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Nonminimally coupled curvature-matter gravity models are an interesting alternative to the theory of
general relativity to address the dark energy and dark matter cosmological problems. These models have
complex field equations that prevent a full analytical study. Nonetheless, in a particular limit, the behavior
of a matter distribution can, in these models, be described by a Schrödinger-Newton system. In nonlinear
optics, the Schrödinger-Newton system can be used to tackle a wide variety of relevant situations,
and several numerical tools have been developed for this purpose. Interestingly, these methods can be
adapted to study general relativity problems as well as its extensions. In this work, we report the use of
these numerical tools to study a particular nonminimal coupling model that introduces two new potentials,
an attractive Yukawa potential, and a repulsive potential proportional to the energy density. Using
the imaginary-time propagation method, we have shown that static solutions arise even at low energy
density regimes.

DOI: 10.1103/PhysRevD.103.124019

I. INTRODUCTION

In recent years, various alternative theories of gravity
have been proposed to extend general relativity (GR) and
studied to address some well-known cosmological diffi-
culties, such as dark energy and dark matter. Nonminimally
coupled (NMC) curvature-matter gravity models [1] were
proposed to approach these problems under a different
perspective but are also particularly interesting as they
give rise to a rich lore of features and have a wide range of
astrophysical and cosmological implications (see, for
instance, Ref. [2], for a review). NMC curvature-matter
gravity models extend GR and the so-called fðRÞmodels of
gravity by allowing for an extra curvature coupling to the
matter Lagrangian density. In its most general setting,
NMC curvature-matter gravity models are characterized by
two functions of the scalar curvature, f1;2ðRÞ. Function
f1ðRÞ allows for going beyond the linear scalar curvature
term of the Einstein-Hilbert action, whereas f2ðRÞ general-
izes the minimal coupling between matter and geometry
that involves the square root of the positive valued
determinant of the metric,

ffiffiffiffiffijgjp
, so to keep the element

of volume invariant, and covariant derivatives. The non-
minimal coupling gives rise to very convoluted field

equations that cannot, in general, be treated analytically
and poses challenges to the existing numerical methods.
However, as previously shown [3], under the right assump-
tions, the field equations for specific matter distributions
can be transformed into a Schrödinger-Newton system of
equations.
The Schrödinger-Newton model, also known in the

literature as Schrödinger-Poisson, is a model that can
describe a wide variety of physical systems. In cosmology,
this model is used to describe fuzzy dark matter [4], an
ultralight axionlike dark matter candidate that is currently
an active topic of discussion [5,6], or to describe collision-
less matter instead of the much more complex Vlasov
equations [7], where its numerical success has been widely
studied [8–10]. This model also plays an important role
in nonlinear optics, where it is used for describing light
propagating in nonlinear and nonlocal media, under the
paraxial approximation [11–16]. In plasma physics, this
formalism is useful to replace the Vlasov equations [17].
Other applications of the Schrödinger formalism can also
be found in the literature [18–25].
Because of the wide applicability of this model, many

numerical schemes were developed [26], with the split-step
Fourier method (SSFM) being the most suitable one.
This numerical scheme, apart from being easy to imple-
ment, also allows for searching for the existence of static
solutions through the imaginary-time propagation method
[27,28], whereby propagating an initial random ansatz, the
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system ultimately converges into a static solution, if it
exists. When both of these schemes are applied to these
new theories of gravity, they open the possibility to study
the dynamics imposed by the model settings and search for
the existence of new static configurations simply and
efficiently. Thus, this set of techniques stand as a promising
tool to probe these new gravity models, as they can be used
to quickly test and impose constraints on the model
features. This idea was previously explored by our research
group for NMC models [3]; however, in this work,
we focus on a different approximation regime and consider
the imaginary-time propagation method to search for
static solutions.
Besides the computational advantages, the Schrödinger-

Newton approach, or the more generalized variants of the
nonlinear Schrödinger equation, are also promising as they
can be used to develop tabletop experiments that, under
certain conditions, can emulate the dynamical features of
some cosmological systems. These phenomena range from
gravitational effects [29], boson stars [15], scalar dark-matter
models [13,14], false-vacuum decay [30,31] to acoustic
black holes [32–34] to study the formation of Hawking
radiation [35,36], superradiance [37,38], the Penrose effect
[39], and even the formation of scalar clouds [40]. At the
conceptual level, these so-called optical analogue experi-
ments allow us to test features of the theoretical models in an
experimental setting, gaining new insights through interdis-
ciplinary research. Leveraging this cross fertilization, the
alternative theories of gravity explored in this work stand as
an interesting candidate for further development and imple-
mentation of a new class of analogues dedicated to explore
their dynamics under controlled experimental conditions.
In this work, we make use of advanced high-

performance computing tools previously developed at
our research group in the context of nonlinear optics
[41–44] to detect and to explore how NMC curvature-
matter models of gravity give rise to static large scale
distributions of mass. In particular, we focus on a particular
nonminimal coupled curvature-matter gravity model,
where functions f1ðRÞ and f2ðRÞ are expanded up to
the second and first order in the curvature R, respectively,
and assume that matter at the relevant scales behaves as a
fluid. These assumptions allow for describing the system
by a set of hydrodynamic equations, and two potentials
arise in this context, an attractive Yukawa potential besides
the Newtonian one, and a repulsive potential proportional
to the energy density. Following this procedure, the
Schrödinger-Newton model is obtained through the appli-
cation of a Madelung transformation [45], and, by consid-
ering the Thomas-Fermi approximation, we show that this
gravity model supports static solutions in the absence of a
pressure term. We then calculate these solutions through
the imaginary-time propagation method and compare the
results with some analytical predictions. Finally, we discuss

the implications of these pressureless solutions in the
context of these alternative gravity models.

II. GRAVITATIONAL MODEL

In this work, we will focus on a previously proposed
NMC curvature-matter gravity model [1] that admits two
functions of the scalar curvature, f1ðRÞ and f2ðRÞ. The
physical model is then described by the following action:

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2
f1ðRÞ þ ð1þ f2ðRÞÞLm

�
; ð1Þ

where Lm is the matter Lagrangian density, with GR
trivially recovered for the choice,

f1ðRÞ ¼
R
κ
; f2ðRÞ ¼ 0: ð2Þ

In the metric formalism, the field equations for this
model are

ðF1 þ 2F2LmÞRμν −
f1
2
gμν

¼ ð1þ f2ÞTμν þ ð∇μ∇ν − gμν□ÞðF1 þ 2F2LmÞ; ð3Þ

where Fi ≡ ∂fi=∂R, and □ is the D’Alembertian operator
defined as □ ¼ gμν∇μ∇ν in terms of covariant derivatives
from a Levi-Civita connection.
From these equations, it is possible to deduce one of

the most distinctive features of the NMC curvature-matter
gravity, namely that the energy-momentum tensor is not
covariantly conserved. In fact, taking the covariant
derivative of Eq. (3) we get

∇μTμν ¼ F2

1þ f2
ðgμνLm − TμνÞ∇μR: ð4Þ

Additional implications of the model have been exten-
sively discussed in the literature and can be found pre-
viously in works of one of the authors [2,46–51].
Considering the functions fiðRÞ; i ¼ 1, 2 to be analytical
around R ¼ 0, we can make use of a Taylor expansion and
express

f1ðRÞ ¼
1

κ
ða1Rþ a2R2Þ þOðR3Þ;

f2ðRÞ ¼ q1RþOðR2Þ: ð5Þ

This expansion has been examined in the context of oceanic
experiments [52], and consistency with the well-known
Cassini experiment is currently under scrutiny for a some-
what more complex f2ðRÞ function [53]. In the latter, it is
shown, using the chameleon mechanism [54,55], that static
exclusively radial solutions are admitted [53]. It follows
that for the somewhat simpler f2ðRÞ function, Eq. (5),

TIAGO D. FERREIRA et al. PHYS. REV. D 103, 124019 (2021)

124019-2



exclusively radial and static solutions are expected without
the need to consider additional degrees of freedom. Under
this assumption, we search, in this work, for solutions at a
generic astrophysical context.
Taking the nonrelativistic limit, the solution of the field

equations gives for the 00 component of the metric [56],

g00 ¼ −1þ 2

c2

�
U þ 1

3

�
1 −

q1
a2

�
Y

�
þOðc−4Þ; ð6Þ

containing both a Newtonian and a Yukawa potentials,
defined through the equations,

∇2U ¼ −4πGρ; ð7Þ
�
∇2 −

1

λ2

�
Y ¼ −4πGρ; ð8Þ

respectively. In this regime, the resulting hydrodynamic
equations for a fluid with energy density, ρ, isotropic
pressure, P, and velocity, v⃗, are [52]

∂ρ
∂t þ∇ðρv⃗Þ ¼ 0 ð9Þ

∂v⃗
∂t þ ðv⃗ · ∇Þv⃗ ¼ ∇

�
U þ α0Y − Vp −

4π

3
Gλ2θ2ρ

�
; ð10Þ

where θ ¼ q1=a2, α0 ¼ ð1 − θÞ2=3 and λ ¼ ffiffiffiffiffiffiffi
6a2

p
. For the

pressure potential, Vp, we will assume a polytropic relation
between ρ and P given by P ¼ wρn, with w and n being
constants chosen for each physical situation, which gives

Vp ¼
�
w lnðρÞ n ¼ 1

nw
n−1 ρ

n−1 n > 1∨ n < 0
: ð11Þ

Comparing Eq. (10) with the ones obtained from
the Newtonian limit of GR it is clear that two additional
terms appear: the Yukawa potential, and a term depending
on the energy density, with a proportionality coefficient
4πGλ2θ2=3. In the subsequent sections, we will explore
some of the consequences of these terms.
Before advancing, we point out that an additional

assumption a2 > 0 is required so that the range of the
Yukawa potential is real, and this is related to the Dolgov-
Kawasaki stability criterion [57,58],

f001ðRÞ þ 2Lmf002ðRÞ ≥ 0: ð12Þ

This requirement stems from the fact that the field
equations for NMC curvature-matter gravity are greater
than second order. Thus, the Ricci scalar is not algebrai-
cally related to the trace of the energy-momentum tensor
but rather given by a differential equation. This means that
R is, in fact, a dynamical field and the Dolgov-Kawasaki

stability criterion corresponds to the requirement that the
field effective mass (1=λÞ is positive.

III. A COSMOLOGYLIKE SETTING

Describing the gravitational system as a fluid charac-
terized by the set of hydrodynamic Eqs. (9) and (10) is
quite useful to explore the dynamics of the model as, by
performing a Madelung transformation [45], the set of
equations are transformed into a Schrödinger-Newton-
Yukawa model [59]. This transformation is achieved by
writing ψ ¼ ffiffiffi

ρ
p

eiΦ=ν, where ν is an adjustable parameter
with the same dimensions as the velocity field Φ, such that
ρ ¼ jψ j2 and v⃗ ¼ ∇Φ are the density and velocity of the
fluid, respectively. By substituting this into the hydro-
dynamic equations, rescaling the field ψ ¼ ψffiffiffiffi

ρ0
p and norma-

lizing the equations, it is straightforward to show that

i
∂ψ
∂t ¼ −

1

2
∇2ψ −

�
U þ α0Y −

θ2Γ2

3
jψ j2

�
ψ

þ γ0
n

n − 1
jψ j2ðn−1Þψ þ VBψ ; ð13Þ

where

∇2U ¼ −jψ j2; ð14Þ
�
∇2 −

1

Γ2

�
Y ¼ −jψ j2; ð15Þ

Γ is the normalized λ parameter, and γ0¼wρn−3=20 =ðν ffiffiffiffiffiffiffiffiffi
4πG

p Þ
is a constant that depends on the polytropic exponent n
and measures the strength of the pressure term. The last term
in the Schrödinger equation is the well-known Bohm quan-
tum potential or quantum pressure, VB ¼ ∇2 ffiffiffi

ρ
p

=ð2 ffiffiffi
ρ

p Þ.
This potential can be removed from Eq. (13), but it shows up
instead in the hydrodynamic equations like a pressure
gradient. This potential has no equivalent in classical fluids,
and it is usually found when attempting to describe quantum
mechanics from a hydrodynamic perspective or in nonlinear
optics due to the diffraction. In the present context, we can
estimate the effect of this potential by considering ρ to be
given by a Gaussian distribution with width R, and it is
straightforward to show that VB ∼ 1=R2. Thus, the Bohm
potential is only important in circumstances where the energy
density ρ varies greatly over the scale of interest (∼1) that is in
collapse situations. However, these scenarios will not be
considered in this work, and thus, the Bohm potential can be
safely disregarded. Finally, it is pertinent to point out that,
despite the use of some quantum mechanics features, it is
not our aim todescribe ourmodel froma quantumperspective
but rather use the mathematical procedure provided by the
Madelung transformation [45], which allows transforming
the complete Vlasov-Poisson system into a system of
equations that are easier to work with.
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Before advancing we note that Eqs. (13), (14), and (15)
admit, in specific contexts, self similar solutions, described
by the following scaling transformation:

r⃗ → r⃗0 ¼ λ−1S r⃗ ð16Þ

t → t0 ¼ λ−2S t ð17Þ

ψðr⃗; tÞ → ψ 0ðr⃗0; t0Þ ¼ λ2SψðλSr⃗0; λ2St0Þ; ð18Þ

with Γ0 ¼ λ−1S Γ. Indeed, it is easy to show that these
relations are valid when the pressure term is negligible or
when the polytropic exponent n ¼ 3=2. Thus, the sol-
utions found under these assumptions are not restricted to
the original setting of the system, but can be transformed
to describe other systems at different spatial scales.
Furthermore, this is also important for testing the validity
of the gravitational model, since it is possible to search
for scaling factors that correctly scale a certain solution
that fits some particular observational data. This fact will
be explored later when we focus on the pressureless
regime.

A. Numerical methods

The SSFM is commonly regarded as one of the
most suitable schemes for the study of the Schrödinger-
Newton-Yukawa system [26], balancing accuracy with

performance. It consists in integrating the system of
equations in small steps by transforming the field between
the reciprocal and direct spaces, as the kinetic term is better
integrated in the first space, whereas the nonlinear poten-
tials in the former. Besides yielding accurate results, this
implementation allows us to take advantage from parallel
computing techniques and exploit high throughput hard-
ware such as graphical processing units (GPU) for perform-
ing complex simulations in reasonable spans of time. For
more details about the numerical scheme and its imple-
mentation see Refs. [3,42], and references therein.
The most straightforward use of the method applied to

this system is to explore the dynamics of energy distribu-
tions governed by the alternative gravity model and to
examine the impact of its parameters. However, an inter-
esting feature is that the method can also be used as a tool to
search for static solutions. The technique for this purpose is
known as the Imaginary-time propagation method (ITP)
and consists in performing a Wick rotation on the time
parameter t → −it [27,28]. This transformation converts
Eq. (13) into a diffusionlike equation with emission and
absorption terms. By propagating an initial random ansatz
and ensuring that the total mass is conserved, the system
converges to its ground state as t → ∞; see Fig. 1. As
convergence criteria, we choose the relative variation in
the energy between integration steps to be below a certain
threshold, where the energy is calculated from the
Hamiltonian of the system,

FIG. 1. Three-dimensional representation of the imaginary-time propagation method for a solution with Γ ¼ 60 and α0 ¼ 1 × 10−10.
An initial random ansatz, given by Eq. (27) and corresponding to (a) is propagated in an imaginary time scheme, and after some time, the
initial field converges into a static solution. (b) The solution after ∼119750 iterations (t ∼ 0.54 Byr). (c) The final solution after ∼497500
iterations (t ∼ 2.18 Byr). The bottom slices are cuts along the z axis. The solutions are calculated in a three-dimensional grid with
½256 × 256 × 256� points. In this figure and in the following results, in order to convert from the normalized into the physical units, it
was considered ρ0 ¼ 1 × 10−20 kgm−3 and ν ¼ 1 m2 s−1.
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H¼1

2
j∇ψ j2þθ2Γ2

6
jψ j4þ γ0

n−1
jψ j2n−1

2
Ujψ j2−α0

2
Yjψ j2:

ð19Þ

The SSFM complemented with the ITP method is a
robust and stable numerical scheme to explore the existence
of static solutions. Still, depending on the parameters of the
system, it can become numerically unstable. In particular, if
we neglect the Bohm potential and the pressure term, the
most critical term is the term proportional to the energy
density, since in order to ensure the stability of the
numerical scheme [27], we have to ensure that

max

�����Γ
2θ2

3
jψ j2Δt

����
�

< 1; ð20Þ

where Δt is the integration step. This imposes limits on the
numerical model, since, for large values of Γ, very small
integration steps are required, which, on its turn, can
increase the calculations time up to days or even months.
On the other hand, we could also decrease the value of the
normalized energy density, however, this would require
values with limited physical interest. Having this term well
controlled, the remaining ones are shown to be stable.
Thus, although the numerical scheme does not impose a
restrictive limit on the parameters that can be used, we are
limited by the available time to compute the solutions and
ultimately by the precision of the machine.

IV. STATIC SOLUTIONS

The existence of static solutions requires a balance
between the attractive and repulsive potentials, which
can be easily identified in the gravitational model consid-
ered in this work. On one hand, the potentials U and Y
correspond to the attractive ones, and in the absence of
counteracting forces, they force the system into a collapse.
On the other hand, the remaining potentials, namely the
pressure and the term proportional to the energy density,
will force the system to expand. In general, the repulsion
that balances the collapse is maintained by a collaboration
between these two potentials. However, for systems where
the pressure term can be neglected, it is interesting to notice
that the current model may still allow the existence of
solutions if solely sustained by the term proportional to
the energy density. These static solutions, which will be
investigated in the subsequent sections, are specific to the
model under consideration and found no counterpart in GR
nor in previously explored NMC curvature-matter gravity
models [3].

A. Analytical approach

To investigate the possibility of such static solutions, we
first explore the systems with an analytical approach,
starting by recalling the hydrodynamic equation (10) with

the Bohm potential. We assume that we are in an astro-
physical scenario where we can neglect the pressure term
(pressureless fluid) as well as the Yukawa potential,
motivated by the fact that the α0 parameter shall be
negligible according to known observational bounds
[60]. In a static regime, where ∂tψ → 0 and v⃗ ¼ 0, the
hydrodynamic equation (10) can be rewritten, in dimen-
sionless units, as

ρþ θ2Γ2

3
∇2ρ −

1

2
∇2

�∇2 ffiffiffi
ρ

p
ffiffiffi
ρ

p
�

¼ 0: ð21Þ

Since we are interested in solutions at large scales, the
Bohm potential can be safely neglected, a simplification
that corresponds to the common Thomas-Fermi (TF)
approximation. Alternately, this approximation can be
interpreted as if the kinetic term in Schrödinger equa-
tion (13) could be neglected, since at large scales the
contribution from this term to the total energy can be
disregarded. Thus, in this approximation, we have that

ρþ θ2Γ2

3
∇2ρ ¼ 0; ð22Þ

which has an exact solution [20,61] given by

ρðrÞ ¼
� ρMR

πr sinðπrRÞ r ≤ R

0 r > R
; ð23Þ

where the maximum density ρM can be obtained in terms
of the total mass of the system, M, by integration of the
solution over the volume as

ρM ¼ πM
4R3

; ð24Þ

and the radius of the solutionR at which the energy density
vanishes (compact support) is

R ¼ πθΓffiffiffi
3

p : ð25Þ

It is interesting to notice that this value only depends on
the gravitational parameters of the model, θ and Γ, and is
independent of the total mass of the system. However, we
need to be careful since both, too large or too small masses,
can violate the assumptions used for the TF approximation.
In the first scenario, systems of a larger mass are associated
with an higher density. In this case, the pressureless regime
is no longer valid, breaking the initial assumption of
Eq. (22). On the opposite side, the small mass limit is
associated with an ultra-low-density of the system for
which the potential proportional to the energy density
can become of the same order of magnitude as the
Bohm potential. In such case, which happens when
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1

R2
∼
θ2Γ2

3

M
R3

⇒ M ∼
π

ffiffiffi
3

p

θΓ
; ð26Þ

the contributions of both will be of the same order which
also invalidates the TF approximation.

B. Numerical results

Let us now numerically examine the static solutions
discussed in the previous section with the imaginary-time
propagation method depicted in Fig. 1. To avoid inducing
symmetries in the profile of the solution, we started the
simulations with a uniform field of amplitude A destabi-
lized by a small random noise ϵðr⃗Þ,

ψðr⃗; t ¼ 0Þ ¼ Aþ ϵðr⃗Þ: ð27Þ

This initial state is propagated under the ITP method, and the
system ultimately converges towards a static solution. In
Fig. 2, a particular solution is shown in a 3D representation,
as well as the relevant potentials. It is easily seen that the
solution is stabilized solely by the potential proportional to
the energy density and the Newtonian potential, since the
contribution from the Yukawa potential is negligible.
Furthermore, from Fig. 2(b), where normalized slices of
the potentials are plotted, the Newtonian and the Yukawa
potentials are very similar. This happens because we have to
consider large values for the Γ parameter in order to satisfy
the validity of TF approximation and, in this situation, the

Yukawa potential resembles a Newtonian one. Thus, the
static solutions found in the previous section remain valid
even for large values of α0, and the effect of this extra
nonlocal term can be considered in the hydrodynamic
equations as U → ð1þ α0ÞU, since α0Y=Γ2 ∼ 0.
Figure (3) summarizes the features of the static solutions

obtained with the solver. Figure 3(a) shows the regions
forbidden for the value of α0 (grey area) that were obtained
through several experiments [60]. In this figure is also
plotted the region of validity of the TF solutions (blueish
zone), which indicates that there are a wide variety of
systems, with different spatial scales, that can be described
by this model. Figure 3(b) shows the comparison between a
numerical and the respective analytical solution, for a
certain set of parameters. Both solutions are in good
agreement; however, it is important to notice that the
numerical solution does not assume the TF approximation,
and while the exact solution assumes a compact support,
the numerical one extends to infinity. This implies that
there is a small fraction of the mass that is beyond r ¼ R.
This explains some of the differences between the numeri-
cal ρM and the theoretical prediction, which is below 4%.

FIG. 2. Representation of a static solution with Γ ¼ 60 and
α0 ¼ 1 × 10−10. (a) 3D representation of the static solution and
the potential’s profiles. The color scales are in arbitrary units.
(b) Profile comparison of the potentials.

FIG. 3. Static solutions found by the ITP method. (a) Shows the
regions prohibited for α0 as a function of the parameter λ,
accordingly to Ref. [60], and the red dots indicate the position of
the calculated solutions, where the labels are used to connect the
profile of the solutions in the remaining of the figure with their
position in (a). The inset shows a solution outside the region of
validity of the TF approximation. (b) Static solution compared
with the analytical solution given by Eq. (23) and with a scaled
one from a solution with Γ ¼ 30, corresponding to a scaling
factor λS ¼ 1=2. (c) Shows the impact of α0 on the solution’s
profile. The background of (a) was adapted from Ref. [60].
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This confirms the existence of solutions that are only
supported by the term proportional to the energy density
(pressureless solutions) predicted in the previous section.
Furthermore, it is also shown the agreement of a scaled
solution from another one calculated with Γ ¼ 30, as
predicted by the scaling laws in Eq. (18). In Fig. 3(c), it
is shown the effect of the α0 value in the solutions.
For α0 ≲ 1 × 10−5, the solutions barely change, while for
large values, we see an increase in the peak density while
the solutions radius diminishes, since R ∝ ð1 − ffiffiffiffiffiffiffi

3α0
p Þ=

ð1þ α0Þ1=2 for large values of α0. Nevertheless, we see that
the numerical solutions continue to agree quite well with
the TF solutions. Furthermore, the solutions plotted in
Fig. 3(a) are valid for a wide range of α0 values and can
cover the regions that are consistent with known bounds.
Finally, the results considered in this work disregard the
contribution from the pressure term, but it is now possible
to consider more complex situations where this term may
be important. In particular, it is relevant to understand the
impact of the pressure potential as well as the effect of the
polytropic exponent n. However, a comprehensive study
about the implications of this potential is beyond the scope
of the present study, and we leave it for a future work.

V. DISCUSSION AND CONCLUSIONS

In this work, we have considered a NMC curvature-matter
gravity model described by functions of the scalar curvature,
f1ðRÞ and f2ðRÞ, given by Eq. (5). Assuming that matter
can be described as a fluid, it is found that the system admits
a hydrodynamic fluid description [59]. In this description,
two additional potentials arise, a Yukawa one and a potential
proportional to the energy density. The latter induces a
repulsive correction on the fluid equation, and the competi-
tion between the attractive potentials and the repulsive ones
can, under specific conditions, give origin to static solutions.
By transforming the hydrodynamic description into the
Schrödinger-Newton-Yukawa system, we have confirmed,
analytically and then through numerical methods, the
existence of this new class of solutions. Furthermore, we
also studied the impact of the model parameters in the
structure of the solutions and shown that these are compat-
ible with the existing bounds on the parameters of a putative
new Yukawa-type interaction.
The numerical recipe used in this work allowed us to

circumvent the complexity of the field equation and to
obtain a new class of solutions. To our knowledge, the
existence of stable solutions without pressure constitutes
a new distinct feature of this gravity model that does not
exist in GR. The observational implications of this result
can be fully appreciated from a more phenomenological

perspective in which specific stable and static gravity
sustainable structures are identified so that their parameters
can be matched with the ones of our gravity model. This
type of analysis has been previously considered, for
instance, in an oceanographic context [52], and the present
work extends its range to an astrophysical setting.
Finally, the gravitational model described in this work

stands as a good candidate for developing a new optical
analogue. Through a detailed analysis, we have shown that,
under certain approximations, the model can be described
by a system of equations that is commonly found when
describing light propagating in nonlinear optical systems.
Thus, the next step is to search for optical materials capable
of mimicking this particular Schrödinger-Newton-Yukawa
model, where nematic liquid crystals [11,12,41], thermo-
optical materials [13–15], or atomic vapors [16] stand as
possible candidates, and with these, it might be possible
to produce tabletop experiments capable of emulating the
dynamics of the gravitational model discussed in this work.
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