterized by the two conditions in Eq. (6). In both
cases, the vanishing of θðlÞ implies that the relevant
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hypersurface for either the apparent horizon or wormhole
throat is described by the equation RðrÞ − 2mðv; rÞ ¼ 0.
We will denote this hypersurface as H.
The gradient of the equation R − 2m ¼ 0 yields the dual

of the vector normal to this hypersurface:

Na ¼ ∇aðR − 2mÞ ¼ ðR;r − 2m;rÞdr − 2m;vdv: ð12Þ

The hypersurface will be timelike or spacelike, depend-
ing on the sign of the magnitude of the normal vector, or
null if the magnitude is zero. Evaluating the norm on the
surface and using Eq. (8), we obtain

jNjjH ¼ gabNaNbjH ¼ −4e−βm;v

�
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ c2
p − 2m;r

�����
H
:

ð13Þ

To ensure that the resulting solution is dynamical, we
assume thatm;v ≠ 0. Then, the surfaceHwill be spacelike,
timelike, or null depending on the sign of m;v and the value
of m;r on this surface.
The existence of the wormhole throat or apparent

horizon affects the structure of the curvature tensor and
its covariant derivatives. This is reflected in the vanishing of
a particular scalar curvature invariant constructed from
higher-order SPIs [26,27]. An invariant originally con-
structed to detect the dynamical horizon for dynamical
spherically symmetric black holes will also detect the
wormhole throat [9].
Theorem II.1.—For any spherically symmetric wormhole

metric, the wormhole throat RðrÞ ¼ 2mðv; rÞ is detected by
the vanishing of the first-order SPI:

J ≡ 4I1I3 − I5; ð14Þ

where I1¼CabcdCabcd, I3¼Cabcd;eCabcd;e, and I5¼I1;aI1;a.
Proof.—Relative to the coframe fn;l; m̄; mg given in

Eqs. (9) and (10), we can compute the SPIs explicitly and
show that

θðlÞθðnÞ ∝
4I1I3 − I5

I21
¼ J

I21
:

This relationship is invariant under boosts and spins of the
complex null frame. ▪
We may normalize the above SPI to produce a new

invariant, J̃, whose vanishing is necessary and sufficient to
detect a wormhole throat or apparent horizon:

J̃ ¼ J
243I21

¼ θðlÞθðnÞ: ð15Þ

In Ref. [9], the authors have argued that the vanishing of
the SPI J determines the GH for spherically symmetric
black hole metrics. However, this invariant will vanish on

the throat of a wormhole, which is certainly not a black hole
solution. This distinction requires a refinement of the
geometric horizon detection conjectures to discriminate
between wormholes and black holes. In principle, a worm-
hole throat and GH could be distinguished by the flare-out
condition or the trapping condition for wormhole throats
and apparent horizons, respectively.
Computing the norm squared of the gradient of J̃, we

have a new curvature invariant constructed from the ratio of
first-order and second-order SPIs:

j∇J̃j2
����
H
¼ −

r4m;ve−β

ðr2 þ c2Þ5
�

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p − 2m;r

�����
H
: ð16Þ

We will show that this curvature invariant will partially
determine the flare-out condition on the throat. In order to
fully determine the flare-out or trapping condition, we must
use an additional scalar curvature invariant.

III. CALCULATION OF CARTAN INVARIANTS

To provide an invariant characterization of the conditions
that define a HV wormhole throat or an apparent horizon,
we will apply the CK algorithm [18] to generate a set of
curvature invariants that fully characterize the geometry.
Relative to the coframe given by Eqs. (9) and (10), the only
nonzero component of the Weyl spinor is

Ψ2 ¼ −Cabcdlambncm̄d: ð17Þ

This implies that the parameters of the null rotations
about la and na are fixed to identity, and the remaining
frame freedom consists of boosts and spins. Generally, the
boost parameter can be fixed at zeroth order as well, since
the nonzero Newman-Penrose (NP) curvature scalars for
the Ricci spinor are

Φ00 ¼
1

2
Rablalb; Φ11 ¼

1

4
Rabðlanb þmam̄bÞ;

Φ22 ¼
1

2
Rabnanb; Λ ¼ Ra

a

24
: ð18Þ

Thus, the Weyl tensor is of algebraic type D, and the
Ricci tensor is generally of algebraic type I (Φ00 ≠ 0)
relative to the alignment classification [28].
At zeroth order, the linear isotropy group of the Riemann

tensor consists of spins [29] and potentially a boost if the
Ricci tensor is of Segre type ½ð11Þð1; 1Þ� or ½ð111; 1Þ� [16].
If the linear isotropy group is two-dimensional, then the
boost parameter can be fixed using the components of the
covariant derivative of the Weyl tensor.
Applying a boost with parameter a ¼ aðv; rÞ to the null

coframe in Eqs. (9) and (10) gives
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l0 ¼ a2l; n0 ¼ a−2n; m0 ¼ m: ð19Þ

We can use the differential Bianchi identities to simplify
the components of the covariant derivative of theWeyl tensor
to express them in terms of the zeroth-order NP scalars, the
frame derivatives of the zeroth-order NP scalars with respect
to l0 and n0, and the following spin coefficients:

ϵ0 ¼ a2
�
RðR − 2mÞeββ;r

2R2
þ β;v

2
−
eβm;r

2R
þ R;reβm

2R2

�

þ a2DðlnaÞ; ð20Þ

γ0 ¼ 1

a2
ΔðlnaÞ; ð21Þ

ρ0 ¼ −
1

2
θðl0Þ ¼ −a2

R;reβðR − 2mÞ
2R2

; ð22Þ

μ0 ¼ 1

2
θðn0Þ ¼ −

R;re−β

a2R
; ð23Þ

whereD ¼ la∂xa andΔ ¼ na∂xa are framederivatives of the
original unprimed frame. The boost parameter is specified by
normalizing the components of the Ricci tensor using a
boost,

Φ0
00 ¼ a4Φ00; Φ0

22 ¼ a−4Φ22; ð24Þ

or if theRicci tensor is of Segre type [(11)(1,1)] or [(111,1)], a
boost can be used to normalize the components of the
covariant derivative of the Weyl tensor,

C0
1231;4 ¼ a2C1231;4; C0

1232;4 ¼ a−2C1232;4: ð25Þ

Once the Ricci tensor or Weyl tensor is chosen to fix the
boost parameter, there are two subcases that can occur. If
both components are nonzero, the boost may be chosen to
make them equal in the new frame. If one component
vanishes, the boost parameter may be used to set the other
component equal to 1. Hereafter, we will assume an
appropriate normalization has been made and omit the
primes on all NP quantities.
By fixing the boost parameter, an invariantly defined

frame has been constructed. Relative to this frame, the
components of the Ricci and Weyl tensors are now Cartan
invariants. Furthermore, the components of the respective
covariant derivatives of the Ricci and Weyl tensors are also
Cartan invariants, and we may express the following spin
coefficients as ratios of Cartan invariants:

ρ ¼ C1232;4

3Ψ2

; μ ¼ C1231;4

3Ψ2

: ð26Þ

The two NP spin coefficients are now Cartan invariants
relative to the invariantly defined frame based on our choice

of how the boost paramter is fixed. Finally, any frame
derivative of Cartan invariants involving D or Δ will be a
Cartan invariant.
To show that the remaining conditions for an apparent

horizon and HV wormhole throat can be given in terms of
Cartan invariants, we consider a boost l ¼ ã2l̃, where l̃ is
the geodesic null direction for which −2D̃ ρ̃ ¼ D̃θðl̃Þ ≥ 0

and ρ̃ always vanishes on the geometric horizon. The
Leibniz rule implies that Dρ ≥ 0 if and only if D̃ ρ̃ ≥ 0.
It follows that −Dρ is proportional to the standard flare-out
condition on the geometric horizon and shares the same
sign.
From Eq. (22), the conditions for an apparent horizon in

Eq. (5) can be restated in terms of the Cartan invariants

ρ ¼ 0; μ > 0; and Δρ > 0; ð27Þ

while the conditions for a HV wormhole throat in Eq. (6)
become

ρ ¼ 0 and Dρ ≤ 0: ð28Þ

Both theHVwormhole throat and the apparent horizon are
geometric surfaces, as they are characterized by conditions
on curvature invariants, namely the Cartan invariants.
As a final remark, the flare-out condition for the HV

wormhole is a property of the bundle of outgoing null
geodesics and not a property of the geometry of the solution
itself [5]. In the context of the CK algorithm, the invariant
null vector field la is no longer required to be geodesic, and
the analogous flare-out condition now arises from the
geometry of the solution. We note that in the spherically
symmetric case, the invariant null vector fields are geodesic
but are no longer affinely parametrized. Despite this
difference in interpretation, the HV wormhole conditions
can be recovered from the formulation in terms of Cartan
invariants.

IV. RATIOS OF SCALAR POLYNOMIAL
CURVATURE INVARIANTS

The characterization of the apparent horizon and HV
wormhole throat in terms of the Cartan invariants given,
respectively, in Eqs. (27) and (28) has the advantage of
generating invariants that will only detect the wormhole
throat. However, it has the disadvantage that it relies on the
choice of a particular class of coframes. It is preferable to
determine invariant conditions for the wormhole throat in
terms of SPIs or ratios of SPIs, which we will call scalar
rational curvature invariants (SRIs), as these are indepen-
dent of the choice of coframe. To accomplish this, we will
express the SRIs in terms of Cartan invariants. For example,
the SPI J from Eq. (14) takes the form
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J ¼ ð212Þð33ÞρμΨ4
2 ¼ ð211Þð33ÞΨ4

2

�
r2

2ðr2 þ c2Þ
�

×
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
�
: ð29Þ

To begin, we will determine a basis of SRIs at zeroth
order by taking ratios of the following nonzero Carminati-
McLenaghan (CM) invariants [30]:

m1 ¼ 2Ψ2Φ22Φ00 − 8Φ2
11Ψ2; ð30Þ

m2 ¼ 2Ψ2
2Φ22Φ00 þ 16Ψ2

2Φ2
11; ð31Þ

r2 ¼ 6Φ11Φ00Φ22; ð32Þ

w1 ¼ 6Ψ2
2; ð33Þ

w2 ¼ −6Ψ3
2: ð34Þ

The SRIs we will use are

W0 ¼
w2

w1

¼ −Ψ2; ð35Þ

R1 ¼
2m1

W0

þ 2m2

W2
0

¼ 48Φ2
11; ð36Þ

R2 ¼
R1

6
−
m1

W0

¼ 2Φ00Φ22; ð37Þ

R3 ¼
r2
3R2

¼ Φ11: ð38Þ

We note that the Cartan invariants Ψ2, Φ00Φ22, and Φ11

are proportional to W0, R2, and R3, respectively. We have
included R1 to cover the case where either Φ00 or Φ22

vanishes. In this case, we are only able to construct SRIs
that are proportional to the Cartan invariants Ψ2 and Φ2

11.
In order to construct a helpful basis of SRIs that are in

terms of components of the covariant derivatives of the
Weyl and Ricci tensors, we choose a different invariant
frame by fixing the boost parameter to normalize:

μ ¼ −1: ð39Þ

This is equivalent to fixing the component,
C1231;4 ¼ −3Ψ2. In doing so, the spin coefficient ρ is
fixed to

ρ ¼ −J̃; ð40Þ

where J̃ is the SRI from Eq. (15). From the transformation
rule for ρ, given in Eq. (22), and relative to this frame, the
corresponding Cartan invariant will still vanish on the
wormhole throat. With this choice of frame, −Dρ is still

proportional to the standard flare-out condition on the
geometric horizon and shares the same sign.
Using the Ricci identities, we find that two spin

coefficients can be expressed in terms of SRIs and the
Cartan invariant Φ22:

ϵ ¼ 1

2
ðW0 − J̃Þ − 2Λ; ð41Þ

γ ¼ 1

2
þ 1

2
Φ22: ð42Þ

With these expressions, we can writeDρ andΔρ in terms
of SRIs and the Cartan invariants Φ00 and Φ22:

Dρ ¼ −J̃W0 þ 2J̃2 − 2J̃ΛþΦ00; ð43Þ

Δρ ¼ −J̃Φ22 þW0 − 2J̃ − 2Λ: ð44Þ

The norm squared of the exterior derivative of J̃ is

j∇J̃j2 ∝ DJ̃ΔJ̃; ð45Þ

and it will give an SRI that encodes information about Dρ
and Δρ. We are only able to distinguish the relative sign
between these Cartan invariants from the sign of j∇J̃j2. Yet
again, we will have to find another way to write the Cartan
invariants in terms of SRIs.
If either of the components Φ00 or Φ22 vanishes, then

either Eq. (43) or Eq. (44) yields an expression for Dρ or
Δρ, respectively, in terms of SRIs. In the remainder of this
section, we will assume that both Φ00 and Φ22 are nonzero
relative to the chosen frame.
We now construct a vector field, denoted P0, by taking a

linear combination of gradients of the zeroth-order SRIs
W0, Λ, and R3. The resulting field is simplified via the
Bianchi identities to give

P0 ¼
1

−21132W2
0

∇ð48W2
0Þ þ

1

2631W0

∇Λ −∇R3 ð46Þ

¼ −
2R3 þ J̃Φ22 þ 3W0

2631W0

nþ 2J̃R3 −Φ00 þ 3J̃W0

2631W0

l:

ð47Þ

Taking the norm of P0 yields a first-order SRI. Using
Eqs. (41) and (42) and subtracting multiples of J̃ with
zeroth-order SRIs, we find a simpler first-order SRI:

ð2R2 þ 3W0ÞðJ̃2Φ22 þΦ00Þ

¼ jP0j2 þ
1

2
J̃R2 þ 9J̃W2

0 þ 12J̃W0R3 þ 4J̃R2
3: ð48Þ

Assuming 2R2 þ 3W0 ≠ 0, we can express a linear
combination of the Cartan invariants Φ22 and Φ00 in terms
of SRIs:
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J1 ¼ J̃2Φ22 þΦ00 ¼
jP0j2 þ 1

2
J̃R2 þ 9J̃W2

0 þ 12J̃W0R3 þ 4J̃R2
3

2R2 þ 3W0

: ð49Þ

If 2R2 þ 3W0 ¼ 0, we can instead consider another expression for J1, assuming 2J̃ −W0 þ 2Λ ≠ 0:

J1 ¼
j∇J̃j2 − 8J̃3 − J̃2ð8W0 þ 16ΛÞ − J̃ð2W2

0 þ R2 þ 8W0Λþ 8Λ2Þ
2J̃ −W0 þ 2Λ

: ð50Þ

To exclude the possibility that both quantities in the
denominator of J1 vanish, we write them in their coordinate
expressions to show that,

2J̃ −W0 þ 2Λ ¼ −ð2R2 þ 3W0Þ þ
1

R2
;

and note that both quantities cannot be zero simultaneously.
Thus, it is always possible to determine J1.
With J1, we can consider the combination of Cartan

invariants Dρ − J̃Δρ and show that it is equal to a linear
combination of SPIs:

J2 ¼ Dρ − J̃Δρ ¼ J̃2Φ22 þΦ00 − 2J̃W0 þ 4J̃Λþ 4J̃2

¼ J1 − 2J̃W0 þ 4J̃Λþ 4J̃2: ð51Þ

Noting that on the geometric surface we have J̃jH ¼ 0, it
follows that

J2jH ¼ J1jH ¼ DρjH ¼ −DJ̃jH: ð52Þ

In the construction of J1 and J2, we have assumed that
Φ00 and Φ22 are both nonzero. If one of these components
vanishes, then we may use either Eq. (43) or Eq. (44) to
generate an expression for either DJ̃ or ΔJ̃:

DJ̃ ¼ J̃W0 − 2J̃22J̃Λ −Φ00;

ΔJ̃ ¼ J̃Φ22 −W0 þ 2J̃ þ Λ: ð53Þ

Then, using j∇J̃j2, we are able to construct an SRI for the
remaining quantity.

V. THE GEOMETRIC SURFACE CONJECTURES
FOR WORMHOLES AND BLACK HOLES

In the previous section, we have shown that for any
spherically symmetric metric describing a black hole or a
wormhole, the geometric surface H, defined by the
vanishing of J̃ in Eq. (15), can be characterized as an
apparent horizon or as a HV wormhole throat by determin-
ing the signs of bothDJ̃ andΔJ̃ using j∇J̃j2 in Eq. (45) and
either J2 in Eq. (52) or the appropriate SRI expression from
Eqs. (43) and (44) when either Φ00 or Φ22 vanishes. If the

metric describes a dynamical black hole, we have the
following inequality:

J̃jH ¼ 0 and ΔJ̃jH < 0: ð54Þ

If the metric describes a wormhole with a HV throat, the
inequality is instead

J̃jH ¼ 0 and DJ̃jH ≥ 0: ð55Þ

This distinction between the apparent horizon and the
HV wormhole throat suggests the following refinement for
the geometric horizon conjecture:
Conjecture V.1.—A geometric horizon (GH) is a geo-

metric surface defined by the vanishing of a curvature
invariant proportional to θðlÞ—i.e., Ĩ0 ∝ θðlÞ, Ĩ0 ¼ 0—
relative to the invariantly defined complex null frame
fl; n; m; m̄g, along with the inequalities on two curvature
invariants Ĩ1 ¼ θðnÞ and Ĩ2 ¼ ΔθðlÞ:

Ĩ1 < 0 and Ĩ2 < 0: ð56Þ

In the same way that we expect dynamical black
hole solutions to eventually settle down to either a black
hole with an isolated horizon (IH) or a stationary black hole
[31], it is feasible that a black hole solution could transition
into a wormhole solution or vice versa [32]. In the case of a
black hole transitioning to a stationary state, we would
expect the curvature invariants which characterize the GH
to smoothly track the GH as it evolves into an IH or a
Killing horizon. In a similar manner, the curvature invar-
iants that detect the GH of a black hole which then
transitions into a wormhole (or vice versa) should also
be able to distinguish the wormhole throat.
In analogy with the definition of a geometric horizon, we

will introduce an invariantly defined surface for wormhole
throats. We will replace the condition that the outgoing and
ingoing null directions la and na are geodesic and normal
to the wormhole throat with the condition that la and na are
invariantly defined.
Conjecture V.2.—An invariant Hochberg-Visser (IHV)

wormhole throat is a geometric surface defined by the
vanishing of a curvature invariant proportional to θðlÞ—i.e.,
Ĩ0 ∝ θðlÞ, Ĩ0 ¼ 0—relative to the invariantly defined
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complex null frame fl; n; m; m̄g, along with the inequal-
ities on two curvature invariants Ĩ1 ¼ θðnÞ and Ĩ3 ¼ DθðlÞ:

Ĩ1 < 0 and Ĩ3 ≥ 0: ð57Þ

In addition to the GH and the IHV wormhole throats,
there are other surfaces which are defined as the zero set of
curvature invariants and are physically or geometrically
important. For example, the ergosphere in Kerr spacetimes
can be determined by the zero set of certain SRIs
constructed from the Weyl tensor [18]. In order to take
into account these surfaces, we introduce a general con-
jecture for physically relevant surfaces:
Conjecture V.3.—If a surface has significance in the

physical interpretation of a solution to a gravity theory, then
it is characterized by a GS with additional conditions
imposed on the curvature invariants.

A. Regular Vaidya black holes, traversable wormholes,
and black bounces

In this section, we will consider a novel class of
dynamical spherically symmetric metrics describing tran-
sitions between regular Vaidya spacetimes, traversable
wormholes, and black bounces [33,34]. We will only
examine examples with ingoing radiation. In this case,

the metric is constructed by fixing βðv; rÞ ¼ 0 and
mðv; rÞ ¼ mðvÞ in Eq. (7). Explicitly, this gives

ds2 ¼ −
�
1 −

2mðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
�
dv2 þ 2dvdrþ ðr2 þ c2ÞdΩ2;

ð58Þ

where the mass function m is dependent only on the null
coordinate v, and c is a positive real-valued constant. When
mðvÞ < c

2
, this metric describes a regular black hole and c

determines the size of the nonsingular core. When
mðvÞ > c

2
, this metric describes a wormhole and c deter-

mines the throat radius. In the case that mðvÞ is increasing
in v and crosses the value c

2
, the metric will transition from a

regular black hole to a wormhole due to an accretion of null
dust. We note that in the outgoing case, the metric can
describe an evaporating black hole which leaves a worm-
hole remnant.
Wewill determine the geometric surfaces associated with

the stages that describe either a wormhole throat or an
apparent horizon at particular values of r and v. To compute
the Cartan invariants for these solutions, we would start
with the coframe given by Eqs. (9) and (10), with the
appropriate simplifications. Since the matter content has
Φ00 and Φ22 as nonzero, the boost parameter is chosen to
normalize Φ00 ¼ Φ22. Instead of the Cartan invariants, we
will compute the SRIs from the previous section:

J̃ ¼ r2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
− 2mÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
ðr2 þ c2Þ2 ;

J1 ¼
r2ð2m;vðr2 þ c2Þr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
− 4c2mðm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
Þ − c4 − c2r2Þ

ðr2 þ c2Þ5 ;

J2 ¼ J1 − 2J̃ðW0 þ 4Λþ 4J̃Þ; ð59Þ

where

W0 ¼ −
3mðc2 − 2r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
− 2c4 − 2c2r2

6ðr2 þ c2Þ3 ; Λ ¼ ð3m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
Þc2

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
ðr2 þ c2Þ2 : ð60Þ

The familiar geometric surface,H, is in this case defined
by the solution set to J̃ ¼ 0. Explicitly, this occurs when

rHðvÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − c2

p
: ð61Þ

The signs of J2jH and j∇J̃j2jH will determine if H is a
wormhole throat or geometric horizon.
We will also point out the existence of one other

important hypersurface, O, located at r ¼ 0. This hyper-
surface has an induced three-metric of the form

ds2jO ¼ −
�
1 −

2mðvÞ
c

�
dv2 þ c2dΩ2; ð62Þ

which describes a cylinder with three possible signatures
depending on the ratio:
(a) 2m

c < 1: O is timelike and is a traversable wormhole.
(b) 2m

c ¼ 1: O is null and is a one-way wormhole with a
null throat.

(c) 2m
c > 1: O is spacelike and is a black bounce.
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Here, a bounce describes the transition into a future
incarnation of the Universe. We note that the nature of the
hypersurface will change as v varies.
The invariant J̃ will detect the hypersurfaceO. However,

J1 and J2 will vanish on O as well, and we cannot
determine the signature of this surface. Due to the impor-
tance of this hypersurface in terms of its physical inter-
pretation, we expect that its signature should be detected
using some curvature invariant. This expectation is justified
by considering the invariant 2Λ −W0 and evaluating it on
the surface r ¼ 0:

ð2Λ −W0ÞjO ¼ 2m − c
2c3

: ð63Þ

The value of this invariant will determine whether O is a
traversable wormhole, a one-way wormhole with a null
throat, or a black bounce.

VI. CONCLUSIONS

We have shown that the throats of spherically symmetric
dynamical wormholes defined by Hochberg and Visser
(HV) are characterized by the same curvature invariant used
to define the apparent horizon for spherically symmetric
dynamical black holes. For spherically symmetric black
holes, the apparent horizon is a geometric horizon (GH)
and, in light of the GH conjectures [9], this is problematic,
as a naive application of the conjectures might lead one to
assume a HV wormhole throat is in fact a black hole’s GH.
This result indicates that additional curvature invariants are
needed to distinguish between the relevant hypersurfaces
for each of the two classes of solutions.
By relaxing the condition that the ingoing and outgoing

null directions must be geodesic and normal to the relevant
surface in the definitions of the HV wormhole throat and
the apparent horizon, we have given an alternative defi-
nition of these surfaces in terms of curvature invariants. The
relevant curvature invariants are first constructed using an

invariantly defined frame generated by the Cartan-Kalrhede
algorithm and are hence Cartan invariants. However, as the
calculation of the Cartan invariants relies on a particular
choice of frame, we have also determined a set of rational
curvature invariants constructed from the set of Carminati-
McLenaghan invariants. This set of invariants will distin-
guish between the HV wormhole throat and the GH and has
the added advantage that the curvature invariants are
independent of the choice of frame basis.
Inspired by the use of curvature invariants to distinguish

between the HV wormhole throat and the GH in spherically
symmetric dynamical metrics, we have introduced the
concept of a geometric surface as a generalization of a
GH and defined an invariant Hochberg-Visser (IHV)
wormhole throat as another example of a geometric surface.
For both the GH and IHV wormhole throats, we have
required that the ingoing and outgoing directions la and na

be invariantly defined, and we have relaxed the requirement
that la and na must be geodesic and normal to the relevant
surface. From these definitions, we have suggested three
new conjectures on geometric surfaces (GS) as an exten-
sion of the current GH conjectures.
We note that in the case of spherical symmetry, the HV

wormhole throat and apparent horizon coincide with the
IHV wormhole throat and GH, respectively. This may not
be the case in less symmetric wormhole and black hole
solutions, and it is expected that these surfaces will differ
for more realistic solutions. For example, in the Kastor-
Traschen multi–black hole solution, the GH and the
apparent horizon are different surfaces [35,36]. In future
work, we hope to investigate the validity of these con-
jectures for axisymmetric examples such as rotating
dynamical black holes and rotating traversable wormholes.
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