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Numerical analysis of a dark matter axionlike cloud in the vicinity of a rotating black hole has been
performed. The model where an axionlike scalar field is nontrivially coupled to the Maxwell field is studied
in the spacetime of a Kerr black hole in a uniform magnetic field and in the Kerr-Newman one. The
dependence of scalar mass and black hole angular momentum on accumulation of the axion dark matter
cloud was given. It was revealed that condensation of the dark matter clouds is preferable for a very small

mass of axion.
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I. INTRODUCTION

The nature of the elusive ingredient of our Universe,
dark matter, is one of the most intriguing mysteries of the
contemporary physics and astrophysics. Ultralight bosons
like axion, axionlike particles, and dark photons could be
the answer for these tantalizing questions. From the point of
view of UV theory, the QCD axions are well motivated as
the solution of the CP problem [1-3]. Recently, axionlike
particles widely emerging in the realm of string theory [4]
also attract much attention.

Both axion and axionlike particles are regarded as
constituting the possible hidden sector. This fact triggers
the motivation to search for them in various kinds of
experiments and theoretical researches. Namely, it turns out
that axion dark matter has novel effects in polarization of
the cosmic microwave background [5] and can be detected
in the future terrestrial or astrophysical observations. In
Ref. [6] the new mechanism where a coherently oscillating
axionlike particle field can transfer its energy to a dark
photon has been elucidated. Recently, it has been argued
that radio telescope observations of neutron stars will
enable the possible detection of axion dark matter, through
the axion resonant conversion into radio-frequency pho-
tons. The conversion probabilities are proportional to the
strength of the magnetic field surrounding the neutron
star [7,8].

The process of lasing of an ultralight axion condensate
into photons, relevant for a superradiant axion condensate
around a stellar mass black hole, was elaborated in [9]. The
influence of plasma properties placed around the black hole
in question, on the lasing of the axion condensate, was also
revealed.
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It was established [10] that the superradiant instability can
lead to the generation of extremely dense axion clouds in the
nearby rotating black holes. Moreover, the stimulated decay
may lead to extremely bright lasers. A possible connection
with the observed fast radio bursts was proposed.

Neglecting the rotational effects, axion configuration
around pulsars was studied in Ref. [11]. Among all it was
found that the axions form a localized condensate or radiate
as outgoing waves, depending on if the pulsar frequency is
smaller or greater than that of the axion mass.

On the other hand, the analysis of broad-band radio
telescope observations of magnetar PSR J1745-2900,
enables to establish with the confidence of 95 percent
limits, the resonant axion-photon conversion emission line
flux density. These data were translated into limits on
axion-photon coupling constant g,,, versus axion mass. If
there is a dark matter cusp, then the limits reduce to
Gayy > 6-34 x 1071 GeV~', overlapping the axion models
with mass range over 33 eV [12,13]. It is argued [14,15]
that the axion coupling to photon depends on the specific
model and is related to the values ~10~1-10715 GeV~! for
intermediate, ~107!° GeV~! for Grand Unification Theory,
and ~1072! GeV~! for Planck energy scales.

Studies of light rays passing through an axion and
axionlike clouds surrounded by a stationary axisymmetric
black hole, focusing on the experimental setup that is
required for the detection of such an effect, and paying
attention to the radio observations of linearly polarized
astrophysical sources, like active galactic nuclei, have been
performed in [16].

In [17] it was proposed to detect axionlike dark matter by
using linearly polarized pulsar light. A pulsar linear
polarization angle may vary with time, due to the birefrin-
gence effect which is caused by an oscillating galactic
aforementioned hidden sector component.
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The numerical solution of the laser emission problem from
an axion dense cloud around a spinning black hole was
presented in [18,19], where it was envisaged that the laser
emission existed at classical level and the presence of electric
charge or rotation leads to the appearance of the black hole
with nontrivial axionic hair. Moreover, the coupling constant
of the hidden sector triggers the strong instabilities affecting
superradiant clouds around black holes. On the other hand, in
[20] the entire spectrum of the most unstable superradiant
modes of the Proca field around a Kerr black hole was
obtained, as well as constraints on dark photon and axionlike
particles were given.

In our paper we elaborate the subject of the possible
existence of axionic dark matter clouds in the spacetime of
stationary axisymmetric black holes. Numerical simula-
tions based on the axion dark matter model, where axions
are coupled to the Maxwell field invariant composed of
dual and ordinary U(1)-gauge field strengths, enable us to
reveal the basic characteristics of the system in question.
We shall pay attention to two cases of black holes, i.e., a
Kerr black hole in a uniform magnetic field and Kerr-
Newman spacetime.

The rest of the paper is organized as follows. In Sec. 11
we give a short overview of the axionlike dark matter portal
and provide information about studied black hole back-
grounds. In the subsections we discuss underlying equa-
tions of motion and the problem of free energy for dark
matter axionic clouds around rotating black holes in
question. Section III is devoted to the description of the
achieved results. Namely, we examine the possibilities of
condensations of dark matter in the vicinity of Kerr black
holes in a uniform magnetic field and around stationary
axisymmetric Kerr-Newman black holes. In Sec. IV we
conclude our investigations. Finally, Appendix contains the
relevant technical details concerning the numerical method.

II. AXIONLIKE DARK MATTER SECTOR

In this section we shall present the basic equations standing
behind the axion dark matter sector model, viewed as the
axionlike scalar field coupled to the Maxwell U(1)-gauge
field. The basic idea lies in the nontrivial axionic coupling to
the Maxwell strength field invariant constructed from dual
and ordinary Maxwell field strengths. In what follows one
investigates the behavior of axionlike dark matter clouds
surrounded spinning black hole in a uniform, say galactic
magnetic field, as well as besieged the Kerr-Newman black
hole. For convenience, we also refer to them as axions. To
commence with, we start with the Einstein-Maxwell-axion
dark matter theory described by the following action:

S = / d*x\/=g {R - %FWF”” - %vﬂwvw

2k
—%W—E\P*FWFW], (1)

where R is the Ricci scalar, F,, =2V,A, is the Maxwell
field strength tensor, and W is the scalar field (axion) with
mass u. The last term of the action describes the coupling of
axion field ¥ to one of the electromagnetic field invariants,
composed of Maxwell and dual Maxwell filed strengths,
where by * we have denoted the Hodge dual operator. Note
that k constitutes the axionic coupling constant to the U(1)-
gauge field.

Varying the action with respect to the scalar field ¥, we
obtain the equation

k
V, VA — 2y — 3 ¥ FF =0. (2)

On the other hand, the U(1)-gauge field is subject to the
relation

V, FY + 2k « F#V,¥ = 0. (3)

The resulting Klein-Gordon-like equation (2) contains,
despite the standard dynamical and mass terms, an addi-
tional source term, being independent of axionlike field V.
The presence of the nonzero source term, containing the
dual invariant, explicitly defined as

1
A

where €%/7® stands for the totally antisymmetric Levi-Civita
symbol, is crucial for the scalarization of a black hole.
Namely, if it is equal to zero, the axionlike scalar field
equation of motion reduces to the simple massive Klein-
Gordon case, without any self-interaction potential. Then
the no-hair theorem plays its role and prevents any scalar
hair configuration on the black hole from emerging.

On the other hand, it is easy to check that the invariant in
question, *F,, F*, is equal to zero in the case when
F,, =0, or for spherically symmetric spacetime. In order
to be nontrivial, xF wt # 0 has to ensure both rotational
and magnetic U(1)-gauge field components.

In what follows the main objective of our paper will be to
elaborate on the behavior of axionlike field dark matter
sector in the vicinity of a black hole. As it was remarked the
survivability of the Z term in Eq. (2) would be crucial for
our studies. Therefore, we implement a magnetic field in
the considered stationary axisymmetric black hole space-
time in two ways: internally, as a consequence of the Kerr-
Newman black hole solution and externally, as, e.g., a
galactic magnetic field surrounding a Kerr black hole. The
latter idea was originally proposed by Wald in [21], where
the uniform magnetic field around a black hole was studied.

We shall consider both of these background line ele-
ments and investigate properties of axionic dark matter
clouds around the black holes in question.
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A. Kerr black hole in a uniform magnetic field

In this section we recall, for the reader’s convenience, the
basic idea concerning the Wald’s introduction of the uni-
form magnetic field in the spacetime of a Kerr black hole
[21]. The line element of a Kerr black hole in Boyer-
Lindquist coordinates is provided by the following:

U — 1_2Mr d[2_4Mrasin29
) 2

Esin? 6

Sodp. (5

z
x dtd¢ + Ker + Zdo? +
with the auxiliary functions defined as

2(r,0) = r* + a*cos?,
A(r) =r* =2Mr + a?,

,
E(r,0) = (r* 4+ a*)* — a* Asin6.

The solution naturally describes a rotating black hole and
is parametrized by two physical quantities, black hole
mass M and angular momentum parameter a = % The
stationary axisymmetric line element (5) possesses two
Killing vector fields, the timelike k,=(9/0t), and axial
one m, = (9/0¢),.

If we consider the electromagnetic field equations in the
spacetime of a Kerr black hole, neglecting the metric back
reaction, it is possible to derive a general analytical form of
the vector potential, being a combination of Killing vectors
of the underlying spacetime, such as

1
Ay =5 B(m, +2ak,). (6)

In this way we can introduce a static magnetic field to the
system, which is oriented along the black hole rotation axis.
From an astrophysical perspective, such a case may seem
quite idealized, however, it is an interesting starting point
for including magnetic fields into field theories around
black holes. One way or another, any external (galactic)
magnetic field can be cast on the parallel and perpendicular
(to the rotation axis) components, and the perpendicular
component can be neglected. Using this set up allows us to
utilize all the mathematical properties of the Kerr geometry,
such as axial symmetry, in constructing the numerical
solution for the scalar. One has to remember, however, that
a nonzero magnetic field breaks the reflection symmetry
with respect to the equatorial plane.

As it has been already mentioned, we are interested in a
static magnetic field, parallel to the rotation axis, so we can
drop the timelike Killing vector from the general form of
the gauge potential and write it in the form as follows:

Bsin? 0
2%

1
A, dx* = EBgﬂ,,m”dx” = (—2Mardt + Ed¢). (7)

In order to proceed to the analysis of the axion dark matter
equation of motion, we should find the invariant Z in the
spacetime under consideration. Its explicit form is as
follows:

B?M sin” 6 cos 0
7=_¢ 321;4 S22 B + 2a*Mr — 5ar? — 8a2Mr — 32aPr* — 2475
+4a*(a* — a’r* +2(M — r)r’) cos 20 + a*(a®> — 2Mr + r?) cos 44). (8)

Because of the fact that the obtained formula is a bit long and complicated and it might not be easy to imagine its shape, for

the convenience of the reader, we visualize it in Fig. 1.

B. Kerr-Newman black hole spacetime

As far as the Kerr-Newman spacetime is concerned, it generalizes a Kerr solution and represents a black hole that does
not only rotate but also is electrically charged. The line element implies

Esin? 6

ds> = _<1 M + Q—2> di? — 2a(2Mr — Q%) sin* 0

z z z

p)
didg + & dr* + Zdo* + 5 d¢?. 9)

The auxiliary functions X and = are defined in the same way as in the previous case, however, A(r) has the form given by

A(r)=r?=2Mr+a® + Q?, (10)

where Q is the electric charge of the black hole. The solution naturally possesses a nonzero electromagnetic vector potential

of the form
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FIG. 1. Angular and radial dependence of the Maxwell field

invariant in Kerr spacetime evaluated at the event horizon. Colors of
the lines indicate subsequent surfaces of constant r. The solid lines
correspond to a = 0.5, while the dashed lines to a = 0.99. The rise
of angular momentum pumps up the value of the invariant
significantly and shifts its peak towards the black hole equator.

rQ arQ sin® 6
On the other hand, the corresponding electromagnetic

invariant, needed in the axion dark matter equations of
motion, acquires a new simpler form, described by

4aQ’r(a* — 2r* + a* cos 20) cos 0

1= =

(12)

C. Equation of motion

Let us suppose that the axion dark matter field will be a
function depending on two coordinates, radial and azimu-
thal ones, i.e., ¥ = w(r, 6). It leads to the axion equation of
motion provided by the relation

kX
A2y + 2(r — M)0,y + O3y + cot 00y — p*Sy = 71,
(13)

0,, stands for the derivative with respect to the m-
coordinate. The obtained equation is an elliptic partial
differential equation, which is linear in y. The general form
of this equation remains the same in both backgrounds.
They differ by the shape of A function, which can be
enriched with the electric charge, and by the source term on
the right-hand side. It turns out that Eq. (13) follows a
scaling transformation of the form

r—>cr a—ca

M —cM k- kc?
Q—->cQ B-BJc
e

which allows us to fix one quantity to unity. The scaling
concerns the quantities from both backgrounds. For con-
venience, in our numerical simulations, we use the above
scaling and fix the black hole mass to unity M = 1.

D. Free energy of dark matter axionic clouds
in the spacetime of rotating black holes

The existence of the solution to the field equation, i.e.,
some state of the system, does not guarantee that it is the
physically preferable configuration. To verify this, one
ought to consider the thermodynamics of the system and
look for the relevant quantities [22]. As we consider the
gravitational system without backreaction, the thermody-
namical quantities of the black hole, such as entropy and
Hawking temperature, remain unaffected by the axionic
dark matter condensate. Thus we wish to examine the free
energy difference generated by the nontrivial profile of the
scalar y with respect to the hairless solution. To proceed
further, we consider the y dependent part of the underlying
action,

1
Saxion = /d“x,/—g{—zvﬂ‘l’vﬂ‘l‘
2
K k v
—?TZ—E\P*F” F/“,:| (14)

In order to find the free energy contribution of the axionic
cloud, we evaluate the Euclidean on-shell action related
with (14).

Firstly, we use the equation of motion for the axionic
field y (2) and substitute it into the action. This allows us to
remove the term with the Maxwell field strength tensor.
After few transformations we make use of the Gauss
theorem and split the action into volume and surface terms.
Because of the boundary conditions (see the next section
for details), the surface integral vanishes. In last step we
perform Wick’s rotation of the time coordinate and get the
explicit formula provided by

F=-2z1 / drdo=Sn?
“ 2

[(Ow)*g" + (Dow)? 9" + Wy?).

(15)

As the integrand is positive, in the whole domain, the
free energy shift is negative for every configuration of y
field being the solution to the considered equations of
motion. Although there is a caveat. It can be supposed that
any nontrivial y will be preferred by nature. However, this
is not really the case. For the given ansatz, the system has
only trivial zero solution when the source term 7 is zero.
This allows us to state that the considered axionic dark
matter clouds are magnetically induced and are only
present in the system when 7 is nontrivial.

124021-4
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Equation (15) will be extensively exploited, in the
following section, to achieve the free energy plots. The
aforementioned integral will be computed numerically.

III. NUMERICAL RESULTS

This section will be devoted to the obtained numerical
solutions of both axion dark matter clouds surrounding
Kerr black holes immersed in a uniform magnetic field and
a Kerr-Newman one. As we have already mentioned, they
differ by the shape of the source term originating from
axionic coupling and the metric function A. We deal with
the partial differential equation (13) by virtue of Chebyshev
spectral methods. As the equation is fully linear in y, the
acquired solution is unique and well defined. For technical
details of the numerical method see Appendix.

In the above set up one considers the field only above the
black hole event horizon (including the horizon itself). The
bounds for the radial coordinate are from the event horizon
to spatial infinity, precisely r € [r, o). The symmetry of
the spacetime allows us to narrow the domain to one quarter
of the (r,0) plane. For convenience, we pick the first
quarter, with 6 € [0,7/2]. Values of the solution for
remaining quarters can be achieved by the negative
reflection with respect to the equatorial plane

w(r.0—n/2) = —y(r.n/2-0), (16)

and the remaining part of the solution can be obtained by
the rotation. Having our numerical domain defined, we can
move to the necessary transformations.

To implement spectral methods based on Chebyshev
polynomials, we have to map the coordinates of the
manifold onto [—1,1] intervals. In order to do this we
use the following transformations for » and 6:

z=1-——, (17)

u=—-1, (18)

where r, = M + \/M? — a* — Q?, which is the standard
definition of the outer event horizon of rotating black holes.
After the transformation, z = —1 represents the inner
boundary—the event horizon and z = 1 spatial infinity.
Similarly, for u = —1 one thinks about a north pole of a
black hole, while u = 1 represents the equator of the object
in question.

Let us now discuss the boundary condition imposed on
the solution of the axionic dark matter field equation.
Namely, for the black hole event horizon r =r,_, we
demand that the derivative with respect to the r-coordinate
is given by 0, = 0. This fact ensures the regularity of the
solution. For r — oo, the field equation takes the simple
angle independent form provided by the relation

2
Oty +— 0,y =y =0, (19)

which implies that

—Ur MUr
. (20)

r r

w(r) ~

The asymptotic flatness and regularity cause that the
second term in the relation (20) vanishes, for a finite mass
solution vanishes in the infinity. Thus, the requirement that
w(r — o) = 0 comprises the second boundary condition.

In the case of the boundaries imposed on the polar angle
0, we use the argumentation based on the symmetries of the
spacetime. For the north pole § = 0, the axial symmetry of
the rotating black hole obliges the solution to be invariant
under the transformation ¢ — ¢ + z. In other words the
solution ought to be even along a meridian, with respect to
the pole. Therefore, gy = 0 is the reasonable choice.
However, for the equatorial plane 8 = 7/2 the situation is
different, as it constitutes the place where both source terms
change signs, and so does the solution. For that reason we
demand that y = 0, there.

A. Axionic dark matter clouds around Kerr black holes
in a uniform magnetic field

Now we proceed with the conclusions achieved from
the analysis of the numerical solutions of Eq. (13) in the
adequate spacetimes of the rotating black holes. To
commence with one considers the results obtained for a
Kerr black hole in a uniform magnetic field.

In Fig. 2 we present the first series of spatial distribution
plots of the axionic dark matter field. For convenience, we
present the squared distribution w?, where the (r, ) plane
has been cast into Cartesian coordinates (x, y). The black
circle corresponds to the area hidden under the black hole’s
event horizon. In the first pair of plots, depicted in panels
(a) and (b), one can see the distribution of the ultralight
axionic dark matter field. It can be noticed that it is loosely
concentrated around polar regions. The equatorial plane
remains free from the scalar y, which results from the
imposed boundary conditions and the symmetry of the
problem in question. The increase of the black hole angular
momentum does not drastically change the field distribu-
tion. However, it significantly influences its magnitude (see
the values on colorbars). Furthermore, the field slowly
decays with distance and spreads up to r = 10r, outside
the event horizon. This is not the case for the massive
axionic dark matter field, which is presented in panels (c)
and (d) of Fig. 2. The mass x” is quite large, in terms of
geometrical units, however, it serves the purpose of
visualizing the contrast. In the case under inspection the
increase of the angular momentum causes dragging the
axionic clouds towards the equatorial plane. This effect
seems to be quite intuitive, by the analogy to the centrifugal
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FIG. 2. The distribution of the axionic dark matter clouds around a black hole with an external uniform magnetic field. Every panel
corresponds to different values of field mass and black hole angular momentum. For ultralight mass the cloud concentrates in polar

areas, while the large mass field is dragged towards the equator.

forces in classical mechanics. Similarly to the former case,
the angular momentum increase causes a boost in the field
yw magnitude, by several orders.

It should be noted that the approximated analytical
solution for this background has been derived in
Ref. [19]. Our numerical solution perfectly matches the
results obtained before, in the considered limit—a slow
rotation of the black hole and zero mass of the axion field.

To proceed further with the studies of hairy configura-
tions in Kerr-Wald spacetime, let us take a look at the
behavior of the free energy, with respect to the change of
the other parameters of the theory. In Fig. 3 the free energy
shift as a function of the axion field mass can be observed.
Here we present several curves for different values of the
black hole angular momentum. All curves share the similar
behavior, which is scaled differently. Moreover, what all

curves have in common is a significant decrease of free
energy for small values of the axion mass. It means that
axionic dark matter clouds are the most stable and the most
strongly bound for very small, almost zero, field masses.

One might notice an interesting correlation of this result
with theoretical predictions for dark matter axion mass, to
be ultralight in sub eV region. Namely, the recent con-
straints on bosonic dark matter for ultralow field nuclear
magnetic resonance were proposed in [23]. The new
experimental bounds for axionlike dark matter particles
are ranging from 1.8 x 107! to 7.8 x 10~!* eV. Recently,
the direct implications on the mass of ultralight dark matter
particles by studies on mass and spin of accreting and
jetted astrophysical black holes have been established [24].
It was revealed that axionlike particles with the mass
range 107! < u(eV) < 107" could contribute at almost
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FIG. 4. Free energy shift vs the black hole angular momentum.
The extremal black holes (with very high angular momentum)
constitute a perfect environment for dark matter axionic hair since
the free energy fall off is the biggest.

FIG. 3. Free energy shift as a function of axionlike dark matter
mass. Ultralight particles are the most preferred ones as they
cause the most significant free energy decrease.
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FIG.5. Axionic dark matter clouds around Kerr-Newman black holes with Q = 0.1. High angular momentum of the black hole reveals
rich geometrical structure of the clouds.
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10 percent of the dark matter mass. On the contrary, for the
mass range 107" > u(eV) > 1077, they constitute only
0.01 to 1 percent of the dark sector mass.

On the other hand, Fig. 4 presents the free energy shift as
a function of black hole angular momentum for different
masses of the field y. The course of the curves is also very
similar and surely they follow some kind of > dependent
scaling. The shift is slight for moderate values of the
angular momentum and becomes stronger for quickly
rotating black holes. Extremal black holes, with a
approaching to 1, bring the biggest fall off of free energy.
Once again the decrease is the most drastic for the ultralight
field (dark blue curve in the plot). All these observations
allow us to conclude that extremal black holes constitute
good environments for the emergence of the ultralight
axionic dark matter clouds.

B. Axion dark matter clouds in the
vicinity of Kerr-Newman black holes

Let us now discuss the characteristic features of axionic
dark matter clouds nearby Kerr-Newman black holes. This
background has a distinct electromagnetic vector potential,
thus the behavior of axionic hair differs significantly from
the former case. It can be seen in Fig. 5, where we plot
analogical spatial distributions of y2, just like in the case of
a Kerr black hole dipped in a uniform magnetic back-
ground. However, these solutions are essentially various for
two main reasons. Firstly, the shape of the Z expression is
different, hence the source term envisages the other kind of
solution. Secondly, the electromagnetic component (the
electrical charge Q) enters the geometric relations, such as
the radius of the event horizon. Because of this interplay
between a and Q, the black hole angular momentum is
limited to the value below one, because of the fact that we
require r to be a real number. In this illustrative example
one sets Q = 0.1. The panels (a) and (b) illustrate ultralight
axionic dark matter clouds. In the case under inspection,
their distribution is slightly affected by the black hole
angular momentum. When its value is moderate, the cloud
aggregates around polar regions of the Kerr-Newman black
hole. As the angular momentum rises, axions flow towards
the equator and are spread over whole hemispheres. The
clouds of dark matter are distributed on the majority of the
slice’s area, except the equatorial region, which is naturally
the result of the imposed boundary conditions. However,
contrary to previous background, axionic clouds are
strongly localized in the vicinity of the black hole event
horizon. Their distribution quickly vanishes with the
growth of the distance. The large mass case, presented
on panels (c) and (d), reveals a strong concentration of the
field for both values of the angular momentum. In the
former case the cloud is visible over the majority of black
hole hemispheres, while in the latter case it is mostly
present in the equatorial area. Moreover, the axion dark
matter field blurs further into the space. The rise of mass

x10~6

a

FIG. 6. Free energy shift vs black hole angular momentum in
Kerr-Newman background. The presented function shows the
slight drop of free energy for moderate values of angular
momentum. However, the lowest free energy value is found
for the extreme black hole regime.

also shrinks the spread of the clouds, as they quickly decay
with distance from the horizon. Besides the rise of angular
momentum, it significantly increases the magnitude of the
axionic field (see colorbars).

The Kerr-Newman background can be analyzed thermo-
dynamically in the similar manner as it has been performed
in the Kerr in a uniform magnetic field system. However,
for the elaborated case, the free energy dependence on the
black hole angular momentum reveals a slightly different
behavior. These curves are portrayed in Fig. 6. Energy
characteristics are monotonic and decreasing with growth
of the angular momentum. Nevertheless, in the extreme
black hole regime, the dynamics of the free energy rises and
the curves are steeper as a — 1. Once again, the curve
corresponding to the zero mass has the lowest free energy.

IV. CONCLUSION

In our paper we have elaborated on the axioniclike dark
matter model, where the scalar field (axion) is nontrivially
coupled to the electromagnetic U(1)-gauge field, via
coupling to the *F,;F® invariant. We considered the
possibility of accumulating axion dark matter clouds in
the vicinity of a rotating black hole. Namely, we have
studied the Kerr black hole immersed in a uniform
magnetic field and Kerr-Newman black hole spacetime.
In both cases axion dark matter clouds tend to accumulate
in polar regions of the black hole in question.

As far as the Kerr black hole is concerned, it turns out
that the increase of a black hole angular momentum does
not change the distribution of ultralight dark matter clouds
but influences its magnitude. For the increase of the axion
mass, the cloud gathers in the equatorial area of the object.

For the Kerr-Newman black hole the ultralight axion
dark matter cloud distribution depends on the black hole
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angular momentum. The increase of its value spreads the
cloud over the space surrounding the Kerr-Newman black
hole. In the case of a large mass axion, the field is strongly
dragged towards the equatorial area. Moreover, it was
revealed that axionlike dark matter clouds are preferable for
very small, almost zero mass, axion fields.

Considering that axionic dark matter clouds do not
emerge spontaneously, but are rather magnetically induced,
this mechanism naturally requires a magnetic component,
such as a galactic magnetic field or a charged rotating black
hole. Nevertheless, if such dark matter clouds constitute
reality, it will be a complicated observational challenge to
reveal their existence. This task will require advanced
numerical relativity simulations, which should take into
account additional astrophysical and particle-related sce-
narios, such as, e.g., plasma-axion dark matter interactions.
We hope to return to these problems elsewhere.

APPENDIX: TECHNICAL DETAILS ON THE
NUMERICAL METHOD

The implemented numerical method relies on the
Chebyshev differentiation matrices, which are used to dis-
cretize the partial differential equation, on a Chebyshev grid.
Similarly to finite difference methods (FDMs), the usage of
differentiation matrix allows one to translate a differential
equation into a system of linear equations Ly = B. Unlike
the FDM, spectral differentiation requires only a few grid
points in order to achieve high accuracy. Having our discrete
differential operator constructed, we impose the boundary
conditions by substituting particular rows in the matrix and
solve the system with standard linear algebra tools. In result
we obtain the vector of y values on the grid points. We have
implemented the numerical scheme in PYTHON, based on the
MATLAB counterpart [25], using open source libraries.

*
10744 *
+* Residual convergence
* *  Wald
1024 * * A Kerr-Newman
* %
*
* %
= ok,
51076 * %
A
A
10774 A
A
A,
A
A,
1084 A 4, A
A 5 A
A A A
10 20 30 10 50 60 70 80
N
FIG. 7. Convergence of the mean value of residuals calculated

at the set of random points. The error smoothly decays with the
growth of the grid.

x10~%

—0.04658 *
1.62
—0.04660 4
~0.04662 { [0t o
g
£
= B
g —0.04664 4 L 2
&, 4 5
4 —0.04666 1 <
F-4.68 4
—0.04668 { A “
—0.046701 * A L 470
A A
x4 A
~0.04672 Kk k &k k & & & &
1‘() éO 3‘() 40 F;O (;0 7‘0 t;O
N
FIG. 8. Convergence of the free energy of the system. Left y-

scale corresponds to the Wald background (purple stars), while
the right y-scale to the Kerr-Newman solution (red triangles). The
value of the free energy quickly converges to the limit.

The numerical code has undergone two convergence
trials on the N x N grid. The first relies on evaluating the
mean of the residuals

¢ = (|Ly - BY). (A1)
on a set of random points, which do not belong to the
spectral grid. However, we calculate this metric using
another differentiation scheme, in this case, standard central
finite difference derivative. This allows us to verify if the
spectral solutions are relevant [26]. The result of this test is
presented in Fig. 7. The increase of the number of grid
points lowers the error of the solution in both gravitational
backgrounds.

The second numerical test uses the free energy from
Eq. (15). For the same set of physical parameters we
evaluate the free energy, increasing the number of grid
points in each step. This test is visualized in Fig. 8. One can
see that the free energy quickly converges to its limit. For

A
0.0008 1

0.0006
=
“> 0.0004 A A

0.0002 4
A
A

A

A

00000{ AA A A A A A

20 25 30 35 40 45 50
T

FIG. 9. Dependence of the value of the solution at a distant
point in the numerical domain on the location of the inner
boundary. The event horizon radius is 7, ~ 1.86 for this case.
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convenience, we refer to the Kerr black hole in a uniform
magnetic field as the Wald solution.

By the analysis of the convergence of the algorithm we
picked N =50 in each direction, as it constitutes a
reasonable compromise between the accuracy and the
length of computation. Both presented tests were executed
for y=1, a=0.5, and Q =0.1 in case of the Kerr-
Newman background. This is one of the considered cases in
Figs. 4 and 6. For different physical parameters the
numerical scheme revealed similar behaviors. All solutions
shown in the plots in this work meet the require-
ment £ < 107,

Finally, we check if the numerical solution is invariant
for any change of the location of the inner boundary. In the
whole work we always use the black hole event horizon as
the inner boundary r, =r, of our numerical domain.

However, to make sure that our results are reliable, one can
shift the inner boundary arbitrarily and check the behavior
of the solution in the deep interior of the numerical domain.
This is being tested by calculating the value of y at the
point 5(r = 10,0 = z/4), systematically for subsequent
inner boundary locations. We define a ratio

5W _ W(ﬂ)rb - W(n)rb:u ’
AG)

(A2)

and compute it for several values of the position of inner
boundary 7;,. The result of this test is presented in Fig. 9.
The value of the function very weakly depends on the
position of the inner boundary. Relative error is to the order
of 10~ within huge changes of r,—up to 3r,.
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