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Extreme-mass-ratio inspirals (EMRIs) will be key sources for LISA. However, accurately extracting
system parameters from a detected EMRI waveform will require self-force calculations at second order in
perturbation theory, which are still in a nascent stage. One major obstacle in these calculations is the strong
divergences that are encountered on the worldline of the small object. Previously, it was shown by one of us
[A. Pound, Nonlinear gravitational self-force: Second-order equation of motion, Phys. Rev. D 95, 104056
(2017)] that a class of “highly regular” gauges exist in which the singularities have a qualitatively milder
form, promising to enable more efficient numerical calculations. Here we derive expressions for the metric
perturbation in this class of gauges, in a local expansion in powers of distance r from the worldline, to
sufficient order in r for numerical implementation in a puncture scheme. Additionally, we use the highly
regular class to rigorously derive a distributional source for the second-order field and a pointlike second-
order stress-energy tensor (the Detweiler stress energy) for the small object. This makes it possible to
calculate the second-order self-force using mode-sum regularization rather than the more cumbersome
puncture schemes that have been necessary previously. Although motivated by EMRIS, our calculations are
valid in an arbitrary vacuum background, and they may help clarify the interpretation of point masses and
skeleton sources in general relativity more broadly.
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I. INTRODUCTION

Given the approaching launch of the Laser Interferometer
Space Antenna (LISA) [1,2], itis essential that we are able to
efficiently and accurately model the gravitational waves
emitted by potential sources in the LISA frequency band.
A class of sources of particular interest are extreme-mass-
ratio inspirals (EMRIs) [3].

In an EMRI, a compact object of mass m ~ 1-10> M,
spirals into a supermassive black hole of mass M ~
10°-107 M, performing roughly e~! ~ 103 intricate orbits
while in the LISA band [4,5], where ¢ :=m/M is the
binary’s mass ratio. These ~10° cycles are typically spent
within 10 Schwarzschild radii of the supermassive black
hole, and they provide a precise map of its strong-field
geometry. This will allow numerous tests of general
relativity, usually with one or more orders of magnitude
greater precision than other planned experiments [5,6].

However, the long life of the inspiral also imposes
stringent accuracy requirements on our models. To make
use of a complete signal, and extract all the information it
encodes, we require theoretical waveforms that are accurate
to much less than one radian of error over the duration of
the signal. Because errors accumulate secularly over the
signal’s €~! cycles, they are effectively multiplied by ~10°.
This means our relative errors in the system’s slowly
evolving orbital frequencies must be much smaller than
e~107.
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A. Second-order gravitational self-force

The most viable method of modeling an EMRI system to
the required accuracy is with gravitational self-force
theory [7-11]. In this approach, the small object is treated
as the source of a small perturbation, #,,, on a background
metric, g,,, enabling us to write the full spacetime metric as

(1)

g/u/ = 9w + h;uu

where

b =S L. @)

n>1

Here the coefficients depend on y, a worldline representing
the small object’s motion in the background spacetime g,,, .
In the context of an EMRI, g, is taken to be the metric of
the central Kerr black hole.

At zeroth order, y is a geodesic of the background
spacetime. At subleading orders, the metric perturbation
alters the small object’s motion, exerting a self-force that
accelerates the object away from geodesic motion:

DZZ(I

W = €f‘lx + €2fg + 0(63)’

(3)
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where z% are coordinates on y, 7 is proper time in gz,
% := u”V,, is the covariant derivative (compatible with 9ap)
along the worldline, and u® := % is the four-velocity.

The self-forces f have both conservative and dissipative
effects. Roughly speaking, in an EMRI the conservative
pieces of the self-force determine the instantaneous orbital
frequencies. In an expansion Q = Q) 4 Q) + O(e?) of
the azimuthal frequency, for example, the zeroth-order term
is that of a geodesic in g,,, and the corrections Q" are
determined by f% .,ns. The dissipative pieces of the self-
force govern the slow evolution of the frequencies, with
2 giss determining 42 [11-13]. Hence, to correctly track
the orbital frequencies to within a relative error much
smaller than e, we must compute all of f{ and the
dissipative piece of f4. In other words, we must carry
self-force theory to second order in €.

Currently, at first order it is possible to simulate full
inspirals, driven by the first-order self-force, from a spinning
small object on a generic orbit in a Schwarzschild back-
ground [14—17] or the adiabatic inspiral of an object in the
equatorial plane of a Kerr black hole [18]. While no
analogous inspirals have yet been computed for generic,
inclined orbits in Kerr, it is also now possible to calculate the
first-order self-force on any fixed bound orbit in Kerr [19].

At second order, it is only recently that numerical
calculations of physical quantities have been performed,
and they have been specialized to quasicircular orbits
around a Schwarzschild black hole [20,21]. Much work
remains to bring second-order calculations to the same state
as current first-order calculations before the expected
launch of LISA in 2034.

It should be emphasized that second-order calculations
do not merely provide an improvement in accuracy over
first-order calculations. The dissipative piece of f§ is
equally important as the conservative piece of f{. This
means that calculations of f T cons? which represent the bulk
of the self-force community’s efforts over the past two
decades, do not improve the accuracy of a waveform unless
they are complemented with calculations of f9 ;.. Both
ingredients are equally crucial for performing useful
science with LISA data.

Second-order self-force calculations also have applica-
tions to other binary models. Information from gravitational
self-force has been used to determine high-order terms in
post-Newtonian theory, provide guidance for both post-
Newtonian and post-Minkowskian theory, and refine effec-
tive one-body models [22-24]. Second-order self-force
results could be used to fully determine two-body dynamics
through fifth post-Newtonian order (one order beyond the
state of the art [25]) and through sixth post-Minkowskian
order (two beyond the state of the art [26]) [27].

There is also an increasing body of evidence that the
self-force formalism may be directly applicable to binaries
well outside the EMRI regime [28-30]. In fact, self-force

models may be reasonably accurate even for comparable
mass ratios, € ~ 1, at least in certain areas of the parameter
space [21,31].

This is particularly relevant after the recent detection of
binaries with mass ratios ~1:4 [32] and ~1:10 [33], which
indicate that gravitational self-force models could be used
for current LIGO-Virgo sources.

B. Self-force theory, singularity structure, and the
problem of infinite mode coupling

One of the main challenges at second order is coping
with the strong divergence of hﬁb on the small object’s
worldline. At a practical level, it creates a major numerical
burden, which we describe below. At a more foundational
level, the strength of the singularity is intimately related to
the fact that in a generic gauge, the field equations for hfw
are not globally well defined: it contains source terms
that are distributionally ill defined on any domain inter-
secting y.l Our goal in this paper is to reduce the practical
challenge by overcoming the foundational one.

To begin, in this section we review how the problem
arises. We consider a generic spacetime containing a small
object, which may be a material body, a black hole, or
something more exotic. We assume the body is compact,
with a diameter comparable to its mass m, and that m is
much smaller than an external length scale R; in a binary,
R could be the large mass M or a characteristic orbital
separation, but our analysis is not restricted to binary
systems. € will now be a formal expansion parameter we
use to count powers of m/R, and it can be set to 1 at the end
of the calculation. Outside the body, we assume there is a
vacuum region at least of size R. All of these assumptions
can be relaxed as long as the body’s mass and diameter are
much smaller than R.

Self-force theory provides a framework for solving
the Einstein equations in this generic scenario. Its core
result is a skeletonization of the small body [8], in which
(i) the body is reduced to a singularity equipped with
the body’s multipole moments, and (ii) the singularity
moves as a test body immersed in a certain effective
spacetime.

The derivation of this skeletonization is based on the
method of matched asymptotic expansions [8]. Sufficiently
near the small object, the object’s own gravity dominates
over the external background, and the expansion (1)—(2)
fails. Hence, we assume that the metric in this region is
instead approximated by a second expansion that zooms in
on the body, and that this second expansion appropriately
matches onto the expansion (1)-(2). When combined
with the vacuum Einstein equations, this matching con-
dition determines the form of the metric perturbation

h,, in a local neighborhood of the object (but outside

'For introductory references on distribution theory see, e.g.,
Refs. [34,35].
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the object itself). That form splits conveniently into two
fields [36]*:

h/,w = hﬁy + h;l}v (4)

The self-field (or singular field) hy, = >, o €"h3y carries
the local information about the object’s multipole structure.
In the local neighborhood, at small proper distance r from
the worldline y, the self-field has the schematic form

m
Hpy ~ - (5)
mZ —l—M“ _|_Sa
pz A M (6)
r

m® + m(M* + §%) + M 4 §°
3 . ()

S3
hpy .
and so on to higher orders, where m is the object’s mass,
M* its mass dipole moment (describing the position of its
center of mass relative to y), S¢ its spin, and M and S its
mass and current quadrupole moments. If we choose y such
that M* = 0, then y represents the object’s center of mass at
first order [43,44]. Conditions on corrections to M enforce
this mass-centeredness at higher orders [40]. The proper
spatial distance r, as well as the curve y itself, is defined in
the external background spacetime with metric g,,; if the
object is a black hole or has a nontrivial internal topology,
then y is not a curve in its true interior, but instead a curve in
the smoothly extended external background manifold.
The other piece of the perturbation is an effectively
external field or regular field, hy, = 3", €"h&". It has the
local form of a Taylor series around y,

R = AL ()X x0 (8)
>0

where x“ are local spatial coordinates centered on y, and the
time ¢ outside the body is synchronized with a time
parameter along y. kY, is a vacuum solution that carries
no local information about the object’s moments, but
instead contributes to the external tidal moments that the
object feels. It can be combined with the external back-
ground to define an effective metric,

*There is a standard division into h3, and hy, at first order [37],
but in general the division is not unique. For the purpose of our
discussion we can adopt any split in which hﬁb is smooth on y, the
effective metric g,, = g,, + h}fy is a vacuum metric on and in a
neighborhood of y, and the equation of motion is that of a
geodesic in g,, (through second order in e for a nonspinning,
spherical body). These conditions do not select a unique S—R split
[38], but they are satisfied by the split(s) in Refs. [36,39,40]. The
alternative S—R divisions in Refs. [41,42] each violate two of the
conditions.

g;w = 9w + h/l}w (9)

which is a vacuum metric, and which governs the motion of
the body; we return to these points momentarily.

The fields /3, and A, are initially defined in the vacuum
region outside the object. However, if we analytically
extend them into the object’s effective interior, down to
all points r > 0, then several things happen. First, the fields
hﬁ,ﬁl diverge on y; this is the singularity mentioned above.
Second, the coefficients A, .., in iy become trivially
identified with the value of h}}f and its derivatives on 7,
such that Eq. (8) becomes

1
Wi = h}f;’|y +x“8ah5,j’|y +§x"xh8aahh}f§’|y +0O(?). (10)

Moreover, the equation of motion (3) for y, which is
otherwise written in terms of the fields A}, .,, defined
outside the body, becomes identical to the equation of
motion of a test body in g, ; this result has been established
at linear order in e for an arbitrary compact object [43,44]
and up to second order in ¢ for a nonspinning, spherical

body [39,40]. The latter result reads

D22 L pongr — WROYHR, 1S Vubur
D) (g,, —h")( By /fy;p)” u
+O(e), (11)

where P := g™ + u”u*, a semicolon denotes the covar-
iant derivative compatible with g,,, and all fields are
evaluated on y. This is an expanded form of the geodesic
equation in g,, [45].

All of the above follows from the matching condition
and the vacuum field equations outside the body. The
extended fields £}, satisfy those equations for all points x
away from yp,

8G*[h] + &G [h,h] = O(e*) forx gy. (12)
Here 5G* and 6>G* are the linear and quadratic terms in
the expansion of the Einstein tensor G**[g + h| in powers
of h,,, given explicitly in the Appendix A.

In this way, we have effectively eliminated the body’s
small scale from the problem and replaced it with a
singularity, without altering the curve y or the metric in
the region r > m. The mathematical problem of solving
the Einstein equations with a small extended source has
been replaced with a reduced problem of solving the
vacuum field equations (12) subject to the conditions

(1) in the limit of small r, the solution agrees with the

form (4) derived from matched expansions,

(i) y obeys Eq. (11) (in the case of a nonspinning,

spherical object).
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For all » > m, the solution to this problem will be identical
to the solution to the original problem.

The literature on second-order self-force, going back to
Ref. [46], has focused on solving the reduced problem
via a puncture scheme [13,20,36,39-41,47] (see also
Refs. [9,48-52]). The puncture is obtained by truncating
the local expansion of the singular field at some finite
power of r, so that h]f,, ~ h;jf,,, and then transitioning it to
zero at some arbitrary, finite distance from y. Rather than
solving for the physical field /,,, one solves for the residual

field

Hws

h% = h,, —hh, (13)

which satisfies h, & hY, near y but becomes identical to
h,, outside the support of hfy. Writing the puncture as
>-€"hl[y], we move it to the right-hand side of Eq. (12)
and split the field equations into a hierarchy of equations
for the residual fields’:

8G* [WR = —6G*™[hP']  for x & 7. (14)

85G*" [hR?] = —-5°G*[h',h'] —6G*™[h™?] forxgy.  (15)
As written, these equations do not uniquely determine hﬁ”,
even if sufficient boundary conditions are prescribed in the
external spacetime, because they do not tell us whether or
not there are delta function sources supported on 7.
However, in order for the total field iy, + hl,, to agree
with the form dictated by the matched asymptotic expan-
sions, hﬁy must be a C* function at y if h]f,, is truncated at

order X, This implies that the correct field equations on the
full domain, including y, are

G [W™1] = —(8G™ (W)™, (16)
5G[RR?) = —(8GH[h', h'] + 6G* [WP2])*,  (17)

where we use a v to indicate that a quantity defined on
r >0 is promoted to the domain r >0 as a locally
integrable function. This means derivatives in §"G,, are
evaluated in the ordinary strong sense for » > 0, and then
the starred quantities are simply left undefined on the
measure-zero set ¥ = 0 or defined at » = 0 by taking the
limit » - 0 (if it exists). For example, the Euclidean

Laplacian acting on 1/r = 1/+/x* + y* + z? evaluates to

5°9,0,(1) =0 for r > 0, meaning its ¥ promotion is

r

[6%0,0,(1)]" = 0 for all r > 0; this contrasts with the

1
’

’The form and behavior of these equations are slightly
different than in the puncture scheme detailed in previous papers
by one of us (e.g., [20,36,40]). We adopt this form here to
streamline the discussion. We discuss the differences in the
conclusion.

result if we treat the Laplacian in the sense of distributional
derivatives, in which case we have the distributional
identity 56%°0,0, (%) = —4n8%(x").

The form of the puncture guarantees that the sources in
Egs. (16) and (17) are locally integrable at y. Additional
conditions on the puncture arise if we wish to replace h,l},,
with hZﬁ in the equation of motion (11). Such a substitution
requires that, on y, h]f,, and its first derivatives are identical
to h}}y and its first derivatives. Ensuring this generically
requires

: P _ S\ —
}Cl_rg(h;w hﬂl/) O’ (18)

}Cl_I)I;(h}Z.p - hfw,p) =0, (19)
for all points z# on y. With these conditions, Egs. (16), (17),
and (11) form a coupled set of equations that can be
conveniently solved, in the case of a binary inspiral, in a
two-timescale expansion [11,12,20].

However, at first order there is an alternative, more
commonly used method: rather than replacing the object
with a puncture in the spacetime, one can (equivalently)
replace it with a point mass. If we return to Eq. (12) and
now do treat derivatives in 6G** as distributional deriva-
tives, then the form of the singular field, /;,, determines
[36,43,44,53]

€5G* [h'] = 8zeT!" + O(e?), (20)

where
T (x) = m/ wtur s (x, 7)dr (21)
v

is the stress energy of a point mass in the background
metric g,,. The quantity

_Sx—2)
-

is the covariant delta function. With this formulation,
instead of solving the field equations directly for the
regular field, one can solve Eq. (20) for the full field h}w
and then extract h,]f,} using mode-sum regularization; see
Refs. [9,54] for reviews of this method. Such calculations
are often significantly easier to implement and more
efficient than puncture schemes, and they have been the
basis for most calculations of the first-order self-force.

Equation (20) is a more traditional form of skeletoniza-
tion than the puncture scheme [55]. If the field equations
were linear, then we could extend it to all multipole orders.
The local form (5)—(7) would directly correspond to a
skeleton stress energy [36]

5 (x,2) (22)
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™" = / [muu?8*(x, z) + w uMPV ,6*(x, z)
v

+ u SV 64 (x, 2) + - - Jdx, (23)

where $# := —e”**?u,S,. But the nonlinearity of the field
equations spoil this simple correspondence. At second
order, the difficulty arises because the second-order
Einstein tensor, 5°G*, shown in Eq. (A3), has the sche-
matic form 8*G**[h, h] ~ hd*h + Ohdh. Given the first-
order field’s behavior h}w ~ 1/r, the second-order Einstein
tensor diverges like 8>G*[h', h'] ~ 1/r* at the worldline.
This is not locally integrable at y, and because it is
constructed from a quadratic rather than linear operation
on integrable functions, it does not have a unique definition
as a distribution on any region intersecting y. As a
consequence, we cannot obviously write an analog of
Eq. (20) for hfw or define a unique second-order stress
energy.

This strongly divergent behavior of 5>G* also introdu-
ces the dominant computational burden in a numerical
implementation at second order: the problem of infinite
mode coupling, first described in Ref. [56]. In concrete
applications to binaries, we typically decompose the fields
hy, into a basis of angular harmonics, say hy, =
> itm hﬁm(fBLJBL)YLZLn(@y ¢), where (tgi,rgL,0,¢)
Boyer-Lindquist coordinates centered on the large black
hole; here for concreteness we have written the expansion
in terms of Barack-Lousto-type tensor spherical harmonics
[57], which would not be used in Kerr calculations in
practice, but the problem we describe is insensitive to the
details of this decomposition. Given this mode expansion, a
single mode of 5°G**[h', h'] becomes an infinite sum of
products of modes of h,'w:

& G’lmh h ZDill?Tmllzlzmz iylymy> hllzlzmz] (24)

iplymy
iplymy

ilm
where Dz, I, iy lymy

ing t5. and rp. derivatives. Since 5°G* ~1/r* and
decomposing into modes involves integrating over two
dimensions, modes of 5*G** behave like

is a bilinear differential operator involv-

1
PGy~ (25)
T gL = ro(teL) 7

where r, (g ) is the orbital radius at time 7g; . On the other
hand, the first-order modes A}, are finite at rg;, = r, (g )-
This means that the mode sum (24) must recover a strongly
divergent function by summing up products of finite
modes. In practice, to achieve a fixed accuracy arbitrarily
close to the worldline, this requires an arbitrarily large

number of first-order modes.

In a numerical calculation, each mode hl i1, Must be found
by solving the first-order field equations, meaning there is a
practical limitation on the number of modes we can add to
the sum. This makes it impossible to calculate even a single
mode 6°G,,, in aregion around y. Miller et al. [56] provide a
way to circumvent this problem using knowledge of the
local four-dimensional hz,’l,l near the worldline. That method,
which is used in the only extant second-order implementa-
tion [13,20], involves performing two-dimensional numeri-
cal integrations of the four-dimensional hf,} on a grid of rg,
values around r,. Such a procedure will be the overwhelm-
ing computational expense in any second-order calculations
using current methods.”

C. This paper: Highly regular gauges and the
Detweiler stress energy

In Ref. [40] (hereafter paper I), one of us showed that there
exists a class of highly regular gauges that are qualitatively
more regular than the generic behavior (5)—(7). In this class,
the most singular piece of 42 s ~m?/r?, identically vanishes
(and, likewise, the most singular, ~m"/r" piece of hyy
vanishes for all n > 2). Accordingly, in these gauges
the most singular piece of the second-order source,
G [hS', BSY), is significantly mollified, diverging as
~1/r?* rather than 1/7*. This implies that the individual
source modes in these gauges will behave, at worst, like

8%Gpy ~ log |rp. — r,(151)]. (26)

A mildly divergent function of this form should be dra-
matically cheaper to compute than the much more strongly
divergent generic behavior (25).

However, paper I only provided the leading-order term of
hzf in the class of highly regular gauges. Our first goal in
this paper is to extend the derivation through linear order in
r, the order required to ensure the conditions (18)—(19) are
satisfied. The derivation, which closely follows paper I, is
contained in Secs. II and III.

Paper I also pointed out that because 8*G**[h', h'] is well
defined as a distribution in these gauges, it is possible to
write down a field equation for hﬂy that is valid on the entire
domain r > 0 and to identify a unique second-order stress-
energy tensor. In Sec. IV, we derive that stress energy,
showing that in highly regular gauges Eq. (20) extends to
second order,

*“This point is starkly illustrated with an example. For a
quasicircular orbit at a single orbital radius in Schwarzschild,
computing the necessary inputs for 52G;;,,, up to moderate values
of [ takes two to three days on a 40-core machine. All other
aspects of the calculation of h]ff represent a marginal additional
runtime. As a point of comparison, a decade ago an analogous
first-order calculation at a single orbital radius with comparable
precision could be performed in approximately 10 minutes on an
ordinary desktop [58].

124016-5



SAMUEL D. UPTON and ADAM POUND

PHYS. REV. D 103, 124016 (2021)

5G* [eh! + €*h?] + 25°G* [h!, h!]
= 8T + O(&3), (27)

with

4y
T = em / g =2 g (28)
¥ V=g

This is nothing more than the stress-energy tensor of a point
mass in the effective metric g,,. We discuss some of its
properties in Sec. IV.

To emphasize the significance of Eq. (27), we stress that
in self-force theory we cannot freely prescribe a stress-
energy tensor. The assumptions of matched asymptotic
expansions uniquely determine the local form of the metric
in terms of a set of multipole moments. In cases where all
terms in the Einstein field equations are well defined as
distributions on the domain r > 0, this local structure
encodes the same information as (and uniquely determines)
the skeleton stress-energy tensor. Yet Eq. (27) does not
appear here for the first time: in Ref. [47], Detweiler posited
that this equation, with the stress energy (28), holds in all
gauges, and we therefore call T# the Detweiler stress
energy. Our derivation shows rigorously that it is valid in
the class of highly regular gauges. In Sec. V, we extend our
analysis to the Lorenz gauge. In that case, the stress-energy
tensor is not uniquely determined because not all quantities
in the field equations have unique distributional defini-
tions.” But we show that there exists a canonical distribu-
tional definition of 8°G*[h', h'] under which Eq. (27)
holds true. We conjecture that this extends to all gauges
compatible with the assumptions of matched asymptotic
expansions. However, outside the highly regular gauges,
these distributional definitions explicitly involve #h;;
to use such definitions, one must explicitly solve the
second-order field equations locally before one can solve
them globally.

After these foundational calculations, in Sec. VI we
sketch how our results could be used to implement a
puncture scheme in a highly regular gauge. Building on
Eq. (27), we also describe how one could solve for hfw and
then extract ik using mode-sum regularization.

Except in portions of Sec. II, we specialize to the case of
a spherical, nonspinning small object. Throughout, we
leave the external background arbitrary.

>We note that this lack of uniqueness has no bearing on
whether a unique global solution can be found. As described in
Sec. I B, the global solution is uniquely determined by the local
form of the metric together with the field equations and global
boundary conditions.

D. Conventions and definitions

We work in geometric units with ¢ = G = 1. Greek
indices run from O to 3 and are raised and lowered with the
background metric, g,,, which has signature (—, +, +, +).
Lowercase Latin indices run from 1 to 3 and are
raised and lowered with the flat-space Euclidean metric,
0.,- Uppercase Latin indices denote multi-indices, as in
L:=1 1oee i 1

Terms written in a serif font are exact quantities, e.g., g,
is the full, exact metric describing the physical spacetime.
A prime symbol on the perturbation, A", , denotes quantities

> v
in the light cone rest gauge, and a star, hj;, denotes
quantities in the Lorenz gauge. No prime, /;,, indicates

terms in the highly regular gauge. A prescript, "', on a
tensor counts the power of € coming from substituting the

acceleration a* =, €"f} into A}!.. An overset ring,

o

B
Ay:m , indicates terms that have been reexpanded for small
acceleration and then recollected at each order in e, i.e.,

hZ,, =Y, 'hiT (where, for this purpose, h9, := g,,).
Tildes placed over a tensor, A’,f} .-, denote quantities defined
with respect to the effective metric.

Parentheses and square brackets around indices denote
symmetrization and antisymmetrization, respectively.
Angled brackets, such as (L), denote the symmetric
trace-free (STF) combination of the enclosed indices with
respect to J,,. In some cases, we additionally use the
notation Sym; and STF; to denote symmetrization and
the STF combination over the indices L, respectively.
The covariant derivative (given by V or a semicolon) is
compatible with g,, unless otherwise stated and the partial
derivative is denoted by a comma.

A number of calculations in this paper were done using
WOLFRAM Mathematica [59] and the tensor algebra pack-
age xAct [60-63].

II. PERTURBATIONS FROM MATCHED
ASYMPTOTIC EXPANSIONS IN THE
LIGHT CONE GAUGE

A. Matched expansions and the existence
of a highly regular gauge

We begin with a more detailed review of matched
asymptotic expansions and how it leads naturally to the
existence of highly regular gauges. The discussion here
reiterates material in numerous references, and we specifi-
cally follow paper I. We refer to Refs. [64,65] for a broader
introduction to the method of matched expansions.

Our discussion of the local form of the metric will
involve some subtleties because we use the self-consistent
framework of gravitational self-force theory [36,39,44] (see
Ref. [8] for an overview). In this approach we expand the
perturbation /4, while holding the accelerated worldline
fixed. This means that y is € dependent, and the coefficients
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hy,, inherit that € dependence; Eq. (2) is not a Taylor series
in €.° In an ordinary Taylor series, y itself is expanded in
powers of e. The puncture or skeleton stress energy then
diverge on the zeroth-order worldline, which is a geodesic
of the external background metric. The corrections to the
motion are then encoded in mass dipole moments in the
perturbations /1, !, This treatment is prone to large cumu-
lative errors because in physical scenarios such as a binary,
the body secularly deviates from the background geodesic,
causing the dipole moments to grow large with time. The
self-consistent treatment circumvents that problem.

As discussed in Refs. [11,13], to avoid other, similar
errors, in general we should also allow the coefficients Ay,
to depend on ¢- and time-dependent external physical
parameters. Examples of such parameters are perturbations
to the large black hole’s mass and spin in a binary. In the
analysis below, we can freely allow h}},, to depend on such
parameters without altering the discussion. We hence leave
the dependence on these parameters implicit.

To understand the form of the perturbations near the
worldline, we adopt Fermi-Walker coordinates (¢, x?) that
are tethered to y [7]. The spatial coordinates are defined
such that x' = rn’, where r is the proper distance from the
worldline along a spatial geodesic orthogonal to y, and n' is
a unit vector giving the direction the geodesic is sent out
from y. The time coordinate, ¢, gives the proper time on y.
Here proper lengths, and orthogonality, are defined with
respect to the background metric.

Because these coordinates are tied to an e dependent
worldline, they introduce additional ¢ dependence into the
metric. In particular, the background metric in these
coordinates takes the form [40]

g = =1 =2apx' — (Ryj + a;a;)x'x’/

1 .
-3 (4Rtitjak + Rzitj;k)xlxjxk + O(’A)’ (29a)
2 A ik
Gra = __Rtiajxlx] - _Rtiajakxlxjx
3 3
1 i +J vk 4
- ZRn-aj;kx’xe +O(r"), (29b)
1 A | ik 4
Yab = 5ab - _Raibjxlx/ - _Raibj;kxlxjx + 0(7‘ )7 (290)

3 6

which explicitly depends on y’s e-dependent covariant
acceleration a* = D>z /di* = (0, a").

All Riemann terms in the metric are evaluated on the
worldline and are therefore also implicitly dependent on €.

*More precisely, we treat the metric as a function
9w (x#, 7", u#, €) and expand for small ¢ while holding the other
arguments fixed. The function on the enlarged manifold that
includes the phase space coordinates (z#, u*) becomes equal to
the physical metric on the spacetime manifold when z# and u/
obey the (e-dependent) equation of motion.

As g, is a vacuum spacetime, we can use the identities in
Appendix D3 from Ref. [66] to write these Riemann
quantities in terms of tidal moments:

Riaip = Eav, (30a)
Raper = €apilB'cs (30b)
Rapea = _eabiecdjgij7 (30c)
and
Riutpie = Eape + %eci(al.gb)iv (31a)
Rapera = eabi <;—l Bica - gedj(i‘éjc)> ) (31]3)

.. 2 s
Rapede = —€abi€cdj <5”e + §€ek(’BJ)k>, (31c)

where &,,, By, Eupe, and B, are the external back-
ground’s quadrupolar and octupolar tidal moments, which
the small object feels as it travels along the worldline. They
are STF over all indices and only depend on 7. A dot
denotes a derivative with respect to .

As discussed in the introduction, the local form of the
perturbations /j;, in these coordinates is determined using
matched asymptotic expansions. Sufficiently close to the
small object, at a distance r ~ m, any terms ~(m/r)" in the
perturbations reduce in order and become the same ‘“‘size”
as the background spacetime; moreover, such terms have
much larger gradients than the external background metric,
implying that their gravitational effects dominate over
background ones. This causes the expansion in Eq. (2)
to break down. To account for this, we introduce a second
asymptotic expansion that uses a scaled distance,

r
Fi= (32)
Now when we take the limit as ¢ — 0 at fixed 7, we keep
the scale of the small object fixed and send the external
universe to infinity. This is in contrast to our original € — 0
limit, which fixes the external universe and sends the size of
the small object to zero.

In our new expansion near the small object, we rewrite

our full spacetime metric as

Gu(rs€) = g (F) + eH}, (F) + HA, (F) + O(e)),  (33)

where gl is the metric the small object would have if it
were isolated in spacetime, and where the components refer
to an unscaled coordinate basis. Implicit in this form are
two key assumptions: (i) € is the only relevant length scale
near the object, meaning the object must be compact, with a
spatial extension comparable to its mass; and (ii) there is no
small time scale ~e in the spacetime, meaning the object is
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approximately in equilibrium with its surroundings and not
undergoing any internal dynamics on the scale of its light-
crossing time.

Both Egs. (1)-(2) and Eq. (33) are expansions of the
same metric, which we refer to as the outer and inner
expansions, respectively. So, for a sufficiently well-
behaved metric, they must agree when appropriately
compared; that is, they must satisfy a “matching” condition.
There are various formulations of such conditions, and
various assumptions that imply them. Reference [43]
assumes a strong set of smoothness conditions. A more
common, weaker assumption [64] is that the two expan-
sions agree in an overlap region on some length scale
between 7 ~ ¢ and r ~ ¢° thls will fall somewhere within
the “buffer region” ¢ < r < €’, in which €, r, and €/ r are
all small (and in which 7 is large compared to m). However,
there exist functions violating the above assumptions that
still satisfy the explicit matching condition that is generally
used in practice [65]. That condition is that the two
expansions must commute, in the sense that if the outer
expansion is reexpanded for small r, and the inner
expansion is reexpanded for large 7, then (after reexpress-
ing the inner expansion result in terms of r and €) the result
in both cases is a double expansion for small r and ¢, and
the coefficients in these double expansions must agree with
one another term by term. Here we merely assume that this
matching condition holds, without adopting any stronger
set of assumptions.

Using this condition and requiring that the outer and
inner expansion are well behaved (i.e., that there are no
negative powers of ¢ in either expansion), we constrain the
powers of r and 7 that can appear in our expansions.
Following the argument in paper I, if the outer perturba-
tions are expanded for small r, as in /j;, = > rP hy?, then
terms with p < —n would have to match terms in the inner
expansion with inverse powers of €. To see this, simply note
that an outer-expansion term of the form €”/r"*! corre-
sponds to 1/(e7**!) in the inner expansion. Hence, such
terms are ruled out. This argument also applies to the inner
expansions but with r? replaced by 1/7#7. Therefore, the
expansions for small » and large 7 must have the form

9 = ergﬁu, (34)

p20

hZu = Z rph/w ) (35)

pz—n
1
bj bj
g;(;uj = Z 7 gzuj ]7’ (36)
p>0
n 1 n,p
H), =S —Hil. (37)
pz-n r

where In(r) terms may appear but have been absorbed into
the coefficients for visual clarity. When we express 7 as r/¢,
each term in Eqs. (36) and (37) must be in one-to-one
correspondence with, and agree identically with, a term in
Egs. (34) and (35).

We have already given the explicit form (29) of the
external background (34) in Fermi-Walker coordinates. It is
determined by the acceleration of the worldline and the
external tidal moments. The inner background, conversely,
is determined by the multipole moments of the small object.
We see from Eq. (36) that gﬂ,, is asymptotically flat.
Furthermore, it is quasistationary, as it only varies on
the timescale ¢ ~ €°. Its expansion (36) can therefore be
written completely in terms of the Geroch-Hansen multi-
pole moments [67,68].7 Broadly, this means that, in the
buffer region, it has the form [40]

2
obi € €
g ~ 1 +-m+—

r r

+ O(i—i) (38)

where m and S’ are the Arnowitt-Deser-Misner (ADM)

mass and angular momentum of g,(j,t,”. M, is its mass dipole
moment relative to y, discussed in the introduction.

The nth-order term in the expansion (38) must match the
leading-order term in Ay,

(m2 + Ml-n" + €iijjnk)

enh;tl./—n engogj n
LA (39)

In words, the most singular (at r =0) term in hy,
uniquely determmed by the large-7 expansion of the

object’s metric g,, . This is the essential fact that implies
the existence of a highly regular gauge.

To see why this implication follows, consider a spherl—
cally symmetric, nonspinning object. Its metric gpw is
uniquely given by the Schwarzschild metric, which can
be written in ingoing Eddington-Finkelstein coordinates as

2
dsgy = (1 - _m) dv? + 2dvdr + r*dQ?.  (40)

r

We see immediately that this is linear in m/r; the series (36)
terminates at p = 1. Hence, for such an object, we have

wi =0 for all n > 1. Even if the object is spinning and
nonspherical, the collection of all terms that are indepen-

dent of higher moments in Eq. (38) together form an

"The Geroch-Hansen moments are defined for strictly sta-
tionary spacetimes We can define them for our quasistationary
s by fi he coeffi o7 that fixed-
pacetime by fixing ¢ in t e coefficients g, ": that fixed-
spacetime approximates g,,,, The result is that the multipole
moments depend on 7.
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expansion of the Schwarzschild metric, and we can impose
the Eddington-Finkelstein gauge on them to set them all to
zero (for n > 1).

B. Metric perturbations in a light cone gauge

To obtain the metric perturbations 4y, in a highly regular
gauge, we follow the approach detailed in paper I; all
results in this section are taken from that reference.

We begin by calculating the form of the inner expan-
sion’s metric in a highly regular gauge that is also a rest
gauge. In such a gauge, the object is manifestly at rest on y,
in the sense that no acceleration or mass dipole terms
appear in the metric in the buffer region. Such gauges exist
because we can always find an effective metric in which our
small object’s center-of-mass worldline is a geodesic [8].
We then translate this inner expansion into a small-r
expansion of the outer expansion. This will lead to
perturbations Ay, in a gauge that is impractical for numeri-
cal implementation. In the next section, we transform it to a
less restrictive, practical gauge that maintains the high
regularity of our initial gauge.

We immediately specialize to a nonspinning, approx-
imately spherical small object. It follows that even if the
object is a material body rather than a black hole, for our
purposes we can take the inner expansion to be the metric
of a tidally perturbed, nonspinning black hole as presented
in Ref. [69]. Because the composition of the small object is
fully encoded in its multipole moments, the difference
between this metric and that of a material body will not
manifest itself in the outer perturbations until order €3, at
which order the object’s quadrupole moment would appear.
The metric of Ref. [69] is written with gﬁgj in the
Eddington-Finkelstein form (40), and with the perturba-
tions Hj, in a light cone gauge. In terms of Cartesian
Eddington-Finkelstein coordinates (v,x?) defined on the

manifold of gﬁ'ﬁj, this gauge condition reads
Hjan® = 0. (41)

Note that the coordinates we use here for the inner
expansion, denoted with sans serif fonts, differ from the
Fermi-Walker coordinates we use for the outer expansion.
Reference [69] additionally refines the gauge to enforce
H, = 0. The Eddington-Finkelstein form of g,;) contains
no leading-order mass dipole moment, ensuring that the
coordinates are mass centered at leading order, and H }w =
0 ensures that they are mass centered at the first sublead-
ing order.

The resulting inner expansion is given explicitly by
Eqgs. (61)—(64) in Ref. [40]. It is naturally written in terms
of T:=r/e. We then reexpand it for small ¢ at fixed r (or
equivalently, reexpand it for large F and then reexpress it in
terms of r and €) and perform a small-r, €° transformation
from local advanced coordinates to Fermi-Walker

coordinates; this transformation is given by Eq. (65) in
Ref. [40]. This gives an expansion valid in the buffer
region, which we write as

o o 1/ 027
O = Y + €hy + €*h,, + O(€%). (42)

By the assumptions of matched asymptotic expansions, this
is necessarily the local form of the outer expansion, which
will ultimately provide punctures for equations of the form
of Egs. (14) and (15). The primes indicate that the
perturbations are in the light cone rest gauge. The overset
rings indicate that the expansion is organized slightly
differently than Egs. (1)-(2), in a manner described
momentarily.
The leading term in Eq. (42) is

. 1
Gy = —1 =121 — 3 PEupch®™ +0O(r*),  (43a)

s

° 2 . .
Gia = _g rszceacdﬁbd + @ (35abﬁb - 5gbcﬁabc

— 208y y) + O(F), (43b)

2
o r
YGab = 5ab - E (gab - 6g(acﬁb)c + 35ahgcdﬁ6d)

3
I .
+55 (30€ (4 tp)ea — 3Eapeht® — 8B(a " epyeat®
+ 1OB’Cdec(aii}lb)di - 155abgcdiﬁ6di) + O(l’4), (43C)

where we have introduced A = n'’i - .- i), This metric is
not identical to the external background (29); instead, it is
Eq. (29) with the acceleration terms set to zero. The reason
is that the coordinates are tethered to an e-dependent
worldline with a small acceleration. The inner expansion
has implicitly included an expansion of that acceleration,

a' = Ze" s (44)

n>0

so that any acceleration terms have implicitly been moved
to the first- or second-order outer perturbations. The full
external background metric then reads

G =0 + €'90 + €%, + O(),  (45)
where
G = Gy (46)
9 = —2f1x'8,8, + O(r), (47)
29, = —2f7x'8,8, + O(r?). (48)
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We adopt analogous notation for other quantities, denot-
ing their reexpansion for small acceleration with the
notation

A=A+ A+ AU+ 0, (49)

where the prescript is the order of the acceleration term. We
then have

= bl + g (50)

0!

2 '
=12, + 'hl, + 2, (51)

This notation differs from that of paper I, where a dagger
was used in place of the overset ring.
The first-order term in Eq. (42) reads

o]’ oRl' oS’

hy = hy, +hy, . (52)

The regular field

oRl ,
hu Ohl;;}v + lg;w (53)
|

os1” 2m 11
12

1 : 2 :
hy === g mrEh = mr <85u,,ﬁ“b {5 ~3log (—mﬂ + 195a,,cﬁab0) +0(),
r r

oSl 2m 2 .
hta = Tna +Emr(1 lgubnb

+ 108"“6“,11%;,‘1 + 155},0 a

is given by
OnRY = —p26€ 1% + O(r3), (54a)
;2
OpRl = — 3 r26B¢e e aity® + O(r3), (54b)
;1
OpRY = —§r2(55ab 66E (, e 4 38,p0E cql )
+0(), (54¢)

and Eq. (47) where 6&,, and 68, are corrections to the
respective tidal moments; this is identical in form to the
tidal terms in Eq. (43), and it is hence a smooth vacuum
perturbation at » = 0. The singular field

oSl

h, =ChSY (55)

is given by

(56a)

1 S b 2m
+%mr <1268ahn {25—1610g<7)]

2m 2
+ 140B¢, 41, {13 - 1210g< )} + 1095 . A% + TOE iy, [25 - 1210g< m)]

+ 14008%e 11y + 8405bcdﬁa””d> +O(r?),

oSl 2m
hub =5

3 (51117 + 3nuh)

mr(154€ ,, —

1
315 (

1688 €4)cai® + 580 (i) -+ 15E 1B, + 840Be,/ ,

(56b)

Apyai + 1058 g,

1 : 2 2
+——mr? <2525a1, [29—2010;;('")} +2322€ 1 A€ = 5048 44y cai” [11—1210g<m>]
r r

3780

+ 1980&° )

: 2
4608, [59—4210g (—mﬂ — 48008 [ €4)ai! — 4208 iy
r

: 2m
+ 16808, Ay ai [4 3log< )]+12955€d,5abn°d’—|—126050dnab

+5040B8e (4 fip)ai;+3 155cdiﬁab“”> +0(r).

(56¢)
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The second-order term in Eq. (42) reads

02! oR2 082

oSs’

where £, is the “singular times singular” piece containing

/

all terms proportional to m?, and h,, is the “singular times

My = hyy + hyy (57) regular” piece featuring all terms with the form mé€ and
mdB. Individually, these are
The regular field
°oR2 ;ISR, 11 S5E ~ab (62 )
/ = —mré€ i a
h/w — OhRZ 1hR1 + G (58) tt 3 b
is given by oSR' 2
.« = Bmr(l 16E ,,A" + 1068 € 4 git,?
oR2/
h/u/ = 0(1’2). (59) + 1555bcﬁab0)ﬂ (62]3)
The singular field |
SR/
08! ) ) hab = ﬁmr(15455 b — 16856d €b Cdn
h,, = Ohf”% 'hzl (60)
+ 4806SC o) + 156E .48 4,4
is split into two pieces, 1840 68“160 (anb)di 1105 5554%;,“!), (62¢)
082 ©S§'  oSR
hy = hy +hy, (61)  pdd
|
oSS’ 1. 2 2
hy =—4m? [Sa,,ﬁ"b + r<§5ahﬁ“b{11 —6log <—m> } + gsabcﬁabﬂ +O(r?), (63a)
r
N 2 6. 2 2 e 2
hy = —=4m?|ZE,n° + Epet b+ r( = EpnP{ 2 —log [ — i ZBe 4,94 4 — log o
5 5 9 r
sbe L Lo o 2m bed, iz ! ~ bed 2
51 5abc ¢ +§5bc”a ‘919 —12log - +§B “Ceap' Negi +§gbcdna ) +O(r), (63b)
oSS’ 4 8 1 . . 5
hab = —4m? |:58d(a€b)cdnC + ?gc (al'b)e — 21 gcdéabn d + B de nb)dl + 6gcdnab od
2 . 2
(22,431 2 12108 (2" + 5 f:a,,c ——B w€p)cai® 4 —3log [ 2
45 r r
4.. . . 2m 8 i e
+ 75 (anb)c{4 - 3log( ) } Eabuph d{29 6log< ) } - @BC (a€p)ain®
5 : 2 2
+ 95“1 Ay —|— 8Ld,6abn‘d’ + BLd e (ol )di{4 —3log (—m> } += ELdnabcd{4 310g< m)}
r
4o i .
+ §BCdl€C](anb)d,'j + gnglnadei)] + O(l"z). (63C)
We can extend this split into singular and regular fields to 60G [ ;lRV] —0 (64)
arbitrary order in r by including all explicitly m-dependent m -
terms in the singular fields, leaving the regular fields to - . -
include all terms that depend only on tidal moments, with no 8Glh = - 52G;w[ hol, (65)

explicit m dependence. The regular field is then manifestly a
smooth solution to the vacuum Einstein equations,

SAll O(m®) terms in Eq. (116) of paper I have been corrected
to include the factor m?.

where the overset ring indicates that these are the linearized
and second-order Einstein operators defined from E]W. When

combined with §W, the regular field forms an effective
metric
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B o °RI' ORY
G = G +€hyy +€hyy + .., (66)

as in Eq. (9), which is a vacuum metric, and in which the
small object follows a geodesic. To see that y is a geodesic in
this metric, simply note that 7, = 7, + O(r?), where 1, is
the Minkowski metric; the coordinates are therefore inertial
along y, which would be impossible of y were accelerated.
To see that the object moves on y, simply recall that there is

no mass dipole moment in g or in H 4 (nor does the
transformation from local light cone coordinates to Fermi
coordinates induce a mass dipole moment).

By inspection of the metric perturbations, we see that in
this gauge we have hi; ~ r¥ instead of the generic behavior
~1/r%. This achieves the goal of eliminating the most
singular, most problematic term in the second-order metric
perturbation. One final step remains, however: to transform
the perturbations into a practical gauge suitable for use in
concrete implementations.

III. TRANSFORMATION TO A GENERIC
HIGHLY REGULAR GAUGE

A. Outline of method

Although the light cone rest gauge eliminates the ~1/r2
pieces of h,%b that appears in a generic gauge, its “rest gauge”
aspect forces the regular field to behave as ~r?, meaning that
hED and its first derivative vanish on the worldline. In
practice, we wish to be able to adopt a gauge that is
convenient in the external background spacetime; in an
EMRI, this is typically a radiation gauge [70], the Regge-
Wheeler-Zerilli gauge [71,72], or the Lorenz gauge. In all
these cases, the choice is motivated at least in part by the fact
that it leads to hyperbolic field equations for the metric
perturbation or for some related variable. However, impos-
ing these gauge conditions does not simultaneously allow
one to enforce that the regular field vanishes on the world-
line; for a given set of hyperbolic field equations, the regular
field on the worldline is fully determined by global boundary
conditions. To allow the end user to adopt a convenient
gauge such as the radiation or Lorenz gauge, in this section
we perform a smooth gauge transformation that puts h}fy in
any desired gauge, while preserving the highly regular form
of hﬁv. Our method again closely follows paper 1.

Under a gauge transformation induced by a smooth
vector field & = & + €& + O(€?), perturbations of the
metric g, transform as [73]

hplw - h;lw + E.f]g/,w? (67)
1
hlzw g hzb + [’fzgﬂlf -+ Eﬁé gﬂv + ﬁél h}w (68)

However, we must divide these transformations into sin-
gular and regular pieces, and we must account for the fact

that we have written our perturbations as perturbations of

5,“,. An appropriate division of the gauge transformation is

°oR1 oR1’ °

hyv = h/,w + E.flgﬂl/’ (69)
°S1 oS1’
hy = hy, (70)

oR2  oRY o | °RIl
hﬂl/ = h/w + £§zgﬂl’ +§£5lgﬂy + E-fn h/w ’ (71)

082 oS 081/
hy = hy, + Lehy, . (72)

This ensures that g,, transforms as any smooth vacuum
metric would under the gauge transformation, meaning that

N o oR1 ,oR2
G = G +€hyy, +€hy, + ... (73)

remains a vacuum metric and that geodesics in it, such as y,
remain geodesics. Apart from smoothness, we only impose
one other condition on the transformation: that it is
worldline preserving, satisfying

&il, = 0. (74)

This ensures that the worldline in the practical gauge is
identical to the worldline in the rest gauge. An equivalent
way to say this is that no mass dipole moment is introduced
as a result of the transformation.

Still following paper I, we now use the approach in
Ref. [41]: rather than choosing a gauge condition and
finding a vector & that enforces that condition, we allow
the regular fields h}},f’ to be in an arbitrary gauge, and we
solve Egs. (69) and (71) for &, in terms of h}},f‘. The gauge of
h}fy” can then be freely chosen to put the field equations in
any convenient form in the external background.

After finding &, we can calculate the second-order
singular field in the new gauge via Eq. (72). Despite the
gauge vector being smooth, it introduces an unbounded

term into 452: L, hS)', which behaves as ~1/r. This is more

0§2/
divergent than the singular field #,, in the rest gauge,
which was bounded at »r = 0. However, as we will discuss
in Sec. VI, “singular times regular” terms like L. hgj/ are

actually more benign than “singular times singular” terms

like hzi even if their divergence is superficially stronger.

In addition to determining the gauge vectors &, in terms
of the regular field, Eqs. (69) and (71) also determine the
other functions in the effective metric in terms of the regular
field: the accelerations f% and the tidal moments 5&,, and
6B, To better bring out the structure of the equations, we
note that after the gauge transformation, our full metric has
the form
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ol 02
h h

122 122

g/w = 5;41/ + e(ohplw + lg;w) + €2 (Oh/%v + 1h/,1w + zgﬂl/)
+ O, (75)

and the regular and singular fields can be divided in
analogy with Egs. (53), (58), and (60)9:

i = ORI +1g,,, (76)
Iy = OhS), (77)

ZZZ = OpR2 4RI 4 20 (78)
T o= OhS2 + 1hS). (79)

When solving the perturbative field equations in the
external spacetime, the variables of interest are the pertur-
bations £y, of the external background g,,, not those of the
background f]ﬂy. Hence, we wish to express &, in terms of

°Rn

hﬁf, not in terms of A, . Using this decomposition, we

rewrite Egs. (69) and (71) as
Oth - hm/ + [:f]g;w - lgﬂw (80)

OhRZ lth _ hﬂy + Ez:zgﬂy _ g )

oRY’
+= Lg G + Lo (81)

Here we have grouped all the unknowns (&, f%
6B,;) on the right side of the equations.

Paper I solved Eq. (80) for portions of & through order
r? and used it to calculate the leading, ~1/r term in hSZ To
make practical use of the highly regular gauge, we must
know two additional orders of the singular field: following
Eq. (19), we require /3, through order r to be able to
correctly calculate the second-order self-force. We already
have A2’ from Egs. (61)~(63). In the remaining parts of this
section we calculate the complete & through order > and
use it to calculate Lg h3l" through the necessary order. We
also briefly discuss the solution for &.

> 0E 41, and

B. STF decomposition of the gauge vector
and the regular field

To solve Eq. (80) for the gauge vector, we begin
by expanding both &, (with index down) and °A}) in
irreducible STF form using Appendix A of Ref. [74] and
Appendix B of Ref. [7].

’The °,, term in Eq. (125) in paper I should read 'g,,.

1. Gauge vector

The gauge vector is decomposed as

g = el (nat, (82)

p.l>0

where the # and @ components are, respectively, given by

&y =117, (83a)
&(p.l I
£l = R0V el 1)+ 8,0, 20 (83b)

with the hat indicating that these are STF tensors. Each
term in this decomposition is linearly independent from the
others. The quantities 2* form a complete basis, equivalent
to scalar spherical harmonics, for scalar fields on the
unit sphere, and the further decomposition of Cartesian
3-vectors and 3-tensors into irreducible STF pieces is
equivalent to a decomposition into spin-weighted or tensor
spherical harmonics.

As mentioned we only impose two conditions on 5}42
first, that 5/14 is smooth so that our two gauges are smoothly
related and secondly, that f}, is worldline preserving,
satisfying Eq. (74). These conditions imply that the
expansion (82) must be equivalent to a Taylor series

&= 3 Ok O (84

k>0

with £ (#,0) = 0. Here xX = x/t - - - x’s. When written as a

sum of STF quantities,
xK— [ K—|—C 5(a|a2AK -2) +C 50[&25(1';(14’\1( 4)_|_‘“] (85)

for some numerical coefficients c,. Hence, our conditions
on the gauge vector impose

gl = 700 4 ppagitl 4 2(FR0) 4 732 jaby

+ PRI a 1+ 70V ae) 1 O(r), (86a)

&= rnb(X(l’l) + ejabf/O'l) + 8,,21D)
FRREY (R 4 o, 72D 4 5,20
+ P[RR + e, 7Y 46,200
(R0 + e Vo) + 6,257

cdj
+O(r*). (86b)

It is necessary to carry this expansion to order r* because

/

oSl
the Lie derivative and the singular form of %, in Eq. (72)
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each reduce the order in r by one. Thus, order * in the
082
gauge vector is required for accuracy through order rin 4,

2. Regular field

We perform a similar decomposition for the regular field,
so that

Rl =" om0 (1)at. (87)

uvL
p.1>0

The #t, ta, and ab components are given by

Ri(p.l) _ 2(p.)

Ohttuj; - ALP ’ (8821)
RI(p. ~(p.l NN A(pl

Ohm<(Lp> '= Bt(li : +€ag, C(Lp—l))j + 5a<i1D<Lp_1)>7 (88b)

R1(p.l ) l
OpRIPD — 0D 45, KV + STF, STE,, (el F7)

+ 6(1[[G§)L )1 + 5zzi,€jbi1 ]Hﬁi )2

+ 5(11,5171, 1 2 2)) (880)

Since %R} is smooth, we require this expansion to be
equivalent to a Taylor series in x?. This leaves us with the

expansion

R = A00) 4 AR 4 2RO 4 ATALY)

+ 0, (89a)
nR! = B 4 rit (B + €y €Y 4 6, DY)
£(2.0) | aiirp(22 ~ (2.2
+ ”Z{Bg )+ nj(szij> + €kaiC§'k :
~(2.2) 3
+ 5,08 + 0, (89b)
MRY = EGY + 6, KO0 4 raf B + 5, K0
+ STF, (e FUY + 8,681 4 P2 [ECO)
+5 bK(zO) +nz]( B2 “) +5ahf((»2"2)
+ STE ek Fly + 5a,ng D 4 5 ek B
+ 848,13 + O(r3). (89¢)

Appendix B gives the relation between the individual
STF tensors and derivatives of the regular field evaluated on
the worldline.

Additionally, we use constraints from the linearized
vacuum Einstein equations

5G,,[’hRY) = 0. (90)

o~ R o [OpRI 1 e a1
Note that 6G,,[h | = 6G,,[’h"'] because 'g,, is a linear
vacuum perturbation of ;,w.
The ¢t and ta components of Eq. (90) give

b 5(00) 6~
1Y = 55 b 00 +3 @0 (91a)
A 6 . 3 3 .
Dazvz) _ g ((12 .0) g 5 b _Bbceachg;»O)
ld ,q1 3d ., o)
——— Gy 22K 91b
2 dt Sd (91b)

We use these equations to eliminate 122 and DE,M), but
the choice is arbitrary; we could have easily chosen two
other STF tensors to remove.

From the ab component of Eq. (90) we get two
restrictions, one at / = 0 and one at [ = 2. These are

sy L&

A0 _ _% gab EE;%()) + di pu S K00 (92a)
AGY = A00¢,, — 2B By e + ESY

— 28 By - EGG,, + £ KO0

REY DB SR o)

where the constraints from the #¢ and fa components have
been used to simplify these expressions.

Combining Egs. (89), (91), and (92) gives us the final
expression for the components of %))

A A ) 1 N N
Oh}‘,l:A(O'O)—krAS]’l)ﬁ’—er [_ggabEfl(Z0>+_D(1,1)

1d* . AN N
_ EﬁK(O,O) o+ Rl <A (0,0)gij _ ZBEO,O)Bdiejcd
+EZO gk 7 Go?
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o -

+STF,, (ek i )

B 4, K00 4 EGD 40,
' +6,G)]
abij

+r2{nguaabk@wwf( EGY 6,k

+STFab{e iF 5 48,6 + 8,k HEY

0)_‘_2[2(2,0))})} +O(P). (93¢)

This form is particularly advantageous as it automati-
cally includes any constraints that would be imposed by the
Einstein equations onto the form of our regular field.

1.
+ 6,18 <§5ch§3

C. Solving for &

We now return to Eq. (80), where recall, f},w is given by

Eq. (43),! 9w by Eq. (47), andh by Eq. (54). To solve for
the gauge vector, we substitute the expansions (86) and (93)
and then work order by order in r and al. This is
possible because A’ forms an orthogonal basis, implying
AP<L>fLL = BP<L>ﬁL = AP(L) = BP(L)‘ As aresult, Eq. (80)
reduces to a hierarchical set of equations for the STF

tensors 77", X7 970 and Z{P).

Rather than belaboring the technical details of the
calculation, which are largely mechanical, we state the
results that follow from each order in r in Eq. (80).

Note that in the equations that follow, %A% and its
derivatives are always evaluated on the worldline, but we

omit the notation |y for brevity. Additionally, we define
0pR1 . OpRla — sab OpR1
h™ = Chy ¢ =67 hy,.

1. Order r°

Starting at the lowest order in the expansion of Eq. (80),
we immediately discover rules for four of our gauge vector
components. These are

700) _ % / A0 gy, (94)
Tél,l) _ BaO,O)’ (95)
% =3, %)
200 = ZR09), (97)

In paper I, the relations in Egs. (129)-(131) were given
in terms of the full gauge vector, §,L. To compare, we
perform equivalent operations but now on our expansion of
.f},, substituting our values for the STF tensors from

Eqgs. (94)—(97) and using Appendix B to relate the STF
tensors to derivatives of the regular field. The results are

—fz _ dt 2(0,0) _ %A(o,o) 2°h§1, (98)
Ea=T8 = B =R}, (99)
f(a b= ;(( 1) +5uhz(1,1)
_ % E( 0) +% 5, K00
— 58 (100)

which exactly match the expressions in paper I, as
expected. The value of 5[1(”)] is also given in paper I but

p(L1)

relies on Y./, which is found at order r.

2. Order r

Having correctly reproduced the leading expressions
from paper I, we can confidently move on to higher orders.
We continue our procedure, but now we find our higher-
order STF tensors in terms of not just the STF tensors in
nR} but also the tidal moments.

From the #t component of Eq. (80), we obtain an

expression for the first-order self-force,

1. d 500
fi= A0 - 2B (101)
When rewritten in terms of OhW, this gives,
1 0 Ri _ 4ori
fa 2 htta_dt hta7 (102)

which is the standard result for the first-order self-force
when written in component form [40].
The ta component gives

1A 1d .
720 — 5D<1 D 1.k ©00), (103)
1 1d
bez) EBEth +3 gtlb OO)d Zd Eflh )’ (104)

Py = /agmdt. (105)

Using the value of ¥, 9’1), we can now compare to paper I’s

result for the antisymmetric part of the spatial derivative of
the gauge vector. This gives
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&y = e, T = ¢ ¢ / D g — / Oy ydt. (106)
which matches Eq. (133) from paper L.
Finally, the ab component of Eq. (80) gives
20 S ~an L o
Xo =—=Gy ' ——=K, ", 107
18 12 (107)
N 1.
Ko =g Eu. (108)
N 1. 1 n
yo2 EFﬁjb” ~ 3B / AC9g1 (109)
220 _Lgan e (110)
a 2 a 6 a
3. Order r*

At the final order, not only do we find the last
components of the gauge vector but we also fix the forms
of 6&,, and 6B, that appear in Eq. (54). They are

20) 1 22
0+ L6

00)

6Eup = 2B BV ey + £

£ (2,2
— 28,k — th )

(111)

8, = L4098, + _ég;z) e

1,
2 2
3

—ZBd(aeb)C ., / cMar, (112)

When the values of the STF tensors are substituted,
however, these become'®

1 d
_ ¢ ORI _ o cOpRI _ L O0zRI 01RI
6 = Earh = E(u NS, — OB )+ RS
1. 1 d?
+ Egab Ohgldl 2 T -5 Oth

+2STFE,¢ / Uiy qdt. (113)

""While we do not manipulate 68, after substitution, we do
manipulate 6&,,. Arriving at our second expression for 6,
necessitates rewriting the Einstein field equation’s condition
for Afb’z) from Eq. (92b) in terms of BEO’O) Bd(aeb)"d and then
substituting it into our initial expression for 6.

1
68(117 = ——BabOth + 5( eb CdOth +§Bub0h$tl
1 .
+ = 2 cd Ohﬁcl| by + _Bab Othttdt
+2STFB,* [ Uk}, p—Leea, Dopri (14
2 & la gy Th)edr

These expressions match those found for the transformation
from the rest gauge to the Lorenz gauge in paper I but with
the omission of the term « m. As in paper I, we can also
write the perturbations of the tidal moments as

58 p = Ry |HR! — L g, (115)

1 0
5Bab:2 1_‘6519]’

14 5Rb yipqlh (116)

in agreement with analogous results in Ref. [41]. These
forms of 6&,;, and 6B, let us interpret them as the tidal
moments of AR} (up to a gauge transformation).

The rest of the STF tensors are found to be

A 3. 2
Tl(fvl):gBaz’O)_’_ggb g} 4= Bbceach( 0)

2 (L1 1d<) 1dean
B [ Va2 26 &Y 17
+5 / b 6dt 20d (117)
#33) _ pl22 400 1 d o
T = £ dt — ——F
abc uhc +6 Hhc/ 12dl abc
2 50.0) 1 i 17000
+ STF.pc §Ba 5bc+§B a€pd' Eq;
2
~5Bas Cﬁl*‘)dt), (118)
G400, T A2 1 02
X ) . ——K
i ~1star +iggCa ~3pKar
1 . 1
d (0,0) c
~ 158 W@l e 158
1 .
_405ab/A(00)dt 76%1( en) d/Cgl l)dt, (119)
o33 12
Xt(lbcc)l = EEEtbcEl’ (120)
o) b n00 1 e 4r00) | 1y
Ya = ——Ba Bb —@g €ac Ebd +1Ha
+— S”/ M ar, (121)
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5(33) Lo
Yabc - ZFabc

1
45

5G0) _
5(33) _ 1 ¢
Zab _§Bd(a€b)d > 6 ab 36 ab

1 N
+§£d(aeb>cd/C£l‘l)dt.

A 1. 1 .
300 _1geo 1 xeo

1 A 1 N 1 A 1 A~
) - gBabc A(O’O>dt + Sa’II;LF <6 5daeba.’lEE‘?.O) - gBabBE‘O’O) - ggab CSLI)dl) ’ (122)
A 3 .
SabEi(;;O) + m K(Z,O)’ (123)
I L <y b (OO
6 (a=b)e 3 ab 24 ab
(124)

4. Final result for &

Substituting the above results for the STF tensors into Eq. (86), we obtain our final form of the gauge vector required to
transform from the rest gauge into the practical highly regular gauge. The components are given by

r2

1 .
gl = E/Ohf,ldt + ra® OnRl + B

20hR1a
{ o dt
3

ta,b

ta,bc

+ 5pbe <85€,,,°h}§1 +2E e | OhR'dr 4 2°nR]

+O(rY),

2 12

d . d
——-OnRt 4 3p9b <20h$a{,, +28,, | Chide - —Oh';;)}

dt
d

dt dt

Ll PP c . d
+ @ |:3na <4Bb €ucd Ohgé + Sgah Oh}}bl + 20hR1b + 4Bah€b d / Oh}?ddt _ 2_0h§b1,h + —0h511>

) . d
B e W) e [ W~ E%l;,;cﬂ

(125a)

~b 2
g=-= {%5; +2 / n! dt] + {20115;, b _OpRI_y jbe (6%51;6 —4Bye g / OhRlds — 3%*,};‘(1)]

360

3
SR {1 2E0ORR 3 — 37 <45,,"0h,1}§ + 8, OnR 4 12B8e 1 hR — A€ ., 0% — 8B e “OnR} — 8ORR! <

bla,c]

— BRI ¢ 4 20RE 4 3, [ ORIG 4248, ¢ / g ol =328, / Ohf[é,c]d’)

+5n,b¢ (125bd0h§; —8B,4e,,/OnR! —24£,4 / ORI i+ 35,”%51)

_ 107bed (ugb[c%gg C6RE + 8By g UHR] + 4Byen ORI + 3R 4126, / U dt+ 6By / Ohgldtﬂ

+O(r").

The order-r° and -r terms match those found previously
in Egs. (129)—(131) and (133) of paper L.

D. Solving for &
We can solve Eq. (81) for & exactly as we solved Eq. (80)

for &. The only change is that the STF tensors A(Lp A through

IA(Y’ ! now refer to terms in the irreducible STF decom-

. oRI’
position of the quantity °hi7 + '} — 3 L3 g, — Le hyy -

"¢l was additionally simplified using the constraint in Eq. (91)
from the Einstein field equations in terms of Oh}}yl.

(125b)

A smaller change is that we cannot eliminate any of these
coefficients using the linearized vacuum Einstein equation.
In addition to determining &, Eq. (81) determines the
second-order term in the acceleration, f’z’. The calculation
and its outcome were given in Sec. VI B 4 of paper I. The
total acceleration a* = eff + €*f5 + O(e?) is given by
Eq. (11) with
IR, = R 4+ 2(OhR2 + R + O().  (126)
Again following paper I, we do not present explicit
results for &. The reason is that we can simply leave the
regular field to be implicitly defined from the full and
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singular fields: hff,, = hy, — hﬁ,,. As input for a numerical ~ with
scheme, all that is required is the singular field.

°SR oSR/ oS!’

hy, =hy, +L:h, , 128
E. Second-order singular field . : k (128)
With the gauge vector determined through order r°, we °8s oSS
oSy’ hy, = hy,, . (129)
can now take the Lie derivative of h,, as required to
determine /52, Following paper I, to more explicitly reveal  pic means that f1 " comprises terms ~m%R!, and 5
the structure of the singular field, we perform an SS/SR features all terms ol:m2 ! g
split as in Eq. (61) so that oSl o SR/
o s osm Calculating L h,, and combining it with h, in
°SR
M = Ty =+ Py (127)| Egs. (62), we find the first three orders of &, are
°SR 1 1 1 d d 11
= —2m {; <°h§1 + thl;gnab> + <10h55’cnabc _ nabaoh% + 2n“E0h§}> + r(? EabOpRI
11 11 . 11 11 11 11
+n { - ?5a00hl§cl + Fgabéljoh?jl +3 B, €y hY} + 3 Eap’his' + ﬁ"hﬁé,c ‘= gohl;cl,b ‘
11 .. d 1 & 1 d 1
+5 8RS p + E%ﬁ,{b - EW%% } -5 nabe E%‘;b{c +5 nabed { 11E,°nR} + Ohg,;,cd}ﬂ +0(r?),  (130a)
SR 1 1 1d d
hyy =—2m [r (Oh}%} +§°h$,1na —OnRn 4 Ong! nah‘) + <nh{°hﬁi’h] —Zdtohl;g} + na"a%ﬁj
U bero0pRl | 0pRI L e donr Ube, agri 4 cheopri
—Zn {2 hab,c+ hbc.a}—zna E hbc +r gB €ac hbd +§I’la€ hbc

°SR

1 . ij c c c
+e nb {—45 (a My 2Eap8 TN + 4B g€y Ohig + Eap hii' +2%hg, ¢ = 20hG1C }

1 4 1 . . d d
— gnabBcdebdzOhIC{il +_nbc{_88bd€dl[a0hl§]} + logbc()h%{al + deeaciohlblé + 6()th _ 6_()th + 3_0hR1 }

12 ta,bc dt ab,c dt bc,a

N . 1 1 1. 1d 1 &2
+nabc{25bd0h1§£}+gb65110h51+28bd60d10h51+55b60h51+_0h§CIYdd_Ohll}(}vcd_’__(stjohl_{l 4+ 0pRI ___ohlbzcl}

2 27 U T 2de M 4dr?
_lnbcd 6E OhR] +20th _ln bcdiOth _lnbcdiB j€ "Oth +n bedi £ Oth _‘_loth
6 be ad b(a,c)d 474 gy hed T3 b Caij ed a be Mdi 6 bedi
+O(r2), (130b)
1 .3 .
- {; (zohf(;nb) — 2Ry E%I;;na,,cd) T (Ohf(z,clnb)c SR ¢ ORL e

1 > 3 cdi c d 2 iRc 2 c 5 c

—thi},(anw d+10h1§(},inab “—n (azoh};f)lc) + r<§ n(a€p)a' BnE; +t3n Ecta iy, +gnant “ng;

2 - . 2
+ g Szllfnnac {gbcgjohgl _ Zg(bd()hlcl)ld + 2B(bd€c)dloh51 + Ohl;[lch] d _ OhFCI d.d]b} _ g ”Cd{gc(aohl;)ld

‘ 2 1 S omi y L
+ 2BCl€di(a0hI;)lt} - gnab‘Bd’eci«’OhE} + 6Sy;nnaLd{88c €i'] [bol’llj]lj + 48 ']€hdj0hl§jl - BC deiéjkoh?kl
a

4 d d 4 i 1 y

+ 4B, ey iy + 6Ong g — 6 hpl 3= Ong b+ 2 n B e iy s 1y 26 cad R
dt dt 3 12

— 48 OEY 4+ 4B, 1€/ OnR + OnR] T — 20nR] 1+ 5U°h5}cd} -3 szbmnacd’ {Sc[doh*;ﬁ. + Ohlj(lb,d)i}

4 1
- gncdu(aeh)jklgckohgil + Znahcdl'l {Scdohg'l + Ohlsdltj})] + O(rz)‘ (130(:)
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oS!

Here the first two orders, ~1/r and ~7°, arise purely from Lg h,, , while the linear-in-r terms contain contributions from

oSl o SR/
both L: h,, and h,, .

The “singular times singular” piece of the perturbation is given in Eq. (63), which we rewrite here as

°SS [ 1. 2 2
htt = —4m2 Eabn“b + r(ggabn“b{ll - 610g (—m> } + ggabcnabc)] + O(r2>, (1313)
r
°SS [ 2. 2 1 2
hy, = —4m?*|Epen,e + r<§5abnh{7 —3log <_m> } + gé’abc Bb €qcan’ {4 3 log( m> }
r
1. 2 1 2 .
=+ §8bcnabc{ 19 — 1210g <—m> } + Eﬁ'bcdnab“i - §Bbcl€adinb6d>:| + O(l"z), (131b)
r
°SS 1 . 5
hap = —4m? [——5 b + Bl €p)can’ + 5 - ggcdéabnaj — B egianp) ! + ggcdnade
2. 2 1. 1 . 2
+r <3 Eap +3 5 {4 3 log( m) } + 3 Eeabapn + 51 a{3Ep ca = AB|c/ €pyai [4 —3log (7m>] }
4 2 1 4
9Bcd €ij(a"b) i Ecdnade{4 3log< m) } +§Ecdinab6dl):| + 0(72) (131c¢)
r
|
OSS . . OSS/ . . .
In h,, we have simply rewritten h,, , as given in A. Stress-energy tensors in self-force theory
Eq. (63), in. ter.ms ' of . nta=nl.. "lf instead  of We begin by reiterating our comment in the introduc-
At = n't). This will simplify the conversion to a fully  tion: in self-force theory founded on matched asymptotic

covariant form, as required for use in a puncture scheme;
such a conversion can be done following the method

in Ref. [38].
°SS . . °SR .
h, and the leading 1/r terms in h, were given
previously in paper L.'> The ~/° and linear-in-r terms in
SR

h,, appear here for the first time. We also provide our full

results for the singular field in a user-ready Mathematica
form in the Supplemental Material [75].

This completes our calculation of the second-order
singular field. In the next section, we turn to the skeleton
stress energy that this field is associated with.

IV. THE DETWEILER STRESS ENERGY:
DERIVATION AND PROPERTIES
IN HIGHLY REGULAR GAUGES

To find the form of 7% in a practical highly regular
gauge, we first find it in the rest gauge. We then find its
transformation to the generic highly regular gauge and
derive some of its useful properties. However, before doing
so, we discuss how the stress energy is defined in self-force
theory.

"The %AR! term in Eq. (134c) of paper I has a typo and has
been corrected in Eq. (130c) to Ohi} 1.

expansions, we cannot freely prescribe a stress energy
based on some desired physical characteristics.
Instead, we can only prescribe the values of the multi-
pole moments in the local metric perturbation. The
stress-energy tensor, when it is well defined at all, is
defined by the Einstein curvature tensor of the local
perturbations.

The construction is more easily explained if we revert to
an ordinary Taylor series h,,(x,€) = eh),(x) + €*h2, +
O(e?) rather than the self-consistent expansion. The
stress energy would then also have the form of a Taylor
series,

T (x,€) = €T (x) + €2 T5" (x) + O(€®),  (132)

where
82T = 5G[h'), (133)
87T = 5GM W] + 8*GH [ 1Y) (134)

To obtain such a series from our results in the previous
section, we could expand the worldline y around a back-
ground geodesic, following Ref. [45]; this would introduce
a mass dipole moment into 42,, which would contribute
to T%".

Hv
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Even in that simpler approach, we should note that
Eq. (132) need not be an actual Taylor expansion of an
extended stress-energy distribution describing an extended
material body; the quantities 7%" are the same for a black
hole with some multipole structure as for a material body
with the same multipole structure, even though the finite-
sized black hole does not have a well-defined stress energy.
T# in Eq. (132) should instead be thought of as an effective
stress energy that encodes the object’s multipole structure.
The field equations translate this encoded information in
both directions, from the metric perturbations to 7" and
from T to the metric perturbations.

In the self-consistent scheme, additional, more tan-
gible subtleties enter. First, we have not actually calculated
the perturbations hj, that appear in the self-consistent
expansion; these are defined as the coefficients in an
expansion at fixed (z#,u*) in an external, e-independent
coordinate system. We have instead calculated the fields
hZ,,, which are the coefficients in such an expansion in an
e-dependent coordinate system. Second, even if we had

°n
obtained A}, rather than /,,, we would not define 7" using

Eq. (133). If we did, we would find that 7" is not the stress
energy of a point mass; to see this, note that if §G**[h!]
were equal to a point-mass stress energy, then V, 71" =
V,86G*[h'] = 0 would imply that y is a geodesic of the
background g,,. Since our point mass is accelerated, we
instead have
€8G*[h'] = 8reT!" + O(€?), (135)
where T" is the stress energy of a point mass on the
accelerated curve y, and the O(e?) term is a spatially
noncompact source proportional to the acceleration."
Given these subtleties, there are at least two paths we can
follow (in Sec. V, we discuss a third path that one of us

followed in previous papers). One option is to work with
total quantities, defining

8aTH := 6G*[eh' + €*h?] + 258G [h', h']

+ O(&?) (136)
or, expanding around 5”,,,
oy ol 02 © uv ol o]
82T = 5G [eh + €2h |+ €2*G [h .h ]
+ O(e%), (137)

o o uv
where, recall, (5GW and 6°G  are the linearized and
quadratic Einstein tensors defined on the background

PThe fact that the extra term is noncompact rather than
confined to y can be easily confirmed with an explicit calculation
in the Lorenz gauge, where we know h}w and not just Oh)ly.

o . o °n
gu- Alternatively, we can use g, and h, to define
nth-order stress energies:

° v °1

821" == 6G [ ], (138)
v ° v °2 2° MU o1 of
82T = 6G [h )+ 8G [h.h].  (139)

We will use both the form (138)—(139) and the summed
forms (136)—(137).
With the definition (138), 7" is precisely invariant under
the transformation
o1 o1 o
hyy, = hy, + LGy, (140)
because 6G is invariant under that transformation. We can
therefore calculate 7" in any convenient gauge; the result
will be that 7" is the stress energy of a point mass on 7,
given in Eq. (21). In Sec. V we review that calculation, and
its extension to second order, in the Lorenz gauge.
In contrast, the quantity 75" is gauge dependent. As
discussed in the introduction, in a generic gauge compatible

with the assumptions of matched asymptotic expansions, it

is not obvious whether 7%° is well defined because
© uv o] o]
82G [h ,h ] is a product of distributions."* By construc-
o 0D © uv ol of
tion, the total quantity Preas [h ]+ 8*G [h ,h ] vanishes at

all points r > 0, which might suggest that we can promote

it to a distribution on r > 0 even if we cannot promote
© uv o] o]
8*G [h ,h ]onits own. But (i) there is no unique choice of

this promotion, and (ii) even if we choose some way to
promote the total quantity, there is no pragmatic purpose to
doing so unless we can write a well-defined field equation

02
for h,, (or hfw). If all three quantities in Eq. (139) are
individually well defined as distributions on r > 0, then we
can rearrange it to write

v o2 ° w ool of

3G [h ] = 82T = &G [h.h]. (141

This (or an analog of it for hﬁy) would allow us to solve for
the physical field h,zw, just as one can solve for the physical

first-order field. But if we have only defined the total
° jy 2 ° v ol ol
quantity 5G [h'] + &G |[h .h ], then we have not given
° v ool of
8*G [h ,h] by itself a distributional definition, meaning
we do not have a meaningful equation for hlzw on the

domain r > 0.

"“Note that a quantity of the form 82" ~ 1/r3, which appears
o p ool ol
in G [h ,h ], is well defined as a distribution but not as a
locally integrable function.
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We can glean more about the nature of this problem by

ol
splitting A, into singular and regular fields, such that

° pv ool of © pv o8] o8] ° pv oR] ©8]
8G [h . h]=6G [h .h |+28G [h .h |

o MY oR1 ©RIl

+8G [h .h | (142)

. ° v oRl oRI. .
The final term, 8°G [h ,h ], is a smooth field

defined at all points in the spacetime and, as such, is

well-defined distributionally. The second term behaves like
° pv oRI ©Sl1, ©oRI__oSl °Rl o

G [h ,h |~h 0*h ~h /r’. This is not locally

177%

oR1 °© °R1
integrable, but because &, is smooth, G [h . h] (for

any h,, ) is a smooth linear operator acting on /,,,,, which we
write as

° uy o v oR1

QOr [h] =6°G [h ,H] (143)

[a special case of Eq. (A5)]. This is then well defined in the

distributional sense when acting on the integrable func-
oSl
tion £, .

Therefore the problems arise entirely from the “singular
times singular” piece of the second-order Einstein tensor,

’G [hs ,hSI}. In the next two sections, following an
argument in paper I, we show that, in a highly regular
gauge, this generically problematic quantity is an integrable
function on r > 0. We then use that fact to derive the
second-order stress-energy tensor in these gauges.

B. Stress-energy in the light cone rest gauge

Before specializing to the rest gauge, we first consider
the distributional nature of the individual terms in the class
of highly regular gauges. While it is not immediately
o ﬂy

[

oSl ©SI
obvious that 5*G [h . h | is well defined as a distribution

oRI1
in these gauges, we note that because 4, features no terms

oSl
with explicit factors of m, and h,, only features terms with
° pv oSl
an explicit factor of m, G [h ] must be the source for
08§ 02
h,, in hy,, as it features all the terms with the factor m?. This

implies that

o pv oSl ° v _°SS
£G [ ]==5G"[h ], r>0. (144
The previous relation is of course true in any gauge as we
are free to choose the split of hfw so that is satisfies this
equality. However, in the class of highly regular gauges, the

right-hand side of Eq. (144) behaves as ~1/r> because

oSS
hy, ~ 0. As such, it is a locally integrable function across

the entire space r > 0, so we can write

° pv oS] ° uv °©SS
2G h ) =-sG"n], Vr (145)

We can now specialize to the rest gauge and evaluate the
definition of 75" in Eq. (139). Because the regular field is a
vacuum solution, only terms involving the singular parts of
the perturbations contribute to the stress-energy tensor.
Hence, Eq. (139) can be simplified to

oSR’

v
82T = 6G |

° uv ©SS' o pv oS]" oRl
|+6G [h |+28°G [h ,h ]

° pv oSl o8V’

+8G [h ,h . (146)

In the rest gauge, the quantities on the right sum to zero for
r > 0 and are all ordinary integrable functions. Therefore
their sum vanishes when integrated against a test function,
and we can write

T =0.

(147)

This means, in physical terms, that, in a nonspinning
object’s local rest gauge, its stress energy is effectively that
of a point mass in the external background (up to possible
corrections of order ¢3).

C. Stress energy in a generic highly regular gauge
We now find 75" by finding how the stress energy
transforms under a gauge transformation from the rest

gauge. We use Egs. (69)—(72) to write the ;LZDS in terms of
the rest gauge quantities. Additionally, we require the
identities (C2)—(C4) from Ref. [45], which are

L:Alg] = 6A[Lg], (148)
L3A[g] = 6A[L3g] + 268°A[Leg, Le:g], (149)
L:5A[h] = SA[L:h] + 28°A[Leg. h), (150)

where A is a tensor of arbitrary rank which is constructed
from a metric g. The first of these reduces to the invariance
of the linearized Einstein tensor, §G**[L:g] = 0, when the
background is vacuum.
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Together, the above replacements and identities gives

o v o1’

w_ s’ el 1, oL s2
8T =8G [h + L h +—£§g+£529]+5G [k +£5lg,h +£§1]

o o 2/ O uv o1’ oy’

° uv o1
=5 |+8G [h b |+56G [Leh ]

= 8aT + £:5G"[h ] + S£2.G" (3,

= 8aT’y +8rL: TV .

In the first line, we have substituted Eqs. (69)—(72)
into the right-hand side of the definition (139). In the third
equality we have appealed to Egs. (149) and (150). In the
fourth, we have appealed to G*[g] =0 and 5G[hl | =
8T/ = 8xT"".
Equation (151) tells us we can write
Th =T5 + L TY". (152)
This is not too surprising as it is just the transformation law
for a second-order tensor when the background tensor
vanishes [73]. In our case, we have effectively defined 7%"
as the second-order term in an expansion of the Einstein
tensor. However, note that the steps involved in Eq. (151)
rely on the properties of the highly regular gauges; we have
not established Eq. (152) for the transformation between
any two generic gauges.
Next, since 7% = 0, Eq. (152) becomes

TS = LT (153)
The right-hand side was previously calculated in Eq. (D1)
of Ref. [45] and is rederived in Eq. (C11). It reads”

! ] d
ﬁ,ng’]w:—m/d;,g"b,u“ u< - d7>54(x 2)dr, (154)
Y

where fi = u,&/ and we have removed the orthogonal

parts of the gauge vector, & | = P# &4, as the worldline-
preserving condition sets them to zero. We detail the
derivation of Eq. (154) and various related results in
Appendix C.

By taking & to be the gauge vector from Eq. (125) and
the proper time to be ¢, we find

1
T2

dfi
dr ’

| _

155
ol (155)

1
u,,v0R1
=5 uu hl,

0 R1|
4

and

The 7 derivative term has a missing minus sign in Ref. [45],
which has been added here.

° uv oy’

1 © uv o o o
+§5G” £29]+28°G [h L, g}+52G [Eélg,ﬁglg],

(151)
|
Elpl, = (0,81 + 0u81)l,
1
_5( Oth _|_5ab0th)
7’

lga/)’Oth‘ (156)
2 %

Thus, the second-order stress-energy tensor in the highly
regular gauge is given by

™ _% / W (¢ — uul IR (x, 2)dr. (157)

D. Point mass in the effective spacetime

With a short calculation, we can show the total stress
energy eT%" + €*T5" derived above is exactly equal,
through order €2, to the stress-energy tensor of a point
mass in the effective spacetime g, = g,, + h}fp. That
stress-energy tensor is given by

ae
Fu — em / w0 g
Y \%

- (158)

Expanding this for small 4R, we see that

>

T = €m/—u”u”54(x Z) <1 __€gaﬁha/}>df + 0(63)7
= em /y WS (x,2) (1 - e [g“ﬁ - u"‘uﬁ} h}},}) dz

+ O(GB), (159)

where we have used the standard expansion of a determi-
nant and expanded dr/d% using

d 1 1
! — 1 4zelRlww +0(e),  (160)

dt /1= hyutu? 2

which follows from
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= MUV R dr? v
—1 = g, i"i" = (g,, + h,,) e wut.  (161)

Comparing Egs. (157) and (159), we see that

€T + 2T = T + O(€3). (162)
This confirms Detweiler’s postulate in Ref. [47].

As Detweiler also noted, we can use this to write the field
equations in a more transparent form. Equation (145),
together with G, [g] = 0, implies that

G"[g] = e6G**[hS'] + 265G [hSR]
+ 26252(;’”[]151, th] + 0(63),
= 6G*"[ehS! + e2hSR], (163)
where “G*[g]” is to be understood as the expansion of that
quantity through order €2, and 6G* is the linearized
Einstein tensor constructed from g,,. In words, the
Einstein curvature of the physical spacetime (extended to
all r > 0 from outside the body) is identical to the line-
arized Einstein curvature of the perturbation ehS) + e*h5R
atop the effective background g,,. Combining this with
Eq. (162) allows us to write the field equations in the form
of a point mass sourcing a linear perturbation of an effective
background:
5G"[ehS! 4 &hR] = 82T + O(3).  (164)
In the remainder of the section, we derive several useful
properties of this stress energy. In all cases, the properties
further show that the Detweiler stress energy behaves as an
ordinary stress-energy tensor in the effective metric, even as
it behaves strikingly unlike an ordinary stress energy in the
physical spacetime.

E. Raising and lowering indices
Suppose our stress energy were an ordinary tensor
T (x, €) with the expansion T# = eT" + 2 T5" + O(€?).
Its indices would be raised and lowered with g,,, such that

T, =9,T1", (165)

= €T\ + €X(T2" + h), T) + O(e?). (166)
Clearly our stress energy cannot behave in this way. If it did,
then the second-order stress energy with one index down
would contain the term k), 71", which has the form ~ ‘W—f)
This is manifestly ill defined.

Instead, we show that the stress-energy tensor’s indices
are raised and lowered with the effective metric g, =

G + By, That is, if we define

8xT," = 6G,"[eh! + €*h?|

+ ezéz(gM,G/"’)[hl, h'] + O(e?), (167)
8T, = 6G,,[eh' + €*h?|
+€26%(,p9,,G") (M h'] + O(e?)  (168)
in analogy with Eq. (136), then
Tﬂy — Q’mTau
=eTy + (T# + Oh}f(iT‘f”) + O(e?), (169)
T/w = g/mguﬂTaﬂ
= €T}, + (T2, + 2% g,sT1) + O(e®).  (170)

The right-hand sides of Egs. (167) and (168) are the
expansions of the Einstein tensor with mixed indices and
both indices down, as given in Eqs. (A8)—(A13).

We establish these results following the same method we
used to derive 7%". Repeating the steps in Eq. (151), we find
the analogs of Eq. (153),

T v 1 2 1
T, =€l +eLeTh,

(171)

T, =€l +e*L:T),. (172)
The Lie derivatives are given in Egs. (C24) and (C23). By
substituting the values of the gauge vector from Eq. (125)
and converting to Fermi-Walker coordinates, we see that
the individual components for mixed indices are given by

LT :% / SUORRISH (x, 2)dt,  (173a)
LT} =0, (173b)
LTy = m/ohﬁllé“(x, z)dt, (173c)
LT =0, (1734d)
and for both indices down by
LT} = —%/(2%5' + 5POpRNGH (x, z)dr,  (174a)
L:T), = —m/ohﬁ,lé“(x, z)dt, (174b)
LT, =0. (174c)
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In covariant form, these become

m
Le, T}f = —E/y[(g"ﬁ - uauﬁ)ohgﬁluﬂ

— 2nR uur 5% (x, 2)dx, (175)
ot —_™M ap _ PRI
E At — _E y[(g —utu ) a/iu/luu
= 4uug, hy, 16 (x. 2)dr. (176)

We see by comparison with Eq. (157) that these agree with
the order-e? terms in Egs. (169) and (170).

F. Conservation of stress energy

Again suppose our stress energy were an ordinary tensor
T (x, €) with the expansion T = eTY" + 2T + O(€?).
It would then be conserved in g,,: 9V, T* = 0, which
would imply
eV, TV +(V, T8 + 6, T+, T ) = O(e).  (177)
Here 9V, is the covariant derivative compatible with Qv
and 8T, =1 gw(zh[‘)w) — h},,) is the linear correction to
the Christoffel symbol associated with g,,. Clearly our
stress energy cannot satisfy Eq. (177) as it involves ill-

defined terms of the form (9ghy, )T} ~ 535)2‘“).

Instead, the Detweiler stress energy is conserved in the
effective spacetime, meaning

v, " = 0. (178)
This follows from the textbook result that a point-mass
stress energy in a metric g, is conserved if and only if the
mass moves on a geodesic of that metric.

This result may seem at odds with the Bianchi identity,
which tells us that the left-hand side of the field equations
has zero divergence in g,,: 9V,G*[g] = 0, which implies

V,5G"[h!] =0, (179)

and
V,5GH [hl Jh! |+ 5Fﬁy5Gf’” [h I ]+ ol'y,0G* [h ! ]=0. (180)

These identities hold for any smooth rank-2 symmetric
tensor h}w. In our case, they hold for all » > 0, but Eq. (180)
is ill defined on the domain r > 0 because it involves
products of distributions. The equality that does hold is the

expansion of V,G*[g] = O(é%),
V,32G* [h! ']+ 61%,8GP [h'] + 61%,6G* [h'] =0, (181)

which can be reduced to

2V, 862G 1S, hR1] + 817,6GP* [hS!)
+ o1%,6G# [hS'] = 0.

pv

(182)

Here 617, =1 g/‘”(zhl;(‘m) — hy),;). We obtain the reduc-
tion (182) using V,G**[j] = 0 and noting that, because of
Eq. (145), we have
V,52G% 1S, 1] = 0. (183)
To see why (the expansion of) V,G*[g] = O(&*) holds
true, recall Eq. (163): as a distribution in a neighborhood of
v, G*[g] = 6G*[ehS! + €*hSR] + O(€®) (again interpret-
ing the left-hand side as its expansion through order €?).
The Bianchi identity V,6G* [ehS! + €2hSR] = 0 then trivi-
ally implies V,G*[g] = O(&3).

G. Gauge invariance under smooth transformations

All of our results are valid for any member of our class of
highly regular gauges. However, our derivation relied on
the notion of a worldline-preserving transformation: for
each highly regular gauge, we have started from an
associated rest gauge in which the worldline is identical.
In this section, as a consistency check, we show that under
an arbitrary smooth transformation between two highly
regular gauges with differing, gauge-related worldlines,
the functional form of the Detweiler stress energy is
invariant.

Under such a transformation, we have [45]

hﬁl} - h}},} + Le, G (184)

7 = 2 —ef + O(e?). (185)
Following through the calculation in Eq. (151) once again,
but now accounting for the shift (185) in the worldline, we
obtain 7%, = T5" 4 (L, + £;,)T}", where we denote our
new gauge with a double-ended dagger. Here £: acts on
T"’s dependence on zV; see Ref. [45] for a thorough
description of this type of transformation.

Equation (C16) gives the action of the Lie derivatives on
T%". The gauge vector in that equation can be expressed in
terms of AR} by solving L g,, = AhR} (no longer subject
to §‘f|7 = 0). The result is that the terms involving gauge
vectors are again given by Eqgs. (155) and (156) but with
hy) replaced by AhY). Making those substitutions, we
obtain

v m v( 40 a
(Le, +£:)TV = —E/u”u (g% —u uﬂ)Ahs/}

x 8*(x, z)dr. (186)
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This generalizes our previous result for the special case of a

transformation from a rest gauge. In that case, ' = 0 on
the worldline, resulting in Ak = hi,.

The stress energy in the new gauge is therefore
TH = TH + (L, +£)TH,

. __
=2 [ wr g - w2y, (187)

which confirms that the functional form of Eq. (157) is
always valid for smoothly related highly regular gauges
but with a regular field specific to the particular gauge.
Note that this is also consistent with the value of zero in
the rest gauge. In the rest gauge, h}f,,\y =0, leading to a
vanishing 7%, .

V. THE DETWEILER STRESS ENERGY
IN THE LORENZ GAUGE

In the last section we established the validity of the
Detweiler stress energy in the class of highly regular gauges.
In this section, we investigate whether it remains valid in less
regular gauges. We do not consider commonly used gauges
with pathological singularities away from y, such as the
Regge-Wheeler-Zerilli [76] or radiation gauges [77]. We
focus on the Lorenz gauge, the most commonly used gauge
possessing the generic level of regularity assumed in matched
asymptotic expansions: /y,, ~ m" /" and hj;, is smooth away
from the particle. The Lorenz gauge has been central to many
foundational derivations in self-force theory and has been
used in numerous practical calculations [ 10]. More relevantly
here, it has been the basis for the concrete development of
second-order numerical schemes [13,20,38,51,56,78].

Unfortunately, it is not possible to perform the same
treatment in the Lorenz gauge as in the highly regular gauge
because the transformation from a highly regular gauge to
the Lorenz gauge is singular on y, making £:7%" ill defined.
We instead perform a direct calculation of the right-hand
side of Eq. (136). The calculation is based on a particular
distributional definition of 5>G**[h', h'], which we call the
Detweiler canonical definition. Using this choice, we
recover the Detweiler stress energy.

At the end of the section we discuss whether this result
applies in all gauges with generic regularity.

A. Field equations and local form
of the metric perturbation

In the self-consistent Lorenz-gauge scheme [36,39,44],
the gauge condition

V, e = (188)

is imposed on the total perturbation 4,,, not on each

coefficient hy,. Here

Hvs

- 1
h;w = h;w - 5 gﬂugaﬂha/} (1 89)

is the trace-reversed perturbation. The coefficients hy,
satisfy

EW[h"*] =0 forx ¢y, (190)
B[] = —8*GM[h"* k"] forx gy, (191)
where
_ 1 - _
E*[h] = -3 (v, + 2RM Y shP) (192)

is the linearized Einstein tensor in the Lorenz gauge, and
where we use an asterisk to denote Lorenz-gauge
quantities.

In this gauge we have access to the full perturbations 7,

rather than just hZ,, [36,38,44]. The first-order singular field
takes the form

NI E—

h =

(G + 2u,1,) + O(r°), (193)

2m
r

where u* = (1,0,0,0) so that u*n, = 0. The second-order
singular field is split into three pieces,

hap® =l + hs + b, (194)

which satisfy
EW[RSS] = =8*G*[hS"*, hS*] for x ¢y, (195)
E*[hSR] = =28°GH[hRY, bS] for x ¢y, (196)
EW[ho™] =0 for x &7. (197)

h55* contains all local terms explicitly proportional to m?. It
has the form ~m?/r?, as in a generic gauge compatible with
matched expansions, but we will not need explicit expres-
sions for it. The combined quantity A3R* + hiw* is the
analog of what we have called /,; in the highly regular
gauge, containing products of m with h}}). The components
of the “singular times regular” pieces are given by

HR = =R 4 O(), (198a)
pSRr — —?hfbl*ﬁa +O(0), (198b)
Mo sae * * A C
hig* = 7 [2}’[ (ahl/j)lu — (Sahl/llsaly n d
— (WR™ 81 + h™)iig) + O() (198¢)
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and
home = —g (RRI*5% 4+ 6hR1*) + O(),  (199a)
piome — -‘;—’:fh}y* + o), (199b)
o = 2 (2hS) 4 6,6 hE) + 28, 51)
+O(0). (199¢)

hz’ﬁ* consists entirely of £ = 0 terms in a decomposition of
2(1 N
the form A2, = 3" 0 i (2, r)AL.
Previous papers by one of us (e.g., [8,36]) defined
effective stress-energy tensors associated with particular
pieces of the metric perturbation:

8aT!" = E*[h"], (200)

8aTh, = E*[hom], (201)
and similar for higher multipole moments. These defini-
tions are well defined to all orders in perturbation theory,
and they provide a complete characterization of the object’s
multipole structure. However, they do not describe the full
Einstein curvature. Moreover, the total curvature is
obscured by the division of “singular times regular” pieces
into A3R* and h%*. The clean split into the field equa-
tions (196) and (201) does not guarantee that, for example,
Eq. (196) holds distributionally for r > 0.

In this paper, motivated by the results in highly regular
gauges, we deviate from the definitions in Refs. [8,36] and
instead use the definition of 7% in Eq. (136). As in the
highly regular gauge, the regular fields are defined to be
solutions of the vacuum Einstein equations and their
Einstein tensor does not contribute to 7, leaving us with
the analog of Eq. (146),

SaTH = 5Gﬂy[€h81* + €2hSS* + €2hSR* + €2h5m*]
+ 26252Gﬂy[l’181*, th*] + 6262G’w[1’l51*, hSl*]
+ O(e?). (202)

To proceed from here we must choose a distributional
definition of 82G*[hS"*, hS!*]. Using the property
€V, Hss, = O(e3), we can rewrite Eq. (195) as

G [h3%*] = =82GH [hS™, hS1*] + O(€3) for x ¢ . (203)
In the highly regular gauge we get “for free” that the analog
of this equation [Eq. (145)] is true for r > 0. In the Lorenz
gauge we only get that free cancellation off of the world-

line. However, we can define Eq. (203) to be true
distributionally on the region r > 0:

G [, kY] == =6GM [hSS*], VY r.  (204)
SGH*[h35*] is a linear operator acting on a locally intregable
function, making it (and therefore 5°G*[hS!*, hS!*]) well
defined as a distribution on r > 0.

However, the field 5" is only defined in the form of a
local expansion around y. We can therefore only apply
the definition (204) in an infinitesimal neighborhood
of y. To localize it to such a neighborhood, we define
82G*[h'*, h'*] as the limit s — 0 of a continuous sequence
(i.e., a net) of distributions,

52G”D[h1*7 hl*] = hn('%&zG{;w[hl*y hl*]y (205)
where
PG [ W] s= (=G [hS57] + 26°G S ]
G IR )0(s 1)
+52G;w[h1*’hl*]9(r—s). (206)

Here 6 is the Heaviside function. With this definition,
outside the infinitesimal region r < s, 8*°G5*[h'*, h'*] is
simply the smooth function &*G**[h'*,h'*]; inside the
region r <'s, we split hj; into i3y and A" and then
replace  §*GL"[hS™*, hS1*] using the definition (204).
The definition (206) implies that as a distribution,
&G [h'"*, k"] acts on test fields ¢,, via'®

/ ¢ﬂy52GMD[h1*, hl*]dv

= 15%{/ ¢W(—5G’”[hss*] + 252G[h51*, th*]
+8*GH IRV, iR1¥))0(s — r)dV

+ / 0, 6°G [, h‘*]dV}. (208)
r>s

Beyond a certain finite order in the local expansions of
h33*, h5)*, and AR)*, this definition is insensitive to the
truncation order.

In Ref. [47], Detweiler takes Eq. (203) to be valid

distributionally on the region r > 0, and so we refer to

'“The integral over the region r > s is an ordinary integral of
smooth functions, which diverges as ~1/s in the limit s — 0. The
first integral, on the other hand, is defined in the distributional
sense, such that

/ $, 6G* [h55*]0,dV = / 5G* [0, |h5*dV . (207)
Here 0, := 0(s — r), and we have used that §G* is self-adjoint;
see the next section. Equation (207) also diverges as 1/s,
providing a counterterm that cancels the 1/s divergence from
the r > s integral.
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Eq. (205) as the Detweiler canonical definition of
82G*[h'*, h'*]. We return to some of its consequences at
the end of the section.

With Eq. (204), our Einstein equations become

82T = e5G [hS"*] + €2(5G [hR*] + 6GH [ho™]

+20% [1°1]) + O(€), (209)
where Q% [h] == 8°G*[h?!*, h], in analogy with Eq. (143).
In Eq. (209) we use the expressions in terms of locally
defined fields, despite our discussion of localization above,
because the total Einstein tensor identically vanishes for
r > 0. If we were to write a field equation to be solved for

hZ: globally in the external spacetime, with §G**[h**] on

the left and 6°G*[h'*, h'*] on the right, we would instead
use Eq. (205).

B. Distributional analysis

To determine the distribution 7#¥, we integrate the right-
hand side of Eq. (209) against a test function.

Doing so requires the adjoints of our operators 6G** and
QF . Here the adjoint of a linear operator D** is defined by
|

¢ﬂuDﬂy[l/]] - DJWU [¢]W/w = v;tK/]f)’ (210)

where ¢,, and y,, are arbitrary smooth fields and
Ky = Ky (¢.w). If y,, is a distribution, then we define
the integral of D**[h] against a test field ¢,, as

[ dupmwlav = [ 0w gav. @)

The linearized Einstein operator is self-adjoint [79];
that is, G [h] = §G*[h]. Q" is given in Eq. (A7) with
hb — th*
172 117
We now evaluate the integral of Eq. (209) against a test
field ¢,,,

87 / G T dV = / b, {€6GH [HS1*] + €2 (5G* [hSR¥]

+ 3G W™ 420K [hST]) }aV.  (212)
We then move the operators 6G* and Qf onto the test
tensor using Eq. (211), so that the right-hand side of
Eq. (212) becomes

/ (6 B {ehS)” + E(HSR + h) 426201 (IS av

= lim

R=0 >R

(8G [pl{ehS) + €2 (SR + him)} + 2200 [plhS) ) dV

= lim [ / (0GR [ehS™ + 2 (hSR* + W] + 262, Q2 [hS""] }aV
- r>R

- / {K3O[ehS™ + ¢2(hSR* 4 hom*)] + 262K 2 [hS1¥] }dSe |,
r=R

(213)

where K2 denotes the boundary term for the operator D. In the first equality we note that as the integral is now over ordinary
integrable functions instead of distributions, we can remove the region r < R and then take the limit as R goes to 0.
Following that, in the second equality, we integrate by parts using Stokes’s theorem to move the operators back onto the

metric perturbations. The values of K2 are given by

1 1 1 1
Kgc [h] = Eqﬁﬁ”hﬁu;a ) hﬁﬂd’ﬂﬂ:a + ¢ﬁﬂhﬂ[a;ﬂ] + hﬂﬂd’”[ﬂ;a] + E‘ﬁaﬁhﬂu;ﬂ - Ehaﬂd’ﬂﬂ;ﬁ + ¢aﬂ;ﬂ - ¢ﬁ”haﬁ;ﬂ' (214)

and

1
KEIA] = g (W {F LS+ S, = A MLy = b g8} = Wy S (L, = 208 10))

pria

réa ayi§

+ 2{ el Q@b+ 297 hEE )+ BRI (G e = gy o+ 2 e = b
+ 205 chppy o = 20ash’c., = 20 bac, + haptc, + 2005 [hae, + hay e = By )

- ¢ﬂyha§;i - d’a{hﬂy;g - Zhﬂg(pay;g’ + hﬁyqﬁaci + haggbﬁy;c:)

+ hgl*ﬂ(hygd’yg“;ﬂ - hyyd’gé;ﬂ + hﬂy‘ﬁgi;y + 2¢yVhC[C;ﬁ] - ¢y§[h7€;ﬁ - 2hﬂ7;¢]

- 2hy§¢ﬂy;§ + 2hyy¢ﬂ§;é‘)}]7

(215)
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while the surface element in Fermi-Walker coordinates is
given by

dS* = —R*n%dtdQ + O(R?), (216)
where n% = (0,n') and the minus sign comes from the
orientation of the normal vector to the boundary of the
region r > R.

To evaluate the volume integral, note that the integrand is
order €’ off the worldline,

€5G;u/[h51*] +€2(6Gﬂy[hSR*
+20R [°]) = O(€)),

r>0. (217)
So the volume integral contributes nothing to the final
result and can be ignored, leaving only the boundary terms:

/qﬁﬂUT” dV = ——hm (eK3C[hS1]

87 R—0
+ €2KgG [hSR*] 4 €2K2G [hﬁm*]

+262K2[hS1])dS™ + O(€3). (218)

C. Evaluation of boundary terms

For the rest of this section, all occurrences of h}},}* and
¢, are evaluated on the worldline, but we omit the notation
|

m
Kg[hSl*] — ﬁ[”a(hgl* aa _ hl;l:*(pab
+n“(4h5£*¢a — hRl=gpt,

+ 2140,(2]’1571*(]5“ - Zhgl*qﬁta

We then integrate each of these quantities with the
surface element from Eq. (216), noting that [74]

/ﬁLdQ =0 forl>1. (223)
The first-order integral is given by
lim [ KOst = ~8am / budt,  (224)
and the second-order ones by
lim K36 [hSR*|dS*
R-0 [,—p
8zm
— _ 5 (hla{g* ab + 2h511*¢tu + hgl* aa
- 5ijh}'{l*¢tr - 3th*¢tt)dt (225)

_ 2h51]*¢ta + 5ijh$jl*¢bb

for visual clarity. We substitute /;)* from (193), /r* from

(198) and Ay from (199) into Eq. (214), giving

2
Kgc[hSl*] = mnﬂ (¢ ula u’ — 2¢ﬂyu u!
+ 94 f/),wu"u )+ O(1/r), (219)
KO = = 11 4 2
_ th* b — 5ithl*¢ab _ hgll* CC
= hiy bu) +O(1 /1), (220)

m ..
KEO[W™] = = 25 (6 aan (67hE" + 205"
+n (Zth* ab + 8th*¢ta _ IOhgl* aa
55z]th*¢b +56Uhm*¢tt

+ 6hRp,)] + O(1/r). (221)

Note that we only require terms of order 1/r" where
n > 2 as all other terms will vanish after taking the limit

R — 0. We follow the same procedure for K, 2, substituting
Eq. (193) into Eq. (215), to get

- 5ijh$j]*¢tt + 2h51*¢tt)

hlgl*bqﬁaa - th*¢aa - 2hl§[l*¢ab + 2h511*¢m - hRI*d)tt
_ hgll* b + 2hR1* b

— hi* )] + O(1/ 7). (222)
[
Ilelng) KZG [hﬁm*]dsa
—“YJr=R
dm Rlx gab | gJRI RI
Sy v R
- 35ijh51*¢bb + 55ijh?1*¢tt +6hi ¢, )dt,  (226)
Ileln,(l) Kg[hSl*]dsa
4
ﬂm/ (th* ab +4h§11*¢at _ zhﬁl* aa
— SRRV PP, + 48T by — 6hE P, )dr. (227)

D. Result: Recovering the Detweiler stress energy

As we explained in Sec. IVA, if we were to define
8aT\" := 5G"[h"] in the self-consistent expansion, then
we would find that 7%" contains a subdominant correction
that is extended away from y. That prompted us to define
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the total 7#* in Eq. (136), rather than defining each T7”
separately. However, our formula (218) now provides an
unambiguous split:

1
;w _ 0G [1,S1x o
/(]bﬂ,, dv = _mlel—r}g) KO, [RP1]dS*,  (228)
1
HY N 5G[,SR*
/¢MDT2*dV_ ”11_1’}(1) (Ka [h ]
+K36G [hﬁm*] + 21(,9 [AS1]))ds®.  (229)

These are equivalent to the definitions (138) and (139).
At first order, we can immediately see from Eq. (224)
that Eq. (228) can be written as

/qb,wT’lde—m//qﬁ”yu"u"é“(x,z)drd\/. (230)

Since this holds for an arbitrary test field ¢,,, we infer that
T'\" is the point-mass stress energy in Eq. (21), as expected;
a nearly identical derivation appears in Ref. [43].

Moving to second order, we sum the boundary terms to
obtain

lim [ (KSO[RS™) + KGO [o™] + KE[RS1])dS*
Y Jr=R

= dxm / (2hRY — SRR )b, dr. (231)

We can therefore write Eq. (229) as

/ BTV
m
= 3// b u (uu’ — g hyy*dedV.  (232)

This implies that, given Detweiler’s canonical definition of
G [h'*,h'], T5 in the Lorenz gauge has the same
functional form as the 7% found in the highly regular gauge
in Eq. (157). Additionally, using the methods and argu-
ments outlined in this section, we can show that the
functional forms of 72* and T7, in the Lorenz gauge
match the ones found in the highly regular gauge, as is to be
expected.

E. Generality of Detweiler’s canonical definition

In this section we have focused on the Lorenz gauge, but
much of the analysis immediately extends to all gauges
with a generic level of regularity. Specifically, the canonical
definition (205) suffices to determine a unique T’(’ZV) given
by an equation of the form (229) (though in general we
would not split the “singular times regular” piece of the
field into the two pieces hir and hj'). Moreover, the
canonical definition implies that the Einstein equation can

be written in the form (164) for some distribution 7

supported on y. This in turn implies that vyT"” =0. We
conjecture, based on that fact, that our result in the Lorenz
gauge holds true in all gauges with generic regularity: the
Detweiler canonical definition of §2G**[h!, h'] implies that
the Detweiler stress energy is valid. But we have not
attempted to prove this statement.

A separate question is whether the canonical definition
has practical utility. One of us made some use of it in
Ref. [13], but we defer further discussion of this question to
future work.

VI. APPLICATIONS

In this section, we briefly outline how the highly regular
gauge and second-order stress-energy tensor could be
utilized in numerical schemes.

A. Puncture scheme

As discussed in the introduction, there is only one extant
second-order implementation [13,20], which is based on a
puncture scheme in the Lorenz gauge. That scheme starts
from the gauge-fixed version of the Einstein equations in
Egs. (190)-(191). In analogy with Egs. (16)-(17), the
equations of the puncture scheme then become

Em [th*] _

_(E;w[hPl*])i‘z, (233)

E/w[hRZ*] — —(52Gﬂy[l’l]*,hl*] + Em/[hPZ*])ﬂ?’ (234)

with the puncture moving on a trajectory governed by

2
D Za _ _lpaﬂ(gﬂﬂ

—7 =3 — Y (2RR — R YuPur.

(54 prip (235)
The puncture and residual fields satisfy the gauge-fixed
equation E*[hR' + hP1*] = 8zT!" in the entire domain
including y, but e5G* [h*'* + hP*] = O(€?) # 0 at points
away from y.

For the purpose of modeling an inspiral into a black hole,
these equations are solved with a two-timescale ansatz that
splits the solution into slowly varying amplitudes and
rapidly varying phases [11,13,20,80]:

i = 30D . My ek, (236)
n'>0
?=z5(p.@) +ezi(p. My, @) + O(e?).  (237)

Here xg; = (rgp,0pL, ¢pL) are Boyer-Lindquist spatial
coordinates in the black hole spacetime; z' are the Boyer-
Lindquist spatial coordinates of the puncture’s trajectory;
k= (k',k’ k?), and each k' runs over all integers;
k-@:=>,k;pis a set of three orbital parameters that
slowly evolve due to dissipation (e.g., orbital energy, angular
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momentum, and Carter constant); M, = (M"',J') are cor-
rections to the central black hole’s mass and spin that slowly
evolve due to gravitational-wave absorption; and ¢ =
(@r @9, y) are a set of three phase variables describing
the radial, polar, and azimuthal motion of the small object
around the central black hole.

We will not need the technical details of this two-
timescale puncture scheme for our discussion, but its
general structure will help to highlight some of the subtle-
ties that arise in converting our results into a usable
puncture in a highly regular gauge.

The singular field we have obtained has the form

oSl 082

by, = ehyy, + €2, + O(e?), (238)
where hiz is given by Egs. (70) and (127) with Egs. (56),
(130), and (131). This differs in two significant ways from
the Lorenz-gauge case. First, as we reiterated at several
points in our presentation, the coefficients here are not in
precise correspondence with the coefficients hﬁ;’ in a self-
consistent expansion in an e-independent coordinate sys-
tem. Second, even if we had access to hﬁﬁ, it would satisfy a
locally defined gauge condition, while we wish our residual
field (and therefore h}},j’) to satisfy some gauge that
simplifies the linearized Einstein tensor in the external
background. If A3} and hyy' satisfy different gauge con-
ditions, it is not obvious how one would write the field
equations in a gauge-fixed form.

To see the impact of these differences, suppose we define
punctures

°Sn
Pn .
hy' = hy,,

(239)
with some choice of windowing to set hfy” to zero outside
some region around y, and that we then solve the field
equations (16) and (17) for residual fields hffb". The left-
hand side of these field equations can be in any convenient
gauge. For concreteness, take it to be the Lorenz gauge,
such that

B[R] = —(6G* [hP])7, (240)

EF[hR?] = —(6*G*[h', h'] 4+ G [h7?])". (241)
Counter to the fields in the scheme (233)—(234), the fields
here do not satisfy

E*[hRY] 4 5G™ [P = 8T, (242)

There is, effectively, an additional, order-¢? source that
extends away from y. We can understand the form of this
source by noting that 5G*[hP'] ~ &G [hP'] + a'Ohly.

° uv ©°S1
Since 6G" [h ] =0, this implies that §G**[h"'] contains

singular terms o« a’/r*. As a consequence, hlx' will be
discontinuous at r = 0. In principle, 4/s* will precisely
cancel this discontinuity, since ehls! + e*h/x* will still sum
to AR, + O(e*) ony. But ! cannot be used in the equation

of motion for y or in the term hil: in the second-order
puncture. Additional work would be required to correctly
formulate a self-consistent puncture scheme in a highly
regular gauge.

Fortunately, our results do suffice for other practical
formulations of the field equations. The expansions (236)—
(237) automatically include an expansion of the acceler-
ation, meaning that our local results can be incorporated
directly into a two-timescale implementation. After per-
forming the expansion

°Sn ,oSnn'k )
=D > €l (pMyxg)e ™0 (243)
n'>0 k
we can define punctures
°S1,0k .
W = ha e (244)
k
©S82,0.k °SI, 1k .
hzfyz - Z(h/W + h;w )e_lk.q)- (245)

k

These punctures will fit directly into the two-timescale field
equations, with residual fields that are regular on y. In
practical terms, the punctures would be constructed by
substituting the expansion of the trajectory, Eq. (237), into
our formulas for the singular field and then performing a
decomposition into the Fourier modes e~

The two-timescale expansion is specialized to the inspi-
ral phase of bound binary systems, somewhat limiting the
generality of our result. An alternative that could be used in
generic spacetimes would be an ordinary Taylor series
expansion in powers of e¢. The field equations would then
be Eqgs. (16)—(17), and the residual fields would again be
regular on y. One can obtain the punctures in this scheme
from our singular field by substituting an ordinary Taylor
series 7#(z,€) = 7#(z) + €7 (t) + O(€?); such an expan-
sion is detailed in Ref. [45]. Although this expansion breaks
down on long timescales, it should suffice for many
purposes.

Regardless of whether a two-timescale expansion or
Taylor expansion is used, several other steps are required to
construct a practical puncture. One must figst convert our
Fermi-Walker coordinate expressions for £, into a covar-
iant form. This can be done using Synge’s world function
and near-coincidence expansions, as detailed in Ref. [38].
Following this, because the field equations are typically
solved using a decomposition into a basis of angular
harmonics, the singular field must be decomposed into
that basis.
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With the punctures in the highly regular gauge, we will
have achieved our aim: the second-order source term
82G*[h', h'] will be far less singular than it is in a generic
gauge, substantially reducing the numerical cost of second-
order computations.

B. Mode-sum regularization

The calculation of the second-order stress-energy tensor,
7%, in Sec. IV opens up another avenue for second-order
implementations: mode-sum regularization. Here, instead of
directly solving for the regular field (by way of the residual
field in the puncture scheme), we solve for the entirety of 4,
and then subtract /;, from it to leave hy'. The difficulty
of subtracting one divergent quantity from another is
avoided by decomposing each field into multipole modes
(which are finite) and performing the subtraction at this level.
Schematically, following the notation in the introduction,

h(2) = [him(2) = 1S, ()Y (2),

ilm

(246)

where z is a point on y, and Y,’flf" denotes a basis of angular
harmonics. Analogous equations can be written for any
quantity constructed from derivatives of h}fy, such as the self-
force. This mode-sum method has been the basis for most
first-order implementations, and it is typically more efficient
than a puncture scheme.

To date, using this method has not been possible at second
order due to the strong divergence at the worldline. The
second-order field generically behaves as ~1/r2, leading to
individual modes that diverge as ~log |rg; — r,|, making
the mode-sum formula (246) incoherent. But it should now
be possible to implement this method using the weaker
divergence of the highly regular gauge and the knowledge
of T%". As described in the introduction, in the highly
regular gauge the most singular part of the source for the
second-order field is ~1/r? and has individual modes
Gy ~log |rg —1,|; see the discussion surrounding
Eq. (26). This suggests that, at worst, the most singular
part of the solution has modes that behave as

hlZ]m ~ (FBL—r0)210g|rBL—r0|. (247)

This is C' differentiable, which is sufficiently smooth to
calculate one derivative of h}ff (and hence the second-order
self-force) using mode-sum regularization. Therefore, this
should now be a viable approach.

Following the discussion in the previous section, we
assume the field equations are written in either a Taylor
expansion or two-timescale expansion. We write

5G[h'] = 8aT™, (248)

SGM[h?] = —3*G™[h!, '] + 8xTX  (249)

with the understanding that the metric perturbations and
stress energy have been reexpanded and recombined [e.g.,
in analogy with Egs. (243)—(245)]. The specifics of these
reexpansions are not important for this discussion, but we
refer interested readers to Sec. 7.1 of Ref. [11] for details.

We must now formulate and solve Egs. (248)-(249) in
such a way that (i) h}w on the right-hand side of Eq. (249) is
in a highly regular gauge, and (ii) both equations can be
solved mode by mode in a numerically convenient gauge.
Combining these requirements is nontrivial because we do
not have a prescription for solving the field equations
globally in a highly regular gauge; these gauges are
inherently a local construction near the worldline.

To sketch a suitable method, we start by assuming that
the first-order modes are computed in some convenient
gauge (e.g., the Lorenz, Regge-Wheeler-Zerilli, or radia-
tion gauge). Such computations are now routine [10]. We
label the computed modes 4/;"™™. From this starting point,
we can perform a first-order gauge transformation to the
highly regular gauge, mode by mode, so that

ht!lm = htllrrrlzum + (‘Ccflg)ilm‘ (250)
The vector & can be found as a local expansion near the
worldline, in four dimensions, to some finite order in r,
with any convenient extension away from that local
neighborhood. The gauge perturbation L g,, can then
be decomposed into the chosen basis of modes using the
methods described in, e.g., Refs. [51,56,81]. An alternative
method of computing suitable modes A};, would be to use
our puncture scheme in the highly regular gauge at first
order; one could still use mode-sum regularization at
second order.

From the first-order modes in the highly regular gauge,
we can calculate the source modes in the field equation for
the full second-order perturbation,

5Gj[h?] = =6°Gyp|h', W] + 82T2,

im - (251)
Because the modes of h}w are in the highly regular gauge,
the right-hand side has the desired regularity. We once

again suppose this field equation is solved in a convenient
gauge to obtain h?[‘;“m. In a well-behaved gauge such as
Lorenz, these modes will have the form (247); note that, in
this scenario, hﬁ’y““m satisfies the Lorenz gauge condition,
but 4, does not.

In order to subtract the singular field from the total field,
we next must put 42, and 52, in the same gauge. There are
numerous ways of achieving this. For simplicity, we
assume that we do the same at second order as at first:

transform A;;™™ to the highly regular gauge, in the same

manner we transformed 4};"™™, such that

htzlm = htzlrI:zum + (‘C’fzg)ilm‘ (252)
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As at first order, the vector 5’2‘ can be found as a local
expansion in four dimensions, after which L; g,, can be
decomposed into modes. The modes A3, can be calculated
from the local expressions in this paper, and hﬁf can then be
calculated using the mode-sum formula (246).

The crux of this scheme is finding the vectors &,.
To elucidate how they might be found, we assume that
hi™ are computed in the Lorenz gauge. If we trace
reverse hy, = hy"" + Le g, take the divergence, and use
VY hi™™ =0, then we find that the gauge vector is
determined by

0e, = V, 1Y, (253)
where [I:=¢*V,V,. This equation can be solved in
Fermi-Walker coordinates using the expressions for 7,
in this paper, and &, can then be converted to covariant form
following Ref. [45].

VII. CONCLUSION

In summary, we have derived two main results: (i) the
local metric perturbation in a class of highly regular gauges,
to sufficient order in r to implement a puncture scheme, and
(i1) the validity of the Detweiler stress energy in these
gauges. We expect both of these to enable more efficient
calculations of the second-order self-force and related
quantities in binary systems. To that end, we have also
outlined how they might be utilized in concrete numerical
schemes.

Our presentation stressed the utility of the highly regular
gauges as a means of overcoming a specific computational
challenge: the problem of infinite mode coupling. This
might seem to suggest that the challenge is purely a
symptom of a mode decomposition. But an analogous
problem would arise in a 3 + 1 calculation. The two source
terms 8°G*[h', h'] and 6G**[h"?] in Eq. (17) would each
diverge like ~1/r*, and those two divergences would
cancel each other to leave a regular remainder. To effect
this cancellation, one would have to calculate each of the
terms to extreme precision at small r, just as one would
have to go to extreme mode numbers to calculate
?Gyp[h', h'] as a sum over first-order modes. This
high-precision problem would be alleviated in a highly
regular gauge.

Besides these pragmatic aspects, our results have clari-
fied a sense in which point masses remain a well-defined
consequence of matched asymptotic expansions beyond
linear order. To further bolster this, we have shown that the
Detweiler stress energy is valid outside the highly regular
gauges, at least in the Lorenz gauge but probably far more
broadly, if one adopts a canonical distributional definition
of the second-order Einstein tensor, 5>G**. On one hand,
this result is not entirely as compelling as the result in
highly regular gauges. The canonical definition requires

one to know the local solution for hﬁy before one can use
5 GH as a source for the global solution; in this sense, there
is little distinction between a puncture scheme and solving
the field equation (249) with the canonical 8>G*. Yet, on
the other hand, the canonical definition does provide a
compelling physical interpretation: a small object not only
moves as a test body in the effective metric, it also has the
stress energy of such an object. There may seem to be a
conflict between the object behaving as a test body and
simultaneously having a gravitating stress energy, but this
seeming contradiction is alleviated by the fact that the field
equation has the local form of a linearized FEinstein
equation in the effective metric, given by Eq. (164) and
previously written by Detweiler. Just as in the ordinary
linearized Einstein equation with a point source, there is a
one-order mismatch between the test-body orbit and the
gravitational field it creates.

There are several ways one might extend our results. Our
calculations are only applicable to the case of a non-
spinning and spherically symmetric object; they should be
generalized to the more astrophysically relevant case of a
spinning, nonspherically symmetric body. It would also be
conceptually interesting, at the least, to extend them to
higher perturbative order in €. At a more practical level, it
may be possible to make A5y even more regular by
removing the order ¥ piece of the perturbation so that
Sy |, = 0. We have so far been unsuccessful in our attempts
to find a gauge transformation that achieves this, hinting
that these O(r°) terms may contain invariant information
about the coupling between external tides and the object’s
local gravity. But we have also not ruled out the possibility
of gauging the terms away. All of these extensions might
draw on the work of Harte [82,83], who has shown how
nonlinearities can be reduced by adopting Kerr-Schild or
generalized Kerr-Schild gauges.
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APPENDIX A: LINEAR AND QUADRATIC
EINSTEIN TENSORS AND THEIR ADJOINTS

For a generic metric of the form g,, + h,, satisfying
G,,]g] = 0, the Einstein tensor G*[g + h] can be expanded
in powers of 4, and its derivatives as

G"[g+ h] = 6G*[h] + 52G"”[h, h] + (9(|h|3), (A1)
where the linear term is
1
5G*[h] = ha(ll;v)u + g he . /f]ﬂ _5( hva 4 o), (A2)
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and the quadratic term is

1 | _ . 1 .
52G’w[h, h} — 5 hm;ahaﬂ;ﬂ _ Z hﬁ/i,ah;w;a + h;wha[a,/i]ﬁ + hﬂa,ﬂhl/[a;ﬂ] + 5 hﬂﬂ;ah(l(ﬂ,b>

1
_ ha/};/}ha(ﬂ;u) 4 Zh(ll};ﬂhaﬁ;u + ha/j(hv[y;a]/)’ _ ha[y;\uv}])

alr o L o
+ g (haw, ]hﬁpeﬂ + ghpp;ﬂha b

—2h\ 5G¥)[h).

The quadratic Einstein tensor 5>G** [k, h] is not uniquely
defined with two distinct arguments. For convenience we
adopt a symmetric bilinear definition of it,

1
Gulg+ M + Ah?)|

G [h°, h?
Gk, B o= 2diky =0

which reduces to Eq. (A3) when hb = hII = h,,. We also
define a linear operator

O 1] = &G [ 17, (AS)

g””{h

v 1 " v v
Qi) =5 o (=200, 4

1 ap;, 3 ap;, Q,
7 happh Ve — 3 hopph P — hP[he palp T ha[ﬁ:ﬂ]po

which is the term bilinear in hfw and h,nw if we expand

G"[g+ h" + h¥] in powers of h, and its derivatives.
That is,

G*[g+ k" + h'] = G*[g+ h’] + O[]

+ O, |1 1F)). (A6)

In the body of the paper we make extensive use of the
adjoints of these quantities. The linearized Einstein tensor
is self-adjoint, satisfying §G™*[h] = 6G**[h]. The adjoint
of O is

1 a
2hzﬂp}+h U) Qb= "

~ Gap ")+ LY pap + bap = 208 ) + ¢ enl P om0

v 1 via 1 v a; a a ;
+¢ﬂﬂa< ) Ehg ' ) _59” (qﬁpp;ﬂh'; b4 ZhZﬂ' {d’pp;ﬂ - 2¢ﬂp;p} +¢ ah;ﬁ'pp

N B N 1 D a,
2y 4 3Ny PP = 20 4 (1 = L)

_ 2¢a(ﬂhgb)li;aﬂ _ Zhquﬁa[a;ﬂ]ﬂ + h/;v;a¢aﬂ;ﬁ _ 2h[()l(”¢y)ﬂ;aﬁ + 2¢a(ﬂhs)a;ﬁﬁ

— ¢°, (hlf Hiv) ;h’w ﬂﬂ) _ 2¢a(/4h2|ﬁ\;v)ﬂ 4 %gb””.ﬂh't’x";ﬁ + ¢ﬂﬁ:(ﬂh2|a\w

4 ¢a/};(yhzﬂ;1/) _ ¢/}(;4;ﬁh|;\a\;u) _ 2¢aﬁ;ﬂhg(ﬂ;y) + 4Sym(h;bm¢(l[b;/)’]/j + ¢# [a,ﬁ]h;a’ﬁ):| .
%

The expansion of the Einstein tensor with mixed indices
or both indices down can be expressed in terms of the
expansion with indices up. Again with G, [g] = 0, we have

Gﬂy[g + h] = 5(9/4/1pr>[h] + 52(gyppr)[h’ h]

+O(|nP), (A8)

(A7)
|
where
5(9upG" )] = 9,,p0G" [], (A9)
8%(9,,G"™)[h. h] = g,,6°G"[h, h] + h,,6G"[h],  (A10)

and
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G/u/[g + h} = 5(9/4/)91/0(;/)0) [h] + 52 (gﬂpgvaGpa)[h’ h]

+O(nP). (Al1)
where
8(9p900G"")[h] = 9,,p9,56G 1], (A12)
8 (9up 906G po) [, B = 6,,p9,66° G [, h]
+2h,,9,0,6G[h].  (A13)

APPENDIX B: CORRESPONDENCE BETWEEN
STF EXPANSION OF THE REGULAR FIELD
AND DERIVATIVES OF THE REGULAR FIELD

This section details how to relate the STF tensors featured
in the decomposition of the regular field in Sec. III B to
derivatives of the field evaluated on the worldline. The first
two orders match those presented in Appendix B of paper I
but with some STF labels switched.!’

At order 0
ACY =1y, (B1)
B0 = (B2)
£(0,0)
ELY = nR), |y, (B3)
f(<0’0> _ —5“170]’1];; ) (B4)
3 %
At order r
ALY gt (B5)
~(1.1
Bl =Rl 1, (B6)
N 1
C((ll-]) bc()hg)lc y’ <B7)
N 1
D(l.]) _ _Otha , BS
S| (B8)
Ey = nRL, . (B9)
AL _ 2 cd OpRI
F=Ze, hb)c’d y (B10)
A(LL) 3o Rl b
G, =3 h<ab> ) (B11)
g0 = Lpeoprr | (B12)
3 %

l7Equation (B5h) in paper I has the prefactor 1/6 which has
been corrected here in Eq. (B12) to 1/3.

Finally at order r2

AR = 6%2“ : (B13)
14
A(272) 1
A% 20h51<ab> (B14)
B = 6%5},} , (B15)
Y
B = OhR}, e (B16)
e _1,
c TR (B17)
PR = 2oy (B18)
“ 10 fab},’
(2,0) _ 0 RI ¢
E> = 5. | (B19)
1
22
Eizbczz Ohlfalb cd)|, (B20)
2
2,2
FGY = STRGe, 0%, 1), (B21)
6
G2 = = ZSTE(hR, / I,). (B22)
. 1
HEIZAZ) _ g cd0h1b2C1 db . (B23)
. 1
1(2,2) Oth ab , B24
10 “tab) |, (B24)
. 1
K(Z,O) — _ O0yRlab B25
T 1 (B25)
22 _ Lo ric
kG = g0 | (B26)

APPENDIX C: LIE DERIVATIVE OF THE
FIRST-ORDER STRESS-ENERGY TENSOR

In our derivation of the Detweiler stress energy in
Sec. IV C, the transformation from the rest gauge to the
generic highly regular gauge is worldline preserving,
meaning its flow orthogonal to the worldline vanishes on
the worldline. However, in Sec. IV G, we consider the
change in the stress energy under a generic smooth trans-
formation. As discussed in Ref. [45], this necessitates the
introduction of another Lie derivative, £, which drags
points of the worldline, z#, relative to points of the field,
x#. Instead of Eq. (152), the second-order stress-energy
tensor now transforms as
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T = T’Z’,” + (551 + £§])T’1‘”. (C1)

The Lie derivatives of 7' were previously presented by
one of us in Ref. [45]. Here we reproduce (and correct a
small error in) that result, and we derive analogous results

for the Lie derivatives of 7,* and T),.

1. Lie derivatives of 7"

Equation (21) may be written so that it is invariant under
reparametrization as [7]

T (x;2) —m/g” x,2)¢" ,xz)Z”Z

54,
Ty L

—9p's (Z) Z/J’ ZG/

(€2)

where g"” ,(x, ) is a parallel propagator from x* := 7% to x*,
and 7 =%~ This form is particularly useful for our
calculations of Lie derivatives of T%".

The ordinary Lie derivative of Eq. (C2) is evaluated in
the standard way, so

ﬁﬂ%:mlg(¢<>%umw

5 (x,
w_Jﬂl_y&
9y (2)272°

(C3)

The Lie derivative of the Dirac delta is found by integrating
against a test function and is given by

L8 (x.2) = =(&f 0 + &7 V)o*(x.2).  (C4)

The other term in Eq. (C3) is

/ (Le, WH)8*(x,2)ds = / @wm, — 26 L,WIP)
x 6*(x, z)ds,

=2 / gl Wrst(x, z)ds, (C5)
14
where

i ko
W = KTV (C6)

o o
\/ ~9pe?’ 20

In the second line of Eq. (C5), we have used the identity
9. ﬂ54(x, z) = 0 [7] to eliminate W**,,. Taking our param-
eter s to be proper time, we see that

v
- _2/ g;(j’lflf) ;ng,u”/u”/é“(x, z)dr,
v
V)
/Dé
_ v 1 o4
= 2/yg”ﬂ,gy,u" e 5*(x,z)dr (C7)

The final line is obtained by integrating the previous line
against a test field ¢,,:

/¢uv/gl(:/lglf);p‘{/;/uﬂ/ub/éét(x,Z)d’L’dV
14
— / b ul & );ﬂ, u” dr,
14

:/%%%%

By combining Egs. (C4) and (C7), we find

V')
, D
(o %54(3@ z)dedV.  (C8)
T

g
/£§1 (g‘l”gﬁié“(x,z))ds
14 1/—gﬂro./2p/ia/
5 I 4
:-/yj‘ﬂg"[(Zu =L 4wy l;p/>

x &*(x,z) + u”’u"/f’flvpré“(x, z)} dr. (C9)

This can be simplified by decomposing &7 into parallel and
orthogonal parts,

& = —u"E + &, (C10)
where &7 = Pgé H’ With this decomposition, we obtain
ot == [ gyt |2 DELL (s,
o dg)
| EP I\ s4
+u'u ( i _E>5 (x,2)
Futu & V8 (x, z)} dr, (C11)

which agrees with Eq. (D1) in Ref. [45] (with the correction
of a minus sign described in footnote 15).

As discussed in Ref. [45], because T%" can be written in
the form

AP (x;2) :/B"”(x,z(s)) —guy'¥ds,  (Cl12)
v
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its Lie derivative with respect to the dependence on z# is
given by

£: AP (x;2) = /éﬂvp/B/‘”(x, z)dr. (C13)
v
For T'", we see that
o
B = m = 5*(x,2), (C14)
g/)’o-’zﬂ
which implies
v ( ,dflﬁ_ 4
£§IT1 =m ; gﬂ”/gz/ 2u# ?5 (X,Z)
& V8 (x, z)) dr, (C15)

where wehave used gf). ,6* (x,z) =0and &{,| V, 2 =2V, & .
The latter identity follows from Eq. (B1) in Ref. [45].
Equations (C11) and (C15) sum to give

([’51 +£§1)Tllw = _m/g‘lﬂ/gZ’uﬂluvlﬁ4(X’ Z)
14

<e”1p 5) a

which matches Eq. (D2) from Ref. [45] (again with the
missing minus sign added). Note that this is also the same
as Eq. (154) because £; 7" = 0 for a worldline-preserving
transformation.

(C16)

2. Lie derivatives of T}, and T,

The first-order stress-energy tensor with both indices
down is given by

Thixi2) = [ Gty (.21 .24
4

*(x,
wo Oed) (C17)
9, (Z)Zp z°
and with mixed indices by
T i2) = m [ gyt (5. 2022
v
*(x,
w3 (C18)

—9p's (Z) Z/)’ ZOJ

To calculate the ordinary Lie derivatives of these quantities,
we follow the same methods described above. The
results are

‘Cfl T;lw = /gmlgvﬁgaf /}/(25 ”ﬂ Ll/) - u® uﬁ

X [5’1’ o+ 5” + §‘fl V)8 (x, z)dr. (C19)
£ = m | gyt € = &
—ul g+ &+ &V, ))8 (x.2)dr. (C20)

Here and below, an overdot denotes a derivative with
respect to 7.

The Lie derivatives at z# follow trivially from Eq. (C15).
Since we can pass the contraction through the derivative, as

in gL, T1" = £¢,(9,T7"), we get

£§1T}w:/gﬂagyﬂgz,gf,(21/{(”/51;154()6, Z)

T V64 (x. ) dr, (c21)

£§| T/,lty = / gyag;j’g/;’(zu(”/g{j_éét(x’ Z)

V5 (x.2) . (c22)

Combining these results, we find

('Cfl + £51 >TP]”J =m / g}lagvﬁgaa’g/ﬂ’(zél,/;(duﬁ/)up
14

+ 214((1"5;/1”) + M(l/uﬁl&ﬁ

—uul & )8 (x.2)dr, (C23)

(Ley +£)T, = m / Gy g (1. = &
14

+ &+ u”E)8 (v, 2)dr (C24)
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