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Extreme-mass-ratio inspirals (EMRIs) will be key sources for LISA. However, accurately extracting
system parameters from a detected EMRI waveform will require self-force calculations at second order in
perturbation theory, which are still in a nascent stage. One major obstacle in these calculations is the strong
divergences that are encountered on the worldline of the small object. Previously, it was shown by one of us
[A. Pound, Nonlinear gravitational self-force: Second-order equation of motion, Phys. Rev. D 95, 104056
(2017)] that a class of “highly regular” gauges exist in which the singularities have a qualitatively milder
form, promising to enable more efficient numerical calculations. Here we derive expressions for the metric
perturbation in this class of gauges, in a local expansion in powers of distance r from the worldline, to
sufficient order in r for numerical implementation in a puncture scheme. Additionally, we use the highly
regular class to rigorously derive a distributional source for the second-order field and a pointlike second-
order stress-energy tensor (the Detweiler stress energy) for the small object. This makes it possible to
calculate the second-order self-force using mode-sum regularization rather than the more cumbersome
puncture schemes that have been necessary previously. Although motivated by EMRIs, our calculations are
valid in an arbitrary vacuum background, and they may help clarify the interpretation of point masses and
skeleton sources in general relativity more broadly.
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I. INTRODUCTION

Given the approaching launch of the Laser Interferometer
SpaceAntenna (LISA) [1,2], it is essential that we are able to
efficiently and accurately model the gravitational waves
emitted by potential sources in the LISA frequency band.
A class of sources of particular interest are extreme-mass-
ratio inspirals (EMRIs) [3].
In an EMRI, a compact object of mass m ∼ 1–102 M⊙

spirals into a supermassive black hole of mass M ∼
105–107 M⊙, performing roughly ϵ−1 ∼ 105 intricate orbits
while in the LISA band [4,5], where ϵ ≔ m=M is the
binary’s mass ratio. These ∼105 cycles are typically spent
within 10 Schwarzschild radii of the supermassive black
hole, and they provide a precise map of its strong-field
geometry. This will allow numerous tests of general
relativity, usually with one or more orders of magnitude
greater precision than other planned experiments [5,6].
However, the long life of the inspiral also imposes

stringent accuracy requirements on our models. To make
use of a complete signal, and extract all the information it
encodes, we require theoretical waveforms that are accurate
to much less than one radian of error over the duration of
the signal. Because errors accumulate secularly over the
signal’s ϵ−1 cycles, they are effectively multiplied by ∼105.
This means our relative errors in the system’s slowly
evolving orbital frequencies must be much smaller than
ϵ ∼ 10−5.

A. Second-order gravitational self-force

The most viable method of modeling an EMRI system to
the required accuracy is with gravitational self-force
theory [7–11]. In this approach, the small object is treated
as the source of a small perturbation, hμν, on a background
metric, gμν, enabling us to write the full spacetime metric as

gμν ¼ gμν þ hμν; ð1Þ

where

hμν ¼
X∞
n≥1

ϵnhnμν½γ�: ð2Þ

Here the coefficients depend on γ, a worldline representing
the small object’s motion in the background spacetime gμν.
In the context of an EMRI, gμν is taken to be the metric of
the central Kerr black hole.
At zeroth order, γ is a geodesic of the background

spacetime. At subleading orders, the metric perturbation
alters the small object’s motion, exerting a self-force that
accelerates the object away from geodesic motion:

D2zα

dτ2
¼ ϵfα1 þ ϵ2fα2 þOðϵ3Þ; ð3Þ
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where zα are coordinates on γ, τ is proper time in gαβ,
D
dτ ≔ uα∇α is the covariant derivative (compatible with gαβ)
along the worldline, and uα ≔ dzα

dτ is the four-velocity.
The self-forces fαn have both conservative and dissipative

effects. Roughly speaking, in an EMRI the conservative
pieces of the self-force determine the instantaneous orbital
frequencies. In an expansion Ω ¼ Ωð0Þ þ ϵΩð1Þ þOðϵ2Þ of
the azimuthal frequency, for example, the zeroth-order term
is that of a geodesic in gμν, and the corrections ΩðnÞ are
determined by fαn;cons. The dissipative pieces of the self-
force govern the slow evolution of the frequencies, with
fαn;diss determining dΩðn−1Þ

dτ [11–13]. Hence, to correctly track
the orbital frequencies to within a relative error much
smaller than ϵ, we must compute all of fα1 and the
dissipative piece of fα2 . In other words, we must carry
self-force theory to second order in ϵ.
Currently, at first order it is possible to simulate full

inspirals, driven by the first-order self-force, from a spinning
small object on a generic orbit in a Schwarzschild back-
ground [14–17] or the adiabatic inspiral of an object in the
equatorial plane of a Kerr black hole [18]. While no
analogous inspirals have yet been computed for generic,
inclined orbits in Kerr, it is also now possible to calculate the
first-order self-force on any fixed bound orbit in Kerr [19].
At second order, it is only recently that numerical

calculations of physical quantities have been performed,
and they have been specialized to quasicircular orbits
around a Schwarzschild black hole [20,21]. Much work
remains to bring second-order calculations to the same state
as current first-order calculations before the expected
launch of LISA in 2034.
It should be emphasized that second-order calculations

do not merely provide an improvement in accuracy over
first-order calculations. The dissipative piece of fα2 is
equally important as the conservative piece of fα1 . This
means that calculations of fα1;cons, which represent the bulk
of the self-force community’s efforts over the past two
decades, do not improve the accuracy of a waveform unless
they are complemented with calculations of fα2;diss. Both
ingredients are equally crucial for performing useful
science with LISA data.
Second-order self-force calculations also have applica-

tions to other binary models. Information from gravitational
self-force has been used to determine high-order terms in
post-Newtonian theory, provide guidance for both post-
Newtonian and post-Minkowskian theory, and refine effec-
tive one-body models [22–24]. Second-order self-force
results could be used to fully determine two-body dynamics
through fifth post-Newtonian order (one order beyond the
state of the art [25]) and through sixth post-Minkowskian
order (two beyond the state of the art [26]) [27].
There is also an increasing body of evidence that the

self-force formalism may be directly applicable to binaries
well outside the EMRI regime [28–30]. In fact, self-force

models may be reasonably accurate even for comparable
mass ratios, ϵ ≈ 1, at least in certain areas of the parameter
space [21,31].
This is particularly relevant after the recent detection of

binaries with mass ratios ∼1∶4 [32] and ∼1∶10 [33], which
indicate that gravitational self-force models could be used
for current LIGO-Virgo sources.

B. Self-force theory, singularity structure, and the
problem of infinite mode coupling

One of the main challenges at second order is coping
with the strong divergence of h2μν on the small object’s
worldline. At a practical level, it creates a major numerical
burden, which we describe below. At a more foundational
level, the strength of the singularity is intimately related to
the fact that in a generic gauge, the field equations for h2μν
are not globally well defined: it contains source terms
that are distributionally ill defined on any domain inter-
secting γ.1 Our goal in this paper is to reduce the practical
challenge by overcoming the foundational one.
To begin, in this section we review how the problem

arises. We consider a generic spacetime containing a small
object, which may be a material body, a black hole, or
something more exotic. We assume the body is compact,
with a diameter comparable to its mass m, and that m is
much smaller than an external length scale R; in a binary,
R could be the large mass M or a characteristic orbital
separation, but our analysis is not restricted to binary
systems. ϵ will now be a formal expansion parameter we
use to count powers ofm=R, and it can be set to 1 at the end
of the calculation. Outside the body, we assume there is a
vacuum region at least of size R. All of these assumptions
can be relaxed as long as the body’s mass and diameter are
much smaller than R.
Self-force theory provides a framework for solving

the Einstein equations in this generic scenario. Its core
result is a skeletonization of the small body [8], in which
(i) the body is reduced to a singularity equipped with
the body’s multipole moments, and (ii) the singularity
moves as a test body immersed in a certain effective
spacetime.
The derivation of this skeletonization is based on the

method of matched asymptotic expansions [8]. Sufficiently
near the small object, the object’s own gravity dominates
over the external background, and the expansion (1)–(2)
fails. Hence, we assume that the metric in this region is
instead approximated by a second expansion that zooms in
on the body, and that this second expansion appropriately
matches onto the expansion (1)–(2). When combined
with the vacuum Einstein equations, this matching con-
dition determines the form of the metric perturbation
hμν in a local neighborhood of the object (but outside

1For introductory references on distribution theory see, e.g.,
Refs. [34,35].
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the object itself). That form splits conveniently into two
fields [36]2:

hμν ¼ hSμν þ hRμν: ð4Þ

The self-field (or singular field) hSμν ¼
P

n>0 ϵ
nhSnμν carries

the local information about the object’s multipole structure.
In the local neighborhood, at small proper distance r from
the worldline γ, the self-field has the schematic form

hS1μν ∼
m
r
; ð5Þ

hS2μν ∼
m2 þMa þ Sa

r2
; ð6Þ

hS3μν ∼
m3 þmðMa þ SaÞ þMab þ Sab

r3
; ð7Þ

and so on to higher orders, where m is the object’s mass,
Ma its mass dipole moment (describing the position of its
center of mass relative to γ), Sa its spin, andMab and Sab its
mass and current quadrupole moments. If we choose γ such
thatMa ≡ 0, then γ represents the object’s center of mass at
first order [43,44]. Conditions on corrections toMa enforce
this mass-centeredness at higher orders [40]. The proper
spatial distance r, as well as the curve γ itself, is defined in
the external background spacetime with metric gμν; if the
object is a black hole or has a nontrivial internal topology,
then γ is not a curve in its true interior, but instead a curve in
the smoothly extended external background manifold.
The other piece of the perturbation is an effectively

external field or regular field, hRμν ¼
P

n>0 ϵ
nhRnμν . It has the

local form of a Taylor series around γ,

hRnμν ¼
X
l≥0

An
μνa1���alðtÞxa1 � � � xal ; ð8Þ

where xa are local spatial coordinates centered on γ, and the
time t outside the body is synchronized with a time
parameter along γ. hRμν is a vacuum solution that carries
no local information about the object’s moments, but
instead contributes to the external tidal moments that the
object feels. It can be combined with the external back-
ground to define an effective metric,

g̃μν ¼ gμν þ hRμν; ð9Þ

which is a vacuummetric, and which governs the motion of
the body; we return to these points momentarily.
The fields hSμν and hRμν are initially defined in the vacuum

region outside the object. However, if we analytically
extend them into the object’s effective interior, down to
all points r > 0, then several things happen. First, the fields
hSnμν diverge on γ; this is the singularity mentioned above.
Second, the coefficients An

μνa1���al in hRnμν become trivially
identified with the value of hRnμν and its derivatives on γ,
such that Eq. (8) becomes

hRnμν ¼ hRnμν jγ þxa∂ahRnμν jγ þ
1

2
xaxb∂a∂bhRnμν jγ þOðr3Þ: ð10Þ

Moreover, the equation of motion (3) for γ, which is
otherwise written in terms of the fields An

μνa1·al defined
outside the body, becomes identical to the equation of
motion of a test body in g̃μν; this result has been established
at linear order in ϵ for an arbitrary compact object [43,44]
and up to second order in ϵ for a nonspinning, spherical
body [39,40]. The latter result reads

D2zα

dτ2
¼ −

1

2
Pαμðgμρ − hR ρ

μ Þð2hRρβ;γ − hRβγ;ρÞuβuγ

þOðϵ3Þ; ð11Þ

where Pαμ ≔ gαμ þ uαuμ, a semicolon denotes the covar-
iant derivative compatible with gμν, and all fields are
evaluated on γ. This is an expanded form of the geodesic
equation in g̃μν [45].
All of the above follows from the matching condition

and the vacuum field equations outside the body. The
extended fields hnμν satisfy those equations for all points x
away from γ,

δGμν½h� þ δ2Gμν½h; h� ¼ Oðϵ3Þ for x ∉ γ: ð12Þ

Here δGμν and δ2Gμν are the linear and quadratic terms in
the expansion of the Einstein tensor Gμν½gþ h� in powers
of hμν, given explicitly in the Appendix A.
In this way, we have effectively eliminated the body’s

small scale from the problem and replaced it with a
singularity, without altering the curve γ or the metric in
the region r ≫ m. The mathematical problem of solving
the Einstein equations with a small extended source has
been replaced with a reduced problem of solving the
vacuum field equations (12) subject to the conditions

(i) in the limit of small r, the solution agrees with the
form (4) derived from matched expansions,

(ii) γ obeys Eq. (11) (in the case of a nonspinning,
spherical object).

2There is a standard division into hSμν and hRμν at first order [37],
but in general the division is not unique. For the purpose of our
discussion we can adopt any split in which hRμν is smooth on γ, the
effective metric g̃μν ¼ gμν þ hRμν is a vacuum metric on and in a
neighborhood of γ, and the equation of motion is that of a
geodesic in g̃μν (through second order in ϵ for a nonspinning,
spherical body). These conditions do not select a unique S–R split
[38], but they are satisfied by the split(s) in Refs. [36,39,40]. The
alternative S–R divisions in Refs. [41,42] each violate two of the
conditions.
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For all r ≫ m, the solution to this problem will be identical
to the solution to the original problem.
The literature on second-order self-force, going back to

Ref. [46], has focused on solving the reduced problem
via a puncture scheme [13,20,36,39–41,47] (see also
Refs. [9,48–52]). The puncture is obtained by truncating
the local expansion of the singular field at some finite
power of r, so that hPμν ≈ hSμν, and then transitioning it to
zero at some arbitrary, finite distance from γ. Rather than
solving for the physical field hμν, one solves for the residual
field

hRμν ≔ hμν − hPμν; ð13Þ

which satisfies hRμν ≈ hRμν near γ but becomes identical to
hμν outside the support of hPμν. Writing the puncture asP

ϵnhPnμν ½γ�, we move it to the right-hand side of Eq. (12)
and split the field equations into a hierarchy of equations
for the residual fields3:

δGμν½hR1� ¼ −δGμν½hP1� for x ∉ γ; ð14Þ

δGμν½hR2� ¼−δ2Gμν½h1;h1�−δGμν½hP2� for x∉ γ: ð15Þ

As written, these equations do not uniquely determine hRn
μν ,

even if sufficient boundary conditions are prescribed in the
external spacetime, because they do not tell us whether or
not there are delta function sources supported on γ.
However, in order for the total field hRμν þ hPμν to agree
with the form dictated by the matched asymptotic expan-
sions, hRμν must be a Ck function at γ if hPμν is truncated at
order rk. This implies that the correct field equations on the
full domain, including γ, are

δGμν½hR1� ¼ −ðδGμν½hP1�Þ☆; ð16Þ

δGμν½hR2� ¼ −ðδ2Gμν½h1; h1� þ δGμν½hP2�Þ☆; ð17Þ

where we use a ☆ to indicate that a quantity defined on
r > 0 is promoted to the domain r ≥ 0 as a locally
integrable function. This means derivatives in δnGμν are
evaluated in the ordinary strong sense for r > 0, and then
the starred quantities are simply left undefined on the
measure-zero set r ¼ 0 or defined at r ¼ 0 by taking the
limit r → 0 (if it exists). For example, the Euclidean
Laplacian acting on 1=r ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
evaluates to

δab∂a∂bð1rÞ ¼ 0 for r > 0, meaning its ☆ promotion is
½δab∂a∂bð1rÞ�☆ ¼ 0 for all r ≥ 0; this contrasts with the

result if we treat the Laplacian in the sense of distributional
derivatives, in which case we have the distributional
identity δab∂a∂bð1rÞ ¼ −4πδ3ðxiÞ.
The form of the puncture guarantees that the sources in

Eqs. (16) and (17) are locally integrable at γ. Additional
conditions on the puncture arise if we wish to replace hRμν
with hRμν in the equation of motion (11). Such a substitution
requires that, on γ, hRμν and its first derivatives are identical
to hRμν and its first derivatives. Ensuring this generically
requires

lim
x→z

ðhPμν − hSμνÞ ¼ 0; ð18Þ

lim
x→z

ðhPμν;ρ − hSμν;ρÞ ¼ 0; ð19Þ

for all points zμ on γ. With these conditions, Eqs. (16), (17),
and (11) form a coupled set of equations that can be
conveniently solved, in the case of a binary inspiral, in a
two-timescale expansion [11,12,20].
However, at first order there is an alternative, more

commonly used method: rather than replacing the object
with a puncture in the spacetime, one can (equivalently)
replace it with a point mass. If we return to Eq. (12) and
now do treat derivatives in δGμν as distributional deriva-
tives, then the form of the singular field, hS1μν , determines
[36,43,44,53]

ϵδGμν½h1� ¼ 8πϵTμν
1 þOðϵ2Þ; ð20Þ

where

Tμν
1 ðxÞ ¼ m

Z
γ
uμuνδ4ðx; zÞdτ ð21Þ

is the stress energy of a point mass in the background
metric gμν. The quantity

δ4ðx; zÞ ≔ δ4ðx − zÞffiffiffiffiffiffi−gp ð22Þ

is the covariant delta function. With this formulation,
instead of solving the field equations directly for the
regular field, one can solve Eq. (20) for the full field h1μν
and then extract hR1μν using mode-sum regularization; see
Refs. [9,54] for reviews of this method. Such calculations
are often significantly easier to implement and more
efficient than puncture schemes, and they have been the
basis for most calculations of the first-order self-force.
Equation (20) is a more traditional form of skeletoniza-

tion than the puncture scheme [55]. If the field equations
were linear, then we could extend it to all multipole orders.
The local form (5)–(7) would directly correspond to a
skeleton stress energy [36]

3The form and behavior of these equations are slightly
different than in the puncture scheme detailed in previous papers
by one of us (e.g., [20,36,40]). We adopt this form here to
streamline the discussion. We discuss the differences in the
conclusion.
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Tμν ¼
Z
γ
½muμuνδ4ðx; zÞ þ uμuνMρ∇ρδ

4ðx; zÞ

þ uðμSνÞρ∇ρδ
4ðx; zÞ þ � � ��dτ; ð23Þ

where Sμν ≔ −ϵρμνσuρSσ. But the nonlinearity of the field
equations spoil this simple correspondence. At second
order, the difficulty arises because the second-order
Einstein tensor, δ2Gμν, shown in Eq. (A3), has the sche-
matic form δ2Gμν½h; h� ∼ h∂2hþ ∂h∂h. Given the first-
order field’s behavior h1μν ∼ 1=r, the second-order Einstein
tensor diverges like δ2Gμν½h1; h1� ∼ 1=r4 at the worldline.
This is not locally integrable at γ, and because it is
constructed from a quadratic rather than linear operation
on integrable functions, it does not have a unique definition
as a distribution on any region intersecting γ. As a
consequence, we cannot obviously write an analog of
Eq. (20) for h2μν or define a unique second-order stress
energy.
This strongly divergent behavior of δ2Gμν also introdu-

ces the dominant computational burden in a numerical
implementation at second order: the problem of infinite
mode coupling, first described in Ref. [56]. In concrete
applications to binaries, we typically decompose the fields
hnμν into a basis of angular harmonics, say hnμν ¼P

ilm hnilmðtBL; rBLÞYilm
μν ðθ;ϕÞ, where ðtBL; rBL; θ;ϕÞ are

Boyer-Lindquist coordinates centered on the large black
hole; here for concreteness we have written the expansion
in terms of Barack-Lousto-type tensor spherical harmonics
[57], which would not be used in Kerr calculations in
practice, but the problem we describe is insensitive to the
details of this decomposition. Given this mode expansion, a
single mode of δ2Gμν½h1; h1� becomes an infinite sum of
products of modes of h1μν:

δ2Gilm½h1; h1� ¼
X
i1l1m1
i2l2m2

Dilm
i1l1m1i2l2m2

½h1i1l1m1
; h1i2l2m2

�; ð24Þ

where Dilm
i1l1m1i2l2m2

is a bilinear differential operator involv-
ing tBL and rBL derivatives. Since δ2Gμν ∼ 1=r4 and
decomposing into modes involves integrating over two
dimensions, modes of δ2Gμν behave like

δ2Gilm ∼
1

jrBL − roðtBLÞj2
; ð25Þ

where roðtBLÞ is the orbital radius at time tBL. On the other
hand, the first-order modes h1ilm are finite at rBL ¼ roðBLÞ.
This means that the mode sum (24) must recover a strongly
divergent function by summing up products of finite
modes. In practice, to achieve a fixed accuracy arbitrarily
close to the worldline, this requires an arbitrarily large
number of first-order modes.

In a numerical calculation, each mode h1ilm must be found
by solving the first-order field equations, meaning there is a
practical limitation on the number of modes we can add to
the sum. This makes it impossible to calculate even a single
mode δ2Gilm in a region around γ. Miller et al. [56] provide a
way to circumvent this problem using knowledge of the
local four-dimensional hP1μν near theworldline. That method,
which is used in the only extant second-order implementa-
tion [13,20], involves performing two-dimensional numeri-
cal integrations of the four-dimensional hP1μν on a grid of rBL
values around ro. Such a procedure will be the overwhelm-
ing computational expense in any second-order calculations
using current methods.4

C. This paper: Highly regular gauges and the
Detweiler stress energy

InRef. [40] (hereafter paper I), one of us showed that there
exists a class of highly regular gauges that are qualitatively
more regular than the generic behavior (5)–(7). In this class,
the most singular piece of h2μν,∼m2=r2, identically vanishes
(and, likewise, the most singular, ∼mn=rn piece of hnμν
vanishes for all n > 2). Accordingly, in these gauges
the most singular piece of the second-order source,
δ2Gμν½hS1; hS1�, is significantly mollified, diverging as
∼1=r2 rather than 1=r4. This implies that the individual
source modes in these gauges will behave, at worst, like

δ2Gilm ∼ log jrBL − roðtBLÞj: ð26Þ

A mildly divergent function of this form should be dra-
matically cheaper to compute than the much more strongly
divergent generic behavior (25).
However, paper I only provided the leading-order term of

hS2μν in the class of highly regular gauges. Our first goal in
this paper is to extend the derivation through linear order in
r, the order required to ensure the conditions (18)–(19) are
satisfied. The derivation, which closely follows paper I, is
contained in Secs. II and III.
Paper I also pointed out that because δ2Gμν½h1; h1� is well

defined as a distribution in these gauges, it is possible to
write down a field equation for h2μν that is valid on the entire
domain r ≥ 0 and to identify a unique second-order stress-
energy tensor. In Sec. IV, we derive that stress energy,
showing that in highly regular gauges Eq. (20) extends to
second order,

4This point is starkly illustrated with an example. For a
quasicircular orbit at a single orbital radius in Schwarzschild,
computing the necessary inputs for δ2Gilm up to moderate values
of l takes two to three days on a 40-core machine. All other
aspects of the calculation of hR2

μν represent a marginal additional
runtime. As a point of comparison, a decade ago an analogous
first-order calculation at a single orbital radius with comparable
precision could be performed in approximately 10 minutes on an
ordinary desktop [58].
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δGμν½ϵh1 þ ϵ2h2� þ ϵ2δ2Gμν½h1; h1�
¼ 8πT̃μν þOðϵ3Þ; ð27Þ

with

T̃μν ¼ ϵm
Z
γ
ũμũν

δ4ðx − zÞffiffiffiffiffiffi
−g̃

p dτ̃: ð28Þ

This is nothing more than the stress-energy tensor of a point
mass in the effective metric g̃μν. We discuss some of its
properties in Sec. IV.
To emphasize the significance of Eq. (27), we stress that

in self-force theory we cannot freely prescribe a stress-
energy tensor. The assumptions of matched asymptotic
expansions uniquely determine the local form of the metric
in terms of a set of multipole moments. In cases where all
terms in the Einstein field equations are well defined as
distributions on the domain r ≥ 0, this local structure
encodes the same information as (and uniquely determines)
the skeleton stress-energy tensor. Yet Eq. (27) does not
appear here for the first time: in Ref. [47], Detweiler posited
that this equation, with the stress energy (28), holds in all
gauges, and we therefore call T̃μν the Detweiler stress
energy. Our derivation shows rigorously that it is valid in
the class of highly regular gauges. In Sec. V, we extend our
analysis to the Lorenz gauge. In that case, the stress-energy
tensor is not uniquely determined because not all quantities
in the field equations have unique distributional defini-
tions.5 But we show that there exists a canonical distribu-
tional definition of δ2Gμν½h1; h1� under which Eq. (27)
holds true. We conjecture that this extends to all gauges
compatible with the assumptions of matched asymptotic
expansions. However, outside the highly regular gauges,
these distributional definitions explicitly involve hS2μν ;
to use such definitions, one must explicitly solve the
second-order field equations locally before one can solve
them globally.
After these foundational calculations, in Sec. VI we

sketch how our results could be used to implement a
puncture scheme in a highly regular gauge. Building on
Eq. (27), we also describe how one could solve for h2μν and
then extract hR2μν using mode-sum regularization.
Except in portions of Sec. II, we specialize to the case of

a spherical, nonspinning small object. Throughout, we
leave the external background arbitrary.

D. Conventions and definitions

We work in geometric units with c ¼ G ¼ 1. Greek
indices run from 0 to 3 and are raised and lowered with the
background metric, gμν, which has signature ð−;þ;þ;þÞ.
Lowercase Latin indices run from 1 to 3 and are
raised and lowered with the flat-space Euclidean metric,
δab. Uppercase Latin indices denote multi-indices, as in
L ≔ i1…il.
Terms written in a serif font are exact quantities, e.g., gμν

is the full, exact metric describing the physical spacetime.
A prime symbol on the perturbation, hn

0
μν, denotes quantities

in the light cone rest gauge, and a star, hn�μν , denotes
quantities in the Lorenz gauge. No prime, hnμν, indicates
terms in the highly regular gauge. A prescript, nAμ1…

ν1…, on a
tensor counts the power of ϵ coming from substituting the
acceleration aμ ¼ P

n≥1 ϵ
nfμn into Aμ1…

ν1… . An overset ring,

A
∘ μ1…
ν1… , indicates terms that have been reexpanded for small

acceleration and then recollected at each order in ϵ, i.e.,

h
∘ n
μν ¼

P
n
i¼0

ihn−iμν (where, for this purpose, h0μν ≔ gμν).
Tildes placed over a tensor, Ãμ1…

ν1… , denote quantities defined
with respect to the effective metric.
Parentheses and square brackets around indices denote

symmetrization and antisymmetrization, respectively.
Angled brackets, such as hLi, denote the symmetric
trace-free (STF) combination of the enclosed indices with
respect to δab. In some cases, we additionally use the
notation SymL and STFL to denote symmetrization and
the STF combination over the indices L, respectively.
The covariant derivative (given by ∇ or a semicolon) is
compatible with gμν unless otherwise stated and the partial
derivative is denoted by a comma.
A number of calculations in this paper were done using

WOLFRAM Mathematica [59] and the tensor algebra pack-
age xAct [60–63].

II. PERTURBATIONS FROM MATCHED
ASYMPTOTIC EXPANSIONS IN THE

LIGHT CONE GAUGE

A. Matched expansions and the existence
of a highly regular gauge

We begin with a more detailed review of matched
asymptotic expansions and how it leads naturally to the
existence of highly regular gauges. The discussion here
reiterates material in numerous references, and we specifi-
cally follow paper I. We refer to Refs. [64,65] for a broader
introduction to the method of matched expansions.
Our discussion of the local form of the metric will

involve some subtleties because we use the self-consistent
framework of gravitational self-force theory [36,39,44] (see
Ref. [8] for an overview). In this approach we expand the
perturbation hμν while holding the accelerated worldline
fixed. This means that γ is ϵ dependent, and the coefficients

5We note that this lack of uniqueness has no bearing on
whether a unique global solution can be found. As described in
Sec. I B, the global solution is uniquely determined by the local
form of the metric together with the field equations and global
boundary conditions.
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hnμν inherit that ϵ dependence; Eq. (2) is not a Taylor series
in ϵ.6 In an ordinary Taylor series, γ itself is expanded in
powers of ϵ. The puncture or skeleton stress energy then
diverge on the zeroth-order worldline, which is a geodesic
of the external background metric. The corrections to the
motion are then encoded in mass dipole moments in the
perturbations hn>1μν . This treatment is prone to large cumu-
lative errors because in physical scenarios such as a binary,
the body secularly deviates from the background geodesic,
causing the dipole moments to grow large with time. The
self-consistent treatment circumvents that problem.
As discussed in Refs. [11,13], to avoid other, similar

errors, in general we should also allow the coefficients hnμν
to depend on ϵ- and time-dependent external physical
parameters. Examples of such parameters are perturbations
to the large black hole’s mass and spin in a binary. In the
analysis below, we can freely allow hRμν to depend on such
parameters without altering the discussion. We hence leave
the dependence on these parameters implicit.
To understand the form of the perturbations near the

worldline, we adopt Fermi-Walker coordinates ðt; xaÞ that
are tethered to γ [7]. The spatial coordinates are defined
such that xi ¼ rni, where r is the proper distance from the
worldline along a spatial geodesic orthogonal to γ, and ni is
a unit vector giving the direction the geodesic is sent out
from γ. The time coordinate, t, gives the proper time on γ.
Here proper lengths, and orthogonality, are defined with
respect to the background metric.
Because these coordinates are tied to an ϵ dependent

worldline, they introduce additional ϵ dependence into the
metric. In particular, the background metric in these
coordinates takes the form [40]

gtt ¼ −1 − 2aixi − ðRtitj þ aiajÞxixj

−
1

3
ð4Rtitjak þ Rtitj;kÞxixjxk þOðr4Þ; ð29aÞ

gta ¼ −
2

3
Rtiajxixj −

1

3
Rtiajakxixjxk

−
1

4
Rtiaj;kxixjxk þOðr4Þ; ð29bÞ

gab ¼ δab −
1

3
Raibjxixj −

1

6
Raibj;kxixjxk þOðr4Þ; ð29cÞ

which explicitly depends on γ’s ϵ-dependent covariant
acceleration aμ ≔ D2zμ=dt2 ¼ ð0; aiÞ.
All Riemann terms in the metric are evaluated on the

worldline and are therefore also implicitly dependent on ϵ.

As gμν is a vacuum spacetime, we can use the identities in
Appendix D3 from Ref. [66] to write these Riemann
quantities in terms of tidal moments:

Rtatb ¼ Eab; ð30aÞ
Rabct ¼ ϵabiBi

c; ð30bÞ
Rabcd ¼ −ϵabiϵcdjEij; ð30cÞ

and

Rtatb;c ¼ Eabc þ
2

3
ϵciða _BbÞ

i; ð31aÞ

Rabct;d ¼ ϵab
i

�
4

3
Bicd −

2

3
ϵdjði _E

j
cÞ

�
; ð31bÞ

Rabcd;e ¼ −ϵabiϵcdj
�
Eij

e þ
2

3
ϵek

ði _BjÞk
�
; ð31cÞ

where Eab, Bab, Eabc, and Babc are the external back-
ground’s quadrupolar and octupolar tidal moments, which
the small object feels as it travels along the worldline. They
are STF over all indices and only depend on t. A dot
denotes a derivative with respect to t.
As discussed in the introduction, the local form of the

perturbations hnμν in these coordinates is determined using
matched asymptotic expansions. Sufficiently close to the
small object, at a distance r ∼m, any terms ∼ðm=rÞn in the
perturbations reduce in order and become the same “size”
as the background spacetime; moreover, such terms have
much larger gradients than the external background metric,
implying that their gravitational effects dominate over
background ones. This causes the expansion in Eq. (2)
to break down. To account for this, we introduce a second
asymptotic expansion that uses a scaled distance,

r̃ ≔
r
ϵ
: ð32Þ

Now when we take the limit as ϵ → 0 at fixed r̃, we keep
the scale of the small object fixed and send the external
universe to infinity. This is in contrast to our original ϵ → 0
limit, which fixes the external universe and sends the size of
the small object to zero.
In our new expansion near the small object, we rewrite

our full spacetime metric as

gμνðr; ϵÞ ¼ gobjμν ðr̃Þ þ ϵH1
μνðr̃Þ þ ϵ2H2

μνðr̃Þ þOðϵ3Þ; ð33Þ
where gobjμν is the metric the small object would have if it
were isolated in spacetime, and where the components refer
to an unscaled coordinate basis. Implicit in this form are
two key assumptions: (i) ϵ is the only relevant length scale
near the object, meaning the object must be compact, with a
spatial extension comparable to its mass; and (ii) there is no
small time scale ∼ϵ in the spacetime, meaning the object is

6More precisely, we treat the metric as a function
gμνðxμ; zμ; uμ; ϵÞ and expand for small ϵ while holding the other
arguments fixed. The function on the enlarged manifold that
includes the phase space coordinates ðzμ; uμÞ becomes equal to
the physical metric on the spacetime manifold when zμ and uμ
obey the (ϵ-dependent) equation of motion.
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approximately in equilibrium with its surroundings and not
undergoing any internal dynamics on the scale of its light-
crossing time.
Both Eqs. (1)–(2) and Eq. (33) are expansions of the

same metric, which we refer to as the outer and inner
expansions, respectively. So, for a sufficiently well-
behaved metric, they must agree when appropriately
compared; that is, they must satisfy a “matching” condition.
There are various formulations of such conditions, and
various assumptions that imply them. Reference [43]
assumes a strong set of smoothness conditions. A more
common, weaker assumption [64] is that the two expan-
sions agree in an overlap region on some length scale
between r ∼ ϵ and r ∼ ϵ0; this will fall somewhere within
the “buffer region” ϵ ≪ r ≪ ϵ0, in which ϵ, r, and ϵ=r are
all small (and in which r̃ is large compared tom). However,
there exist functions violating the above assumptions that
still satisfy the explicit matching condition that is generally
used in practice [65]. That condition is that the two
expansions must commute, in the sense that if the outer
expansion is reexpanded for small r, and the inner
expansion is reexpanded for large r̃, then (after reexpress-
ing the inner expansion result in terms of r and ϵ) the result
in both cases is a double expansion for small r and ϵ, and
the coefficients in these double expansions must agree with
one another term by term. Here we merely assume that this
matching condition holds, without adopting any stronger
set of assumptions.
Using this condition and requiring that the outer and

inner expansion are well behaved (i.e., that there are no
negative powers of ϵ in either expansion), we constrain the
powers of r and r̃ that can appear in our expansions.
Following the argument in paper I, if the outer perturba-
tions are expanded for small r, as in hnμν ¼

P
p r

phn;pμν , then
terms with p < −n would have to match terms in the inner
expansion with inverse powers of ϵ. To see this, simply note
that an outer-expansion term of the form ϵn=rnþ1 corre-
sponds to 1=ðϵr̃nþ1Þ in the inner expansion. Hence, such
terms are ruled out. This argument also applies to the inner
expansions but with rp replaced by 1=r̃p. Therefore, the
expansions for small r and large r̃ must have the form

gμν ¼
X
p≥0

rpgpμν; ð34Þ

hnμν ¼
X
p≥−n

rphn;pμν ; ð35Þ

gobjμν ¼
X
p≥0

1

r̃p
gobj;pμν ; ð36Þ

Hn
μν ¼

X
p≥−n

1

r̃p
Hn;p

μν ; ð37Þ

where lnðrÞ terms may appear but have been absorbed into
the coefficients for visual clarity. When we express r̃ as r=ϵ,
each term in Eqs. (36) and (37) must be in one-to-one
correspondence with, and agree identically with, a term in
Eqs. (34) and (35).
We have already given the explicit form (29) of the

external background (34) in Fermi-Walker coordinates. It is
determined by the acceleration of the worldline and the
external tidal moments. The inner background, conversely,
is determined by the multipole moments of the small object.
We see from Eq. (36) that gobjμν is asymptotically flat.
Furthermore, it is quasistationary, as it only varies on
the timescale t ∼ ϵ0. Its expansion (36) can therefore be
written completely in terms of the Geroch-Hansen multi-
pole moments [67,68].7 Broadly, this means that, in the
buffer region, it has the form [40]

gobjμν ∼ 1þ ϵ

r
mþ ϵ2

r2
ðm2 þMini þ ϵijkSjnkÞ

þO
�
ϵ3

r3

�
; ð38Þ

where m and Si are the Arnowitt-Deser-Misner (ADM)
mass and angular momentum of gobjμν . Mi is its mass dipole
moment relative to γ, discussed in the introduction.
The nth-order term in the expansion (38) must match the

leading-order term in hnμν:

ϵnhn;−nμν

rn
¼ ϵngobj;nμν

rn
: ð39Þ

In words, the most singular (at r ¼ 0) term in hnμν is
uniquely determined by the large-r̃ expansion of the
object’s metric gobjμν . This is the essential fact that implies
the existence of a highly regular gauge.
To see why this implication follows, consider a spheri-

cally symmetric, nonspinning object. Its metric gobjμν is
uniquely given by the Schwarzschild metric, which can
be written in ingoing Eddington-Finkelstein coordinates as

ds2obj ¼ −
�
1 −

2m
r

�
dv2 þ 2dvdrþ r2dΩ2: ð40Þ

We see immediately that this is linear inm=r; the series (36)
terminates at p ¼ 1. Hence, for such an object, we have
hn;−nμν ¼ 0 for all n > 1. Even if the object is spinning and
nonspherical, the collection of all terms that are indepen-
dent of higher moments in Eq. (38) together form an

7The Geroch-Hansen moments are defined for strictly sta-
tionary spacetimes. We can define them for our quasistationary
spacetime by fixing t in the coefficients gobj;pμν : that fixed-t
spacetime approximates gobjμν . The result is that the multipole
moments depend on t.
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expansion of the Schwarzschild metric, and we can impose
the Eddington-Finkelstein gauge on them to set them all to
zero (for n > 1).

B. Metric perturbations in a light cone gauge

To obtain the metric perturbations hnμν in a highly regular
gauge, we follow the approach detailed in paper I; all
results in this section are taken from that reference.
We begin by calculating the form of the inner expan-

sion’s metric in a highly regular gauge that is also a rest
gauge. In such a gauge, the object is manifestly at rest on γ,
in the sense that no acceleration or mass dipole terms
appear in the metric in the buffer region. Such gauges exist
because we can always find an effective metric in which our
small object’s center-of-mass worldline is a geodesic [8].
We then translate this inner expansion into a small-r
expansion of the outer expansion. This will lead to
perturbations hnμν in a gauge that is impractical for numeri-
cal implementation. In the next section, we transform it to a
less restrictive, practical gauge that maintains the high
regularity of our initial gauge.
We immediately specialize to a nonspinning, approx-

imately spherical small object. It follows that even if the
object is a material body rather than a black hole, for our
purposes we can take the inner expansion to be the metric
of a tidally perturbed, nonspinning black hole as presented
in Ref. [69]. Because the composition of the small object is
fully encoded in its multipole moments, the difference
between this metric and that of a material body will not
manifest itself in the outer perturbations until order ϵ3, at
which order the object’s quadrupole moment would appear.
The metric of Ref. [69] is written with gobjμν in the
Eddington-Finkelstein form (40), and with the perturba-
tions Hn

μν in a light cone gauge. In terms of Cartesian
Eddington-Finkelstein coordinates ðv; xaÞ defined on the
manifold of gobjμν , this gauge condition reads

Hn
μana ¼ 0: ð41Þ

Note that the coordinates we use here for the inner
expansion, denoted with sans serif fonts, differ from the
Fermi-Walker coordinates we use for the outer expansion.
Reference [69] additionally refines the gauge to enforce
H1

μν ¼ 0. The Eddington-Finkelstein form of gobjμν contains
no leading-order mass dipole moment, ensuring that the
coordinates are mass centered at leading order, and H1

μν ¼
0 ensures that they are mass centered at the first sublead-
ing order.
The resulting inner expansion is given explicitly by

Eqs. (61)–(64) in Ref. [40]. It is naturally written in terms
of r̃ ≔ r=ϵ. We then reexpand it for small ϵ at fixed r (or
equivalently, reexpand it for large r̃ and then reexpress it in
terms of r and ϵ) and perform a small-r, ϵ0 transformation
from local advanced coordinates to Fermi-Walker

coordinates; this transformation is given by Eq. (65) in
Ref. [40]. This gives an expansion valid in the buffer
region, which we write as

gμν ¼ g
∘
μν þ ϵh

∘ 10
μν þ ϵ2h

∘ 20
μν þOðϵ3Þ: ð42Þ

By the assumptions of matched asymptotic expansions, this
is necessarily the local form of the outer expansion, which
will ultimately provide punctures for equations of the form
of Eqs. (14) and (15). The primes indicate that the
perturbations are in the light cone rest gauge. The overset
rings indicate that the expansion is organized slightly
differently than Eqs. (1)–(2), in a manner described
momentarily.
The leading term in Eq. (42) is

g
∘
tt ¼ −1 − r2Eabn̂ab −

1

3
r3Eabcn̂abc þOðr4Þ; ð43aÞ

g
∘
ta ¼ −

2

3
r2Bbcϵacdn̂bd þ

r3

60
ð3_Eabn̂b − 5_Ebcn̂abc

− 20Bbcdϵab
in̂cdiÞ þOðr4Þ; ð43bÞ

g
∘
ab ¼ δab −

r2

9
ðEab − 6Eðacn̂bÞc þ 3δabEcdn̂cdÞ

þ r3

90
ð30Eðacdn̂bÞcd − 3Eabcn̂c − 8 _Bða

dϵbÞcdn̂c

þ 10 _Bcdϵcðain̂bÞdi − 15δabEcdin̂cdiÞ þOðr4Þ; ð43cÞ

where we have introduced n̂L ≡ nhi1 � � � nili. This metric is
not identical to the external background (29); instead, it is
Eq. (29) with the acceleration terms set to zero. The reason
is that the coordinates are tethered to an ϵ-dependent
worldline with a small acceleration. The inner expansion
has implicitly included an expansion of that acceleration,

aμ ¼
X
n>0

ϵnfμn; ð44Þ

so that any acceleration terms have implicitly been moved
to the first- or second-order outer perturbations. The full
external background metric then reads

gμν ¼ 0gμν þ ϵ1gμν þ ϵ2 2gμν þOðϵ3Þ; ð45Þ

where

0gμν ¼ g
∘
μν; ð46Þ

1gμν ¼ −2f1i xiδtμδtν þOðr3Þ; ð47Þ

2gμν ¼ −2f2i xiδtμδtν þOðr2Þ: ð48Þ
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We adopt analogous notation for other quantities, denot-
ing their reexpansion for small acceleration with the
notation

A ¼ 0Aþ ϵ1Aþ ϵ2 2AþOðϵ3Þ; ð49Þ

where the prescript is the order of the acceleration term. We
then have

h
∘ 10
μν ¼ 0h1

0
μν þ 1gμν; ð50Þ

h
∘ 20
μν ¼ 0h2

0
μν þ 1h1

0
μν þ 2gμν: ð51Þ

This notation differs from that of paper I, where a dagger
was used in place of the overset ring.
The first-order term in Eq. (42) reads

h
∘ 10
μν ¼ h

∘R10
μν þ h

∘S10
μν : ð52Þ

The regular field

h
∘R10
μν ¼ 0hR1

0
aμν þ 1gμν ð53Þ

is given by

0hR1
0

tt ¼ −r2δEabn̂ab þOðr3Þ; ð54aÞ

0hR1
0

ta ¼ −
2

3
r2δBbcϵacdn̂bd þOðr3Þ; ð54bÞ

0hR1
0

ab ¼ −
1

9
r2ðδEab − 6δEðacn̂bÞc þ 3δabδEcdn̂cdÞ

þOðr3Þ; ð54cÞ

and Eq. (47) where δEab and δBab are corrections to the
respective tidal moments; this is identical in form to the
tidal terms in Eq. (43), and it is hence a smooth vacuum
perturbation at r ¼ 0. The singular field

h
∘S10
μν ¼ 0hS1

0
μν ð55Þ

is given by

h
∘S10
tt ¼ 2m

r
þ 11

3
mrEabn̂ab þ

1

12
mr2

�
8 _Eabn̂ab

�
5 − 3 log

�
2m
r

��
þ 19_Eabcn̂abc

�
þOðr3Þ; ð56aÞ

h
∘S10
ta ¼ 2m

r
n̂a þ

2

15
mrð11Eabn̂b þ 10Bbcϵacdn̂bd þ 15Ebcn̂abcÞ þ

1

1260
mr2

�
126_Eabn̂b

�
25 − 16 log

�
2m
r

��

þ 140 _Bbcϵacdn̂bd
�
13 − 12 log

�
2m
r

��
þ 1095Eabcn̂bc þ 70_Ebcn̂abc

�
25 − 12 log

�
2m
r

��

þ 1400Bbcdϵab
in̂cdi þ 840Ebcdn̂abcd

�
þOðr3Þ; ð56bÞ

h
∘S10
ab ¼ 2m

3r
ðδabþ3n̂abÞþ

1

315
mrð154Eab−168Bd

ðaϵbÞcdn̂
cþ580Ecðan̂bÞcþ15Ecdδabn̂cdþ840Bcdϵc

iðan̂bÞdiþ105Ecdn̂abcdÞ

þ 1

3780
mr2

�
252 _Eab

�
29−20 log

�
2m
r

��
þ2322Eabcn̂c−504 _Bd

ðaϵbÞcdn̂c
�
11−12 log

�
2m
r

��

þ1980_Ec
ðan̂bÞcþ60_Ecdδabn̂cd

�
59−42 log

�
2m
r

��
−4800BðajcjiϵbÞdin̂cd−420Eðacdn̂bÞcd

þ1680 _Bcdϵc
iðan̂bÞdi

�
4−3 log

�
2m
r

��
þ1295_Ecdiδabn̂cdiþ1260_Ecdn̂abcd

þ5040Bcdiϵc
jðan̂bÞdijþ315Ecdin̂abcdi

�
þOðr3Þ: ð56cÞ

SAMUEL D. UPTON and ADAM POUND PHYS. REV. D 103, 124016 (2021)

124016-10



The second-order term in Eq. (42) reads

h
∘ 20
μν ¼ h

∘R20
μν þ h

∘S20
μν : ð57Þ

The regular field

h
∘R20
μν ¼ 0hR2

0
μν þ 1hR1

0
μν þ 2gμν ð58Þ

is given by

h
∘R20
μν ¼ Oðr2Þ: ð59Þ

The singular field

h
∘S20
μν ¼ 0hS2

0
μν þ 1hS1

0
μν ð60Þ

is split into two pieces,

h
∘S20
μν ¼ h

∘SS0
μν þ h

∘SR0

μν ; ð61Þ

where h
∘SS0
μν is the “singular times singular” piece containing

all terms proportional to m2, and h
∘SR0

μν is the “singular times
regular” piece featuring all terms with the form mδE and
mδB. Individually, these are

h
∘SR0

tt ¼ 11

3
mrδEabn̂ab; ð62aÞ

h
∘SR0

ta ¼ 2

15
mrð11δEabn̂b þ 10δBbcϵacdn̂bd

þ 15δEbcn̂abcÞ; ð62bÞ

h
∘SR0

ab ¼ 1

315
mrð154δEab − 168δBdðaϵbÞcdn̂c

þ 480δEc
ðan̂bÞc þ 15δEcdδabn̂cd

þ 840δBcdϵc
iðan̂bÞdi þ 105δEcdn̂abcdÞ; ð62cÞ

and8

h
∘SS0
tt ¼ −4m2

�
Eabn̂ab þ r

�
1

3
_Eabn̂ab

�
11 − 6 log

�
2m
r

��
þ 2

3
Eabcn̂abc

��
þOðr2Þ; ð63aÞ

h
∘SS0
ta ¼ −4m2

�
2

5
Eabn̂b þ Ebcn̂abc þ r

�
6

5
_Eabn̂b

�
2 − log

�
2m
r

��
þ 2

9
_Bbcϵacdn̂bd

�
4 − log

�
2m
r

��

þ 8

21
Eabcn̂bc þ

1

9
_Ebcn̂abc

�
19 − 12 log

�
2m
r

��
þ 2

9
Bbcdϵab

in̂cdi þ
1

2
Ebcdn̂abcd

��
þOðr2Þ; ð63bÞ

h
∘SS0
ab ¼ −4m2

�
4

5
BdðaϵbÞcdn̂c þ

8

7
Ecðan̂bÞc −

1

21
Ecdδabn̂cd þ Bcdϵc

iðan̂bÞdi þ
5

6
Ecdn̂abcd

þ r
�
2

45
_Eab

�
31 − 12 log

�
2m
r

��
þ 4

21
Eabcn̂c −

4

45
_Bd

ðaϵbÞcdn̂c
�
4 − 3 log

�
2m
r

��

þ 4

7
_Ec

ðan̂bÞc

�
4 − 3 log

�
2m
r

��
þ 1

63
_Ecdδabn̂cd

�
29 − 6 log

�
2m
r

��
−

8

63
Bc

iðaϵbÞdin̂cd

þ 5

9
Ecdðan̂bÞcd þ

1

27
Ecdiδabn̂cdi þ

4

9
_Bcdϵc

iðan̂bÞdi

�
4 − 3 log

�
2m
r

��
þ 2

9
_Ecdn̂abcd

�
4 − 3 log

�
2m
r

��

þ 4

9
Bcdiϵc

jðan̂bÞdij þ
1

3
Ecdin̂abcdi

��
þOðr2Þ: ð63cÞ

We can extend this split into singular and regular fields to
arbitrary order in r by including all explicitly m-dependent
terms in the singular fields, leaving the regular fields to
include all terms that depend only on tidal moments, with no
explicitm dependence. The regular field is thenmanifestly a
smooth solution to the vacuum Einstein equations,

δG
∘

μν½h
∘R10 � ¼ 0; ð64Þ

δG
∘

μν½h
∘R20 � ¼ −δ2G

∘
μν½h

∘R10 �; ð65Þ

where the overset ring indicates that these are the linearized

and second-order Einstein operators defined from g
∘
μν.When

combined with g
∘
μν, the regular field forms an effective

metric

8All Oðm0Þ terms in Eq. (116) of paper I have been corrected
to include the factor m2.
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g̃0μν ¼ g
∘
μν þ ϵh

∘R10
μν þ ϵ2h

∘R20
μν þ…; ð66Þ

as in Eq. (9), which is a vacuum metric, and in which the
small object follows a geodesic. To see that γ is a geodesic in
this metric, simply note that g̃0μν ¼ ημν þOðr2Þ, where ημν is
the Minkowski metric; the coordinates are therefore inertial
along γ, which would be impossible of γ were accelerated.
To see that the object moves on γ, simply recall that there is
no mass dipole moment in gobjμν or in H1

μν (nor does the
transformation from local light cone coordinates to Fermi
coordinates induce a mass dipole moment).
By inspection of the metric perturbations, we see that in

this gauge we have h2
0

μν ∼ r0 instead of the generic behavior
∼1=r2. This achieves the goal of eliminating the most
singular, most problematic term in the second-order metric
perturbation. One final step remains, however: to transform
the perturbations into a practical gauge suitable for use in
concrete implementations.

III. TRANSFORMATION TO A GENERIC
HIGHLY REGULAR GAUGE

A. Outline of method

Although the light cone rest gauge eliminates the ∼1=r2
pieces of h2μν that appears in a generic gauge, its “rest gauge”
aspect forces the regular field to behave as∼r2, meaning that
hRμν and its first derivative vanish on the worldline. In
practice, we wish to be able to adopt a gauge that is
convenient in the external background spacetime; in an
EMRI, this is typically a radiation gauge [70], the Regge-
Wheeler-Zerilli gauge [71,72], or the Lorenz gauge. In all
these cases, the choice is motivated at least in part by the fact
that it leads to hyperbolic field equations for the metric
perturbation or for some related variable. However, impos-
ing these gauge conditions does not simultaneously allow
one to enforce that the regular field vanishes on the world-
line; for a given set of hyperbolic field equations, the regular
field on theworldline is fully determined by global boundary
conditions. To allow the end user to adopt a convenient
gauge such as the radiation or Lorenz gauge, in this section
we perform a smooth gauge transformation that puts hRμν in
any desired gauge, while preserving the highly regular form
of hSμν. Our method again closely follows paper I.
Under a gauge transformation induced by a smooth

vector field ξμ ¼ ϵξμ1 þ ϵ2ξμ2 þOðϵ3Þ, perturbations of the
metric gμν transform as [73]

h1μν → h1μν þ Lξ1gμν; ð67Þ

h2μν → h2μν þ Lξ2gμν þ
1

2
L2
ξ1
gμν þ Lξ1h

1
μν: ð68Þ

However, we must divide these transformations into sin-
gular and regular pieces, and we must account for the fact

that we have written our perturbations as perturbations of

g
∘
μν. An appropriate division of the gauge transformation is

h
∘R1
μν ¼ h

∘R10
μν þ Lξ1g

∘
μν; ð69Þ

h
∘S1
μν ¼ h

∘S10
μν ; ð70Þ

h
∘R2
μν ¼ h

∘R20
μν þ Lξ2g

∘
μν þ

1

2
L2
ξ1
g
∘
μν þ Lξ1h

∘R10
μν ; ð71Þ

h
∘S2
μν ¼ h

∘S20
μν þ Lξ1h

∘ S10
μν : ð72Þ

This ensures that g̃μν transforms as any smooth vacuum
metric would under the gauge transformation, meaning that

g̃μν ¼ g
∘
μν þ ϵh

∘R1
μν þ ϵ2h

∘R2
μν þ… ð73Þ

remains a vacuum metric and that geodesics in it, such as γ,
remain geodesics. Apart from smoothness, we only impose
one other condition on the transformation: that it is
worldline preserving, satisfying

ξanjγ ¼ 0: ð74Þ

This ensures that the worldline in the practical gauge is
identical to the worldline in the rest gauge. An equivalent
way to say this is that no mass dipole moment is introduced
as a result of the transformation.
Still following paper I, we now use the approach in

Ref. [41]: rather than choosing a gauge condition and
finding a vector ξμ that enforces that condition, we allow
the regular fields hRnμν to be in an arbitrary gauge, and we
solve Eqs. (69) and (71) for ξμn in terms of hRnμν . The gauge of
hRnμν can then be freely chosen to put the field equations in
any convenient form in the external background.
After finding ξμ1, we can calculate the second-order

singular field in the new gauge via Eq. (72). Despite the
gauge vector being smooth, it introduces an unbounded
term into hS2μν : Lξ1h

S10
μν , which behaves as ∼1=r. This is more

divergent than the singular field h
∘S20
μν in the rest gauge,

which was bounded at r ¼ 0. However, as we will discuss
in Sec. VI, “singular times regular” terms like Lξ1h

S10
μν are

actually more benign than “singular times singular” terms

like h
∘S20
μν even if their divergence is superficially stronger.

In addition to determining the gauge vectors ξμn in terms
of the regular field, Eqs. (69) and (71) also determine the
other functions in the effective metric in terms of the regular
field: the accelerations fμn and the tidal moments δEab and
δBab. To better bring out the structure of the equations, we
note that after the gauge transformation, our full metric has
the form
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gμν ¼ g
∘
μν þ ϵð0h1μν þ 1gμνÞ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{h
∘ 1
μν

þ ϵ2ð0h2μν þ 1h1μν þ 2gμνÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{h

∘2
μν

þOðϵ3Þ; ð75Þ

and the regular and singular fields can be divided in
analogy with Eqs. (53), (58), and (60)9:

h
∘R1
μν ≔ 0hR1μν þ 1gμν; ð76Þ

h
∘S1
μν ≔ 0hS1μν ; ð77Þ

h
∘R2
μν ≔ 0hR2μν þ 1hR1μν þ 2gμν; ð78Þ

h
∘S2
μν ≔ 0hS2μν þ 1hS1μν : ð79Þ

When solving the perturbative field equations in the
external spacetime, the variables of interest are the pertur-
bations hnμν of the external background gμν, not those of the

background g
∘
μν. Hence, we wish to express ξμn in terms of

hRnμν , not in terms of h
∘Rn
μν . Using this decomposition, we

rewrite Eqs. (69) and (71) as

0hR1μν ¼ h
∘R10
μν þ Lξ1g

∘
μν − 1gμν; ð80Þ

0hR2μν þ 1hR1μν ¼ h
∘R20
μν þ Lξ2g

∘
μν − 2gμν

þ 1

2
L2
ξ1
g
∘
μν þ Lξ1h

∘R10
μν : ð81Þ

Here we have grouped all the unknowns (ξμn, f
μ
n, δEab, and

δBab) on the right side of the equations.
Paper I solved Eq. (80) for portions of ξμ1 through order

r2 and used it to calculate the leading, ∼1=r term in hS2μν . To
make practical use of the highly regular gauge, we must
know two additional orders of the singular field: following
Eq. (19), we require hS2μν through order r to be able to
correctly calculate the second-order self-force. We already
have hS20μν from Eqs. (61)–(63). In the remaining parts of this
section we calculate the complete ξμ1 through order r2 and
use it to calculate Lξ1h

S10
μν through the necessary order. We

also briefly discuss the solution for ξμ2.

B. STF decomposition of the gauge vector
and the regular field

To solve Eq. (80) for the gauge vector, we begin
by expanding both ξ1μ (with index down) and 0hR1μν in
irreducible STF form using Appendix A of Ref. [74] and
Appendix B of Ref. [7].

1. Gauge vector

The gauge vector is decomposed as

ξ1μ ¼
X
p;l≥0

rpξðp;lÞμL ðtÞn̂L; ð82Þ

where the t and a components are, respectively, given by

ξðp;lÞthLi ¼ T̂ðp;lÞ
L ; ð83aÞ

ξðp;lÞahLi ¼ X̂ðp;lÞ
aL þ ϵjahil Ŷ

ðp;lÞ
L−1ij þ δahil Ẑ

ðp;lÞ
L−1i; ð83bÞ

with the hat indicating that these are STF tensors. Each
term in this decomposition is linearly independent from the
others. The quantities n̂L form a complete basis, equivalent
to scalar spherical harmonics, for scalar fields on the
unit sphere, and the further decomposition of Cartesian
3-vectors and 3-tensors into irreducible STF pieces is
equivalent to a decomposition into spin-weighted or tensor
spherical harmonics.
As mentioned we only impose two conditions on ξ1μ:

first, that ξ1μ is smooth so that our two gauges are smoothly
related and secondly, that ξ1μ is worldline preserving,
satisfying Eq. (74). These conditions imply that the
expansion (82) must be equivalent to a Taylor series

ξ1μ ¼
X
k≥0

1

k!
∂Kξ

1
μðt; 0ÞxK; ð84Þ

with ξ1aðt; 0Þ ¼ 0. Here xK ¼ xi1 � � � xik . When written as a
sum of STF quantities,

xK¼rk½n̂Kþc1δða1a2 n̂K−2Þþc2δða1a2δa3a4 n̂K−4Þþ…� ð85Þ

for some numerical coefficients cn. Hence, our conditions
on the gauge vector impose

ξ1t ¼ T̂ð0;0Þ þ rn̂aT̂ð1;1Þ
a þ r2ðT̂ð2;0Þ þ T̂ð2;2Þ

ab n̂abÞ
þ r3ðT̂ð3;1Þ

a n̂a þ T̂ð3;3Þ
abc n̂abcÞ þOðr4Þ; ð86aÞ

ξ1a ¼ rn̂bðX̂ð1;1Þ
ab þ ϵjabŶ

ð1;1Þ
j þ δabẐ

ð1;1ÞÞ
þ r2½X̂ð2;0Þ

a þ n̂bcðX̂ð2;2Þ
abc þ ϵjabŶ

ð2;2Þ
cj þ δabẐ

ð2;2Þ
c Þ�

þ r3½n̂bðX̂ð3;1Þ
ab þ ϵjabŶ

ð3;1Þ
j þ δabẐ

ð3;1ÞÞ
þ n̂bcdðX̂ð3;3Þ

abcd þ ϵjabŶ
ð3;3Þ
cdj þ δabẐ

ð3;3Þ
cd Þ�

þOðr4Þ: ð86bÞ

It is necessary to carry this expansion to order r3 because

the Lie derivative and the singular form of h
∘S10
μν in Eq. (72)9The 0gμν term in Eq. (125) in paper I should read 1gμν.
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each reduce the order in r by one. Thus, order r3 in the

gauge vector is required for accuracy through order r in h
∘S2
μν .

2. Regular field

We perform a similar decomposition for the regular field,
so that

0hR1μν ¼
X
p;l≥0

rp0hR1ðp;lÞμνL ðtÞn̂L: ð87Þ

The tt, ta, and ab components are given by

0hR1ðp;lÞtthLi ¼ Âðp;lÞ
L ; ð88aÞ

0hR1ðp;lÞtahLi ¼ B̂ðp;lÞ
aL þ ϵjahil Ĉ

ðp;lÞ
L−1ij þ δahil D̂

ðp;lÞ
L−1i; ð88bÞ

0hR1ðp;lÞabhLi ¼ Êðp;lÞ
abL þ δabK̂

ðp;lÞ
L þ STFLSTFabðϵjail F̂ðp;lÞ

bjL−1

þ δail Ĝ
ðp;lÞ
bL−1 þ δailϵ

j
bil−1Ĥ

ðp;lÞ
jL−2

þ δailδbil−1 Î
ðp;lÞ
L−2 Þ: ð88cÞ

Since 0hR1μν is smooth, we require this expansion to be
equivalent to a Taylor series in xa. This leaves us with the
expansion

0hR1tt ¼ Âð0;0Þ þ rÂð1;1Þ
i n̂i þ r2ðÂð2;0Þ þ n̂ijÂð2;2Þ

ij Þ
þOðr3Þ; ð89aÞ

0hR1ta ¼ B̂ð0;0Þ
a þ rn̂iðB̂ð1;1Þ

ai þ ϵjaiĈ
ð1;1Þ
j þ δaiD̂

ð1;1ÞÞ
þ r2½B̂ð2;0Þ

a þ n̂ijðB̂ð2;2Þ
aij þ ϵkaiĈ

ð2;2Þ
jk

þ δaiD̂
ð2;2Þ
j Þ� þOðr3Þ; ð89bÞ

0hR1ab ¼ Êð0;0Þ
ab þ δabK̂

ð0;0Þ þ rn̂i½Êð1;1Þ
abi þ δabK̂

ð1;1Þ
i

þ STFabðϵkaiF̂ð1;1Þ
bk þ δaiĜ

ð1;1Þ
b Þ� þ r2½Êð2;0Þ

ab

þ δabK̂
ð2;0Þ þ n̂ijðÊð2;2Þ

abij þ δabK̂
ð2;2Þ
ij

þ STFabfϵkaiF̂ð2;2Þ
bkj þ δaiĜ

ð2;2Þ
bj þ δaiϵ

k
bjĤ

ð2;2Þ
k

þ δaiδbjÎ
ð2;2ÞgÞ� þOðr3Þ: ð89cÞ

Appendix B gives the relation between the individual
STF tensors and derivatives of the regular field evaluated on
the worldline.
Additionally, we use constraints from the linearized

vacuum Einstein equations

δG
∘

μν½0hR1� ¼ 0: ð90Þ

Note that δG
∘

μν½h
∘R1� ¼ δG

∘
μν½0hR1� because 1gμν is a linear

vacuum perturbation of g
∘
μν.

The tt and ta components of Eq. (90) give

Îð2;2Þ ¼ 1

5
EabÊð0;0Þ

ab þ 6

5
K̂ð2;0Þ; ð91aÞ

D̂ð2;2Þ
a ¼ 6

5
B̂ð2;0Þ
a þ 3

5
B̂ð0;0Þ
b Ea

b þ 3

5
Bbcϵac

dÊð0;0Þ
bd

−
1

2

d
dt

Ĝð1;1Þ
a þ 3

5

d
dt

K̂ð1;1Þ
a : ð91bÞ

We use these equations to eliminate Îð2;2Þ and D̂ð2;2Þ
a , but

the choice is arbitrary; we could have easily chosen two
other STF tensors to remove.
From the ab component of Eq. (90) we get two

restrictions, one at l ¼ 0 and one at l ¼ 2. These are

Âð2;0Þ ¼ −
1

3
EabÊð0;0Þ

ab þ d
dt

D̂ð1;1Þ −
1

2

d2

dt2
K̂ð0;0Þ; ð92aÞ

Âð2;2Þ
ab ¼ Âð0;0ÞEab − 2B̂ð0;0Þ

c BdðaϵbÞcd þ Êð2;0Þ
ab

− 2EchaÊ
ð0;0Þ
bic −

7

6
Ĝð2;2Þ

ab þ EabK̂
ð0;0Þ

þ K̂ð2;2Þ
ab þ d

dt
B̂ð1;1Þ
ab −

1

2

d2

dt2
Êð0;0Þ
ab ; ð92bÞ

where the constraints from the tt and ta components have
been used to simplify these expressions.
Combining Eqs. (89), (91), and (92) gives us the final

expression for the components of 0hR1μν :

0hR1tt ¼ Âð0;0Þ þ rÂð1;1Þ
i n̂iþ r2

�
−
1

3
EabÊð0;0Þ

ab þ d
dt
D̂ð1;1Þ

−
1

2

d2

dt2
K̂ð0;0Þ þ n̂ij

�
Âð0;0ÞEij−2B̂ð0;0Þ

c Bdiϵj
cd

þ Êð2;0Þ
ij −2Ec

iÊ
ð0;0Þ
jc −

7

6
Ĝð2;2Þ

ij þEijK̂
ð0;0Þ

þ K̂ð2;2Þ
ij þ d

dt
B̂ð1;1Þ
ij −

1

2

d2

dt2
Êð0;0Þ
ij

��
þOðr3Þ; ð93aÞ

0hR1ta ¼ B̂ð0;0Þ
a þ rn̂iðB̂ð1;1Þ

ai þ ϵjaiĈ
ð1;1Þ
j þ δaiD̂

ð1;1ÞÞ

þ r2
�
B̂ð2;0Þ
a þ n̂ij

�
B̂ð2;2Þ
aij þ ϵkaiĈ

ð2;2Þ
jk

þ δai

�
6

5
B̂ð2;0Þ
j þ 3

5
B̂ð0;0Þ
b Ej

b þ 3

5
Bbcϵjc

dÊð0;0Þ
bd

−
1

2

d
dt

Ĝð1;1Þ
j þ 3

5

d
dt

K̂ð1;1Þ
j

���
þOðr3Þ; ð93bÞ
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0hR1ab ¼ Êð0;0Þ
ab þδabK̂

ð0;0Þþrn̂i½Êð1;1Þ
abi þδabK̂

ð1;1Þ
i

þSTFabðϵkaiF̂ð1;1Þ
bk þδaiĜ

ð1;1Þ
b Þ�

þr2
�
Êð2;0Þ
ab þδabK̂

ð2;0Þþ n̂ij
�
Êð2;2Þ
abij þδabK̂

ð2;2Þ
ij

þSTFab

�
ϵkaiF̂

ð2;2Þ
bkj þδaiĜ

ð2;2Þ
bj þδaiϵ

k
bjĤ

ð2;2Þ
k

þδaiδbj

�
1

5
EcdÊð0;0Þ

cd þ6

5
K̂ð2;0Þ

����
þOðr3Þ: ð93cÞ

This form is particularly advantageous as it automati-
cally includes any constraints that would be imposed by the
Einstein equations onto the form of our regular field.

C. Solving for ξμ1
We now return to Eq. (80), where, recall, g

∘
μν is given by

Eq. (43), 1gμν by Eq. (47), and h
∘R10
μν by Eq. (54). To solve for

the gauge vector, we substitute the expansions (86) and (93)
and then work order by order in r and n̂L. This is
possible because n̂L forms an orthogonal basis, implying
APhLin̂L ¼ BPhLin̂L ⇒ APhLi ¼ BPhLi. As a result, Eq. (80)
reduces to a hierarchical set of equations for the STF

tensors T̂ðp;lÞ
L , X̂ðp;lÞ

Lþ1 , Ŷ
ðp;lÞ
L , and Ẑðp;lÞ

L−1 .
Rather than belaboring the technical details of the

calculation, which are largely mechanical, we state the
results that follow from each order in r in Eq. (80).
Note that in the equations that follow, 0hR1μν and its

derivatives are always evaluated on the worldline, but we
omit the notation jγ for brevity. Additionally, we define
0hR1 ≔ 0hR1 aa ≡ δab 0hR1ab .

1. Order r0

Starting at the lowest order in the expansion of Eq. (80),
we immediately discover rules for four of our gauge vector
components. These are

T̂ð0;0Þ ¼ 1

2

Z
Âð0;0Þdt; ð94Þ

T̂ð1;1Þ
a ¼ B̂ð0;0Þ

a ; ð95Þ

X̂ð1;1Þ
ab ¼ 1

2
Êð0;0Þ
ab ; ð96Þ

Ẑð1;1Þ ¼ 1

2
K̂ð0;0Þ: ð97Þ

In paper I, the relations in Eqs. (129)–(131) were given
in terms of the full gauge vector, ξ1μ. To compare, we
perform equivalent operations but now on our expansion of
ξ1μ, substituting our values for the STF tensors from

Eqs. (94)–(97) and using Appendix B to relate the STF
tensors to derivatives of the regular field. The results are

d
dt

ξ1t ¼
d
dt

T̂ð0;0Þ ¼ 1

2
Âð0;0Þ ¼ 1

2
0hR1tt ; ð98Þ

ξ1t;a ¼ T̂ð1;1Þ
a ¼ B̂ð0;0Þ

a ¼ 0hR1ta ; ð99Þ

ξ1ða;bÞ ¼ X̂ð1;1Þ
ab þ δabẐ

ð1;1Þ

¼ 1

2
Êð0;0Þ
ab þ 1

2
δabK̂

ð0;0Þ

¼ 1

2
0hR1ab ; ð100Þ

which exactly match the expressions in paper I, as
expected. The value of ξ1½a;b� is also given in paper I but

relies on Ŷð1;1Þ
c , which is found at order r.

2. Order r

Having correctly reproduced the leading expressions
from paper I, we can confidently move on to higher orders.
We continue our procedure, but now we find our higher-
order STF tensors in terms of not just the STF tensors in
0hR1μν but also the tidal moments.
From the tt component of Eq. (80), we obtain an

expression for the first-order self-force,

f1a ¼
1

2
Âð1;1Þ
a −

d
dt

B̂ð0;0Þ
a : ð101Þ

When rewritten in terms of 0hR1μν , this gives,

f1a ¼
1

2
0hR1tt;a −

d
dt

0hR1ta ; ð102Þ

which is the standard result for the first-order self-force
when written in component form [40].
The ta component gives

T̂ð2;0Þ ¼ 1

2
D̂ð1;1Þ −

1

4

d
dt

K̂ð0;0Þ; ð103Þ

T̂ð2;2Þ
ab ¼ 1

2
B̂ð2;2Þ
ab þ 1

2
Eab

Z
Âð0;0Þdt −

1

4

d
dt

Êð0;0Þ
ab ; ð104Þ

Ŷð1;1Þ
a ¼

Z
Ĉð1;1Þ
a dt: ð105Þ

Using the value of Ŷð1;1Þ
a , we can now compare to paper I’s

result for the antisymmetric part of the spatial derivative of
the gauge vector. This gives
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ξ1½a;b� ¼ ϵab
cŶð1;1Þ

c ¼ ϵab
c

Z
Ĉð1;1Þ
c dt ¼

Z
0hR1t½a;b�dt; ð106Þ

which matches Eq. (133) from paper I.
Finally, the ab component of Eq. (80) gives

X̂ð2;0Þ
a ¼ 5

18
Ĝð1;1Þ

a −
1

12
K̂ð1;1Þ

a ; ð107Þ

X̂ð2;2Þ
abc ¼ 1

4
Êð1;1Þ
abc ; ð108Þ

Ŷð2;2Þ
ab ¼ 1

2
F̂ð1;1Þ
ab −

1

3
Bab

Z
Âð0;0Þdt; ð109Þ

Ẑð2;2Þ
a ¼ 1

2
K̂ð1;1Þ

a −
1

6
Ĝð1;1Þ

a : ð110Þ

3. Order r2

At the final order, not only do we find the last
components of the gauge vector but we also fix the forms
of δEab and δBab that appear in Eq. (54). They are

δEab ¼ 2BdðaB̂
ð0;0Þ
jcj ϵbÞcd þ EchaÊ

ð0;0Þ
bic − Êð2;0Þ

ab þ 7

6
Ĝð2;2Þ

ab

− 2EabK̂
ð0;0Þ − K̂ð2;2Þ

ab þ 1

2
_Eab

Z
Âð0;0Þdt

− 2EdðaϵbÞcd

Z
Ĉð1;1Þ
c dt; ð111Þ

δBab ¼
1

2
Âð0;0ÞBab þ

3

2
Ĉð2;2Þ
ab − B̂ð0;0Þ

c EdðaϵbÞcd

þ 1

2
_Bab

Z
Âð0;0Þdt −

3

2
BabK̂

ð0;0Þ −
3

4

d
dt

F̂ð1;1Þ
ab

− 2BdðaϵbÞcd

Z
Ĉð1;1Þ
c dt: ð112Þ

When the values of the STF tensors are substituted,
however, these become10

δEab ¼ Eab
0hR1tt − Ehac0hR1bic −

1

2
0hR1tt;habi þ

d
dt

0hR1tha;bi

þ 1

2
_Eab

Z
0hR1tt dt −

1

2

d2

dt2
0hR1habi

þ 2STF
ab

Ea
c

Z
0hR1t½b;c�dt; ð113Þ

δBab ¼ −
1

2
Bab

0hR1 þ EðacϵbÞcd0hR1td þ 1

2
Bab

0hR1tt

þ 1

2
ϵcdða0hR1jtcj;bÞd þ

1

2
_Bab

Z
0hR1ttdt

þ 2STF
ab

Ba
c

Z
0hR1t½b;c�dt −

1

2
ϵcdða

d
dt

0hR1bÞc;d: ð114Þ

These expressions match those found for the transformation
from the rest gauge to the Lorenz gauge in paper I but with
the omission of the term ∝ m. As in paper I, we can also
write the perturbations of the tidal moments as

δEab ¼ δR
∘

tatb½0hR1 − Lξ1g
∘�; ð115Þ

δBab ¼
1

2
ϵpqðaδR

∘
bÞtpq½0hR1 − Lξ1g

∘�; ð116Þ

in agreement with analogous results in Ref. [41]. These
forms of δEab and δBab let us interpret them as the tidal
moments of 0hR1μν (up to a gauge transformation).
The rest of the STF tensors are found to be

T̂ð3;1Þ
a ¼3

5
B̂ð2;0Þ
a þ2

5
Ea

bB̂ð0;0Þ
b þ1

5
Bbcϵac

dÊð0;0Þ
bd

þ2

5
Ba

b

Z
Ĉð1;1Þ
b dt−

1

6

d
dt
Ĝð1;1Þ

a þ 1

20

d
dt
K̂ð1;1Þ

a ; ð117Þ

T̂ð3;3Þ
abc ¼ B̂ð2;2Þ

abc þ 1

6
Eabc

Z
Âð0;0Þdt −

1

12

d
dt

Êð1;1Þ
abc

þ STFabc

�
2

3
B̂ð0;0Þ
a Ebc þ

1

3
Bd

aϵbd
iÊð0;0Þ

ci

−
2

9
Bab

Z
Ĉð1;1Þ
c dt

�
; ð118Þ

X̂ð3;1Þ
ab ¼ 4

15
Êð2;0Þ
ab þ 7

180
Ĝð2;2Þ

ab −
1

30
K̂ð2;2Þ

ab

−
1

15
BdðaB̂

ð0;0Þ
jcj ϵbÞcd−

1

10
EchaÊ

ð0;0Þ
bic

−
1

40
_Eab

Z
Âð0;0Þdt−

1

15
EdðaϵbÞcd

Z
Ĉð1;1Þ
c dt; ð119Þ

X̂ð3;3Þ
abcd ¼

1

6
Êð2;2Þ
abcd; ð120Þ

Ŷð3;1Þ
a ¼ −

1

10
Ba

bB̂ð0;0Þ
b −

1

60
Ebcϵac

dÊð0;0Þ
bd þ 1

4
Ĥð2;2Þ

a

þ 7

30
Ea

b

Z
Ĉð1;1Þ
b dt; ð121Þ

10While we do not manipulate δBab after substitution, we do
manipulate δEab. Arriving at our second expression for δEab
necessitates rewriting the Einstein field equation’s condition
for Âð2;2Þ

ab from Eq. (92b) in terms of B̂ð0;0Þ
c BdðaϵbÞcd and then

substituting it into our initial expression for δEab.
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Ŷð3;3Þ
abc ¼ 1

4
F̂ð2;2Þ
abc −

1

6
Babc

Z
Âð0;0Þdtþ STF

abc

�
1

6
Ed

aϵbd
iÊð0;0Þ

ci −
1

3
BabB̂

ð0;0Þ
c −

1

3
Eab

Z
Ĉð1;1Þ
c dt

�
; ð122Þ

Ẑð3;1Þ ¼ 1

45
EabÊð0;0Þ

ab þ 3

10
K̂ð2;0Þ; ð123Þ

Ẑð3;3Þ
ab ¼ 1

9
BdðaϵbÞcdB̂

ð0;0Þ
c −

1

6
Êð2;0Þ
ab þ 1

36
Ĝð2;2Þ

ab þ 1

6
EchaÊ

ð0;0Þ
bic þ 1

3
K̂ð2;2Þ

ab þ 1

24
_Eab

Z
Âð0;0Þdt

þ 1

9
EdðaϵbÞcd

Z
Ĉð1;1Þ
c dt: ð124Þ

4. Final result for ξμ1
Substituting the above results for the STF tensors into Eq. (86), we obtain our final form of the gauge vector required to

transform from the rest gauge into the practical highly regular gauge. The components are given by11

ξ1t ¼
1

2

Z
0hR1tt dtþ rn̂a 0hR1ta þ r2

12

�
2 0hR1 ata; −

d
dt

0hR1 þ 3n̂ab
�
20hR1ta;b þ 2Eab

Z
0hR1tt dt −

d
dt

0hR1ab

��

þ r3

60

�
3n̂a

�
4Bbcϵac

d 0hR1bd þ 8Ea
b 0hR1tb þ 20hR1 bta;b þ 4Babϵ

bcd

Z
0hR1tc;ddt − 2

d
dt

0hR1 bab; þ d
dt

0hR1;a

�

þ 5n̂abc
�
8Eab

0hR1tc þ 2Eabc

Z
0hR1tt dtþ 20hR1ta;bc þ 4Ba

dϵcd
i0hR1bi − 4Babϵc

di

Z
0hR1td;idt −

d
dt

0hR1ab;c

��

þOðr4Þ; ð125aÞ

ξ1a ¼
rn̂b

2

�
0hR1ab þ2

Z
0hR1t½a;b�dt

�
þ r2

12

�
20hR1ab;

b− 0hR1;a þ n̂bc
�
60hR1ab;c−4Bb

dϵacd

Z
0hR1tt dt−30hR1bc;a

��

þ r3

360

�
12Ebc0hR1bc n̂a−3n̂b

�
4Eb

c0hR1ac þ8Ea
c0hR1bc þ12Bcdϵabd

0hR1tc −4Eab
0hR1−8BcðaϵbÞcd0hR1td −80hR1b½a;c�

c

−80hR1ac;b
cþ20hR1;abþ3_Eab

Z
0hR1tt dtþ24Eb

c

Z
0hR1t½a;c�dt−32Ea

c

Z
0hR1t½b;c�dt

�

þ5n̂abc
�
12Eb

d0hR1cd −8Bb
dϵcd

i0hR1ti −24Eb
d

Z
0hR1t½c;d�dtþ3 _Ebc

0hR1tt

�

−10n̂bcd
�
12Eb½c0hR1a�d−60hR1ab;cdþ8Bb

iϵadi
0hR1tc þ4Bbcϵad

i0hR1ti þ30hR1bc;adþ12Ebc

Z
0hR1t½a;d�dtþ6Bbc

iϵadi

Z
0hR1tt dt

��

þOðr4Þ: ð125bÞ

The order-r0 and -r terms match those found previously
in Eqs. (129)–(131) and (133) of paper I.

D. Solving for ξμ2
We can solve Eq. (81) for ξμ2 exactly as we solved Eq. (80)

for ξμ1. The only change is that the STF tensors Âðp;lÞ
L through

K̂ðp;lÞ
L now refer to terms in the irreducible STF decom-

position of the quantity 0hR2μν þ 1hR1μν − 1
2
L2
ξ1
g
∘
μν − Lξ1h

∘R10
μν .

A smaller change is that we cannot eliminate any of these
coefficients using the linearized vacuum Einstein equation.
In addition to determining ξμ2, Eq. (81) determines the

second-order term in the acceleration, fμ2. The calculation
and its outcome were given in Sec. VI B 4 of paper I. The
total acceleration aμ ¼ ϵfμ1 þ ϵ2fμ2 þOðϵ3Þ is given by
Eq. (11) with

hRμν ¼ ϵ0hR1μν þ ϵ2ð0hR2μν þ 1hR1μν Þ þOðϵ3Þ: ð126Þ

Again following paper I, we do not present explicit
results for ξμ2. The reason is that we can simply leave the
regular field to be implicitly defined from the full and

11ξ1a was additionally simplified using the constraint in Eq. (91)
from the Einstein field equations in terms of 0hR1μν .
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singular fields: hRμν ¼ hμν − hSμν. As input for a numerical
scheme, all that is required is the singular field.

E. Second-order singular field

With the gauge vector determined through order r3, we

can now take the Lie derivative of h
∘S10
μν as required to

determine hS2μν . Following paper I, to more explicitly reveal
the structure of the singular field, we perform an SS/SR
split as in Eq. (61) so that

h
∘S2
μν ¼ h

∘SS
μν þ h

∘SR
μν ð127Þ

with

h
∘SR
μν ¼ h

∘SR0

μν þ Lξ1h
∘S10
μν ; ð128Þ

h
∘SS
μν ¼ h

∘SS0
μν : ð129Þ

This means that h
∘SR
μν comprises terms ∼m0hR1μν , and h

∘SS
μν

features all terms ∝ m2.

Calculating Lξ1h
∘S10
μν and combining it with h

∘ SR0

μν in

Eqs. (62), we find the first three orders of h
∘SR
μν are

h
∘SR
tt ¼ −2m

�
1

r

�
0hR1tt þ 1

2
0hR1abn

ab

�
þ
�
1

4
0hR1ab;cn

abc − nab
d
dt

0hR1ab þ 2na
d
dt

0hR1ta

�
þ r

�
11

6
Eab0hR1ab

þ nab
�
−
11

3
Ea

c0hR1bc þ
11

6
Eabδ

ij0hR1ij þ 11

3
Ba

cϵbc
d0hR1td þ 11

6
Eab

0hR1tt þ 11

12
0hR1ab;c

c −
11

6
0hR1ac;b

c

þ 11

12
δij0hR1ij;ab þ

d
dt

0hR1ta;b −
1

2

d2

dt2
0hR1ab

�
−
1

2
nabc

d
dt

0hR1ab;c þ
1

12
nabcd

�
11Eab

0hR1cd þ 0hR1ab;cd

���
þOðr2Þ; ð130aÞ

h
∘SR
ta ¼−2m

�
1

r

�
0hR1ta þ 1

2
0hR1tt na − 0hR1abn

bþ 0hR1bc na
bc

�
þ
�
nb
�

0hR1t½a;b�−
1

2

d
dt

0hR1ab

�
þnab

d
dt

0hR1tb

−
1

4
nbcf20hR1ab;cþ 0hR1bc;ag−

1

2
nabc

d
dt

0hR1bc

�
þ r

�
1

3
Bbcϵac

d0hR1bd þ
4

3
naEbc0hR1bc

þ 1

6
nb
�
−4Ecða0hR1bÞcþ 2Eabδ

ij0hR1ij þ 4BcðaϵbÞcd0hR1td þEab
0hR1tt þ 20hR1a½b;c�

c− 20hR1½b
c
;c�a

�

−
1

3
nabBcdϵbd

i0hR1ci þ
1

12
nbc

�
−8Bb

dϵd
i½a0hR1c�i þ 10Ebc

0hR1ta þBdiϵaci
0hR1bd þ 60hR1ta;bc− 6

d
dt

0hR1ab;cþ 3
d
dt

0hR1bc;a

�

þnabc
�
2Eb

d0hR1cd þ Ebcδ
ij0hR1ij þ 2Bb

dϵcd
i0hR1ti þ 1

2
Ebc

0hR1tt þ 1

2
0hR1bc;d

d− 0hR1bd;c
dþ 1

2
δij0hR1ij;bcþ

1

2

d
dt

0hR1tb;c −
1

4

d2

dt2
0hR1bc

�

−
1

6
nbcd

�
6Ebc

0hR1ad þ 20hR1bða;cÞd

�
−
1

4
nabcd

d
dt

0hR1bc;d−
1

3
nbcdiBb

jϵaij
0hR1cd þnabcdi

�
Ebc

0hR1di þ
1

6
0hR1bc;di

���

þOðr2Þ; ð130bÞ

h
∘SR
ab ¼ −2m

�
1

r

�
20hR1tðanbÞ − 20hR1cðanbÞ

cþ 3

2
0hR1cdnab

cd

�
þ
�

0hR1tða;jcjnbÞ
c þ 0hR1tc;ðanbÞ

c− 0hR1cða;jdjnbÞ
cd

−
1

2
0hR1cd;ðanbÞ

cdþ 3

4
0hR1cd;inab

cdi− ncða
d
dt

0hR1bÞc

�
þ r

�
2

3
nðaϵbÞdiBcd0hR1ci þ 2

3
ncEcða0hR1bÞt þ

5

6
nabEcd0hR1cd

þ 2

3
Sym
ab

nac
�
Ebcδ

ij0hR1ij − 2Eðbd0hR1cÞd þ 2BðbdϵcÞdi0hR1ti þ 0hR1b½c;d�
d − 0hR1½c

d
;d�b

�
−
2

3
ncd

�
Ecða0hR1bÞd

þ 2Bc
iϵdiða0hR1bÞt

�
−
2

3
nabcBdiϵci

j0hR1dj þ
1

6
Sym
ab

nacd
�
8Bc

iϵi
j½b0hR1d�j þ 4Bijϵbdj

0hR1cj − Bc
iϵbdiδ

jk0hR1jk

þ 4Bc
iϵbdi

0hR1tt þ 60hR1tb;cd − 6
d
dt

0hR1bc;d þ 3
d
dt

0hR1cd;b

�
þ 4

3
ncdiBc

jϵijða0hR1bÞd þ
1

12
nabcd

�
2Ecdδ

ij0hR1ij

− 4Ec
i0hR1di þ 4Bc

iϵdi
j0hR1tj þ 0hR1cd;i

i − 20hR1ci;d
i þ δij0hR1ij;cd

�
−
2

3
Sym
ab

nacdi
�
Ec½d0hR1b�i þ 0hR1cðb;dÞi

�

−
4

3
ncdijðaϵbÞjkBc

k0hR1di þ
1

4
nabcdij

�
Ecd

0hR1ij þ 0hR1cd;ij

���
þOðr2Þ: ð130cÞ
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Here the first two orders, ∼1=r and ∼r0, arise purely from Lξ1h
∘S10
μν , while the linear-in-r terms contain contributions from

both Lξ1h
∘S10
μν and h

∘SR0

μν .
The “singular times singular” piece of the perturbation is given in Eq. (63), which we rewrite here as

h
∘SS
tt ¼ −4m2

�
Eabnab þ r

�
1

3
_Eabnab

�
11 − 6 log

�
2m
r

��
þ 2

3
Eabcnabc

��
þOðr2Þ; ð131aÞ

h
∘SS
ta ¼ −4m2

�
Ebcnabc þ r

�
2

9
_Eabnb

�
7 − 3 log

�
2m
r

��
þ 1

6
Eabcnbc −

2

9
_Bb

dϵacdnbc
�
4 − 3 log

�
2m
r

��

þ 1

9
_Ebcnabc

�
19 − 12 log

�
2m
r

��
þ 1

2
Ebcdnabcd −

2

9
Bbc

iϵadinbcd
��

þOðr2Þ; ð131bÞ

h
∘SS
ab ¼ −4m2

�
−
1

3
Eab þ BðadϵbÞcdnc þ

2

3
EcðanbÞc −

1

6
Ecdδabncd − Bc

iϵdiðanbÞcd þ
5

6
Ecdnabcd

þ r

�
2

3
_Eab þ

4

9
_EcðanbÞc

�
4 − 3 log

�
2m
r

��
þ 1

3
_Ecdδabncd þ

1

9
ncdðaf3EbÞcd − 4 _Bjcj

iϵbÞdi

�
4 − 3 log

�
2m
r

���

−
4

9
Bcd

jϵijðanbÞcdi þ
2

9
_Ecdnabcd

�
4 − 3 log

�
2m
r

��
þ 1

3
Ecdinabcdi

��
þOðr2Þ: ð131cÞ

In h
∘SS
μν we have simply rewritten h

∘SS0
μν , as given in

Eq. (63), in terms of nL ≔ ni1 � � � nil instead of
n̂L ¼ nhLi. This will simplify the conversion to a fully
covariant form, as required for use in a puncture scheme;
such a conversion can be done following the method
in Ref. [38].

h
∘SS
μν and the leading 1=r terms in h

∘SR
μν were given

previously in paper I.12 The ∼r0 and linear-in-r terms in

h
∘SR
μν appear here for the first time. We also provide our full

results for the singular field in a user-ready Mathematica
form in the Supplemental Material [75].
This completes our calculation of the second-order

singular field. In the next section, we turn to the skeleton
stress energy that this field is associated with.

IV. THE DETWEILER STRESS ENERGY:
DERIVATION AND PROPERTIES
IN HIGHLY REGULAR GAUGES

To find the form of Tμν
2 in a practical highly regular

gauge, we first find it in the rest gauge. We then find its
transformation to the generic highly regular gauge and
derive some of its useful properties. However, before doing
so, we discuss how the stress energy is defined in self-force
theory.

A. Stress-energy tensors in self-force theory

We begin by reiterating our comment in the introduc-
tion: in self-force theory founded on matched asymptotic
expansions, we cannot freely prescribe a stress energy
based on some desired physical characteristics.
Instead, we can only prescribe the values of the multi-
pole moments in the local metric perturbation. The
stress-energy tensor, when it is well defined at all, is
defined by the Einstein curvature tensor of the local
perturbations.
The construction is more easily explained if we revert to

an ordinary Taylor series hμνðx; ϵÞ ¼ ϵh1μνðxÞ þ ϵ2h2μν þ
Oðϵ2Þ rather than the self-consistent expansion. The
stress energy would then also have the form of a Taylor
series,

Tμνðx; ϵÞ ¼ ϵTμν
1 ðxÞ þ ϵ2Tμν

2 ðxÞ þOðϵ3Þ; ð132Þ

where

8πTμν
1 ≔ δGμν½h1�; ð133Þ

8πTμν
2 ≔ δGμν½h2� þ δ2Gμν½h1; h1�: ð134Þ

To obtain such a series from our results in the previous
section, we could expand the worldline γ around a back-
ground geodesic, following Ref. [45]; this would introduce
a mass dipole moment into h2μν, which would contribute
to Tμν

2 .

12The 0hR1ab term in Eq. (134c) of paper I has a typo and has
been corrected in Eq. (130c) to 0hR1cd nab

cd.
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Even in that simpler approach, we should note that
Eq. (132) need not be an actual Taylor expansion of an
extended stress-energy distribution describing an extended
material body; the quantities Tμν

n are the same for a black
hole with some multipole structure as for a material body
with the same multipole structure, even though the finite-
sized black hole does not have a well-defined stress energy.
Tμν in Eq. (132) should instead be thought of as an effective
stress energy that encodes the object’s multipole structure.
The field equations translate this encoded information in
both directions, from the metric perturbations to Tμν and
from Tμν to the metric perturbations.
In the self-consistent scheme, additional, more tan-

gible subtleties enter. First, we have not actually calculated
the perturbations hnμν that appear in the self-consistent
expansion; these are defined as the coefficients in an
expansion at fixed ðzμ; uμÞ in an external, ϵ-independent
coordinate system. We have instead calculated the fields

h
∘ n
μν, which are the coefficients in such an expansion in an

ϵ-dependent coordinate system. Second, even if we had

obtained hnμν rather than h
∘ n
μν, we would not define T

μν
1 using

Eq. (133). If we did, we would find that Tμν
1 is not the stress

energy of a point mass; to see this, note that if δGμν½h1�
were equal to a point-mass stress energy, then ∇νT

μν
1 ¼

∇νδGμν½h1� ¼ 0 would imply that γ is a geodesic of the
background gμν. Since our point mass is accelerated, we
instead have

ϵδGμν½h1� ¼ 8πϵTμν
1 þOðϵ2Þ; ð135Þ

where Tμν
1 is the stress energy of a point mass on the

accelerated curve γ, and the Oðϵ2Þ term is a spatially
noncompact source proportional to the acceleration.13

Given these subtleties, there are at least two paths we can
follow (in Sec. V, we discuss a third path that one of us
followed in previous papers). One option is to work with
total quantities, defining

8πTμν ≔ δGμν½ϵh1 þ ϵ2h2� þ ϵ2δ2Gμν½h1; h1�
þOðϵ3Þ ð136Þ

or, expanding around g
∘
μν,

8πTμν ¼ δG
∘ μν½ϵh

∘ 1 þ ϵ2h
∘ 2� þ ϵ2δ2G

∘ μν
½h
∘ 1
; h
∘ 1�

þOðϵ3Þ; ð137Þ

where, recall, δG
∘ μν

and δ2G
∘ μν

are the linearized and
quadratic Einstein tensors defined on the background

g
∘
μν. Alternatively, we can use g

∘
μν and h

∘ n
μν to define

nth-order stress energies:

8πTμν
1 ≔ δG

∘ μν½h
∘ 1�; ð138Þ

8πTμν
2 ≔ δG

∘ μν½h
∘ 2� þ δ2G

∘ μν
½h
∘ 1
; h
∘ 1�: ð139Þ

We will use both the form (138)–(139) and the summed
forms (136)–(137).
With the definition (138), Tμν

1 is precisely invariant under
the transformation

h
∘ 1
μν → h

∘ 1
μν þ Lξg

∘
μν ð140Þ

because δG
∘ μν

is invariant under that transformation. We can
therefore calculate Tμν

1 in any convenient gauge; the result
will be that Tμν

1 is the stress energy of a point mass on γ,
given in Eq. (21). In Sec. V we review that calculation, and
its extension to second order, in the Lorenz gauge.
In contrast, the quantity Tμν

2 is gauge dependent. As
discussed in the introduction, in a generic gauge compatible
with the assumptions of matched asymptotic expansions, it
is not obvious whether Tμν

2 is well defined because

δ2G
∘ μν

½h
∘ 1
; h
∘ 1� is a product of distributions.14 By construc-

tion, the total quantity δG
∘ μν½h

∘ 2� þ δ2G
∘ μν

½h
∘ 1
; h
∘ 1� vanishes at

all points r > 0, which might suggest that we can promote
it to a distribution on r ≥ 0 even if we cannot promote

δ2G
∘ μν

½h
∘ 1
; h
∘ 1� on its own. But (i) there is no unique choice of

this promotion, and (ii) even if we choose some way to
promote the total quantity, there is no pragmatic purpose to
doing so unless we can write a well-defined field equation

for h
∘ 2
μν (or h2μν). If all three quantities in Eq. (139) are

individually well defined as distributions on r ≥ 0, then we
can rearrange it to write

δG
∘ μν½h

∘ 2� ¼ 8πTμν
2 − δ2G

∘ μν
½h
∘ 1
; h
∘ 1�: ð141Þ

This (or an analog of it for h2μν) would allow us to solve for
the physical field h2μν, just as one can solve for the physical
first-order field. But if we have only defined the total

quantity δG
∘ μν½h

∘ 2� þ δ2G
∘ μν

½h
∘ 1
; h
∘ 1�, then we have not given

δ2G
∘ μν

½h
∘ 1
; h
∘ 1� by itself a distributional definition, meaning

we do not have a meaningful equation for h2μν on the
domain r ≥ 0.

13The fact that the extra term is noncompact rather than
confined to γ can be easily confirmed with an explicit calculation
in the Lorenz gauge, where we know h1μν and not just 0h1μν.

14Note that a quantity of the form ∂2h1 ∼ 1=r3, which appears

in δ2G
∘ μν

½h
∘ 1
; h
∘ 1�, is well defined as a distribution but not as a

locally integrable function.
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We can glean more about the nature of this problem by

splitting h
∘ 1
μν into singular and regular fields, such that

δ2G
∘ μν

½h
∘ 1
; h
∘ 1� ¼ δ2G

∘ μν
½h
∘S1

; h
∘S1� þ 2δ2G

∘ μν
½h
∘R1

; h
∘S1�

þ δ2G
∘ μν

½h
∘R1

; h
∘R1�: ð142Þ

The final term, δ2G
∘ μν

½h
∘R1

; h
∘R1�, is a smooth field

defined at all points in the spacetime and, as such, is
well-defined distributionally. The second term behaves like

δ2G
∘ μν

½h
∘R1

; h
∘S1� ∼ h

∘R1∂2h
∘S1

∼ h
∘R1

=r3. This is not locally

integrable, but because h
∘R1
μν is smooth, δ2G

∘ μν
½h
∘R1

; h� (for
any hμν) is a smooth linear operator acting on hμν, which we
write as

Q
∘ μν

R ½h� ≔ δ2G
∘ μν

½h
∘R1

; h� ð143Þ

[a special case of Eq. (A5)]. This is then well defined in the
distributional sense when acting on the integrable func-

tion h
∘S1
μν .

Therefore the problems arise entirely from the “singular
times singular” piece of the second-order Einstein tensor,

δ2G
∘ μν

½h
∘S1

; h
∘ S1�. In the next two sections, following an

argument in paper I, we show that, in a highly regular
gauge, this generically problematic quantity is an integrable
function on r ≥ 0. We then use that fact to derive the
second-order stress-energy tensor in these gauges.

B. Stress-energy in the light cone rest gauge

Before specializing to the rest gauge, we first consider
the distributional nature of the individual terms in the class
of highly regular gauges. While it is not immediately

obvious that δ2G
∘ μν

½h
∘S1

; h
∘S1� is well defined as a distribution

in these gauges, we note that because h
∘R1
μν features no terms

with explicit factors of m, and h
∘S1
μν only features terms with

an explicit factor of m, δ2G
∘ μν

½h
∘S1� must be the source for

h
∘SS
μν in h

∘ 2
μν as it features all the terms with the factorm2. This

implies that

δ2G
∘ μν

½h
∘S1� ¼ −δG

∘ μν½h
∘SS�; r > 0: ð144Þ

The previous relation is of course true in any gauge as we
are free to choose the split of h2μν so that is satisfies this
equality. However, in the class of highly regular gauges, the
right-hand side of Eq. (144) behaves as ∼1=r2 because

h
∘SS
μν ∼ r0. As such, it is a locally integrable function across

the entire space r ≥ 0, so we can write

δ2G
∘ μν

½h
∘S1� ¼ −δG

∘ μν½h
∘SS�; ∀ r: ð145Þ

We can now specialize to the rest gauge and evaluate the
definition of Tμν

2 in Eq. (139). Because the regular field is a
vacuum solution, only terms involving the singular parts of
the perturbations contribute to the stress-energy tensor.
Hence, Eq. (139) can be simplified to

8πTμν
20 ¼ δG

∘ μν½h
∘SR0

� þ δG
∘ μν½h

∘SS0 � þ 2δ2G
∘ μν

½h
∘S10

; h
∘R10 �

þ δ2G
∘ μν

½h
∘S10

; h
∘S10 �: ð146Þ

In the rest gauge, the quantities on the right sum to zero for
r > 0 and are all ordinary integrable functions. Therefore
their sum vanishes when integrated against a test function,
and we can write

Tμν
20 ¼ 0: ð147Þ

This means, in physical terms, that, in a nonspinning
object’s local rest gauge, its stress energy is effectively that
of a point mass in the external background (up to possible
corrections of order ϵ3).

C. Stress energy in a generic highly regular gauge

We now find Tμν
2 by finding how the stress energy

transforms under a gauge transformation from the rest

gauge. We use Eqs. (69)–(72) to write the h
∘ n
μνs in terms of

the rest gauge quantities. Additionally, we require the
identities (C2)–(C4) from Ref. [45], which are

LξA½g� ¼ δA½Lξg�; ð148Þ

L2
ξA½g� ¼ δA½L2

ξg� þ 2δ2A½Lξg;Lξg�; ð149Þ

LξδA½h� ¼ δA½Lξh� þ 2δ2A½Lξg; h�; ð150Þ

where A is a tensor of arbitrary rank which is constructed
from a metric g. The first of these reduces to the invariance
of the linearized Einstein tensor, δGμν½Lξg� ¼ 0, when the
background is vacuum.
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Together, the above replacements and identities gives

8πTμν
2 ¼ δG

∘ μν½h
∘ 20 þ Lξ1h

∘ 10 þ 1

2
L2
ξ1
g
∘ þ Lξ2g

∘� þ δ2G
∘ μν

½h
∘ 10 þ Lξ1g; h

∘ 10 þ Lξ1g
∘�;

¼ δG
∘ μν½h

∘ 20 � þ δ2G
∘ μν

½h
∘ 10

; h
∘ 10 � þ δG

∘ μν½Lξ1h
∘ 10 � þ 1

2
δG
∘ μν½L2

ξ1
g
∘ � þ 2δ2G

∘ μν
½h
∘ 10

;Lξ1g
∘� þ δ2G

∘ μν
½Lξ1g

∘
;Lξ1g

∘�;

¼ 8πTμν
20 þ Lξ1δG

∘ μν½h
∘ 10 � þ 1

2
L2
ξ1
Gμν½g∘ �;

¼ 8πTμν
20 þ 8πLξ1T

μν
1 : ð151Þ

In the first line, we have substituted Eqs. (69)–(72)
into the right-hand side of the definition (139). In the third
equality we have appealed to Eqs. (149) and (150). In the

fourth, we have appealed to Gμν½g∘� ¼ 0 and δG
∘ ½h

∘ 10 � ¼
8πTμν

10 ¼ 8πTμν
1 .

Equation (151) tells us we can write

Tμν
2 ¼ Tμν

20 þ Lξ1T
μν
1 : ð152Þ

This is not too surprising as it is just the transformation law
for a second-order tensor when the background tensor
vanishes [73]. In our case, we have effectively defined Tμν

2

as the second-order term in an expansion of the Einstein
tensor. However, note that the steps involved in Eq. (151)
rely on the properties of the highly regular gauges; we have
not established Eq. (152) for the transformation between
any two generic gauges.
Next, since Tμν

20 ¼ 0, Eq. (152) becomes

Tμν
2 ¼ Lξ1T

μν
1 : ð153Þ

The right-hand side was previously calculated in Eq. (D1)
of Ref. [45] and is rederived in Eq. (C11). It reads15

Lξ1T
μν
1 ¼−m

Z
γ
gμμ0g

ν
ν0u

μ0uν
0
�
ξρ1;ρ−

dξ1k
dτ

�
δ4ðx;zÞdτ; ð154Þ

where ξ1k ≔ uρξ
ρ
1 and we have removed the orthogonal

parts of the gauge vector, ξμ1⊥ ≔ Pμ
νξ

ν
1, as the worldline-

preserving condition sets them to zero. We detail the
derivation of Eq. (154) and various related results in
Appendix C.
By taking ξρ1 to be the gauge vector from Eq. (125) and

the proper time to be t, we find

dξ1k
dτ






γ

¼ −
dξt1
dt






γ

¼ 1

2
0hR1tt jγ ¼

1

2
uμuν0hR1μν jγ ð155Þ

and

ξρ1;ρjγ ¼ ð∂tξ
t
1 þ ∂aξ

a
1Þjγ;

¼ 1

2
ð−0hR1tt þ δab0hR1abÞ





γ
;

¼ 1

2
gαβ0hR1αβ





γ
: ð156Þ

Thus, the second-order stress-energy tensor in the highly
regular gauge is given by

Tμν
2 ¼ −

m
2

Z
uμuνðgαβ − uαuβÞ0hR1αβ δ4ðx; zÞdτ: ð157Þ

D. Point mass in the effective spacetime

With a short calculation, we can show the total stress
energy ϵTμν

1 þ ϵ2Tμν
2 derived above is exactly equal,

through order ϵ2, to the stress-energy tensor of a point
mass in the effective spacetime g̃μν ¼ gμν þ hRμν. That
stress-energy tensor is given by

T̃μν ¼ ϵm
Z
γ
ũμũν

δ4ðx − zÞffiffiffiffiffiffi
−g̃

p dτ̃: ð158Þ

Expanding this for small hRμν, we see that

T̃μν ¼ ϵm
Z
γ

dτ
dτ̃

uμuνδ4ðx; zÞ
�
1 −

1

2
ϵgαβhR1αβ

�
dτ þOðϵ3Þ;

¼ ϵm
Z
γ
uμuνδ4ðx; zÞ

�
1 −

1

2
ϵ

�
gαβ − uαuβ

�
hR1αβ

�
dτ

þOðϵ3Þ; ð159Þ

where we have used the standard expansion of a determi-
nant and expanded dτ=dτ̃ using

dτ
dτ̃

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hRμνuμuν

q ¼ 1þ 1

2
ϵhR1μν uμuν þOðϵ2Þ; ð160Þ

which follows from
15The τ derivative term has a missing minus sign in Ref. [45],

which has been added here.
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−1 ¼ g̃μνũμũν ¼ ðgμν þ hRμνÞ
�
dτ
dτ̃

�
2

uμuν: ð161Þ

Comparing Eqs. (157) and (159), we see that

ϵTμν
1 þ ϵ2Tμν

2 ¼ T̃μν þOðϵ3Þ: ð162Þ

This confirms Detweiler’s postulate in Ref. [47].
As Detweiler also noted, we can use this to write the field

equations in a more transparent form. Equation (145),
together with Gμν½g̃� ¼ 0, implies that

Gμν½g� ¼ ϵδGμν½hS1� þ ϵ2δGμν½hSR�
þ 2ϵ2δ2Gμν½hS1; hR1� þOðϵ3Þ;

¼ δG̃μν½ϵhS1 þ ϵ2hSR�; ð163Þ

where “Gμν½g�” is to be understood as the expansion of that
quantity through order ϵ2, and δG̃μν is the linearized
Einstein tensor constructed from g̃μν. In words, the
Einstein curvature of the physical spacetime (extended to
all r > 0 from outside the body) is identical to the line-
arized Einstein curvature of the perturbation ϵhS1μν þ ϵ2hSRμν
atop the effective background g̃μν. Combining this with
Eq. (162) allows us to write the field equations in the form
of a point mass sourcing a linear perturbation of an effective
background:

δG̃μν½ϵhS1 þ ϵ2hSR� ¼ 8πT̃μν þOðϵ3Þ: ð164Þ

In the remainder of the section, we derive several useful
properties of this stress energy. In all cases, the properties
further show that the Detweiler stress energy behaves as an
ordinary stress-energy tensor in the effective metric, even as
it behaves strikingly unlike an ordinary stress energy in the
physical spacetime.

E. Raising and lowering indices

Suppose our stress energy were an ordinary tensor
Tμνðx; ϵÞ with the expansion Tμν ¼ ϵTμν

1 þ ϵ2Tμν
2 þOðϵ3Þ.

Its indices would be raised and lowered with gμν, such that

Tμ
ν ¼ gμρTρν; ð165Þ

¼ ϵT1
μ
ν þ ϵ2ðT2

μ
ν þ h1μρT

ρν
1 Þ þOðϵ3Þ: ð166Þ

Clearly our stress energy cannot behave in this way. If it did,
then the second-order stress energy with one index down

would contain the term h1μρT
ρν
1 , which has the form ∼ δ3ðxaÞ

r .
This is manifestly ill defined.
Instead, we show that the stress-energy tensor’s indices

are raised and lowered with the effective metric g̃μν ¼
gμν þ hRμν. That is, if we define

8πT̃μ
ν ≔ δGμ

ν½ϵh1 þ ϵ2h2�
þ ϵ2δ2ðgμρGρνÞ½h1; h1� þOðϵ3Þ; ð167Þ

8πT̃μν ≔ δGμν½ϵh1 þ ϵ2h2�
þ ϵ2δ2ðgμρgνσGρσÞ½h1; h1� þOðϵ3Þ ð168Þ

in analogy with Eq. (136), then

T̃μ
ν ¼ g̃μαT̃αν

¼ ϵT1ν
μ þ ϵ2ðT2ν

μ þ 0hR1μαTαν
1 Þ þOðϵ3Þ; ð169Þ

T̃μν ¼ g̃μαg̃νβT̃αβ

¼ ϵT1
μν þ ϵ2ðT2

μν þ 20hR1αðμgνÞβT
αβ
1 Þ þOðϵ3Þ: ð170Þ

The right-hand sides of Eqs. (167) and (168) are the
expansions of the Einstein tensor with mixed indices and
both indices down, as given in Eqs. (A8)–(A13).
We establish these results following the same method we

used to derive Tμν
2 . Repeating the steps in Eq. (151), we find

the analogs of Eq. (153),

T̃μ
ν ¼ ϵT1ν

μ þ ϵ2Lξ1T
1ν
μ ; ð171Þ

Tμν ¼ ϵT1ν
μ þ ϵ2Lξ1T

1
μν: ð172Þ

The Lie derivatives are given in Eqs. (C24) and (C23). By
substituting the values of the gauge vector from Eq. (125)
and converting to Fermi-Walker coordinates, we see that
the individual components for mixed indices are given by

Lξ1T
1t
t ¼ m

2

Z
δab0hR1abδ

4ðx; zÞdt; ð173aÞ

Lξ1T
1a
t ¼ 0; ð173bÞ

Lξ1T
1t
a ¼ m

Z
0hR1ta δ4ðx; zÞdt; ð173cÞ

Lξ1T
1b
a ¼ 0; ð173dÞ

and for both indices down by

Lξ1T
1
tt ¼ −

m
2

Z
ð20hR1tt þ δab0hR1abÞδ4ðx; zÞdt; ð174aÞ

Lξ1T
1
ta ¼ −m

Z
0hR1ta δ4ðx; zÞdt; ð174bÞ

Lξ1T
1
ab ¼ 0: ð174cÞ

SECOND-ORDER GRAVITATIONAL SELF-FORCE IN A HIGHLY … PHYS. REV. D 103, 124016 (2021)

124016-23



In covariant form, these become

Lξ1T
1ν
μ ¼ −

m
2

Z
γ
½ðgαβ − uαuβÞ0hR1αβuμ

− 20hR1μαuα�uνδ4ðx; zÞdτ; ð175Þ

Lξ1T
1
μν ¼ −

m
2

Z
γ
½ðgαβ − uαuβÞ0hR1αβuμuν

− 4uαuðμ0hR1νÞα�δ4ðx; zÞdτ: ð176Þ

We see by comparison with Eq. (157) that these agree with
the order-ϵ2 terms in Eqs. (169) and (170).

F. Conservation of stress energy

Again suppose our stress energy were an ordinary tensor
Tμνðx; ϵÞ with the expansion Tμν ¼ ϵTμν

1 þ ϵ2Tμν
2 þOðϵ3Þ.

It would then be conserved in gμν∶ g∇νTμν ¼ 0, which
would imply

ϵ∇νT
μν
1 þϵ2ð∇νT

μν
2 þδΓμ

ρνT
ρν
1 þδΓν

ρνT
μρ
1 Þ¼Oðϵ3Þ: ð177Þ

Here g∇ν is the covariant derivative compatible with gμν,
and δΓμ

ρν ≔ 1
2
gμσð2h1ρðν;σÞ − h1ρν;σÞ is the linear correction to

the Christoffel symbol associated with gμν. Clearly our
stress energy cannot satisfy Eq. (177) as it involves ill-

defined terms of the form ð∂αh1βγÞTμν
1 ∼ δ3ðxaÞ

r2 .
Instead, the Detweiler stress energy is conserved in the

effective spacetime, meaning

∇̃νT̃μν ¼ 0: ð178Þ

This follows from the textbook result that a point-mass
stress energy in a metric g̃μν is conserved if and only if the
mass moves on a geodesic of that metric.
This result may seem at odds with the Bianchi identity,

which tells us that the left-hand side of the field equations
has zero divergence in gμν∶ g∇νGμν½g� ¼ 0, which implies

∇νδGμν½h1� ¼ 0; ð179Þ

and

∇νδ
2Gμν½h1;h1�þδΓμ

ρνδGρν½h1�þδΓν
ρνδGμρ½h1�¼0: ð180Þ

These identities hold for any smooth rank-2 symmetric
tensor h1μν. In our case, they hold for all r > 0, but Eq. (180)
is ill defined on the domain r ≥ 0 because it involves
products of distributions. The equality that does hold is the
expansion of ∇̃νGμν½g� ¼ Oðϵ3Þ,

∇νδ
2Gμν½h1;h1�þδΓ̃μ

ρνδGρν½h1�þδΓ̃ν
ρνδGμρ½h1�¼0; ð181Þ

which can be reduced to

2∇νδ
2Gμν½hS1; hR1� þ δΓ̃μ

ρνδGρν½hS1�
þ δΓ̃ν

ρνδGμρ½hS1� ¼ 0: ð182Þ

Here δΓ̃μ
ρν ≔ 1

2
gμσð2hR1ρðν;σÞ − hR1ρν;σÞ. We obtain the reduc-

tion (182) using ∇̃νGμν½g̃� ¼ 0 and noting that, because of
Eq. (145), we have

∇νδ
2Gμν½hS1; hS1� ¼ 0: ð183Þ

To see why (the expansion of) ∇̃νGμν½g� ¼ Oðϵ3Þ holds
true, recall Eq. (163): as a distribution in a neighborhood of
γ, Gμν½g� ¼ δG̃μν½ϵhS1 þ ϵ2hSR� þOðϵ3Þ (again interpret-
ing the left-hand side as its expansion through order ϵ2).
The Bianchi identity ∇̃νδG̃

μν½ϵhS1 þ ϵ2hSR� ¼ 0 then trivi-
ally implies ∇̃νGμν½g� ¼ Oðϵ3Þ.

G. Gauge invariance under smooth transformations

All of our results are valid for any member of our class of
highly regular gauges. However, our derivation relied on
the notion of a worldline-preserving transformation: for
each highly regular gauge, we have started from an
associated rest gauge in which the worldline is identical.
In this section, as a consistency check, we show that under
an arbitrary smooth transformation between two highly
regular gauges with differing, gauge-related worldlines,
the functional form of the Detweiler stress energy is
invariant.
Under such a transformation, we have [45]

hR1μν → hR1μν þ Lξ1gμν; ð184Þ

zμ → zμ − ϵξμ1 þOðϵ2Þ: ð185Þ

Following through the calculation in Eq. (151) once again,
but now accounting for the shift (185) in the worldline, we
obtain Tμν

2‡ ¼ Tμν
2 þ ðLξ1 þ £ξ1ÞTμν

1 , where we denote our
new gauge with a double-ended dagger. Here £ξ1 acts on
Tμν
1 ’s dependence on zμ; see Ref. [45] for a thorough

description of this type of transformation.
Equation (C16) gives the action of the Lie derivatives on

Tμν
1 . The gauge vector in that equation can be expressed in

terms ofΔhR1μν by solvingLξ1gμν ¼ ΔhR1μν (no longer subject
to ξa1jγ ¼ 0). The result is that the terms involving gauge
vectors are again given by Eqs. (155) and (156) but with
hR1μν replaced by ΔhR1μν . Making those substitutions, we
obtain

ðLξ1 þ £ξ1ÞTμν
1 ¼ −

m
2

Z
uμuνðgαβ − uαuβÞΔhR1αβ

× δ4ðx; zÞdτ: ð186Þ
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This generalizes our previous result for the special case of a
transformation from a rest gauge. In that case, hR10μν ¼ 0 on
the worldline, resulting in ΔhR1μν ¼ hR1μν .
The stress energy in the new gauge is therefore

Tμν
2‡ ¼ Tμν

2 þ ðLξ1 þ £ξ1ÞTμν
1 ;

¼ −
m
2

Z
uμuνðgαβ − uαuβÞhR1‡αβ δ4ðx; zÞdτ; ð187Þ

which confirms that the functional form of Eq. (157) is
always valid for smoothly related highly regular gauges
but with a regular field specific to the particular gauge.
Note that this is also consistent with the value of zero in
the rest gauge. In the rest gauge, hRμνjγ ¼ 0, leading to a
vanishing Tμν

20 .

V. THE DETWEILER STRESS ENERGY
IN THE LORENZ GAUGE

In the last section we established the validity of the
Detweiler stress energy in the class of highly regular gauges.
In this section, we investigatewhether it remains valid in less
regular gauges. We do not consider commonly used gauges
with pathological singularities away from γ, such as the
Regge-Wheeler-Zerilli [76] or radiation gauges [77]. We
focus on the Lorenz gauge, the most commonly used gauge
possessing thegeneric level of regularity assumed inmatched
asymptotic expansions:hnμν ∼mn=rn andhnμν is smooth away
from the particle. The Lorenz gauge has been central tomany
foundational derivations in self-force theory and has been
used in numerous practical calculations [10].More relevantly
here, it has been the basis for the concrete development of
second-order numerical schemes [13,20,38,51,56,78].
Unfortunately, it is not possible to perform the same

treatment in the Lorenz gauge as in the highly regular gauge
because the transformation from a highly regular gauge to
the Lorenz gauge is singular on γ, makingLξT

μν
1 ill defined.

We instead perform a direct calculation of the right-hand
side of Eq. (136). The calculation is based on a particular
distributional definition of δ2Gμν½h1; h1�, which we call the
Detweiler canonical definition. Using this choice, we
recover the Detweiler stress energy.
At the end of the section we discuss whether this result

applies in all gauges with generic regularity.

A. Field equations and local form
of the metric perturbation

In the self-consistent Lorenz-gauge scheme [36,39,44],
the gauge condition

∇νh̄μν ¼ 0 ð188Þ

is imposed on the total perturbation hμν, not on each
coefficient hnμν. Here

h̄μν ≔ hμν −
1

2
gμνgαβhαβ ð189Þ

is the trace-reversed perturbation. The coefficients hnμν
satisfy

Eμν½h̄1�� ¼ 0 for x ∉ γ; ð190Þ

Eμν½h̄2�� ¼ −δ2Gμν½h1�; h1�� for x ∉ γ; ð191Þ

where

Eμν½h̄� ≔ −
1

2
ðh̄μν;αα þ 2Rμ

α
ν
βh̄αβÞ ð192Þ

is the linearized Einstein tensor in the Lorenz gauge, and
where we use an asterisk to denote Lorenz-gauge
quantities.
In this gauge we have access to the full perturbations hnμν

rather than just h
∘ n
μν [36,38,44]. The first-order singular field

takes the form

hS1�μν ¼ 2m
r

ðgμν þ 2uμuνÞ þOðr0Þ; ð193Þ

where uα ¼ ð1; 0; 0; 0Þ so that uαnα ¼ 0. The second-order
singular field is split into three pieces,

hS2�μν ¼ hSS�μν þ hSR�μν þ hδm�
μν ; ð194Þ

which satisfy

Eμν½h̄SS� ¼ −δ2Gμν½hS1�; hS1�� for x ∉ γ; ð195Þ

Eμν½h̄SR� ¼ −2δ2Gμν½hR1�; hS1�� for x ∉ γ; ð196Þ

Eμν½h̄δm�� ¼ 0 for x ∉ γ: ð197Þ

hSS�μν contains all local terms explicitly proportional tom2. It
has the form∼m2=r2, as in a generic gauge compatible with
matched expansions, but we will not need explicit expres-
sions for it. The combined quantity hSR�μν þ hδm�

μν is the
analog of what we have called hSRμν in the highly regular
gauge, containing products ofm with hR1μν . The components
of the “singular times regular” pieces are given by

hSR�tt ¼ −
m
r
hR1�ab n̂ab þOðr0Þ; ð198aÞ

hSR�ta ¼ −
m
r
hR1�tb n̂ab þOðr0Þ; ð198bÞ

hSR�ab ¼ m
r
½2n̂cðahR1�bÞa − δabhR1�cd n̂cd

− ðhR1�ij δij þ hR1�tt Þn̂ab� þOðr0Þ ð198cÞ
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and

hδm�
tt ¼ −

m
3r

ðhR1�ab δab þ 6hR1�tt Þ þOðr0Þ; ð199aÞ

hδm�
ta ¼ −

4m
3r

hR1�ta þOðr0Þ; ð199bÞ

hδm�
ab ¼ m

3r
ð2hR1�ab þ δabδ

cdhR1�cd þ 2δabhR1�tt Þ
þOðr0Þ: ð199cÞ

hδm�
μν consists entirely of l ¼ 0 terms in a decomposition of

the form h2μν ¼
P

l≥0 h
2ðlÞ
μν ðt; rÞn̂L.

Previous papers by one of us (e.g., [8,36]) defined
effective stress-energy tensors associated with particular
pieces of the metric perturbation:

8πTμν
1 ≔ Eμν½h̄1��; ð200Þ

8πTμν
δm ≔ Eμν½h̄δm��; ð201Þ

and similar for higher multipole moments. These defini-
tions are well defined to all orders in perturbation theory,
and they provide a complete characterization of the object’s
multipole structure. However, they do not describe the full
Einstein curvature. Moreover, the total curvature is
obscured by the division of “singular times regular” pieces
into hSR�μν and hδm�

μν . The clean split into the field equa-
tions (196) and (201) does not guarantee that, for example,
Eq. (196) holds distributionally for r ≥ 0.
In this paper, motivated by the results in highly regular

gauges, we deviate from the definitions in Refs. [8,36] and
instead use the definition of Tμν in Eq. (136). As in the
highly regular gauge, the regular fields are defined to be
solutions of the vacuum Einstein equations and their
Einstein tensor does not contribute to Tμν, leaving us with
the analog of Eq. (146),

8πTμν ¼ δGμν½ϵhS1� þ ϵ2hSS� þ ϵ2hSR� þ ϵ2hδm��
þ 2ϵ2δ2Gμν½hS1�; hR1�� þ ϵ2δ2Gμν½hS1�; hS1��
þOðϵ3Þ: ð202Þ

To proceed from here we must choose a distributional
definition of δ2Gμν½hS1�; hS1��. Using the property
ϵ2∇νh̄

μν
SS� ¼ Oðϵ3Þ, we can rewrite Eq. (195) as

δGμν½h̄SS�� ¼ −δ2Gμν½hS1�; hS1�� þOðϵ3Þ for x ∉ γ: ð203Þ

In the highly regular gauge we get “for free” that the analog
of this equation [Eq. (145)] is true for r ≥ 0. In the Lorenz
gauge we only get that free cancellation off of the world-
line. However, we can define Eq. (203) to be true
distributionally on the region r ≥ 0:

δ2Gμν½hS1�; hS1�� ≔ −δGμν½hSS��; ∀ r: ð204Þ

δGμν½hSS�� is a linear operator acting on a locally intregable
function, making it (and therefore δ2Gμν½hS1�; hS1��) well
defined as a distribution on r ≥ 0.
However, the field hSS�μν is only defined in the form of a

local expansion around γ. We can therefore only apply
the definition (204) in an infinitesimal neighborhood
of γ. To localize it to such a neighborhood, we define
δ2Gμν½h1�; h1�� as the limit s → 0 of a continuous sequence
(i.e., a net) of distributions,

δ2Gμν½h1�; h1�� ≔ lim
s→0

δ2Gμν
s ½h1�; h1��; ð205Þ

where

δ2Gμν
s ½h1�; h1�� ≔ ð−δGμν½hSS�� þ 2δ2G½hS1�; hR1��

þδ2Gμν½hR1�; hR1��Þθðs − rÞ
þ δ2Gμν½h1�; h1��θðr − sÞ: ð206Þ

Here θ is the Heaviside function. With this definition,
outside the infinitesimal region r < s, δ2Gμν

s ½h1�; h1�� is
simply the smooth function δ2Gμν½h1�; h1��; inside the
region r < s, we split h1�αβ into hS1�αβ and hR1�αβ and then
replace δ2Gμν

s ½hS1�; hS1�� using the definition (204).
The definition (206) implies that as a distribution,
δ2Gμν½h1�; h1�� acts on test fields ϕμν via16

Z
ϕμνδ

2Gμν½h1�; h1��dV

≔ lim
s→0

�Z
ϕμνð−δGμν½hSS�� þ 2δ2G½hS1�; hR1��

þδ2Gμν½hR1�; hR1��Þθðs − rÞdV

þ
Z
r>s

ϕμνδ
2Gμν½h1�; h1��dV

�
: ð208Þ

Beyond a certain finite order in the local expansions of
hSS�μν , hS1�μν , and hR1�μν , this definition is insensitive to the
truncation order.
In Ref. [47], Detweiler takes Eq. (203) to be valid

distributionally on the region r ≥ 0, and so we refer to

16The integral over the region r > s is an ordinary integral of
smooth functions, which diverges as ∼1=s in the limit s → 0. The
first integral, on the other hand, is defined in the distributional
sense, such thatZ

ϕμνδGμν½hSS��θsdV ≔
Z

δGμν½ϕθs�hSS�μν dV: ð207Þ

Here θs ≔ θðs − rÞ, and we have used that δGμν is self-adjoint;
see the next section. Equation (207) also diverges as 1=s,
providing a counterterm that cancels the 1=s divergence from
the r > s integral.
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Eq. (205) as the Detweiler canonical definition of
δ2Gμν½h1�; h1��. We return to some of its consequences at
the end of the section.
With Eq. (204), our Einstein equations become

8πTμν ¼ ϵδGμν½hS1�� þ ϵ2ðδGμν½hSR�� þ δGμν½hδm��
þ2Qμν

R ½hS1��Þ þOðϵ3Þ; ð209Þ

where Qμν
R ½h� ≔ δ2Gμν½hR1�; h�, in analogy with Eq. (143).

In Eq. (209) we use the expressions in terms of locally
defined fields, despite our discussion of localization above,
because the total Einstein tensor identically vanishes for
r > 0. If we were to write a field equation to be solved for
h2�μν globally in the external spacetime, with δGμν½h2�� on
the left and δ2Gμν½h1�; h1�� on the right, we would instead
use Eq. (205).

B. Distributional analysis

To determine the distribution Tμν, we integrate the right-
hand side of Eq. (209) against a test function.
Doing so requires the adjoints of our operators δGμν and

Qμν
R . Here the adjoint of a linear operator Dμν is defined by

ϕμνDμν½ψ � −D†μν½ϕ�ψμν ¼ ∇μK
μ
D; ð210Þ

where ϕμν and ψμν are arbitrary smooth fields and
Kμ

D ¼ Kμ
Dðϕ;ψÞ. If ψμν is a distribution, then we define

the integral of Dμν½h� against a test field ϕμν as

Z
ϕμνDμν½ψ �dV ≔

Z
D†μν½ϕ�ψμνdV: ð211Þ

The linearized Einstein operator is self-adjoint [79];
that is, δG†μν½h� ¼ δGμν½h�. Q†μν

R is given in Eq. (A7) with
h♭μν ¼ hR1�μν .
We now evaluate the integral of Eq. (209) against a test

field ϕμν,

8π

Z
ϕμνTμνdV¼

Z
ϕμνfϵδGμν½hS1��þ ϵ2ðδGμν½hSR��

þδGμν½hδm��þ2Qμν
R ½hS1��ÞgdV: ð212Þ

We then move the operators δGμν and Qμν
R onto the test

tensor using Eq. (211), so that the right-hand side of
Eq. (212) becomes

Z
ðδGμν½ϕ�fϵhS1�μν þ ϵ2ðhSR�μν þ hδm�

μν Þgþ2ϵ2Q†μν
R ½ϕ�hS1�μν ÞdV

¼ lim
R→0

Z
r>R

ðδGμν½ϕ�fϵhS1�μν þ ϵ2ðhSR�μν þ hδm�
μν Þg þ ϵ22Q†μν

R ½ϕ�hS1�μν ÞdV

¼ lim
R→0

�Z
r>R

fϕμνδGμν½ϵhS1� þ ϵ2ðhSR� þ hδm�Þ� þ 2ϵ2ϕμνQ
μν
R ½hS1��gdV

−
Z
r¼R

fKδG
α ½ϵhS1� þ ϵ2ðhSR� þ hδm�Þ� þ 2ϵ2KQ

α ½hS1��gdSα
�
; ð213Þ

whereKD
α denotes the boundary term for the operatorD. In the first equality we note that as the integral is now over ordinary

integrable functions instead of distributions, we can remove the region r < R and then take the limit as R goes to 0.
Following that, in the second equality, we integrate by parts using Stokes’s theorem to move the operators back onto the
metric perturbations. The values of KD

α are given by

KδG
α ½h� ¼ 1

2
ϕβμhβμ;α −

1

2
hβμϕβμ;α þ ϕβ

βhμ½α;μ� þ hββϕμ½μ;α� þ
1

2
ϕα

βhμμ;β −
1

2
hαβϕμ

μ;β þ hβμϕαβ;μ − ϕβμhαβ;μ: ð214Þ

and

KQ
α ½h� ¼ 1

8
½hβγfϕζ

ζhR1�βγ;α þ ϕβγhR1�ζ
ζ
;α
− 4ϕα

ζhR1�βζ;γ − 2ϕαβhR1�ζ
ζ
;γ
g − hββfϕγ

γhR1�ζ
ζ
;α
þ ϕγζðhR1�γζ;α − 2hR1�αγ;ζÞg

þ 2fhαβð2ϕγζhR1�βγ;ζ þ 2ϕγ
γhR1�½ζ

ζ
;β�Þ þ hR1�βγðϕβγhζζ ;α − hζζϕβγ ;α þ 2hβζϕγζ ;α − hβγϕζ

ζ ;α

þ 2ϕζ
ζhβ½γ ;α� − 2ϕαβhζζ ;γ − 2hβζϕαζ ;γ þ hαβϕζ

ζ ;γ þ 2ϕβ
ζ½hαζ ;γ þ hαγ ;ζ − hγζ ;α�

− ϕβγhαζ ;ζ − ϕα
ζhβγ ;ζ − 2hβζϕαγ ;ζ þ hβγϕα

ζ
;ζ þ hαζϕβγ ;ζÞ

þ hR1�α
βðhγζϕγζ ;β − hγγϕζ

ζ ;β þ hβγϕζ
ζ ;γ þ 2ϕγ

γhζ ½ζ;β� − ϕγζ½hγζ ;β − 2hβγ ;ζ�
− 2hγζϕβγ ;ζ þ 2hγγϕβ

ζ
;ζÞg�; ð215Þ
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while the surface element in Fermi-Walker coordinates is
given by

dSα ¼ −R2nαdtdΩþOðR3Þ; ð216Þ

where nα ¼ ð0; niÞ and the minus sign comes from the
orientation of the normal vector to the boundary of the
region r > R.
To evaluate the volume integral, note that the integrand is

order ϵ3 off the worldline,

ϵδGμν½hS1�� þ ϵ2ðδGμν½hSR� þ hδm��
þ 2Qμν

R ½hS1��Þ ¼ Oðϵ3Þ; r > 0: ð217Þ

So the volume integral contributes nothing to the final
result and can be ignored, leaving only the boundary terms:

Z
ϕμνTμνdV ¼ −

1

8π
lim
R→0

Z
r¼R

ðϵKδG
α ½hS1��

þ ϵ2KδG
α ½hSR�� þ ϵ2KδG

α ½hδm��
þ2ϵ2KQ

α ½hS1��ÞdSα þOðϵ3Þ: ð218Þ

C. Evaluation of boundary terms

For the rest of this section, all occurrences of hR1�μν and
ϕμν are evaluated on the worldline, but we omit the notation

for visual clarity. We substitute hS1�μν from (193), hSR�μν from
(198) and hδm�

μν from (199) into Eq. (214), giving

KδG
α ½hS1�� ¼ −

2mnβ
r2

ðϕμ
μuαuβ − 2ϕβ

μuαuμ

þ gαβϕμνuμuνÞ þOð1=rÞ; ð219Þ

KδG
α ½hSR�� ¼ −

mnαn̂ab

2r2
ð2hR1�ac ϕb

c þ 2hR1�ta ϕtb

− hR1�tt ϕab − δijhR1�ij ϕab − hR1�ab ϕc
c

− hR1�ab ϕttÞ þOð1=rÞ; ð220Þ

KδG
α ½hδm�� ¼ −

m
6r2

½6ϕαanaðδijhR1�ij þ 2hR1�tt Þ
þ nαð2hR1�ab ϕab þ 8hR1�ta ϕt

a − 10hR1�tt ϕa
a

− 5δijhR1�ij ϕb
b þ 5δijhR1�ij ϕtt

þ 6hR1�tt ϕttÞ� þOð1=rÞ: ð221Þ

Note that we only require terms of order 1=rn where
n ≥ 2 as all other terms will vanish after taking the limit
R → 0. We follow the same procedure for KQ

α , substituting
Eq. (193) into Eq. (215), to get

KQ
α ½hS1�� ¼ m

r2
½nαðhR1�tt ϕa

a − hR1�ab ϕab − 2hR1�ta ϕt
a þ δijhR1�ij ϕb

b − δijhR1�ij ϕtt þ 2hR1�tt ϕttÞ
þ nað4hR1�αb ϕa

b − hR1�αa ϕb
b − hR1�b

bϕαa − hR1�tt ϕαa − 2hR1�ab ϕα
b þ 2hR1�ta ϕtα − hR1�αa ϕtt

þ 2uαð2hR1�tb ϕa
b − 2hR1�tt ϕta − hR1�ta ϕb

b þ 2hR1�ab ϕb
t − hR1�ta ϕttÞÞ� þOð1=rÞ: ð222Þ

We then integrate each of these quantities with the
surface element from Eq. (216), noting that [74]

Z
n̂LdΩ ¼ 0 for l ≥ 1: ð223Þ

The first-order integral is given by

lim
R→0

Z
r¼R

KδG
α ½hS1��dSα ¼ −8πm

Z
ϕttdt; ð224Þ

and the second-order ones by

lim
R→0

Z
r¼R

KδG
α ½hSR��dSα

¼ −
8πm
9

Z
ðhR1�ab ϕab þ 2hR1�ta ϕt

a þ hR1�tt ϕa
a

− δijhR1�ij ϕtt − 3hR1�tt ϕttÞdt; ð225Þ

lim
R→0

Z
r¼R

KδG
α ½hδm��dSα

¼ −
4πm
9

Z
ðhR1�ab ϕab þ 8hR1�ta ϕt

a − 8hR1�tt ϕa
a

− 3δijhR1�ij ϕb
b þ 5δijhR1�ij ϕtt þ 6hR1�tt ϕttÞdt; ð226Þ

lim
R→0

Z
r¼R

KQ
α ½hS1��dSα

¼ 4πm
3

Z
ðhR1�ab ϕab þ 4hR1�ta ϕa

t − 2hR1�tt ϕa
a

− δijhR1�ij ϕb
b þ 4δijhR1�ij ϕtt − 6hR1�tt ϕttÞdt: ð227Þ

D. Result: Recovering the Detweiler stress energy

As we explained in Sec. IVA, if we were to define
8πTμν

1 ≔ δGμν½h1�� in the self-consistent expansion, then
we would find that Tμν

1 contains a subdominant correction
that is extended away from γ. That prompted us to define
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the total Tμν in Eq. (136), rather than defining each Tμν
n

separately. However, our formula (218) now provides an
unambiguous split:

Z
ϕμνT

μν
1 dV ¼ −

1

8π
lim
R→0

Z
r¼R

KδG
α ½hS1��dSα; ð228Þ

Z
ϕμνT

μν
2�dV ¼ −

1

8π
lim
R→0

Z
r¼R

ðKδG
α ½hSR��

þKδG
α ½hδm�� þ 2KQ

α ½hS1��ÞdSα: ð229Þ

These are equivalent to the definitions (138) and (139).
At first order, we can immediately see from Eq. (224)

that Eq. (228) can be written as

Z
ϕμνT

μν
1 dV ¼ m

ZZ
ϕμνuμuνδ4ðx; zÞdτdV: ð230Þ

Since this holds for an arbitrary test field ϕμν, we infer that
Tμν
1 is the point-mass stress energy in Eq. (21), as expected;

a nearly identical derivation appears in Ref. [43].
Moving to second order, we sum the boundary terms to

obtain

lim
R→0

Z
r¼R

ðKδG
α ½hSR�� þ KδG

α ½hδm�� þ KQ
α ½hS1��ÞdSα

¼ 4πm
Z

ð2hR1�tt − δijhR1�ij Þϕttdt: ð231Þ

We can therefore write Eq. (229) as

Z
ϕμνT

μν
2�dV

¼ m
2

ZZ
ϕμνuμuνðuαuβ − gαβÞhR1�αβ dτdV: ð232Þ

This implies that, given Detweiler’s canonical definition of
δ2Gμν½h1�; h1��, Tμν

2� in the Lorenz gauge has the same
functional form as the Tμν

2 found in the highly regular gauge
in Eq. (157). Additionally, using the methods and argu-
ments outlined in this section, we can show that the
functional forms of T2

μ
ν and T2

μν in the Lorenz gauge
match the ones found in the highly regular gauge, as is to be
expected.

E. Generality of Detweiler’s canonical definition

In this section we have focused on the Lorenz gauge, but
much of the analysis immediately extends to all gauges
with a generic level of regularity. Specifically, the canonical
definition (205) suffices to determine a unique Tμν

ð2Þ given
by an equation of the form (229) (though in general we
would not split the “singular times regular” piece of the
field into the two pieces hSRμν and hδmμν ). Moreover, the
canonical definition implies that the Einstein equation can

be written in the form (164) for some distribution T̃μν

supported on γ. This in turn implies that ∇̃νT̃μν ¼ 0. We
conjecture, based on that fact, that our result in the Lorenz
gauge holds true in all gauges with generic regularity: the
Detweiler canonical definition of δ2Gμν½h1; h1� implies that
the Detweiler stress energy is valid. But we have not
attempted to prove this statement.
A separate question is whether the canonical definition

has practical utility. One of us made some use of it in
Ref. [13], but we defer further discussion of this question to
future work.

VI. APPLICATIONS

In this section, we briefly outline how the highly regular
gauge and second-order stress-energy tensor could be
utilized in numerical schemes.

A. Puncture scheme

As discussed in the introduction, there is only one extant
second-order implementation [13,20], which is based on a
puncture scheme in the Lorenz gauge. That scheme starts
from the gauge-fixed version of the Einstein equations in
Eqs. (190)–(191). In analogy with Eqs. (16)–(17), the
equations of the puncture scheme then become

Eμν½hR1�� ¼ −ðEμν½hP1��Þ☆; ð233Þ

Eμν½hR2�� ¼ −ðδ2Gμν½h1�; h1�� þ Eμν½hP2��Þ☆; ð234Þ

with the puncture moving on a trajectory governed by

D2zα

dτ2
¼ −

1

2
Pαμðgμρ − hR�ρ

μ Þð2hR�
ρβ;γ − hR�

βγ;ρÞuβuγ: ð235Þ

The puncture and residual fields satisfy the gauge-fixed
equation Eμν½hR1� þ hP1�� ¼ 8πTμν

1 in the entire domain
including γ, but ϵδGμν½hR1� þ hP1�� ¼ Oðϵ2Þ ≠ 0 at points
away from γ.
For the purpose of modeling an inspiral into a black hole,

these equations are solved with a two-timescale ansatz that
splits the solution into slowly varying amplitudes and
rapidly varying phases [11,13,20,80]:

hn�μν ¼
X
n0≥0

X
k

ϵn
0
hnn

0k
μν ðp;MA; xBLÞe−ik·φ; ð236Þ

zi ¼ zi0ðp;φÞ þ ϵzi1ðp;MA;φÞ þOðϵ2Þ: ð237Þ

Here xBL ¼ ðrBL; θBL;ϕBLÞ are Boyer-Lindquist spatial
coordinates in the black hole spacetime; zi are the Boyer-
Lindquist spatial coordinates of the puncture’s trajectory;
k ¼ ðkr; kθ; kϕÞ, and each ki runs over all integers;
k · φ ≔

P
i k

iφi; p is a set of three orbital parameters that
slowly evolve due to dissipation (e.g., orbital energy, angular
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momentum, and Carter constant); MA ¼ ðM1; J1Þ are cor-
rections to the central black hole’s mass and spin that slowly
evolve due to gravitational-wave absorption; and φ ¼
ðφr;φθ;φϕÞ are a set of three phase variables describing
the radial, polar, and azimuthal motion of the small object
around the central black hole.
We will not need the technical details of this two-

timescale puncture scheme for our discussion, but its
general structure will help to highlight some of the subtle-
ties that arise in converting our results into a usable
puncture in a highly regular gauge.
The singular field we have obtained has the form

hSμν ¼ ϵh
∘S1
μν þ ϵ2h

∘S2
μν þOðϵ3Þ; ð238Þ

where h
∘Sn
μν is given by Eqs. (70) and (127) with Eqs. (56),

(130), and (131). This differs in two significant ways from
the Lorenz-gauge case. First, as we reiterated at several
points in our presentation, the coefficients here are not in
precise correspondence with the coefficients hSnμν in a self-
consistent expansion in an ϵ-independent coordinate sys-
tem. Second, even if we had access to hSnμν , it would satisfy a
locally defined gauge condition, while we wish our residual
field (and therefore hRnμν ) to satisfy some gauge that
simplifies the linearized Einstein tensor in the external
background. If hSnμν and hRnμν satisfy different gauge con-
ditions, it is not obvious how one would write the field
equations in a gauge-fixed form.
To see the impact of these differences, suppose we define

punctures

hPnμν ≔ h
∘Sn
μν ; ð239Þ

with some choice of windowing to set hPnμν to zero outside
some region around γ, and that we then solve the field
equations (16) and (17) for residual fields hRn

μν . The left-
hand side of these field equations can be in any convenient
gauge. For concreteness, take it to be the Lorenz gauge,
such that

Eμν½hR1� ¼ −ðδGμν½hP1�Þ☆; ð240Þ

Eμν½hR2� ¼ −ðδ2Gμν½h1; h1� þ δGμν½hP2�Þ☆: ð241Þ

Counter to the fields in the scheme (233)–(234), the fields
here do not satisfy

Eμν½hR1� þ δGμν½hP1� ¼ 8πTμν
1 : ð242Þ

There is, effectively, an additional, order-ϵ2 source that
extends away from γ. We can understand the form of this

source by noting that δGμν½hP1� ∼ δG
∘ μν½hP1� þ ai∂hP1αβ .

Since δG
∘ μν½h

∘S1� ¼ 0, this implies that δGμν½hP1� contains

singular terms ∝ ai=r2. As a consequence, hR1
μν will be

discontinuous at r ¼ 0. In principle, hR2
μν will precisely

cancel this discontinuity, since ϵhR1
μν þ ϵ2hR2

μν will still sum
to hRμν þOðϵ3Þ on γ. But hR1

μν cannot be used in the equation

of motion for γ or in the term h
∘SR
μν in the second-order

puncture. Additional work would be required to correctly
formulate a self-consistent puncture scheme in a highly
regular gauge.
Fortunately, our results do suffice for other practical

formulations of the field equations. The expansions (236)–
(237) automatically include an expansion of the acceler-
ation, meaning that our local results can be incorporated
directly into a two-timescale implementation. After per-
forming the expansion

h
∘Sn
μν ¼

X
n0≥0

X
k

ϵn
0
h
∘Snn0k
μν ðp;MA; xBLÞe−ik·φ; ð243Þ

we can define punctures

hP1μν ¼
X
k

h
∘S1;0;k
μν e−ik·φ; ð244Þ

hP2μν ¼
X
k

ðh
∘S2;0;k
μν þ h

∘S1;1;k
μν Þe−ik·φ: ð245Þ

These punctures will fit directly into the two-timescale field
equations, with residual fields that are regular on γ. In
practical terms, the punctures would be constructed by
substituting the expansion of the trajectory, Eq. (237), into
our formulas for the singular field and then performing a
decomposition into the Fourier modes e−ik·φ.
The two-timescale expansion is specialized to the inspi-

ral phase of bound binary systems, somewhat limiting the
generality of our result. An alternative that could be used in
generic spacetimes would be an ordinary Taylor series
expansion in powers of ϵ. The field equations would then
be Eqs. (16)–(17), and the residual fields would again be
regular on γ. One can obtain the punctures in this scheme
from our singular field by substituting an ordinary Taylor
series zμðτ; ϵÞ ¼ zμðτÞ þ ϵzμ1ðτÞ þOðϵ2Þ; such an expan-
sion is detailed in Ref. [45]. Although this expansion breaks
down on long timescales, it should suffice for many
purposes.
Regardless of whether a two-timescale expansion or

Taylor expansion is used, several other steps are required to
construct a practical puncture. One must first convert our
Fermi-Walker coordinate expressions for h

∘Sn
μν into a covar-

iant form. This can be done using Synge’s world function
and near-coincidence expansions, as detailed in Ref. [38].
Following this, because the field equations are typically
solved using a decomposition into a basis of angular
harmonics, the singular field must be decomposed into
that basis.
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With the punctures in the highly regular gauge, we will
have achieved our aim: the second-order source term
δ2Gμν½h1; h1� will be far less singular than it is in a generic
gauge, substantially reducing the numerical cost of second-
order computations.

B. Mode-sum regularization

The calculation of the second-order stress-energy tensor,
Tμν
2 , in Sec. IV opens up another avenue for second-order

implementations: mode-sum regularization. Here, instead of
directly solving for the regular field (by way of the residual
field in the puncture scheme), we solve for the entirety of hnμν
and then subtract hSnμν from it to leave hRnμν . The difficulty
of subtracting one divergent quantity from another is
avoided by decomposing each field into multipole modes
(which are finite) and performing the subtraction at this level.
Schematically, following the notation in the introduction,

hRμνðzÞ ¼
X
ilm

½hilmðzÞ − hSilmðzÞ�Yilm
μν ðzÞ; ð246Þ

where z is a point on γ, and Yilm
μν denotes a basis of angular

harmonics. Analogous equations can be written for any
quantity constructed from derivatives of hRμν, such as the self-
force. This mode-sum method has been the basis for most
first-order implementations, and it is typically more efficient
than a puncture scheme.
To date, using thismethod has not been possible at second

order due to the strong divergence at the worldline. The
second-order field generically behaves as ∼1=r2, leading to
individual modes that diverge as ∼ log jrBL − roj, making
the mode-sum formula (246) incoherent. But it should now
be possible to implement this method using the weaker
divergence of the highly regular gauge and the knowledge
of Tμν

2 . As described in the introduction, in the highly
regular gauge the most singular part of the source for the
second-order field is ∼1=r2 and has individual modes
δ2Gilm ∼ log jrBL − roj; see the discussion surrounding
Eq. (26). This suggests that, at worst, the most singular
part of the solution has modes that behave as

h2ilm ∼ ðrBL − roÞ2 log jrBL − roj: ð247Þ

This is C1 differentiable, which is sufficiently smooth to
calculate one derivative of hR2μν (and hence the second-order
self-force) using mode-sum regularization. Therefore, this
should now be a viable approach.
Following the discussion in the previous section, we

assume the field equations are written in either a Taylor
expansion or two-timescale expansion. We write

δGμν½h1� ¼ 8πTμν
1 ; ð248Þ

δGμν½h2� ¼ −δ2Gμν½h1; h1� þ 8πTμν
2 ð249Þ

with the understanding that the metric perturbations and
stress energy have been reexpanded and recombined [e.g.,
in analogy with Eqs. (243)–(245)]. The specifics of these
reexpansions are not important for this discussion, but we
refer interested readers to Sec. 7.1 of Ref. [11] for details.
We must now formulate and solve Eqs. (248)–(249) in

such a way that (i) h1μν on the right-hand side of Eq. (249) is
in a highly regular gauge, and (ii) both equations can be
solved mode by mode in a numerically convenient gauge.
Combining these requirements is nontrivial because we do
not have a prescription for solving the field equations
globally in a highly regular gauge; these gauges are
inherently a local construction near the worldline.
To sketch a suitable method, we start by assuming that

the first-order modes are computed in some convenient
gauge (e.g., the Lorenz, Regge-Wheeler-Zerilli, or radia-
tion gauge). Such computations are now routine [10]. We
label the computed modes h1;numilm . From this starting point,
we can perform a first-order gauge transformation to the
highly regular gauge, mode by mode, so that

h1ilm ¼ h1;numilm þ ðLξ1gÞilm: ð250Þ

The vector ξμ1 can be found as a local expansion near the
worldline, in four dimensions, to some finite order in r,
with any convenient extension away from that local
neighborhood. The gauge perturbation Lξ1gμν can then
be decomposed into the chosen basis of modes using the
methods described in, e.g., Refs. [51,56,81]. An alternative
method of computing suitable modes h1ilm would be to use
our puncture scheme in the highly regular gauge at first
order; one could still use mode-sum regularization at
second order.
From the first-order modes in the highly regular gauge,

we can calculate the source modes in the field equation for
the full second-order perturbation,

δGilm½h2� ¼ −δ2Gilm½h1; h1� þ 8πT2
ilm: ð251Þ

Because the modes of h1μν are in the highly regular gauge,
the right-hand side has the desired regularity. We once
again suppose this field equation is solved in a convenient
gauge to obtain h2;numilm . In a well-behaved gauge such as
Lorenz, these modes will have the form (247); note that, in
this scenario, h2;numμν satisfies the Lorenz gauge condition,
but h1μν does not.
In order to subtract the singular field from the total field,

we next must put h2ilm and hS2ilm in the same gauge. There are
numerous ways of achieving this. For simplicity, we
assume that we do the same at second order as at first:
transform h2;numilm to the highly regular gauge, in the same
manner we transformed h1;numilm , such that

h2ilm ¼ h2;numilm þ ðLξ2gÞilm: ð252Þ
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As at first order, the vector ξμ2 can be found as a local
expansion in four dimensions, after which Lξ2gμν can be
decomposed into modes. The modes hS2ilm can be calculated
from the local expressions in this paper, and hR2μν can then be
calculated using the mode-sum formula (246).
The crux of this scheme is finding the vectors ξμn.

To elucidate how they might be found, we assume that
hn;numilm are computed in the Lorenz gauge. If we trace
reverse hnμν ¼ hn;numμν þ Lξngμν, take the divergence, and use∇νh̄n;numμν ¼ 0, then we find that the gauge vector is
determined by

□ξμn ¼ ∇νh̄
μν
n ; ð253Þ

where □ ≔ gμν∇μ∇ν. This equation can be solved in
Fermi-Walker coordinates using the expressions for hnμν
in this paper, and ξμn can then be converted to covariant form
following Ref. [45].

VII. CONCLUSION

In summary, we have derived two main results: (i) the
local metric perturbation in a class of highly regular gauges,
to sufficient order in r to implement a puncture scheme, and
(ii) the validity of the Detweiler stress energy in these
gauges. We expect both of these to enable more efficient
calculations of the second-order self-force and related
quantities in binary systems. To that end, we have also
outlined how they might be utilized in concrete numerical
schemes.
Our presentation stressed the utility of the highly regular

gauges as a means of overcoming a specific computational
challenge: the problem of infinite mode coupling. This
might seem to suggest that the challenge is purely a
symptom of a mode decomposition. But an analogous
problem would arise in a 3þ 1 calculation. The two source
terms δ2Gμν½h1; h1� and δGμν½hP2� in Eq. (17) would each
diverge like ∼1=r4, and those two divergences would
cancel each other to leave a regular remainder. To effect
this cancellation, one would have to calculate each of the
terms to extreme precision at small r, just as one would
have to go to extreme mode numbers to calculate
δ2Gilm½h1; h1� as a sum over first-order modes. This
high-precision problem would be alleviated in a highly
regular gauge.
Besides these pragmatic aspects, our results have clari-

fied a sense in which point masses remain a well-defined
consequence of matched asymptotic expansions beyond
linear order. To further bolster this, we have shown that the
Detweiler stress energy is valid outside the highly regular
gauges, at least in the Lorenz gauge but probably far more
broadly, if one adopts a canonical distributional definition
of the second-order Einstein tensor, δ2Gμν. On one hand,
this result is not entirely as compelling as the result in
highly regular gauges. The canonical definition requires

one to know the local solution for h2μν before one can use
δ2Gμν as a source for the global solution; in this sense, there
is little distinction between a puncture scheme and solving
the field equation (249) with the canonical δ2Gμν. Yet, on
the other hand, the canonical definition does provide a
compelling physical interpretation: a small object not only
moves as a test body in the effective metric, it also has the
stress energy of such an object. There may seem to be a
conflict between the object behaving as a test body and
simultaneously having a gravitating stress energy, but this
seeming contradiction is alleviated by the fact that the field
equation has the local form of a linearized Einstein
equation in the effective metric, given by Eq. (164) and
previously written by Detweiler. Just as in the ordinary
linearized Einstein equation with a point source, there is a
one-order mismatch between the test-body orbit and the
gravitational field it creates.
There are several ways one might extend our results. Our

calculations are only applicable to the case of a non-
spinning and spherically symmetric object; they should be
generalized to the more astrophysically relevant case of a
spinning, nonspherically symmetric body. It would also be
conceptually interesting, at the least, to extend them to
higher perturbative order in ϵ. At a more practical level, it
may be possible to make hSSμν even more regular by
removing the order r0 piece of the perturbation so that
hSSμν jγ ¼ 0. We have so far been unsuccessful in our attempts
to find a gauge transformation that achieves this, hinting
that these Oðr0Þ terms may contain invariant information
about the coupling between external tides and the object’s
local gravity. But we have also not ruled out the possibility
of gauging the terms away. All of these extensions might
draw on the work of Harte [82,83], who has shown how
nonlinearities can be reduced by adopting Kerr-Schild or
generalized Kerr-Schild gauges.
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APPENDIX A: LINEAR AND QUADRATIC
EINSTEIN TENSORS AND THEIR ADJOINTS

For a generic metric of the form gμν þ hμν satisfying
Gμν½g� ¼ 0, the Einstein tensorGμν½gþ h� can be expanded
in powers of hμν and its derivatives as

Gμν½gþ h� ¼ δGμν½h� þ δ2Gμν½h; h� þOðjhj3Þ; ðA1Þ

where the linear term is

δGμν½h�¼hαðμ;νÞαþgμνhα½α;β�β−
1

2
ðhμν;ααþhαα;μνÞ; ðA2Þ
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and the quadratic term is

δ2Gμν½h; h� ¼ 1

2
hμν;αhαβ ;β −

1

4
hββ;αhμν;α þ hμνhα½α;β�β þ hμα;βhν½α;β� þ

1

2
hββ;αhαðμ;νÞ

− hαβ ;βhαðμ;νÞ þ
1

4
hαβ ;μhαβ;ν þ hαβðhν½μ;α�β − hα½μ;jνjβ�Þ

þ gμν
�
hα½β;α�hβρ;ρ þ

1

8
hρρ;βhαα;β þ

1

4
hαρ;βhαβ;ρ −

3

8
hαβ;ρhαβ;ρ − hαβ½hρ½ρ;α�β þ hα½β;ρ�ρ�

�

− 2hðμρδGνÞρ½h�: ðA3Þ

The quadratic Einstein tensor δ2Gμν½h; h� is not uniquely
defined with two distinct arguments. For convenience we
adopt a symmetric bilinear definition of it,

δ2Gμν½h♭; h♯� ≔ 1

2

d2

dλ1λ2
Gμν½gþ λ1h♭ þ λ2h♯�j

λi¼0

; ðA4Þ

which reduces to Eq. (A3) when h♭μν ¼ h♯μν ¼ hμν. We also
define a linear operator

Qμν
♭ ½h♯� ≔ δ2Gμν½h♭; h♯�; ðA5Þ

which is the term bilinear in h♭μν and h♯μν if we expand

Gμν½gþ h♭ þ h♯� in powers of h♯μν and its derivatives.
That is,

Gμν½gþ h♭ þ h♯� ¼ Gμν½gþ h♭� þQμν
♭ ½h♯�

þOðjh♯j2; jh♭j2jh♯jÞ: ðA6Þ

In the body of the paper we make extensive use of the
adjoints of these quantities. The linearized Einstein tensor
is self-adjoint, satisfying δG†μν½h� ¼ δGμν½h�. The adjoint
of Qμν

♭ is

Q†μν
♭ ½ϕ� ¼ 1

2

�
ϕαβ

�
hμν♭ ;αβ − 2hðμ♭ α;

νÞ
β
þ gμν

�
h♭αρ;β

ρ −
1

2
h♭αβ;ρ

ρ

�
þ h♭αβ;

ðμνÞ
�
− hαβ♭ ð2ϕα

ðμ;νÞ
β − ϕμν

;αβ

− ϕαβ;
ðμνÞ þ gμνfϕρ

ρ;αβ þ ϕαβ;ρ
ρ − 2ϕα

ρ
;ρβgÞ þ ϕαðμhjβj♭ β;

νÞ
α
þ 2hαðμ♭ ϕjβj

β;
νÞ
α

þ ϕβ
β;α

�
hαðμ;νÞ♭ −

1

2
hμν;α♭

�
−
1

2
gμνðϕρ

ρ;βh♭αα;β þ 2h♭αβ;αfϕρ
ρ;β − 2ϕβρ;

ρg þ ϕα
αh♭β

β;ρ
ρ

− 2ϕαρ;βh♭αβ;ρ þ 3ϕαβ;ρh♭αβ;ρÞ þ h♭αβ;αðϕμν
;β − 2ϕβ

ðμ;νÞÞ þ ϕμν

�
h♭αβ;

αβ −
1

2
h♭αα;ββ

�

− 2ϕαðμhhνÞβ♭ ;αβ − 2hμν♭ ϕα
½α;β�

β þ hμν;α♭ ϕαβ;
β − 2hαðμ♭ ϕνÞβ

;αβ þ 2ϕαðμhνÞ♭ α;β
β

− ϕα
α

�
hβðμ;νÞ♭ β −

1

2
hμν;β♭ β

�
− 2ϕαðμh♭αjβj;νÞβ þ

1

2
ϕμν

;βh♭αα;β þ ϕβ
β;ðμh♭αjαj;νÞ

þ ϕαβ;ðμh♭αβ;
νÞ − ϕβðμ

;βh♭αjαj;νÞ − 2ϕαβ;
βhαðμ;νÞ♭ þ 4Sym

μν
ðhμα♭ ϕα

½ν;β�
β þ ϕμ½α;β�h

να;β
♭ Þ

�
: ðA7Þ

The expansion of the Einstein tensor with mixed indices
or both indices down can be expressed in terms of the
expansion with indices up. Again withGμν½g� ¼ 0, we have

Gμ
ν½gþ h� ¼ δðgμρGρνÞ½h� þ δ2ðgμρGρνÞ½h; h�

þOðjhj3Þ; ðA8Þ

where

δðgμρGρνÞ½h� ¼ gμρδGρν½h�; ðA9Þ

δ2ðgμρGρνÞ½h; h� ¼ gμρδ2Gρν½h; h� þ hμρδGρν½h�; ðA10Þ

and
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Gμν½gþ h� ¼ δðgμρgνσGρσÞ½h� þ δ2ðgμρgνσGρσÞ½h; h�
þOðjhj3Þ; ðA11Þ

where

δðgμρgνσGρσÞ½h� ¼ gμρgνσδGρσ½h�; ðA12Þ

δ2ðgμρgνσGρσÞ½h; h� ¼ gμρgνσδ2Gρσ½h; h�
þ 2hρðμgνÞσδGρσ½h�: ðA13Þ

APPENDIX B: CORRESPONDENCE BETWEEN
STF EXPANSION OF THE REGULAR FIELD

AND DERIVATIVES OF THE REGULAR FIELD

This section details how to relate the STF tensors featured
in the decomposition of the regular field in Sec. III B to
derivatives of the field evaluated on the worldline. The first
two orders match those presented in Appendix B of paper I
but with some STF labels switched.17

At order r0

Âð0;0Þ ¼ 0hR1tt jγ; ðB1Þ

B̂ð0;0Þ
a ¼ 0hR1ta jγ; ðB2Þ

Êð0;0Þ
ab ¼ 0hR1habijγ; ðB3Þ

K̂ð0;0Þ ¼ 1

3
δab0hR1ab





γ
: ðB4Þ

At order r

Âð1;1Þ
a ¼ 0hR1tt;ajγ; ðB5Þ

B̂ð1;1Þ
ab ¼ 0hR1tha;bijγ; ðB6Þ

Ĉð1;1Þ
a ¼ 1

2
ϵa

bc0hR1tb;c





γ
; ðB7Þ

D̂ð1;1Þ ¼ 1

3
0hR1ta;a





γ
; ðB8Þ

Êð1;1Þ
abc ¼ 0hR1hab;cijγ; ðB9Þ

F̂ð1;1Þ
ab ¼ 2

3
ϵcdða0hR1bÞc;d





γ
; ðB10Þ

Ĝð1;1Þ
a ¼ 3

5
0hR1habi;

b




γ
; ðB11Þ

K̂ð1;1Þ
a ¼ 1

3
δbc0hR1bc;a





γ
: ðB12Þ

Finally at order r2

Âð2;0Þ ¼ 1

6
0hR1tt;aa





γ
; ðB13Þ

Âð2;2Þ
ab ¼ 1

2
0hR1tt;habi





γ
; ðB14Þ

B̂ð2;0Þ
a ¼ 1

6
0hR1ta;b

b




γ
; ðB15Þ

B̂ð2;2Þ
abc ¼ 1

2
0hR1tha;bci





γ
; ðB16Þ

Ĉð2;2Þ
ab ¼ 1

3
ϵcdða0hR1jtcj;bÞd





γ
; ðB17Þ

D̂ð2;2Þ
a ¼ 3

10
0hR1t b

;habi




γ
; ðB18Þ

Êð2;0Þ
ab ¼ 1

6
0hR1habi;c

c




γ
; ðB19Þ

Êð2;2Þ
abcd ¼

1

2
0hR1hab;cdi





γ
; ðB20Þ

F̂ð2;2Þ
abc ¼ 1

2
STF
abc

ðϵapq0hR1hpbi;qcjγÞ; ðB21Þ

Ĝð2;2Þ
ab ¼ 6

7
STF
ab

ð0hR1hjai;jbjγÞ; ðB22Þ

Ĥð2;2Þ
a ¼ 1

5
ϵa

cd0hR1bc;d
b




γ
; ðB23Þ

Îð2;2Þ ¼ 1

10
0hR1habi;

ab




γ
; ðB24Þ

K̂ð2;0Þ ¼ 1

18
0hR1a a;b

b





γ
; ðB25Þ

K̂ð2;2Þ
ab ¼ 1

6
0hR1c c

;habi




γ
: ðB26Þ

APPENDIX C: LIE DERIVATIVE OF THE
FIRST-ORDER STRESS-ENERGY TENSOR

In our derivation of the Detweiler stress energy in
Sec. IV C, the transformation from the rest gauge to the
generic highly regular gauge is worldline preserving,
meaning its flow orthogonal to the worldline vanishes on
the worldline. However, in Sec. IVG, we consider the
change in the stress energy under a generic smooth trans-
formation. As discussed in Ref. [45], this necessitates the
introduction of another Lie derivative, £, which drags
points of the worldline, zμ, relative to points of the field,
xμ. Instead of Eq. (152), the second-order stress-energy
tensor now transforms as

17Equation (B5h) in paper I has the prefactor 1=6 which has
been corrected here in Eq. (B12) to 1=3.
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Tμν
2 ¼ Tμν

20 þ ðLξ1 þ £ξ1ÞTμν
1 : ðC1Þ

The Lie derivatives of Tμν
1 were previously presented by

one of us in Ref. [45]. Here we reproduce (and correct a
small error in) that result, and we derive analogous results
for the Lie derivatives of T1ν

μ and T1
μν.

1. Lie derivatives of Tμν
1

Equation (21) may be written so that it is invariant under
reparametrization as [7]

Tμν
1 ðx; zÞ ¼ m

Z
γ
gμμ0 ðx; zÞgνν0 ðx; zÞ_zμ

0
_zν

0

×
δ4ðx; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gρ0σ0 ðzÞ_zρ0 _zσ0
q ds; ðC2Þ

where gμμ0 ðx; zÞ is a parallel propagator from xμ
0 ≔ zμ

0
to xμ,

and _zμ
0 ≔ dzμ

0

ds . This form is particularly useful for our
calculations of Lie derivatives of Tμν

1 .
The ordinary Lie derivative of Eq. (C2) is evaluated in

the standard way, so

Lξ1T
μν
1 ¼ m

Z
γ
Lξ1

�
gμμ0 ðx; zÞgνν0 ðx; zÞ_zμ

0
_zν

0

×
δ4ðx; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gρ0σ0 ðzÞ_zρ0 _zσ0
q

�
ds: ðC3Þ

The Lie derivative of the Dirac delta is found by integrating
against a test function and is given by

Lξ1δ
4ðx; zÞ ¼ −ðξα01 ;α0 þ ξα

0
1 ∇α0 Þδ4ðx; zÞ: ðC4Þ

The other term in Eq. (C3) is

Z
γ
ðLξ1W

μνÞδ4ðx; zÞds ¼
Z
γ
ðξρ1Wμν

;ρ − 2ξðμ1 ;ρW
νÞρÞ

× δ4ðx; zÞds;

¼ −2
Z
γ
ξðμ1 ;ρW

νÞρδ4ðx; zÞds; ðC5Þ

where

Wμν ≔
gμμ0g

ν
ν0 _z

μ0 _zν
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρ0σ0 _zρ

0
_zσ

0
q : ðC6Þ

In the second line of Eq. (C5), we have used the identity
gαβ0;βδ

4ðx; zÞ ¼ 0 [7] to eliminate Wμν
;ρ. Taking our param-

eter s to be proper time, we see that

Z
γ
ðLξ1W

μνÞδ4ðx; zÞds

¼ −2
Z
γ
gðμμ0 ξ

νÞ
1 ;ρg

ρ
ν0u

μ0uν
0
δ4ðx; zÞdτ;

¼ −2
Z
γ
gμμ0g

ν
ν0u

ðμ0 Dξν
0Þ
1

dτ
δ4ðx; zÞdτ: ðC7Þ

The final line is obtained by integrating the previous line
against a test field ϕμν:

Z
ϕμν

Z
γ
gðμμ0 ξ

νÞ
1 ;ρg

ρ
ν0u

μ0uν
0
δ4ðx; zÞdτdV

¼
Z
γ
ϕμ0ν0uðμ

0
ξν

0Þ
1 ;ρ0u

ρ0dτ;

¼
Z

ϕμν

Z
γ
gμμ0g

ν
ν0u

ðμ0 Dξν
0Þ
1

dτ
δ4ðx; zÞdτdV: ðC8Þ

By combining Eqs. (C4) and (C7), we find

Z
γ
Lξ1

� gμμ0g
ν
ν0 _z

μ0 _zν
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρ0σ0 _zρ

0
_zσ

0
q δ4ðx; zÞ

�
ds

¼ −
Z
γ
gμμ0g

ν
ν0

��
2uðμ0

Dξν
0Þ
1

dτ
þ uμ

0
uν

0
ξρ

0
1 ;ρ0

�

× δ4ðx; zÞ þ uμ
0
uν

0
ξρ

0
1 ∇ρ0δ

4ðx; zÞ
�
dτ: ðC9Þ

This can be simplified by decomposing ξα
0

1 into parallel and
orthogonal parts,

ξα
0

1 ¼ −uα0ξ1k þ ξα
0

1⊥; ðC10Þ

where ξα
0

1⊥ ≔ Pα0
β0ξ

β0
1 . With this decomposition, we obtain

Lξ1T
μν
1 ¼ −m

Z
γ
gμμ0g

ν
ν0

�
2uðμ0

Dξν
0Þ
1⊥

dτ
δ4ðx; zÞ

þ uμ
0
uν

0
�
ξρ

0
1 ;ρ0 −

dξ1k
dτ

�
δ4ðx; zÞ

þ uμ
0
uν

0
ξρ

0
1⊥∇ρ0δ

4ðx; zÞ
�
dτ; ðC11Þ

which agrees with Eq. (D1) in Ref. [45] (with the correction
of a minus sign described in footnote 15).
As discussed in Ref. [45], because Tμν

1 can be written in
the form

Aμνðx; zÞ ¼
Z
γ
Bμνðx; zðsÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμ0ν0 _zμ

0
_zν

0
q

ds; ðC12Þ
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its Lie derivative with respect to the dependence on zμ is
given by

£ξ1A
μνðx; zÞ ¼

Z
γ
ξρ

0
1⊥∇ρ0Bμνðx; zÞdτ: ðC13Þ

For Tμν
1 , we see that

Bμν ¼ m
gμμ0g

ν
ν0 _z

μ0 _zν
0

−gρ0σ0 _zρ
0
_zσ

0 δ4ðx; zÞ; ðC14Þ

which implies

£ξ1T
μν
1 ¼ m

Z
γ
gμμ0g

ν
ν0

�
2uðμ0

dξν
0Þ
1⊥

dτ
δ4ðx; zÞ

þ uμ
0
uν

0
ξρ

0
1⊥∇ρ0δ

4ðx; zÞ
�
dτ; ðC15Þ

wherewehaveusedgαβ0;γ0δ
4ðx;zÞ¼0 and ξν1⊥∇ν _zμ¼ _zν∇νξ

μ
1⊥.

The latter identity follows from Eq. (B1) in Ref. [45].
Equations (C11) and (C15) sum to give

ðLξ1 þ £ξ1ÞTμν
1 ¼ −m

Z
γ
gμμ0g

ν
ν0u

μ0uν
0
δ4ðx; zÞ

×

�
ξρ1;ρ −

dξ1k
dτ

�
dτ; ðC16Þ

which matches Eq. (D2) from Ref. [45] (again with the
missing minus sign added). Note that this is also the same
as Eq. (154) because £ξ1T

μν
1 ¼ 0 for a worldline-preserving

transformation.

2. Lie derivatives of T1
μν and T1ν

μ

The first-order stress-energy tensor with both indices
down is given by

T1
μνðx; zÞ ¼ m

Z
γ
gμαgνβgαμ0 ðx; zÞgβν0 ðx; zÞ_zμ

0
_zν

0

×
δ4ðx; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gρ0σ0 ðzÞ_zρ0 _zσ0
q ds ðC17Þ

and with mixed indices by

T1ν
μ ðx; zÞ ¼ m

Z
γ
gμαgαμ0 ðx; zÞgνν0 ðx; zÞ_zμ

0
_zν

0

×
δ4ðx; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gρ0σ0 ðzÞ_zρ0 _zσ0
q ds: ðC18Þ

To calculate the ordinary Lie derivatives of these quantities,
we follow the same methods described above. The
results are

Lξ1T
1
μν ¼ m

Z
γ
gμαgνβgαα0g

β
β0 ð2ξ1ρ0;ðα

0
uβ

0Þuρ0 − uα
0
uβ

0

× ½ξρ01 ;ρ0 þ _ξ1k þ ξρ
0

1⊥∇ρ0 �Þδ4ðx; zÞdτ; ðC19Þ

Lξ1T
1ν
μ ¼ m

Z
γ
gμαgαα0g

ν
ν0 ðξ1ρ0;α

0
uν

0
uρ

0 − ξν
0
1 ;ρ0u

α0uρ
0

− uα
0
uν

0 ½ξρ01 ;ρ0 þ _ξ1k þ ξρ
0
1⊥∇ρ0 �Þδ4ðx; zÞdτ: ðC20Þ

Here and below, an overdot denotes a derivative with
respect to τ.
The Lie derivatives at zμ follow trivially from Eq. (C15).

Since we can pass the contraction through the derivative, as
in gμρ£ξ1T

ρν
1 ¼ £ξ1ðgμρTρν

1 Þ, we get

£ξ1T
1
μν ¼

Z
γ
gμαgνβgαμ0g

β
ν0 ð2uðμ

0 _ξν
0Þ
1⊥δ4ðx; zÞ

þ uμ
0
uν

0
ξρ

0
1⊥∇ρ0δ

4ðx; zÞÞdτ; ðC21Þ

£ξ1T
1ν
μ ¼

Z
γ
gμαgαμ0g

β
ν0 ð2uðμ

0 _ξν
0Þ
1⊥δ4ðx; zÞ

þ uμ
0
uν

0
ξρ

0
1⊥∇ρ0δ

4ðx; zÞÞdτ: ðC22Þ

Combining these results, we find

ðLξ1 þ £ξ1ÞT1
μν ¼ m

Z
γ
gμαgνβgαα0g

β
β0 ð2ξ1ρ0;ðα

0
uβ

0Þuρ0

þ 2uðα0 _ξβ
0Þ

1 þ uα
0
uβ

0 _ξ1k

− uα
0
uβ

0
ξρ

0
1;ρ0 Þδ4ðx; zÞdτ; ðC23Þ

ðLξ1 þ £ξ1ÞT1
μ
ν ¼ m

Z
γ
gμαgαα0g

ν
ν0u

ν0 ðξ1k;α
0 − ξρ

0
1;ρ0u

α0

þ _ξα
0

1 þ uα
0 _ξ1kÞδ4ðx; zÞdτ: ðC24Þ
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