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We present a characteristic initial value approach to calculating the Green function of the Regge-Wheeler
and Zerilli equations. We combine well-known numerical methods with newly derived initial data to obtain
a scheme which can in principle be generalized to any desired order of convergence. We demonstrate the
approach with implementations up to sixth order in the grid spacing. By combining the results of our
numerical code with late-time tail expansions and methods of subtracting the direct part of the Green
function, we show that the scalar self-force in Schwarzschild spacetime can be computed to better accuracy
than previous Green function based approaches. We also demonstrate agreement with frequency domain
methods for computing the Green function in the gravitational case. Finally, we apply the Regge-Wheeler
and Zerilli Green functions to the computation of the gravitational energy flux.
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I. INTRODUCTION

While still in its infancy relative to electromagnetic
astronomy, gravitational wave astronomy has already seen
enormous success in recent years. The LIGO-VIRGO
collaboration has reached the stage of regularly detecting
the merger of stellar mass black holes and neutron stars [1].
Looking towards future detectors, the planned European
Space Agency mission, LISA (Laser Interferometer Space
Antenna), will provide access to an entirely new frequency
range for the gravitational wave astronomy community [2].
Operating in the 0.1–100 mHz range, LISAwill not only be
capable of detecting stellar mass binaries long before
merging but will also detect sources involving much larger
masses. Among the new sources which will be detected for
the first time are extreme mass ratio inspirals (EMRIs).
These systems, comprising a stellar mass compact object
such as a black hole, or even a neutron star, orbiting a
massive or supermassive black hole (106–109 M⊙), are
expected to be found in the centers of galaxies and lie in the
most sensitive part of the LISA band. There are a number of
expected formation channels for EMRIs, with the most
likely being dynamical friction in the dense cluster about
the supermassive black hole at a galaxy’s center [3]. Stars
and compact objects within this cluster undergo gravita-
tional interactions which can lead to objects falling into a
close orbit around the central black hole. Main sequence
stars are unlikely to survive in this environment due to tidal
disruption, but compact objects such as black holes and
neutron stars can withstand these tidal forces to produce
a long-lived, slowly inspiraling binary. The expected
event rates for detections of EMRIs by LISA remain
quite uncertain, being anywhere from 1–103 yr−1 [4].

However, they present some of the most exciting oppor-
tunities to study black holes, and also some of the most
difficult challenges.
As with LIGO-VIRGO, LISA will identify many of the

sources in its frequency band via matched filtering,
comparing detected signals to large banks of precomputed
waveforms to pluck out those signals likely to be astro-
physical in origin. This is because most, if not all, EMRI
signals will actually be so weak as to lie below the noise
level of the detector. Thus, one of the primary goals of the
next decade for the general relativity community is to
generate high-accuracy waveforms for all of the expected
sources. Unlike typical LIGO sources, or even other LISA
sources such as massive/supermassive black hole binaries,
EMRIs spend a large amount of their lifetimes in a region
of the parameter space where many techniques for modeling
black hole binaries are not applicable, or not currently
practical. For instance, the orbit of the smaller companion
object is typically not circularized, and can be highly
inclined. The system is typically long lived, spending weeks
or months within the LISA band. The smaller object can also
reach large velocities, comparable to c, during its orbit.
These properties combine to make EMRIs a unique and
extremely powerful laboratory in which to test general
relativity. However, they also rule out post-Newtonian theory
and numerical relativity as suitable methods to model the
system, except in certain limits (e.g., at large radii where the
companion’s velocity is small, where post-Newtonian theory
is applicable [5]). Instead, the standard approach to modeling
EMRIs is to compute the self-force (SF) [6–8].
In the SF approach, the effect of the companion (massm)

is treated as a small perturbation to the background
spacetime of the central black hole (mass M). This leads
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to an expansion of the metric, order-by-order, in the mass
ratio ϵ≡ m

M,

gμν ¼ gμν þ ϵhð1Þμν þ ϵ2hð2Þμν þ…; ð1Þ

where g is the exact metric of the full two-body spacetime,
g is the metric of the background, and hðnÞ is the nth order
contribution to the metric perturbation. Schematically,
Fig. 1 shows the behavior of the system. At zeroth order,
the companion would follow a geodesic of the background
spacetime. When higher-order effects are included, the
emission of gravitational waves causes the orbit of the
companion to slowly evolve and inspiral into the central
black hole.
The goal of the self-force approach is to compute the

metric perturbation and use it to derive the inspiraling
motion of the companion along with the associated
gravitational waveform. There are a number of technical
difficulties that arise in the process. One of the most
fundamental is that the metric perturbation is formally
singular along the worldline of the companion. Much of the
work in the SF community over the last three decades has
been aimed at tackling this problem. An approach which
has seen significant development in recent years is that of
worldline convolution [9–12]. This approach makes use of
Green functions to construct the metric perturbation by
performing convolution integrals over the past worldline of

the particle. Once the Green function is available, it is
straightforward to use it to compute the self-force, but
this merely moves the challenge to that of computing the
Green function.
In this work, we develop a characteristic formulation

of the Green function for the Regge-Wheeler and Zerilli
equations, which govern perturbations of Schwarzschild
spacetime. Similar approaches have previously applied a
characteristic method to compute the Green function for
the scalar wave equation [13,14]. Our approach more fully
develops the characteristic formalism, extending these
earlier works to be applicable to the Regge-Wheeler and
Zerilli equations and also to arbitrary convergence order in
the numerical scheme. The layout of the paper is as follows:
in Sec. II we review the theory of Green functions for the
Regge-Wheeler equation; in Sec. III we describe our
numerical method for solving a characteristic initial value
problem for the Green function; in Sec. IV we derive initial
conditions that enable the method to be extended to
arbitrary convergence order; in Sec. V we demonstrate
our method by applying it to compute the scalar self-force
and the gravitational energy flux. Finally, we provide some
concluding remarks in Sec. VI.
Throughout this work we use geometrized units such that

the speed of light and the gravitational constant are set to
unity (G ¼ c ¼ 1).

II. GREEN FUNCTIONS FOR THE
REGGE-WHEELER FORMALISM

The Regge-Wheeler formalism is based on constructing
solutions to the linearized Einstein equations from solu-
tions to the modified scalar wave equation,

�
□þ 2Ms2

r3

�
Ψs ¼ Ss: ð2Þ

where s is the spin of the field (s ¼ 0 for scalar fields,
s ¼ 1 for electromagnetic fields, and s ¼ 2 for gravitational
fields). Working in Schwarzschild coordinates, ft; r; θ;ϕg,
this equation is separable using the ansatz

Ψs ¼
X∞
l¼jsj

Xl
m¼−l

1

r
Ψslmðt; rÞYlmðθ;ϕÞ; ð3Þ

where Ylmðθ;ϕÞ are the spherical harmonics. Transforming
to double null coordinates, fu; vg ¼ ft − r�; tþ r�g where
r� ¼ rþ 2M lnð r

2M − 1Þ is the Schwarzschild tortoise coor-
dinate, the Regge-Wheeler master function Ψslm satisfies
the Regge-Wheeler equation,

� ∂2

∂u∂vþ
f
4

�
lðlþ 1Þ

r2
þ 2Mð1 − s2Þ

r3

��
Ψslm ¼ −

f
4
Sslm;

ð4Þ

FIG. 1. In the SF picture, the compact object orbiting the central
black hole moves along a worldline (red) which deviates from a
geodesic of the background spacetime (dashed, black line) due to
the emission of gravitational waves. This effect can be described
in terms of a (fictitious) force, Fα which we call the self-force, as
it results from the particle’s own bending of spacetime. The effect
is exaggerated here, as in reality a background geodesic would
be a good approximation to the worldline of the compact object
for multiple orbits. However, the magnitude of the SF increases
at points on eccentric or hyperbolic orbits which are close to
periastron.
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with f ≡ 1 − 2M
r . Here, the modes of the source are defined

in the same way as the master function,

Ss ¼
X∞
l¼jsj

Xl
m¼−l

1

r
Sslmðt; rÞYlmðθ;ϕÞ: ð5Þ

We are interested in constructing the retarded Green
function, which satisfies

�
□þ 2Ms2

r3

�
Gret

s ðx; x0Þ ¼ −4πδð4Þðx; x0Þ; ð6Þ

where δð4Þðx; x0Þ is the invariant Dirac-delta distribution.
Primed coordinates denote the position of the particle,
while unprimed coordinates denote a point in the particle’s
past history. The retarded Green function can be written in
terms of its decomposition into spherical harmonic modes,

Gret
s ðx;x0Þ¼ 4π

rr0
X∞
l¼jsj

Xl
m¼−l

Gslðr;r0;ΔtÞYlmðθ;ϕÞY�
lmðθ0;ϕ0Þ:

ð7Þ

Note that time translation invariance means the retarded
Green function only depends on the time difference,
Δt≡ t0 − t. It is convenient to exploit spherical symmetry
by using the addition theorem for the spherical harmonics
to rewrite the mode decomposition in terms of the angle γ
between x and x0,

Gret
s ðx; x0Þ ¼ 1

rr0
X∞
l¼jsj

ð2lþ 1ÞPlðcos γÞGret
slðr; r0;ΔtÞ: ð8Þ

Substituting into Eq. (6) and using the completeness
relation for the spherical harmonics, we find that the modes
of the retarded Green function satisfy the Regge-Wheeler
equation with a distributional source,

� ∂2

∂u∂vþ
f
4

�
lðlþ 1Þ

r2
þ 2Mð1 − s2Þ

r3

��
Gret

slðr; r0;ΔtÞ

¼ 1

2
δðu0 − uÞδðv0 − vÞ: ð9Þ

The modes of the retarded Green function for the Regge-
Wheeler equation are thus Green functions for the flat-
space 2D wave equation with a potential. Writing these as

Gret
slðr; r0;ΔtÞ ¼ −gslðu; v; u0; v0Þθðu0 − uÞθðv0 − vÞ; ð10Þ

we find that gslðu; vÞ satisfies the homogeneous Regge-
Wheeler equation,

� ∂2

∂u∂vþ
f
4

�
lðlþ1Þ

r2
þ2Mð1−s2Þ

r3

��
gslðu;v;u0;v0Þ¼0;

ð11Þ

with characteristic initial conditions

gslðu; v0;u0; v0Þ ¼
1

2
; gslðu0; v; u0; v0Þ ¼

1

2
: ð12Þ

III. NUMERICAL SOLUTION OF THE
CHARACTERISTIC INITIAL VALUE PROBLEM

The characteristic initial value problem represented by
Eqs. (11) and (12) is well suited to a numerical treatment.
All of the numerical methods, as well as the method of
deriving initial conditions, are applicable to any equation of
the form of a flat-space wave equation with a potential. As
such, we formulate the scheme for a generic potential,
Pðu; vÞ, but remind the reader that in the case of the Regge-
Wheeler equation this potential is given by

PRWðu; vÞ ¼ −
f
4

�
lðlþ 1Þ

r2
þ 2Mð1 − s2Þ

r3

�
; ð13Þ

where r is a function of v − u.
In addition, in the gravitational case (s ¼ 2) we will

consider the Zerilli potential,

PZerðu; vÞ ¼ −
f

4r2Λ2

�
2λ2ðΛþ 1Þ þ 18M2

r2

�
λþM

r

��

ð14Þ

where Λ ¼ λþ 3M
r ,

λ ¼ 1

2
ðlþ 2Þðl − 1Þ: ð15Þ

The Zerilli equation, Eq. (11) with the potential replaced
by PZerðu; vÞ, governs the even parity perturbations to the
Schwarzschild spacetime, while the odd parity perturba-
tions obey the Regge-Wheeler equation with s ¼ 2.

A. Numerical integration stencils

The retarded Green function only has support inside the
past light cone, so we need only consider the value of gsl
and its derivatives on and inside the light cone. This
suggests a natural manner in which to subdivide our
domain into a grid with spacing h, using lines of constant
u or v, see Fig. 2. Doing so, we can derive a numerical
scheme which will converge as a desired power of h.
We begin by considering a single cell, see Fig. 3.
Integrating Eq. (11) over this cell yields (omitting g’s
dependence on u0, v0)
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0 ¼
ZZ

½∂2
uv − Pðu; vÞ�gslðu; vÞdudv;

¼ g00sl þ g11sl − g10sl − g01sl −
ZZ

Pðu; vÞgslðu; vÞdudv;

ð16Þ

where we have introduced the notation

gijsl ≡ gslðu − ih; v − jhÞ ð17Þ

to denote the value of the function gsl at the point
ðu − ih; v − jhÞ.
Note that the first term in the integral is exact. The

second term, however, cannot be integrated exactly and
must be evaluated numerically with an approximation valid
to some order in h. Using methods from [15,16] there is a
clear, systematic way to calculate the integral to any desired
order, Oðhnþ2Þ, where n is even. With this error in a single
cell, we can ensure the global error is OðhnÞ after
integrating over Oðh−2Þ intervals. The fundamental idea
behind the method is to Taylor expand the integrand, which

we denote by Hðu; vÞ ¼ Pðu; vÞgslðu; vÞ for conciseness,
about the center point of a given cell,

Hðu; vÞ ¼
X∞
i;j¼0

Hi;jðu; vÞðu − ucÞiðv − vcÞj: ð18Þ

We obtain a factor of h2 from the double integral over the
cell, and so we need only take this expansion to OðhnÞ,
where n is the desired order of global accuracy. This will
result in 1

2
nðnþ 1Þ unknown coefficients Hi;j, which can

u v

h

FIG. 2. Numerical domain in which we solve for the Green
function, with the light cone in red. The red point at the vertex of
the light cone is the base point ðu ¼ u0; v ¼ v0Þ. In self-force
applications this is the location at which the self-field and self-
force components for a given worldline are computed. The
domain contains a large family of past worldlines which pass
through this point, several of which are shown [projected onto the
2D ðu; vÞ submanifold]. These include a circular orbit (blue), and
a number of geodesics with increasing eccentricity. Thus for a
single run of the numerical code, we can compute the self-force at
this point for a large number of past worldlines, as opposed to at
all points on a given worldline as would be done with other
methods. Note, the horizon is to the left in this plot, while radial
infinity is to the right.

FIG. 3. The stencils for the second order (top), fourth order
(middle), and sixth order (bottom) schemes. The red point, ðu; vÞ,
is the point at which we wish to compute the value of gsl, while it
is already known at the other points, indicated in black. The
hollow point in the center of the cell in the second order stencil is
the point about which the Taylor expansion in Eq. (18) is
performed. In the higher order schemes, we show only the
coordinate which changes along each ray, for simplicity. Note that
in each of these diagrams, the light cone is toward the top, so the
lower points are further in the past relative to the base point at
which we will ultimately compute the self-field and self-force
components.
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be solved for by using the value of the function at
known points.
Following this approach, a second order (n ¼ 2) algo-

rithm is given by

g00ð2Þsl ¼ −g11sl þ ðg10sl þ g01slÞ
�
1 −

h2

2
P00

�
:

This scheme has a simple stencil, shown in the top panel of
Fig. 3. Assuming we have already solved for, or provided
a priori, the values of gsl at the points (u − h, v),
ðu; v − hÞ, and ðu − h; v − hÞ, we can thus compute the
value of gsl at the point ðu; vÞ to Oðh4Þ.
The overall numerical implementation of this algorithm

is then straightforward. We provide initial data along the
light cone (described in more detail in Sec. IV), and evolve

through the domain. The most straightforward evolution
method is to evolve down each ray of fixed u or v, then
move on to the next, uþ h or vþ h. We have implemented
this algorithm in a C code, with two rays stored in memory
at any one time, and specific rays saved for later output.
This allows for the code to use comparatively little memory,
even for large domains and fine resolutions.
Higher order schemes are straightforward to obtain using

the same method. We have taken this to sixth order as a
demonstration, with the algorithms derived using the
computer algebra softwareMathematica. The only obstacle
to even higher order schemes is the computational cost
of the derivation, though it is not expected that anything
beyond eighth order would prove necessary for
most practical applications. A fourth order algorithm is
given by

g00ð4Þsl ¼ −g11sl þ g01sl þ g10sl −
h2

24
½2P00g00ð2Þsl þ 10ðP11g11sl þ P01g01sl þ P10g10slÞ − 4ðP20g20sl þ P02g02slÞ

þ ðP30g30sl þ P03g03sl − P12g12sl − P21g21slÞ�; ð19Þ

while a sixth order algorithm is given by

g00ð6Þsl ¼ −g11sl þ g01sl þ g10sl −
h2

1440
½108P00g00ð4Þsl þ 371ðP03g03sl þ P30g30slÞ − 154ðP40g40sl þ P04g04slÞ

þ 116ðP31g31sl þ P13g13slÞ þ 40P22g22sl þ 27ðP50g50sl þ P05g05slÞ − 19ðP41g41sl þ P14g14slÞ − 5ðP32g32sl þ P23g23slÞ
þ 627ðP10g10sl þ P01g01slÞ þ 1032P11g11sl − 504ðP20g20sl þ P02g02slÞ − 329ðP21g21sl þ P12g12slÞ�: ð20Þ

The stencils for these schemes are shown in the lower
panels of Fig. 3.
Note that in the fourth order scheme, the second order

approximation appears. This is because the point at which
we wish to calculate the value of the Green function is
being used in the derivation of the algorithm. As we do not
yet know the value at this point, we must provide it to a
suitable approximation. Given that it is multiplied by an
overall factor of h2, we can use the second order scheme,
and the overall error will remain Oðh6Þ. We use a similar
approach for the sixth order scheme, with the fourth order
approximation used in the algorithm.
Our algorithms are by no means unique. A notable

alternative is the predictor-corrector method used in [15].
However, the Lorenz gauge equations solved there involve
first derivatives, which reduce the order by a factor of h. We
can thus avoid employing such a scheme, which would
impact numerical efficiency due to being an iterative
method, as we do not have any such first order derivatives
in the Regge-Wheeler or Zerilli equations.
As is clear from Fig. 3, as we go to higher order we require

a greater amount of past information in order to calculate the
value of the Green function at a given point. This has
significant implications for the initial data which must be

provided, as will be discussed in detail in Sec. IV. Aside from
initial data issues, the evolution through the numerical
domain can be implemented in the same manner as for
the second order scheme, though requiring more rays to be
stored in memory during the computation. However, this
scales only as n, whereas the scheme is accurate to OðhnÞ.
Thus moving to higher order schemes, while computation-
ally slower due to the increased number of operations, is not
a significant additional burden on memory resources.

B. Calculation of derivatives of the Green function

In addition to solving for the Green function, we can also
use the method outlined above to solve directly for the
derivatives of the Green function, as opposed to computing
such derivatives in postprocessing by means of finite
difference. For the first derivative with respect to the base
point (the vertex of the light cone), which is required for
computing the self force, we can simply apply the above
algorithms to equations for the derivatives,

½∂2
uv − Pðu; vÞ�∂u0gslðu; vÞ ¼ 0; ð21aÞ

½∂2
uv − Pðu; vÞ�∂v0gslðu; vÞ ¼ 0: ð21bÞ
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Higher order derivatives with respect to the base point
are equally straightforward. However, we can also compute
derivatives with respect to the field point (a point inside the
past worldline), as well as mixed derivatives with respect to
both the base point and field point. Applying the desired
differential operator to the generalized equation,

½∂2
uv − Pðu; vÞ�∂ugslðu; vÞ − ∂uPðu; vÞgslðu; vÞ ¼ 0;

ð22aÞ

½∂2
uv − Pðu; vÞ�∂vgslðu; vÞ − ∂vPðu; vÞgslðu; vÞ ¼ 0;

ð22bÞ

½∂2
uv − Pðu; vÞ�∂uu0gslðu; vÞ − ∂uPðu; vÞ∂u0gslðu; vÞ ¼ 0;

ð22cÞ

½∂2
uv − Pðu; vÞ�∂uv0gslðu; vÞ − ∂uPðu; vÞ∂v0gslðu; vÞ ¼ 0;

ð22dÞ

for example, we have equations to which our schemes may
be applied. gslðu; vÞ and lower order derivatives that appear
can be computed alongside the desired function. Further
combinations of base point and field point derivatives, as
well as higher order derivatives can be obtained in a similar
fashion.

C. Convergence

The schemes outlined here have been implemented in a
C code, up to sixth order for the Regge-Wheeler Green
function, and fourth order for its derivatives. The Zerilli
Green function and its derivatives have been taken to
second order, though extending these to higher orders is
straightforward. The convergence order of these schemes
(once sufficiently accurate initial data is provided) can be
verified by comparing numerical solutions using three
different resolutions: hL, hM, and hH, which we denote

by gðLÞsl , g
ðMÞ
sl , and gðHÞ

sl , respectively. If the scheme con-
verges as OðhnÞ, then n can be calculated by solving

gðHÞ
sl − gðMÞ

sl

gðMÞ
sl − gðLÞsl

¼ hnH − hnM
hnM − hnL

: ð23Þ

The value of n for a single l mode of the Regge-Wheeler
Green function computed using each of the three numerical
algorithms is shown in Fig. 4, and verifies that they do
indeed converge at the expected order.

D. Code optimization considerations

Two additional steps have been taken to improve the
efficiency and computation time of the code.

1. OpenMP parallelization has been implemented, with
independent l modes computed in parallel.

2. Given that the potential, P and f are effectively
functions of v − u, not general functions of ðu; vÞ,
they need only be computed at points on the light
cone, as a vertical line through the domain shown in
Fig. 2 marks a line of constant r. This also holds for
the computation of r from r�, which is performed
numerically and is the most expensive individual
pointwise calculation performed in the code. Thus,
significant gains in computational cost can be
obtained by precomputing these before evolution
through the domain.

The current implementation of our code can compute 101
modes, using the fourth order scheme with h ¼ 10−2, up to
Δt ¼ 240 in the past of the base point, and parallelized over
5 threads in 217 s, on a desktop computer with a Ryzen 7
processor. Scripts to automate the calculation over a range
of base points make it possible to compute the Green
function in a large region outside a Schwarzschild black
hole, though this does lead to a substantial data storage
problem. We expect the use of reduced order surrogate
models to provide a solution to this in the future.

IV. INITIAL DATA

With the numerical scheme outlined, it remains to
provide suitable initial data to compute the retarded
Green function. Previous implementations of similar
numerical schemes have not been concerned with initial
data, as they chose to allow junk radiation sourced by
inconsistent initial data to radiate away, and only consider
the solution far from the light cone where the initial data is
imposed [15,16]. However, for the purposes of computing
the Green function using a characteristic initial value
formulation, the early time behavior near the light cone

2nd order 4th order 6th order

0 20 40 60 80 100

2

4

6

t'–t

C
on

ve
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 o
rd

er

FIG. 4. Convergence order of the numerical calculation of the
Regge-Wheeler, s ¼ 0, Green function along r ¼ r0 for l ¼ 4.
The black, dashed lines indicate the expected convergence orders
for the schemes. The spikes in the convergence order are
associated with zero-crossings, and are not unusual in numerical
methods. Note, in addition, the noise in the sixth order scheme.
This is due to roundoff error as we go to higher resolutions.
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is crucial to obtaining the correct Green function. As
discussed in Sec. III, the higher the order of the scheme,
the greater the number of values of u and v at which the
value of the Green function must be known a priori. As a
result, for higher orders, we must provide initial data on
rays inside the light cone, not just on the light cone itself.
Providing values on the light cone alone would only be

sufficient for the second order scheme. The value of
gslðu; v; u0; v0Þ along null rays connecting ðu; vÞ and
ðu0; v0Þ is known to be 1

2
, and this alone provides sufficient

initial data for the second order scheme.
For the higher order schemes, rather than solve for the

value of the Green function on points inside the light cone
exactly, we use an expansion of gsl near the light cone to
the same order in h as our numerical scheme. Writing

gslðu; v; u0; v0Þ ≈
Xn
k¼0

Vkðu; v; u0; v0Þ
�
−
ΔuΔv
2

�
k
; ð24Þ

where Δu ¼ u − u0 scales as h for rays near the Δu ¼ 0
side of the light cone and Δv scales as h for rays near the
Δv ¼ 0 side of the light cone, this approximation is
accurate to OðhnÞ.1 Since the initial data is only required
on a small, h-independent number of rays near the light
cone, this would then be sufficient to ensure that the global
error remains OðhnÞ.

We can derive analytic expressions for the Vk for both
the Regge-Wheeler and Zerilli functions by substituting the
above expansion into the relevant equation and solving the
transport equations for each coefficient, order by order.
Considering the equation with a general potential and
demanding that it be satisfied at each power of ΔuΔv

2
we

obtain the transport equations

ðkþ 1ÞðΔu∂u þ Δv∂v þ ðkþ 1ÞÞVkþ1 ¼ −2ð∂2
uv − PÞVk

ð25Þ

along with the initial condition V0 ¼ 1
2
for the value of the

Green function on the light cone.
The equation for V1 can be solved directly using the

method of characteristics to obtain an integral solution,

V1 ¼
1

Δu

Z
u

u0
P

�
k;
ðk − u0ÞΔv

Δu
þ v0

�
dk: ð26Þ

In the case of the Regge-Wheeler and Zerilli equations
where Pðu; vÞ is in reality a function of a single variable, r,
this result simplifies and we can evaluate the integral
explicitly to get

VRW
1 ðu; v; u0; v0Þ ¼ ðr − r0Þð2ðλþ 1Þrr0 −Mðs2 − 1Þðrþ r0ÞÞ

4r2r02Δr�
; ð27aÞ

VZer
1 ðu; v; u0; v0Þ ¼ ðr − r0Þð9M3ðrþ r0Þ þ 3λM2ðr2 þ 4rr0 þ r02Þ þ 3λ2Mrr0ðrþ r0Þ þ 2λ2ðλþ 1Þr2r02Þ

2r2r02ð3M þ λrÞð3M þ λr0ÞΔr�
: ð27bÞ

The equation for V2 can be solved in a similar fashion, and its solution is given by

VRW
2 ¼ ðr − r0Þð2ðλþ 1Þrr0 −Mðs2 − 1Þðrþ r0ÞÞ

8r2r02ðΔr�Þ3

þ 1

32r4r04ðΔr�Þ2
f4ðλþ 1Þr2r02½λðr − r0Þ2 − 2rr0� þM2ðs2 − 1Þ½ðs2 − 9Þðr4 þ r04Þ − 2r2r02ðs2 − 1Þ�

− 4Mrr0ðrþ r0Þ½ðr2 þ r02Þðλðs2 − 3Þ − 2Þ − rr0ð2λðs2 − 2Þ þ s2 − 3Þ�g: ð28aÞ

VZer
2 ¼ ðr − r0Þð9M3ðrþ r0Þ þ 3λM2ðr2 þ 4rr0 þ r02Þ þ 3λ2Mrr0ðrþ r0Þ þ 2λ2ðλþ 1Þr2r02Þ

4r2r02ð3M þ λrÞð3M þ λr0ÞðΔr�Þ3

þ 1

16r4r04ð3M þ λrÞð3M þ λr0ÞðΔr�Þ2
f9M4ð9r4 − 2r2r02 þ 9r04Þ þ 9M3½3λr5 þ ð7λ − 4Þr4r0

− 2λr3r02 − 2λr2r03 þ ð7λ − 4Þrr04 þ 3λr05� þ 3λM2rr0½ð7λ − 4Þr4 þ 4ðλ − 2Þr3r0 − 6λr2r02

þ 4ðλ − 2Þrr03 þ ð7λ − 4Þr04� þ 4λ2ð2λ − 1ÞMr2r02ðr3 þ r03Þ þ 4λ2ðλþ 1Þr3r03½λr2 − 2ðλþ 1Þrr0 þ λr02�g: ð28bÞ

1Near the vertex of the light cone, both Δu and Δv scale as h so the approximation is even better and is accurate to Oðh2nÞ.
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For higher order terms, we employ an ansatz for each
term,

Vk ¼
X2k−1
m¼k;
m even

pkmðr; r0Þ
ðΔr�Þm

þ
X2k−1
m¼k;
m odd

pkmðr; r0Þ
ðr − r0Þ
ðΔr�Þm

; ð29Þ

and solve the resulting equations for the coefficients pkm
using Mathematica. We applied this procedure to compute
up to VRW

8 and VZer
6 . We do not give the higher order

coefficients here due to the length of their expressions, but
have provided them electronically as Supplemental
Material [17]. Although deriving further Vk is trivial, we
chose to stop at VRW

8 as that is already more than is required
for our sixth order numerical algorithm.
Note that there is no t dependence in VRW=Zer

1 or VRW=Zer
2 .

In fact, it is trivial to show, by induction, that VRW=Zer
k

depends only on r for all k; the t dependence in the initial
conditions is contained entirely within the powers of
− ΔuΔv

2
. This is what allowed for the transport equations

to be simplified to the point that they could be solved
analytically.

A. Initial data near the vertex of the light cone

The expressions for the VRW=Zer
k appear to be singular

at coincidence, where the denominator Δr� vanishes.
However, nonsingularity is explicitly enforced when solv-
ing for them so we know that the apparent singularity will
be canceled by the numerators also vanishing. This
cancellation is not explicit due to the nontrivial relationship
between r and r�. In order to avoid this becoming an issue
in the numerical implementation, where cancellation is
only ever guaranteed to the level of round off, we employ a
series expansion about coincidence for points very near
the light cone. Figure 5 shows the effect of this numerical
cancellation and its resolution via our use of a series
expansion.

B. Initial data for the derivatives
of the Green function

By differentiating the functions Vk, we can obtain initial
data for the derivatives of the Green function. This requires
deriving the coefficients for one order higher than for the
Green function, but there is no significant challenge to this.
For instance, for the first u0 derivative, say, we have the
expression

∂u0gsl ¼
X∞
k¼1

�
kΔv
2

Vk −
ΔuΔv
2

∂u0Vk

��
−
ΔuΔv
2

�
k−1

:

ð30Þ

Having lost an order in h in the first term in the sum, we
must take this sum to at least k ¼ 6 for fourth order
convergence, k ¼ 8 for sixth order, etc. A similar equation
holds for the v0 derivative. Computation of the derivatives
of the functions Vk, as well as series expansions close to
coincidence, is straightforward. It is also possible to obtain
initial data for the higher order and mixed derivatives of the
Green function, by simply applying the relevant differential
operator to Eq. (24).

V. NUMERICAL RESULTS

We have implemented the schemes outlined in Sec. III
along with the initial data derived in Sec. IV as both
Mathematica and C codes. In Fig. 6 we show some
representative Regge-Wheeler results from the C code.
These were obtained by computing the modes gsl using our
numerical code and following Ref. [11] in performing a
smoothed sum over l,

Gret
0 ðx;x0Þ ¼ 1

rr0
Xlmax

l¼0

ð2lþ1ÞPlðcosγÞGret
slðr;r0;ΔtÞexp

− l2

2l2cut ;

ð31Þ

where we chose lmax ¼ 100 and lcut ¼ 20. This smoothing
is required to obtain a convergent mode sum, but in turn
introduces another problem.
To understand this, consider the Hadamard decomposi-

tion of the retarded Green function,

Gret
0 ðx; x0Þ ¼ Θðx; x0Þ½Uðx; x0ÞδðσÞ − Vðx; x0ÞΘð−σÞ�;

ð32Þ

which is valid in a causal domain of the point x (i.e., where
x and x0 are connected by a unique geodesic). Here, the
term involving Uðx; x0Þ is known as the direct part, and the
term involving Vðx; x0Þ is the tail part. As we are con-
structing the Green function using a smoothed sum, the δ
distribution in the direct part is effectively smeared into
a Gaussian of finite width centered on the base point. This

FIG. 5. Plot of VRW
4 versus radius, for the case of the vertex of

the light cone located at r0 ¼ 6. The behavior at r ¼ r0 can be
avoided by use of the series expansion.
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can clearly be seen in the early time behavior of the red
dashed curve in Fig. 6. To circumvent this, we use the
method developed in [18], where it was shown that an
l-mode decomposition of the direct part can be subtracted
mode by mode from the modes of the full retarded Green
function, Gret

sl. Then, summing over modes we get the full
retarded Green function minus its direct part. This regu-
larized Green function is no longer contaminated by the
smeared direct part, as illustrated by the solid black curve
in Fig. 6.
Our results are consistent with other approaches to

computing the Green function, as demonstrated in
Figs. 7 and 8, where we compare with two other approaches
to computing it: an expansion valid for late times (Fig. 7)
and a numerical calculation based on an inverse Fourier
transform of the frequency-domain Green function (Fig. 8).
Indeed at sufficiently late times we can save computational
cost in Green function calculations by using the late-time
expansions in place of our numerically computed solutions.
From Fig. 6, it may appear that there is some non-

negligible disagreement between the retarded solution
and the late-time tail, particularly in the r derivative of
the Green function. However, we can verify that this is

consistent with expectations. The leading order term of the
late-time tail is t−3 and the expansion we use is accurate up to
t−5 logðtÞ, taken from [19]. Thus the late-time tail for the
derivatives should be accurate up to t−6 logðtÞ. We can see in
Fig. 7, that as we go to later times, the agreement between
the retarded solution and the late-time tail scales as the next
term in the tail expansion. Thus, if greater agreement with
the late-time tail is required, it is a simple matter to define a
larger numerical domain and compute the retarded modes to
later times. In the self-force calculation described below,
however, we found that the relative change from altering the
matching time between the retarded solution and late-time
expansion is below our numerical error in the resulting self-
field and self-force values.

A. Scalar self-force

As a demonstration of the utility of our method, we now
show how it can be used to compute the scalar self-force.
We obtain results for the self-field and self-forces along
both a circular and an eccentric orbit. Both orbits consid-
ered lie close to the separatrix between bound and unbound
orbits, with p ¼ 7.2, e ¼ 0.5 in the eccentric case and
p ¼ 6 in the circular case.

FIG. 6. The scalar Green function,Gret
0 ðx; x0Þ and its derivatives for points separated along an eccentric orbit with p ¼ 7.2 and e ¼ 0.5,

with base point r0 ¼ 6. The effect of subtracting the direct modes using the method of [18] to obtain only the tail contribution can be
clearly seen in each case. At late times, the numerical solutions also agree with a late-time approximation of the Green function obtained
using the method of [19].
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Despite only seeing much of its progress recently [10],
the worldline convolution method we use was one of the
first methods proposed to tackle the self-force problem. In
two independent works [20,21] it was shown that the self-
force is given by the so-called MiSaTaQuWa equation,
which in the scalar field case and for geodesic motion is
given by

Fα0 ½zðτ0Þ� ¼ q lim
ϵ→0þ

Z
τ0−ϵ

−∞
∇α0Gret

0 ½zðτÞ; zðτ0Þ�dτ: ð33Þ

The integral here is over the past worldline of the compact
object, truncated at a proper time just before reaching its
current location. It is clear that due to the cutoff on the
upper limit of integration, only the tail part of the Green

FIG. 8. Comparison of our characteristic time-domain gravitational (s ¼ 2) Regge-Wheeler Green function against an inverse Fourier
transform of the frequency domain Green function. The residual depends primarily on the maximum frequency included when inverse
Fourier transforming the frequency domain Green function.

FIG. 7. The difference between the scalar Green function and its derivatives, and their late-time tail expansions. The disagreement
behaves as expected given the order at which we truncated the late-time expansions.
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function contributes to the self-force. It is also clear that the
Hadamard parametrix will be inadequate: the Hadamard
decomposition is restricted to a causal domain whereas the
integral in Eq. (33) extends over the entire past worldline,
which is not confined to a causal domain. Our numerically
calculated regularized Green function does not suffer from
this limitation and is therefore ideally suited to computing
the self-force using the worldline convolution approach.
With the regularized Green function in hand (and a late-

time tail expansion matched on at very late times), we can
then compute the self-field and self-force components
by straightforward numerical integration. The results of
doing so are shown in Table I. It can be seen that a high
degree of accuracy has been achieved. These results were
obtained with lmax ¼ 100, lcut ¼ 20, matching the tail on
at Δt ¼ 200, and integrating the tail to Δt ¼ 2000. We also
used a numerical resolution of h ¼ 0.01 and sampled the
numerical solution with resolution of 0.1 (i.e., every
10 steps).
After performing an analysis on the primary contribu-

tions to the numerical error in our results, the dominant
sources were found to be the values of lmax and lcut. It is
worth noting, however, that we already obtain results of
comparable accuracy (particularly in the circular case)
to [12], with only half as many l modes used. We attribute
this to the use of a characteristic initial value formulation,
rather than the time-domain Gaussian approach used
in [12]. This can be verified by replacing our characteristic
initial data with a narrow Gaussian of width 0.1, centered at
the base point, and matching on a quasilocal expansion as
described in [22] at Δt ¼ 14, whereby we obtain relative
errors of of Oð1Þ% for the circular orbit self-field when
100l modes are considered.
The derivatives of the direct modes defined in [18] are

another significant contribution to the error. For conven-
ience, these were computed using finite-differencing (and
differentiation of series expansions at early times). We
found that finite differencing error introduced a significant
amount of noise if too small a step in t0 or r0 was chosen or
if too high an order of finite differencing was used. Using

larger values of Δt0 or Δr0, or a lower order finite difference
stencil reduced the noise in the derivatives and lead to
changes in the results at Oð10−2Þ%: Ideally, we would
compute these directly rather than via finite difference, but
this is beyond the scope of this work.
Another source of error which contributed at a similar

order is the sampling resolution. Increasing the sampling
resolution improves the results by Oð10−2Þ%.
The next most significant contributions considered

include the time at which the tail is matched on to the
numerical results, the maximum time to which the tail is
integrated, and the numerical resolution. These all con-
tribute at Oð10−3Þ% only.
Finally, the orders of the Bessel series expansions (used

for the retarded modes at very early times, as described
in [18]) and the series expansion for the direct modes
(again, described in detail in [18]) contribute negligibly to
the error, at Oð10−5Þ and Oð10−8Þ%, respectively.

B. Gravitational Green function

In addition to the scalar calculations demonstrated thus
far, we can also solve for modes of the Green function and
its derivatives in the s ¼ 2 gravitational case. While no
formal procedure yet exists for subtracting the direct modes
or matching on a quasilocal piece at early times, we can still
draw comparisons between the results here and frequency
domain solutions for the vacuum Regge-Wheeler equation.
Some sample results are shown in Fig. 8. These results, for
l ¼ 2 along a circular orbit with r0 ¼ 6, show that there is
excellent agreement between both the time domain and
frequency domain approaches. While there looks to be
larger disagreement at early times, it can be seen in the
accompanying plot that increasing the maximum frequency
integrated to in the Fourier transformation from frequency
domain to time domain improves the agreement at these
early times. It has also been observed that the magnitude of
the residual increases with l, but again this improves with
larger maximum frequency. Thus, the primary source of the
residual is the accuracy of the frequency domain results, not
the time domain results.
With the accuracy of the gravitational results verified, we

next apply the Regge-Wheeler and Zerilli Green functions to
the computation of the local force Ft on a gravitational
perturbation. This is directly related to the gravitational
energy flux radiated to null infinity and into the horizon,
and we use this fact to provide robust reference values against
which to check our results. As demonstration of the method,
we choose a circular orbit, r0 ¼ 10, and compute the total flux
for specific ðl; mÞ modes, _E21, _E22. This requires no
regularization of the individual l modes, and can be con-
structed easily from themaster functions,ΨRW=Zerðt0; r0�Þ, and
their derivatives. In this work, we compute the Moncrief
versions of the master functions, detailed in [23].

TABLE I. Self-field and self-force components at r0 ¼ 6 on two
orbits, along with relative errors (as a percentage).

Ref. value Computed value Rel. Err. (%)

Eccentric Φ −0.00771731 −0.00771922 0.0247
Ft 0.00066534 0.00066633 0.1484
Fr 0.00013462 0.000134 0.459
Fϕ −0.00728056 −0.00728699 0.0883

Circular Φ −0.00545483 −0.00545526 0.0079
Ft 0.00036091 0.000360997 0.0249
Fr 0.00016773 0.000167698 0.0179
Fϕ −0.00530423 −0.00530738 0.0593
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To obtain these, we must integrate the Green function
against the source. The point particle source for the
Regge-Wheeler master function, in general, takes the form

Sðt0; r0�Þ ¼ s1ðt; r�Þδðr� − r0�Þ þ s2ðt; r�Þ∂r�δðr� − r0�Þ:
ð34Þ

Using integration by parts and Eq. (10), we obtain an
expression for, Ψ at the base point,

Ψlmð0; r0�Þ

¼ � 1

2
s2ð0; r0�Þ þ

Z
0

−∞
ðg2;lðr0�; r0�; tÞð∂r�s2ðt; r�Þ

���
r�¼r0�

− s1ðt; r0�ÞÞ þ ∂r�g2;lðr�; r00�; t0Þjr�¼r0�s2ðt; r0�ÞÞdt:
ð35Þ

This expression holds for both the Regge-Wheeler-
Moncrief and Zerilli-Moncrief master functions, with
g2;l being the l mode of the s ¼ 2 case of the correspond-
ing Green function. The � comes from the Heaviside step
functions in Eq. (10), and correctly captures the known
jump in the value of the master function at the location of
the particle. Derivatives of Ψ are also required to calculate
the flux, but can be easily obtained using the same
procedure as for Ψ, and computing the derivative before
taking the limit to the particle.
The functions s1 and s2, which contain all of them-mode

dependence of Ψ, can be obtained in terms of the functions
F̃, G̃ defined in [24]. Accounting for the authors’ con-
vention of fully evaluating the source in terms of r rather
than r�, expressions for s1 and s2 can be obtained,

s1ðt; r�Þ ¼ f−1G̃ðt; r0�Þ þ ∂r0�ff
−2F̃ðt; r0�Þ; ð36aÞ

s2ðt; r�Þ ¼ f−2F̃ðt; r0�Þ: ð36bÞ

When restricted to a circular orbit, the functions F̃ and G̃
are given by

F̃odd
lm ¼ 8πμ

λðλþ 1Þ
f2L
r0

X̄ϕ
lm; ð37aÞ

G̃odd
lm ¼ −

8πμ

λðλþ 1Þ
fL
r02

X̄ϕ
lm; ð37bÞ

F̃even
lm ¼ 8πμ

Λðλþ 1Þ f
2EȲlm; ð37cÞ

G̃even
lm ¼−

8πμ

Λ2ðλþ1Þ
fE
r03

½λðλþ1Þr02þ6λMr0 þ15M2�Ȳlm

þ 8πμ

Λðλþ1Þ
f3L2

r03E
Ȳlm−

8πμ

λðλþ1Þ
f2L2

r03
Ȳϕϕ
lm; ð37dÞ

where E and L denote the energy and angular momentum
along the circular orbit, and Y, Yϕϕ, and Xϕ denote the even
sector scalar, tensor and odd sector vector harmonics,
respectively [23]. An overbar denotes complex conjuga-
tion. All instances of f and Λ in Eqs. (36a)–(37d) are
evaluated at r0, rather than r. Note that in this convention
the ∂r�s2ðt; r�Þ term in Eq. (35) vanishes.
We compute second-order numerical values for the

l ¼ 2 mode of the Regge-Wheeler and Zerilli Green
functions, as well as all necessary derivatives (note, this
computation requires mixed higher order derivatives). Only
the third derivative ∂r0r0rg2;l is computed using finite
differencing, all others are computed directly. We thus
obtain the flux values shown in Table II. We expect use of
higher order schemes for the Green functions and all
relevant derivatives will lead to improved accuracy in
the flux calculation.

VI. CONCLUSIONS

In this work, we have implemented and demonstrated an
efficient means of computing the retarded Green function
for the Regge-Wheeler and Zerilli equations. We derive, for
the first time, initial data inside the light cone to arbitrary
order in the distance from the light cone. This initial data
can be used to seed standard numerical approaches.
We also implement methods of removing the direct part

of the scalar Green function and its derivatives for the first
time, resulting in the computation of accurate self-field and
self-force values for both a circular and eccentric orbit. In
future works, this method can be trivially applied to
compute the self-force along more complex worldlines,
such as a hyperbolic encounter with the central black hole.
The improvements over previous methods are apparent,

with the number of modes required approximately halved,
without a significant loss of accuracy. The numerical
scheme and initial data may also be systematically
extended to any numerical order in the grid-spacing h,
allowing for potentially further gains in efficiency, via
coarser grids which yield the same accuracy. Additionally,
a large portion of the calculations detailed here were
performed in Mathematica. Converting these to C may
take time, and require the use of third-party libraries such as
the GNU Scientific Library. The gain in computational
speed, however, would make this a worthwhile effort.

TABLE II. Gravitational energy fluxes for the l ¼ 2, m ¼ 1, 2
modes, along with relative errors (as a percentage). A circular
orbit with r0 ¼ 10 was considered here. Reference values
obtained using the Black Hole Perturbation Toolkit [25].

Ref. value Computed value Rel. Err. (%)

_E21 9.719 × 10−8 9.833 × 10−8 1.17
_E22 2.685 × 10−5 2.753 × 10−5 2.54
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Currently, the greatest outstanding issue is the means of
removing the direct part of the Green function in the
gravitational case. With this done, the results could be
applied to compute full metric perturbations in the Regge-
Wheeler gauge, and gauge invariants used to draw com-
parison with other approaches to the two-body problem.
Finally, many of the methods developed in this work can

be applied to other problems, such as the Lorenz gauge
wave equation for metric perturbations of Schwarzschild
spacetime, or even the Teukolsky equation. The efficiency

of the code also makes other numerically intense applica-
tions more feasible, such as a self-consistent evolution
scheme.
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