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Gravitational-wave signals from binary neutron-star coalescences carry information about the star’s
equation of state in their tidal signatures. A major issue in the inference of the tidal parameters (or, directly, of
the equation of state) is the systematic error introduced by the waveform approximants. We use a bottom-up
approach based on gauge-invariant phase analysis and the Fisher information matrix to investigate waveform
systematics and identify biases in parameter estimation. Amock analysis of 15 different binaries indicates that
systematics in current waveform models dominate over statistical errors at signal-to-noise ratio (SNR) ≳80

for LIGO and Virgo at design sensitivity. This implies biases in the inference of the reduced tidal parameter
that are larger than the statistical 90% credible intervals. For example, while the neutron-star radius could be
constrained at the ∼5% level at SNR 80, systematics can be at the ∼10% level. We apply our approach to
GW170817 (SNR ∼ 30) and confirm that no significant systematic effects are present. Using frequencies
below≲1 kHz for the analysis, we estimate a neutron-star radius of 12.5þ1.1

−1.8 km. The latter is consistent with
an electromagnetic-informed prior and the recent NICER measurement. Exploring SNR≳100 in view of
third-generation detectors, we find that all the current waveformmodels lead to differences of at least 1σ in the
inference of the reduced tidal parameter. We conclude that current waveform models, including those from
numerical relativity, are insufficient to infer the equation of state in the loudest (and potentially most
informative) events that will be observed by advanced and third-generation detectors.

DOI: 10.1103/PhysRevD.103.124015

I. INTRODUCTION

The detection of GW170817 [1], the first coalescing
binary neutron-star (BNS) system seen by LIGO-Virgo
detectors, demonstrated how gravitational waves (GWs)
can be employed as a means to investigate the properties of
cold, dense matter [2–5]. Parameter estimation (PE) of GW
data gives direct information on the masses, spins, and tidal
parameters of the two objects involved in the coalescence.
Typical inspiral-merger matched-filtering analyses [6] are
commonly performed in the Fourier domain by matching
the data to a large number of template waveforms within a
Bayesian framework [7,8].
The tools employed during PE are based on Markov-

chain Monte Carlo (MCMC) methods or nested sampling
algorithms [9]. The template waveforms are obtained from
approximate solutions of the two-body problem in general
relativity (see, e.g., Refs. [10–13] and references therein).
Different approximations and methods give rise to different
template families, which—during the process of PE—may
in principle lead to different results in the recovery of the
source parameters. Errors and biases due to waveform
modeling choices are commonly labeled as waveform
systematics, and are the main topic of the present paper.

Significant waveform systematics, larger than statistical
uncertainties, have yet to be observed for binary neutron-
star systems: looking at the results coming from the recent
observations of BNS mergers, the parameters of both
GW190425 [14] and GW170817 [6] have been demon-
strated to be largely consistent between different waveform
families. However, recent studies [15–21] have pointed out
that the measured tidal parameters can be strongly biased
depending on the employed tidal and point-mass descrip-
tions of the waveform approximant. The agreement
between the different GW models employed in the PE
of the observed BNS signals is then mainly due to the
relatively low signal-to-noise ratio (SNR). With the increas-
ing sensitivities of next-generation detectors [22–27],
waveform systematics will affect the measurements, thus
leading to discordant (or inconclusive) results.
In this context, the necessity of understanding the errors

introduced by waveform systematics arises. In this paper,
we aim at tackling the issue for SNRs relevant for advanced
and third-generation (3G) detectors, and provide a bottom-
up approach to guide future BNS analyses. In particular,
in Sec. II, we summarize the current knowledge of the
theoretical tools which are employed to a priori predict
the presence of waveform systematics. We expand on the
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argument of Ref. [18] and propose a way, inspired by
Refs. [28,29], to estimate the bias that may affect tidal
parameters. In Sec. III, we summarize the key features of
the GW models used in our analysis and compare them by
computing their gauge-invariant phasing. In Sec. IV, we
perform mock PE experiments (injections) with 15 binaries
having a signal-to-noise ratio of ∼80, to study the posterior
distributions of the typical parameters of interest of a BNS
merger, such as tidal deformabilities, mass ratio, and spins.
Differently from previous studies, we focus on injections of
different masses and equations of state (cf. Refs. [15–17],
where fewer binaries have been considered) and nonspin-
ning waveforms (See Ref. [17] for spin effects.) In
particular, we discuss the impact of waveform systematics
on the inference of the tidal parameters and the estimation
of the radii of the single NSs. In Sec. V, we apply the
methods developed during the previous sections to
GW170817. We reanalyze the event’s data and find that
analyses which consider frequencies up to 1 kHz are less
affected by waveform systematics. Finally, in Sec. VI, we
estimate the impact of waveform systematics for BNS
events detected with third-generation detectors and find that
statistical errors will be comparable to waveform system-
atics from SNRs > 100 for values of the reduced tidal
parameter Λ̃ ≃ 400–1000 [see Eq. (2)].
Throughout the whole paper, we label the two bodies as

A and B. We denote the component masses as mA, mB, the
dimensionless spins of the bodies as χA;B, the total mass as
M ¼ mA þmB, and we define the chirp mass of the binary
as Mc ¼ ðmAmBÞ3=5=ðMÞ1=5. We define the quadrupolar
tidal parameters as

ΛA ≡ 2

3
C−5A kð2ÞA ; ð1Þ

where kð2ÞA is the dimensionless gravitoelectric Love num-
ber [30,31], and CA ≡GmA=ðc2RAÞ is the compactness
parameter. ΛA is also denoted by λ̄2 [32]. The quadrupole
tidal parameters enter at the leading order in the phase of
the waveform through the reduced tidal parameter [10,29]:

Λ̃ ¼ 16

13

ðmA þ 12mBÞm4
AΛA

M5
þ ðA ↔ BÞ: ð2Þ

We often switch between mass-rescaled quantities in
geometrical units c ¼ G ¼ 1 and physical units. Since
GM⊙ ≃ 4.925490947 μs or ≃1.476625038 km, the dimen-
sionless frequency ω̂ ¼ GMω relates to the frequency in
hertz by

f ¼ ω

2π
≃ 32.3125ω̂

M⊙

M
kHz: ð3Þ

II. ORIGIN OF SYSTEMATICS

Waveform systematics are intrinsically related to the
concept of measurability of the waveform parameters. They
become important when the differences due to template
choice are larger than those induced by noise fluctuations in
the detector (statistical uncertainties)—i.e., when the dis-
tributions of the estimated parameters θ̄ have a width σθ
smaller than the differences Δθ induced by waveform
models. In this section, we highlight, with basic analytical
arguments, that the systematics on tidal parameters cru-
cially depend on the frequency regime in which the
measurement is effectively performed.
Optimal gravitational-wave data analysis of compact

binaries are based on matched-filtering techniques in which
the data are “best matched” to waveform templates [33].
The accuracy requirements on the waveforms used in the
matched filtering depend on whether waveform models are
employed for detection or parameter estimation. In the
former case, waveforms are only required to be effectual;
while in the latter, they are required to be faithful [34]. To
quantify these concepts, it is necessary to introduce a metric
in the waveform space in order to measure how close two
waveforms are. The basic quantity used in GW analysis
theory is the Wiener inner product between two waveforms
hðtÞ and kðtÞ, defined by

ðhjkÞ ¼ 4ℜ
Z

h̃ðfÞk̃�ðfÞ
SnðfÞ

df; ð4Þ

where h̃ðfÞ is the Fourier transform of hðtÞ, and SnðfÞ is
the power spectral density (PSD) of the detector. The
faithfulness (or match) is the normalized and noise-
weighted inner product

F ¼ max
tc;ϕc

ðhjkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhjhÞðkjkÞp ; ð5Þ

where tc;ϕc are the time and phase, respectively, of the
waveform at a chosen reference time. Due to the arbitrary
nature of these parameters, the match is maximized over
them. The match F defines an “angle” in the waveform
space; F ¼ 1 indicates perfect overlap between h and k.
The mismatch F̄ ¼ 1 − F gives the loss in signal-to-noise
ratio (squared) when the waveforms are aligned in time and
phase. Accuracy requirements for both detection and PE
can be expressed in terms of F .1 A mismatch of F̄ ¼ 0.03
corresponds to ∼10% of detection losses [36], which is
assumed as the effectualness condition for a template bank.

1Although this has become a common practice, it would be
more appropriate to express these requirements by means of
suitable effectualness, faithfulness, and accuracy functionals; see
Ref. [35].
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Necessary conditions for faithful waveform models can
also be expressed in terms of F [35,36] (see below).
Generally, the parameters of a GW signal are measured

using matched-filtering techniques within a Bayesian
framework [9]. Defining d̃ðfÞ ¼ ÃdðfÞeiΨdðfÞ as the target
(injected or measured) strain, h̃ðf; θÞ ¼ Ãhðf; θÞeiΨhðf;θÞ as
the template waveform, and θ as the set of parameters on
which h depends, the likelihood function is

pðdjθÞ ∝ e−
1
2
ðd−hjd−hÞ: ð6Þ

Writing ðd − hjd − hÞ ¼ ðdjdÞ þ ðhjhÞ − 2ðdjhÞ, the
maximization of the likelihood can be interpreted as
the maximization of the matched-filter signal-to-noise
ratio (SNR),

ρ ¼ ðdjhÞffiffiffiffiffiffiffiffiffiffiffiðhjhÞp ∝ ℜ
Z

ÃdÃheiΔΨ

Sn
df; ð7Þ

where ΔΨ ¼ Ψh −Ψd. The SNR ρ quantifies the amount
of signal deposited in the recorded data d that is matching a
given template h. The optimal SNR, instead, is defined
as the matched-filtered SNR computed within the
assumption d ¼ h:

ρopt ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

p
: ð8Þ

This value identifies the SNR we would get if the signal
were coincident with the template and the noise realization
were identically zero. Further, from expanding Eq. (7)
around small noise realizations (n ≃ 0), one obtains
ρ ¼ ρopt þOðnÞ. The optimal SNR coincides with the
expected value of the actual matched-filter SNR under
different noise realizations, under the assumption of zero-
mean noise processes. GW data analysis delivers proba-
bility distributions of the sampled parameters (posteriors),
which can be characterized by their maximum probability
(peak) values and credible intervals. The measurements
thus obtained can be affected by statistical uncertainties due
to fluctuations of the detector noise and systematic effects
due to the waveform models employed. In the high-SNR
regime, the former mainly impact the posteriors by widen-
ing the credible intervals and scattering the maximum-
likelihood estimate, and their importance decreases as the
SNR grows, while the latter can influence PE by shifting
the posterior distributions with respect to the true values.

A. Statistical errors

Under the assumption of Gaussian noise, the variance σ2θi
on the measurement of a generic parameter θi due to
statistical errors can be computed through the Fisher
information matrix Fij (see, e.g., Refs. [35–37]). Given
a waveform model h̃ðf; θÞ ¼ ÃhðfÞeiΨhðfÞ, the element
ði; jÞ of F is defined as

Fij ¼ ð∂ihj∂jhÞ ≃ 4

Z
Ã2
h

Sn
ð∂iΨh∂jΨhÞdf; ð9Þ

where ∂i ¼ ∂
∂θi, and in the last equation we assume that the

amplitude Ã is not correlated to other parameters [37,38].2

From the Cramer-Rao bound, the variance of the distribu-
tion of θi can then be estimated from Eq. (9) as

σ2θi ≥ ðF−1Þii: ð10Þ

The Fisher matrix formalism further allows one to
identify the relevant frequency ranges at which different
parameters are measured. Focusing on Eq. (9), it is clear
that the frequency ranges that contribute to the computation
of σθi are those where the integrand

IiiðfÞ ¼ 4
Ã2
hðfÞ

SnðfÞ
½∂iΨhðfÞ∂iΨhðfÞ� ð11Þ

is largest and different from zero. Using post-Newtonian
(PN) waveforms, whose amplitude Ã behaves as ∼f−7=6, it
is immediate to show that on a logarithmic frequency axis
these integrands are of type Iii ∼ f−4=3S−1n ðfÞfpi=3, where
the exponent pi depends on the particular parameter
considered [39]. For example, the chirp mass has pM ¼
−10 and, for a fiducial equal-mass 1.4þ 1.4 M⊙ BNS
detected with the LIGO ZERO_det_high_power noise
curve [40], is entirely determined by the signal at low
frequencies ≲30 Hz. The symmetric mass ratio integrand
has pν ¼ −6, and the SNR integrand has pSNR ¼ 0, which
implies that they are given by the useful GW cycles
below 50 and 100 Hz, respectively, for the fiducial BNS
(see, e.g., Fig. 3 of Ref. [39] and Fig. 2 of Ref. [41]). By
contrast, the reduced tidal parameters have pΛ̃ ¼ þ10, i.e.,
IΛ̃ Λ̃ ∼ f2=SnðfÞ. Given that the employed noise curve is an
approximately flat function of f between 50 and 800 Hz,
the information on tides increases as ∼f2 in this interval, to
then reach a finite limit at higher frequencies and decay
after merger. This marked difference in the frequency
support of IΛ̃ Λ̃ indicates that the measurement of Λ̃ is
not strongly correlated to that of the chirp mass and mass
ratio [39], and that the magnitude of such a correlation
decreases as the upper frequency cutoff is increased,
because the tidal contribution becomes easier to distinguish
from the rest of the signal [39]. Nonetheless, nontidal
parameters can still impact the determination of Λ̃ (see
Appendix A): the maximum-likelihood values of Λ̃ min-
imize the overall high-frequency phase differences ΔΨ,
which can receive a non-negligible contribution from the
point-mass sectors of the approximants.

2Defining the amplitude parameter as A ¼ M5=6QðanglesÞ=
DL, the inverse of the Fisher matrix Σi;j is found to be block
diagonal, with ΣlnA;j ¼ 0 for all parameters j different from A.
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The integrands IiiðfÞ can be employed to quantify the
amount of information gathered on the parameter θi per
frequency bin. We define the cumulative information
gathered in an interval ½fa; fb� of the frequency domain as

Fiiðfa; fbÞ ¼
Z

fb

fa

IiiðfÞdf: ð12Þ

Values of Fiiðfa; fbÞ close to zero indicate that the range
½fa; fb� does not include relevant information on θi. From
Eq. (10), we obtain [42]

σ2θi ≥
1

Fiiðfmin; fmaxÞ
; ð13Þ

where fmax and fmin denote the upper and lower bounds of
the frequency interval chosen for the analysis.
Through the information distribution IiiðfÞ and its

integral Fiiðfmin; fÞ it is possible to find a most important
frequency range where most of the information on θi is
contained. We define the upper frequency fiX% that encloses
X% of information on the ith parameter from

Fiiðfmin; fiX%Þ ¼
X
100

· Fiiðfmin; fmaxÞ: ð14Þ

This definition corresponds to the frequency of the Xth
percentile of the information distribution IiiðfÞ. It is then

possible to estimate the most important frequency range for
the measurement of the ith parameter as the interval that
encloses 90% of the total information, identified by the 5%
and 95% percentiles ½fi5%; fi95%�. Focusing on the tidal
parameter Λ̃, Fig. 1 (left panel) shows the information
distribution IΛ̃ Λ̃ðfÞ and the cumulative information
FΛ̃ Λ̃ðfmin; fÞ computed for some exemplary binary con-
figurations using the expected design sensitivity curves for
current ground-based detectors and fmin ¼ 20 Hz. For
fiducial BNS mergers with LIGO-Virgo design sensitiv-
ities, the most important interval ½fΛ̃5%; fΛ̃95%� spans a

relatively high frequency range: fΛ̃5% ≈ 300 Hz, and

fΛ̃95% > 1 kHz. Note that the above intervals are indepen-
dent of the distance of the source from the detectors—i.e.,
the same most important frequency interval pertains to a
family of signals with varying strengths and SNRs.
The key role played by distance and SNR does not lie in

the determination of the most important interval, but
rather in governing the extent to which the signal can
be measured and the parameters extracted. Indeed, the
accuracy of the Λ̃ estimation depends crucially on the
maximum frequency at which we are able to discriminate
the signal from noise fluctuations. Within the assumption
of d ≈ h, it is possible to estimate the high-frequency
threshold fthr beyond which the additional signal power
exceeds the noise contributions as

FIG. 1. Left panel: the figure shows IΛ̃ Λ̃ (top) and FΛ̃ Λ̃ðfmin ¼ 20 Hz; fÞ (bottom) computed for different combinations of ðM; Λ̃Þ
employing nonspinning BNS signals with q ¼ 1, DL ¼ 40 Mpc, ι ¼ 0 and locating the source in the optimal sky location for the
involved detector at the GPS time of GW170817 (1187008882.4). We employ TaylorF2 to compute the derivatives of the phase with
respect to Λ̃ and TEOBResumS to account for corrections in the waveform amplitude. The curves are estimated using design PSD
expected for next-generation detectors: red lines refer to LIGO design sensitivity [23], purple lines refer to Virgo design sensitivity [26],
blue lines refer to KAGRA design sensitivity [43,44], and green lines refer to Einsten Telescope (configuration D) sensitivity [45,46].
The vertical lines represent the frequencies fΛ̃5%, f

Λ̃
95%, defined in Eq. (14). Right panel: estimations of fthr (thick lines) and LΛ̃ Λ̃ (thin

lines) as functions of ρthr ∈ ½1; 8� for the cases discussed in the left panel.
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4

Z
fmax

fthr

jh̃ðfÞj2
SnðfÞ

df ¼ ρ2thr; ð15Þ

where ρthr is an arbitrary threshold value for the SNR. In
the case of multiple detectors, the integral on the left-hand
side of Eq. (15) has to be replaced with the summation of
the integrals evaluated on the different detectors, as it is
for a usual summation of SNRs.
With this definition, we guarantee that the signal power

enclosed in the frequency range ½fthr; fmax� does not exceed
the threshold ρthr, which should be a negligible value
compared to the total SNR. The study of fthrðρthrÞ for
varying ρthr then allows the characterization of the most
informative portion of spectrum in terms of signal power.
For a fixed ρthr, louder signals will have higher fthrs;
conversely, extremely noisy signals will have fthr ∼ fmin.
Equation (15) is computed using the approximation of

optimal SNR, and then the definition of fthr is exact in the
limit d → h. In a realistic scenario, the noise contamination
is non-negligible, and consequently fthr can be interpreted
as an upper frequency bound beyond which the signal
power cannot exceed ρthr; this means that, even in the best-
case scenario d ≈ h, the signal power enclosed in the
frequency range ½fthr; fmax� will always be lower (or equal,
for d ¼ h) than the threshold power defined by ρthr. Once
fthr is known, it is possible to evaluate the ratio

LiiðfthrÞ ¼
Fiiðfthr; fmaxÞ
Fiiðfmin; fmaxÞ

ð16Þ

that quantifies the fractional information loss on the ith
parameter, since fthr represents, by construction, the
maximum frequency at which the signal is relevant.
Figure 1 (right panel) shows the estimation of fthr and
LΛ̃ Λ̃ as functions of ρthr. As ρthr grows, fthr decreases,
because a larger power is required to reach the increasing
threshold. Conversely, LΛ̃ Λ̃ increases, since when increas-
ing ρthr, the support ½fthr; fmax� increases, and this corre-
sponds to a larger loss of information. From the arguments
above, it follows, as a rule of thumb, that if fthr ≪ fΛ̃5%, then
LΛ̃ Λ̃ ≈ 1, and the measurement of the tidal parameter will
be strongly affected by noise fluctuation and by sensitivity
limits, with the possibility of an uninformative inference for
the tidal parameter. On the other hand, if fthr ≥ fΛ̃5%, the
estimated value for fthr can qualitatively indicate the range
over which modeling differences between waveform mod-
els are most relevant.
In Appendix B, we apply the method discussed above to

the injections studied in Sec. IV, in order to prove that the
injection studies are performed in an informative frame-
work for the tidal parameter Λ̃.
Using a GW170817-like template—i.e., a waveform

whose intrinsic and extrinsic parameters are fixed to the
maximum posterior probability of GW170817—and

setting ρthr ¼ 1, we find fthr ≈ 800 Hz for LIGO design
sensitivity and fthr ≈ 600 Hz for Virgo design sensitivity,
while for a network of three detectors, fthr ≈ 1 kHz
and LΛ̃ Λ̃ ≈ 20%.3

B. Systematic errors

Let us denote with jkj the norm of a waveform k with
respect to the scalar product introduced in Eq. (4). Then,
given a waveform model h to approximate the true signal s
recorded in the data d ¼ sþ n (where n denotes the noise
contribution), a simple accuracy standard for h can be
expressed as [35,36]

jd − hj2 ≤ ϵ2jnj2 ≡ ϵ2; ð17Þ

with ϵ2 ¼ 1 (or smaller, for a more strict requirement). A
simple geometrical interpretation for Eq. (17) can be
obtained by considering that the probability distribution
of the data d containing a signal s and noise n is
∝ e−1=2ðd−sjd−sÞ. Thus, the knowledge of s at the 1σ level
is limited to a unit ball in Wiener space,

ðd − sjd − sÞ ≤ 1: ð18Þ

By using the inequality jh − sj ≤ jh − dj þ jd − sj ¼
jδhj þ jnj with δh ¼ d − h, Eq. (17) corresponds to
demanding that, in the worst scenario where jδhj ¼ 1,
the errors introduced by systematics biases are equivalent to
doubling the noise of the detector [35]. This criterion can be
written in terms of the faithfulness as [e.g., Eq. (31) of
Ref. [35] ]

F > 1 −
ϵ2

2 ρ2
; ð19Þ

with ϵ2 ≤ 1. Note that sometimes it is suggested to relax
this criterion by taking ϵ2 ¼ N, the number of intrinsic
parameters of the system [47]. The above criteria are
necessary conditions that have to be satisfied by faithful
waveform models. However, their violation does not
guarantee the presence of biases. Indeed in Sec. IV D,
we show that all of our simulated signals lie well below the
faithfulness thresholds identified by Eq. (19), though not all
of them present obvious biases on Λ̃. Conversely, if a bias is
present, they do not quantify how large the uncertainty on
the parameters is.
The biases Δθ ¼ θ̄ − θtrue between the maximum like-

lihood (best fit) and the true parameters due to use of a
waveform model h instead of the exact waveform can be
estimated following Refs. [28,29]. The best-fit (possibly

3However, note that currently known events do not contain as
much high-frequency information as the signals displayed here.
We will further discuss real GW events in Sec. V.
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biased) values θ̄ minimize the function gðθÞ ¼
ðd − hðθÞjd − hðθÞÞ. Therefore, they have to be critical
points of g, thus leading to the condition

ð∂jhðθ̄Þjd − hðθ̄ÞÞ ¼ 0: ð20Þ

Linearly expanding hðθ̄Þ ≈ hðθtrueÞ þ Δθj∂jhðθtrueÞ and
inserting it in Eq. (20), one finds that

Δθi ¼ ðF−1ðθtrueÞÞijð∂jhðθtrueÞjd − hðθtrueÞÞ: ð21Þ

This equation can be combined with the accuracy criterion
of Eq. (17). Indeed, recalling that σ2ij ¼ ðF−1Þij, we can
write

ðσ2ijðθtrueÞÞ−1Δθi ¼ ð∂jhðθtrueÞjd − hðθtrueÞÞ; ð22Þ

multiplying both sides by Δθj, recalling that hðθ̄Þ ≈
hðθtrueÞ þ Δθj∂jhðθtrueÞ and approximating d ≈ hðθ̄Þ
immediately gives

ðσ2ijðθtrueÞÞ−1ΔθiΔθj ≈ ðd − hðθtrueÞjd − hðθtrueÞÞ: ð23Þ

Comparing Eq. (17) to Eq. (23), we note that indeed the
validity of the former implies that the systematic biases Δθi
are smaller than the uncertainties due to statistical fluctua-
tions, as expected.
Estimates of the parameters bias using Eq. (21) require

knowledge of the derivatives of the waveform model with
respect to the parameters. These quantities, however, are
nontrivial to evaluate for more sophisticated semianalytical
approximants. One might then try to directly minimize the
function gðθÞ. This in turn requires the minimization of
an integral in the multidimensional space of the binary
parameters, which can be computationally very expensive.
However, we are interested in the bias in the reduced tidal
parameter and thus assume that (i) the correlation with the
other parameters can be neglected, and (ii) the largest
biased parameter is Λ̃. The former assumption roughly
holds if the signal is sufficiently informative (see above);
the latter holds if the point-mass waveforms are sufficiently
accurate at low frequencies. In these conditions, minimiz-
ing the likelihood over the whole parameter space simply
reduces to computing

min
Λ̃

ðd − hðΛ̃Þjd − hðΛ̃ÞÞ ð24Þ

over a one-dimensional interval of Λ̃ values, assuming that
all other intrinsic parameters are correctly estimated. While
such a minimization has little practical use for GW PE, as
the true parameters θtrue are unknown, it can nonetheless
be used to estimate—given the parameters associated with
one particular model—the resulting value of Λ̃ that one
would get by repeating PE with a different waveform

model. Note that the new model can disagree with the
previous one also in the point-mass and spin sector, as
assumption (ii) above only requires the two models to agree
in the low-frequency limit. In Sec. IV D, we apply this
estimate to injection experiments. We find that it is able to
correctly capture the behavior of the different approximants
studied, and that the estimated values of Λ̃ (henceforth
denoted as Λ̃E) always fall within the 90% credible
intervals of the recovered posterior distributions, with
the exception of a few borderline cases where Λ̃E is
nonetheless extremely close to the upper 95th percentile.
In Sec. VI, instead, we apply Eq. (23) to two state-of-the-art
approximants to estimate the importance of waveform
systematics on PE with third-generation detectors.
Note that the arguments presented in this section do not

address the impact of prior assumptions in GW PE, but
rather focus on the maximum-likelihood estimates, which
exactly coincide with the maximum (posterior) probability
values only when considering uniform prior distributions.
As a general rule of thumb, as long as prior assumptions are
more constraining on the source parameters than the actual
observational information carried by the waveform, one
should expect a priori hypotheses to play an important role
in PE [29]. Extreme care is then required when dealing with
lower-SNR signals. For example, as discussed in Ref. [48],
when sampling directly in the component tidal parameters
ΛA, ΛB, the prior on Λ̃ is not independent of the mass ratio
of the binary. This, in turn, impacts the computation of
credible bounds—and especially of lower bounds, which
are used to claim the measurement of tides. In the limit of
high SNR, instead, the mean of the posterior distribution
can be shown to coincide with the maximum-likelihood
estimators [49]. Therefore, it is in this regime that the
discussion presented above has to be interpreted.

III. WAVEFORM MODELS

Gravitational waveform models for coalescing compact
binaries aim at providing approximate solutions to the GR
two-body problem. They map a set of intrinsic parameters
θ—for example, the mass ratio q, the chirp mass Mc, the
component dimensionless spins ðχA; χBÞ, and the dimen-
sionless tidal deformabilities ðΛA;ΛBÞ, into a time or
frequency series hðt; θÞ or h̃ðf; θÞ. Post-Newtonian (PN)
approximants [50,51] construct this mapping by analyti-
cally computing the evolution of the orbital phase ϕðtÞ of a
binary system as a perturbative expansion in a small
parameter v=c or x ¼ ðv=cÞ2, in which v is the character-
istic velocity of the binary. Such models, while cheap from
a computational standpoint, are typically unable to reliably
describe the waveform at high frequencies [34]—i.e.,
during the later phases of the evolution of the binary when
v becomes a comparable fraction of c. The effective one-
body (EOB) approach [13,52–59] resums the PN informa-
tion (both in the conservative and nonconservative parts of
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the dynamics) so as to make it reliable and predictive also in
the strong-field, fast-velocity regime. Once improved by
numerical relativity (NR) data, this method allows one to
compute the complete waveform from the early, quasia-
diabatic inspiral up to merger and—when dealing with
binary black holes—ringdown. Finally, phenomenological
models [60–67] are constructed by first stitching together
EOB-based inspirals with numerical relativity simulations,
when available, and then devising an accurate, effective,
interpolating representation all over the parameter space
devised to be computationally efficient.
For our purposes, we choose one representative

approximant from each of the three families above. In
particular, our analysis will employ the PN TaylorF2
model, the EOB TEOBResumS model, and the phenom-
enological IMRPhenomPv2NRTidal model. In Sec. VI
and Appendix E, we will then consider two further
approximants: IMRPhenomPv2NRTidalv2 and
SEOBNRv4Tsurrogate.
TaylorF2 is a frequency-domain PN waveform model.

The phase of the GW, obtained through a stationary phase
approximation (SPA), contains point-mass effects which
are fully known up to relative 3.5 PN order [51] and include
spin-spin and spin-orbit interactions [68,69]. A higher-
order, parametrized, quasi–5.5 PN description of nonspin-
ning point mass effects has also been derived in Ref. [18].
Tidal effects can be included up to relative 7.5 PN order
[39,70,71], while quadratic-in-spin effects were included
up to 3.5 PN [72]. Throughout the main body of this work,
we will employ a 3.5 PN–accurate point-mass baseline, a
7.5 PN description of the tidal phasing, and a 3 PN
description of spin-square effects.
TEOBResumS is a state-of-the-art EOB waveform

model for spin-aligned coalescing compact binaries (either
neutron stars or black holes) [72–77]. In this paper, we
focus on the tidal sector of TEOBResumS, in the form
described in Refs. [72,75,78]. In particular, this configu-
ration coincides with the one implemented within
LALInference [9]. The tidal sector of TEOBResumS
contains contributions from the multipolar l ¼ 2; 3; 4
gravitoelectric and l ¼ 2 gravitomagnetic interations;
the former are included in resummed form stemming from
PN and gravitational self-force results [78,79] (see also
Refs. [80,81]). Equation-of-state-dependent self-spin
effects (also known as quadrupole-monopole terms) are
included at next-to-next-to-leading order [75] thanks to a
suitable modification of the centrifugal radius introduced
in Ref. [73], so as to incorporate even-in-spin effects in a
way that closely mimics the structure of the Hamiltonian
of a point particle on a Kerr black hole. In addition, the
models rely on the (iterated) postadiabatic approximation
[78,82,83] to compute the full inspiral waveform until
about ten orbits before merger, which greatly reduces the
computational burden of the waveform generator with
negligible losses of accuracy.

These choices, together with rather different treatment of
the spin sector and of resummation choices, distinguish
TEOBResumS from the other state-of-the-art EOB approx-
imant, SEOBNR [84,85]. We address the reader to Ref. [86]
for a detailed investigation of the differences between
the conservative point-mass dynamics of the models.
To improve the computational efficiency of the waveform
generation, when considering BNS systems, the SEOBNR
family applies Gaussian process regression to the baseline
model SEOBNRv4T [87–89]—which includes a descrip-
tion of dynamical tides, but no self-force information—so
as to obtain SEOBNRv4Tsurrogate [90]. Note that
EOB models are the most analytically complete to date,
and contain higher-order PN information than that con-
tained in Taylor-expanded PN approximants (e.g., many
more test-particle terms at higher PN order as well as
resummed tail factor). For this reason, the EOB framework
can be Taylor-expanded so as to obtain waveform approx-
imants at (partial) higher PN order than the current fully
known 3.5 PN one [18,39,91].
IMRPhenomPv2NRTidal is a phenomenological

spin precessing model for BNS systems based on the
IMRPhenomPv2 model. In the latter, an effective descrip-
tion of the point-mass waveform is obtained by fitting
SEOBNR-NR hybrid waveforms4 to an analytical repre-
sentation of the amplitude and phase of the frequency-
domain 22 mode h22 [62,63]. This representation is further
augmented by the NRTidal model [92], which provides a
description of tidal effects based on a fit of hybrid wave-
forms composed of PN, TEOBResumS, and nonspinning
q ≈ 1 NR simulations.
Recently, Ref. [93] improved this model to IMR-

PhenomPv2NRTidalv2 by incorporating a 7.5 PN–
accurate low-frequency limit for the tidal sector of the
phasing and PN-expanded spin-quadrupole interactions up
to 3.5 PN in the waveform phase together with new fits for
the amplitude tidal corrections. In this work, we will
use both IMRPhenomPv2NRTidal and IMRPhenom-
Pv2NRTidalv2, imposing that the individual spins are
aligned to the orbital angular momentum.

A. Comparing waveform approximants

Let us now turn to discussing in some detail how the
differences in the approximants reflect on the GW phase.
This is the very first step to take towards the understanding
of waveform systematics. In particular, by inspecting the
gauge-invariant frequency-domain phase, it is possible to
qualitatively assess how the different modeling of point-
mass and tidal effects will impact the PE. PN approximants
are overall less attractive at high frequencies than EOB
models, thus leading to higher recovered tidal parameters.

4These waveforms are obtained by stitching together inspiral
waveforms for the long inspiral to NR simulations that go through
merger and ringdown.
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Conversely, phenomenological models are more attractive
than EOB, and lower tidal parameters are recovered
during PE.
Given the plus and cross polarizations hþðt; θÞ, h×ðt; θÞ

associated with a specific approximant, we define the
frequency-domain waveform h̃ðf; θÞ ¼ Ãðf; θÞe−iΨðf;θÞ,
where Ã ¼ jh̃þðfÞ þ ih̃×ðfÞj, ΨðfÞ ¼ − argðh̃þðfÞ þ
ih̃×ðfÞÞ, and h̃þ;× are the Fourier transforms of the time
domain polarizations. Extracting information directly from
the waveform phasing ΨðfÞ is complicated by the presence
of an affine linear term ϕc þ 2πtcf, which can be
fixed arbitrarily. A a better quantity to discuss waveform
phasing is

Qω̂ ¼ ω̂2

_̂ω
¼ dϕðtÞ

d ln ω̂
; ð25Þ

where ω̂ ¼ 2πfM is the dimensionless GW frequency.
The time-domain GW phase accumulated between two
frequencies is given by

ϕðω1;ω2Þ ¼
Z

ω̂2

ω̂1

Qω̂d ln ω̂: ð26Þ

Physically, Qω̂ is related to the phase acceleration, and
the GW phase in the SPA is given by Ψ00ðwÞ ¼ Qω̂ðwÞ=w2.
The inverse of Qω̂ is thus the adiabatic parameter whose
magnitude controls the validity of the SPA [18,72,94].
Since there is no time/phase shift ambiguity and no
necessity of alignment in phase plots with the Qω̂, the
latter quantity is preferable with respect to the phase,
because information can be lost in the alignment
[82,94,95]. Thus, rather than comparing phase differences,
we compute Qω̂ for the waveform approximants discussed
above and extract information from ΔQω̂ ¼ QTEOBResumS

ω̂ −
QX

ω̂, where X is any other approximant.
Figure 2 shows the quantity ΔQω̂, computed for three

reference waveforms with varying Λ̃ and zero spins and
decomposed into its point-mass ΔQPM

ω̂ and tidal ΔQT
ω̂

contributions. The frequency range is roughly divided at
the “cutoff” thresholds of the regimes at which point-mass
(ω̂ < 0.02) and tidal (ω̂ > 0.05) effects are measured
according to the Fisher matrix information formalism.
During the early inspiral (first column), point-mass con-
tributions dominate over tidal effects, and as expected, the
phenomenological description of the inspiral is closer to
TEOBResumS than the one offered by TaylorF2. When
0.02≲ ω̂≲ 0.05 (second column), the importance of tidal
effects gradually increases, and the behavior of the two
approximants starts differing significantly. Focusing on
IMRPhenomPv2NRTidal, we observe that the largest
contribution to ΔQω̂ comes from the tidal sector. As Λ̃
grows, both ΔQT

ω̂ and ΔQω̂ become increasingly positive.

Therefore, matter effects in IMRPhenomPv2NRTidal
are stronger than in TEOBResumS. Over the same range
(0.02≲ ω̂≲ 0.05), tidal terms of TaylorF2 behave in the
exact opposite way. Increasing the value of Λ̃ leads to more
negative ΔQT

ω̂. For this approximant, then, matter effects
are weaker than TEOBResumS. The trends shown in the
intermediate range are maintained by both approximants
also for ω̂ > 0.05 and up to ω̂ ≈ 0.10, close to merger
frequency (third column). We highlight that the point-mass
terms of TaylorF2 grow monotonically, reflecting how
the PN approximation breaks down at high frequencies.
However, notably, the point mass contribution is positive—
i.e., more attractive than TEOBResumS—and larger than
or comparable to tidal corrections for moderate values of Λ̃.
In GW parameter estimation, ΔQPM

ω̂ then can partially
compensate the negative ΔQT

ω̂. Globally, IMRPhenom-
Pv2NRTidal is more attractive than TEOBResumS,
which implies that when recovering simulated
TEOBResumS waveforms with IMRPhenomPv2-
NRTidal, one may expect to find lower values of Λ̃ than
the ones injected. Instead, when recovering simulated
TEOBResumS waveforms with TaylorF2, one may
expect to find higher values of Λ̃ than the ones injected.
Spin effects are studied with a similar approach in Fig. 3,

which shows ΔQω̂ computed for three waveforms with
fixed Λ̃ ¼ 400 and varying magnitude of the dimensionless
spins ðχA; χBÞ. We consider configurations with spins
aligned to the orbital angular momentum and such that
χA ¼ χB ¼ χ. Focusing on the point-mass contribution, we
observe that increasing χ does not impact significantly the
magnitude of ΔQPM

ω̂ for IMRPhenomPv2NRTidal. On
the other hand, spin-induced effects are noticeably more
repulsive in TaylorF2 than in TEOBResumS over the
whole frequency range considered. Concerning ΔQT

ω̂, we
observe that the differences at ω̂ < 0.02 are no longer
negligible with respect to the point-mass contributions, and
in general are larger than those found for nonspinning
binaries. These differences can be attributed to the model of
the spin-quadrupole terms. We recall that a spinning NS
acquires a quadrupole moment due to its own rotation,
which in turn causes a distortion of the gravitational field
outside the body. The magnitude of such a quadrupole
moment is an equation-of-state-dependent quantity, which
can be parametrized through a coefficient CQ [75,96].
The importance of this term in parameter estimation was
pointed out in, e.g., Ref. [41], which showed how
neglecting it can lead to biases on the recovery of the
mass ratio and the total mass. Both TaylorF2 and
IMRPhenomPv2NRTidal include these corrections only
up to 3 PN, or next-to-leading order (NLO), whereas
TEOBResumS also incorporates tail-dependent corrections
in resummed form, as well as next-to-next-to-leading-order
(NNLO) effects. The resummation weakens the effect
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of quadrupole-monopole terms above ω̂ ≈ 0.06 [72,75]—
i.e., above the frequency at which the NSs touch and
hydrodynamical effects become relevant [97]. Note that the
weaker effect of the (effective) EOS-dependent self-spin
terms with respect to the PN expressions at high frequen-
cies is also suggested by NR simulations [98], with the
latter also suggesting stronger (effective) spin-orbit effects
than PN.5

Overall, when considering injections of TEOBResumS
highly spinning waveforms, we expect IMRPhenom-
Pv2NRTidal to underestimate tidal parameters, and
TaylorF2 to overestimate them.

IV. INJECTION STUDY

We present a full Bayesian PE study on 15 signals injected
with TEOBResumS and recovered with TaylorF2 and
IMRPhenomPv2NRTidal. We interpret our results in
light of the Qω analysis of Sec. III and find that it
correctly indicates the behaviors of the studied waveform
approximants.

A. Method

In order to study waveform systematics in a controlled
environment, we generate artificial data (injections) using
the TEOBResumS model (with all higher modes up to
l ¼ 8) for 15 different nonspinning binary configurations,
described by the intrinsic parameters ðmA;mB;ΛA;ΛBÞ and
reported in Table I with the alternative representation

FIG. 2. The ΔQω ¼ QTEOB
ω −QX

ω function computed for three waveforms with fixed spins χ1 ¼ χ2 ¼ 0 and varying
Λ̃ ¼ f100; 400; 1000g, represented by continuous, dashed, and dotted lines, respectively. ΔQω̂ is then further decomposed into its
point-mass ΔQPM

ω̂ (second row) and tidal ΔQT
ω̂ (third row) contributions, so that ΔQTOT

ω̂ ¼ ΔQPM
ω̂ þ ΔQT

ω̂. We display the same curves
over three different frequency ranges and scales, roughly corresponding to the regimes in which point-mass effects are dominant,
comparable or negligible with respect to tidal effects. We observe that ΔQT

ω̂ for TaylorF2 and IMRPhenomPv2NRTidal have
opposite behaviors, with TaylorF2 being more repulsive and IMRPhenomPv2NRTidal more attractive than TEOBResumS.

5But note that in the hydrodynamical regime it is, strictly
speaking, not possible to interpret these as spin interactions and to
compare them to PN.
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ðM;q; Λ̃Þ. The waveform polarizations are then projected
on the three LIGO-Virgo detectors, locating the source at the
sky position of GW170817.6 The injections are 64 s long
with a sampling rate of 4096 Hz, and they are performed
with zero noise configuration—i.e., no additional noise is
included in the analyzed strains, in order to minimize the
statistical fluctuations and to work in a framework as close as
possible to the one described in Sec. II. We use Advanced
LIGO and Advanced Virgo design amplitude spectral
densities (ASD) [23–26]. The SNRs of the injected signals
span a range from 82 to 94 (depending on the specific
combination of masses and tidal parameters) that result in

louder signals than the current BNS observations [6,14]. For
the estimation of the posterior distributions, we adopt the
Bayesian framework offered by the lalinferen-
ce_mcmc sampler as implemented in the software LSC
Algorithm Library Suite (LALSuite) [9,100,101].
The waveform models used in the matched filtering analysis
are the already described TaylorF2 and IMRPhenom
Pv2NRTidal. We perform two sets of injections, in part
already discussed in Ref. [19]. In the first set, matter effects
are modeled using two independent quadrupolar tidal
parameters ΛA, ΛB. In the second set, we use the spectral
parametrization of the EOS [3,102,103]. Within this frame-
work, the EOS of cold dense NS matter is represented as a
smooth function, parametrized in a four-dimensional space
by the coefficients ðγ0; γ1; γ2; γ3Þ. Each combination of these
values specifies an adiabatic index ΓðPÞ:

FIG. 3. The ΔQTOT
ω̂ ¼ QTEOB

ω̂ −QX
ω̂ function computed for three waveforms with fixed Λ̃ ¼ 400 and varying spins

χ1 ¼ χ2 ¼ f0; 0.1; 0.3g, represented by continuous, dashed, and dotted lines, respectively. ΔQω̂ is then further decomposed into
its point-mass ΔQPM

ω̂ (second row) and tidal ΔQT
ω̂ (third row) contributions, so that ΔQTOT

ω̂ ¼ ΔQPM
ω̂ þ ΔQT

ω̂. All quantities are
plotted over three different frequency ranges and scales. Note that ΔQT

ω̂ is comparable to ΔQPM
Ω̂ at ω̂ < 0.02. This effect can be

attributed to the spin-spin interactions.

6We use the maximum posterior values for sky location and
distance from LVC analysis [1] combined with the information
coming from Ref. [99].

GAMBA, BRESCHI, BERNUZZI, AGATHOS, and NAGAR PHYS. REV. D 103, 124015 (2021)

124015-10



TA
B
L
E
I.

C
om

pa
ri
so
n
be
tw
ee
n
th
e
pr
op
er
tie
s
of

th
e
in
je
ct
ed

si
gn
al
s
an
d
th
e
re
co
ve
re
d
m
ar
gi
na
liz
ed

on
e-
di
m
en
si
on
al

po
st
er
io
rs
.F

or
ea
ch

si
m
ul
at
io
n,

w
e
re
po
rt
m
ed
ia
ns

an
d

90
%

cr
ed
ib
le

re
gi
on
s.
Fo

r
ea
ch

ap
pr
ox
im

an
t
an
d
fr
eq
ue
nc
y
ra
ng
e
w
e
ad
di
tio

na
lly

di
sp
la
y
th
e
va
lu
es

of
Λ̃
E
ob
ta
in
ed

as
de
sc
ri
be
d
in

Se
c.

IV
D
.

In
je
ct
io
n

I
M
R
P
h
e
n
o
m
P
v
2
_
N
R
T

T
a
y
l
o
r
F
2
(3
.5
PN

þ
7
.5
PN

tid
es
)

f c
ut

1
kH

z
2
kH

z
1
kH

z
2
kH

z

E
O
S

M
in
j

q i
nj

Λ̃
in
j

M
q

Λ̃
Λ̃
E

M
q

Λ̃
Λ̃
E

M
q

Λ̃
Λ̃
E

M
q

Λ̃
Λ̃

E

2B
2.
70

1.
00

12
7

2
.6
9
þ0

.0
5

−
0
.0
1

0
.8
6
þ0

.1
2

−
0
.1
8

1
1
5
þ1

0
5

−
7
6

11
6

2
.6
9
þ0

.0
5

−
0
.0
1

0
.8
6
þ0

.1
3

−
0
.1
8

9
8
þ5

2
−
5
2

11
7

2
.6
9
þ0

.0
6

−
0
.0
1

0
.8
4
þ0

.1
5

−
0
.1
8

1
5
0
þ1

4
2

−
1
0
6

13
6

2
.6
9
þ0

.0
6

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
8

1
0
6
þ9

2
−
7
2

13
0

SL
y

3.
00

1.
00

19
1

2
.9
9
þ0

.0
6

−
0
.0
1

0
.8
5
þ0

.1
3

−
0
.1
8

1
3
2
þ8

1
−
7
4

16
8

2
.9
9
þ0

.0
6

−
0
.0
2

0
.8
5
þ0

.1
3

−
0
.1
8

1
4
3
þ4

9
−
5
3

16
9

2
.9
9
þ0

.0
7

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
8

1
6
9
þ1

2
4

−
1
0
5

30
7

3
.0
0
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
7

−
0
.1
8

1
5
8
þ8

7
−
8
4

16
2

L
S2

20
3.
20

1.
00

20
2

3
.1
9
þ0

.0
6

−
0
.0
2

0
.8
5
þ0

.1
3

−
0
.1
8

1
3
2
þ6

6
−
6
7

15
8

3
.1
9
þ0

.0
7

−
0
.0
2

0
.8
5
þ0

.1
4

−
0
.1
8

1
5
6
þ4

7
−
5
4

15
8

3
.1
9
þ0

.0
8

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
8

1
6
8
þ1

0
8

−
9
6

28
8

3
.2
0
þ0

.0
8

−
0
.0
3

0
.8
1
þ0

.1
7

−
0
.1
8

1
7
1
þ8

6
−
8
3

27
4

SF
H
o

2.
92

1.
00

25
2

2
.9
1
þ0

.0
6

−
0
.0
2

0
.8
5
þ0

.1
4

−
0
.1
8

1
7
2
þ9

0
−
8
4

22
2

2
.9
1
þ0

.0
6

−
0
.0
2

0
.8
4
þ0

.1
4

−
0
.1
8

1
8
5
þ5

6
−
5
9

22
4

2
.9
2
þ0

.0
7

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
8

2
3
3
þ1

3
5

−
1
2
7

25
7

2
.9
1
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
7

−
0
.1
8

2
3
3
þ9

6
−
9
7

25
3

D
D
2

3.
18

1.
00

33
2

3
.1
7
þ0

.0
7

−
0
.0
2

0
.8
4
þ0

.1
4

−
0
.1
8

2
1
8
þ7

3
−
7
6

25
7

3
.1
8
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
7

−
0
.1
6

2
4
8
þ5

5
−
6
1

29
7

3
.1
7
þ0

.0
8

−
0
.0
2

0
.8
2
þ0

.1
6

−
0
.1
8

3
1
1
þ1

1
8

−
1
1
5

34
5

3
.1
8
þ0

.0
8

−
0
.0
3

0
.8
1
þ0

.1
7

−
0
.1
8

3
3
5
þ9

6
−
9
9

34
3

SF
H
o

2.
80

1.
00

33
4

2
.7
9
þ0

.0
6

−
0
.0
1

0
.8
4
þ0

.1
4

−
0
.1
8

2
2
8
þ1

0
6

−
1
0
3

28
5

2
.7
9
þ0

.0
6

−
0
.0
1

0
.8
4
þ0

.1
4

−
0
.1
8

2
4
8
þ7

1
−
7
5

28
6

2
.7
9
þ0

.0
7

−
0
.0
2

0
.8
3
þ0

.1
6

−
0
.1
9

3
1
9
þ1

5
6

−
1
5
3

46
2

2
.7
9
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
7

−
0
.1
8

3
4
2
þ1

1
3

−
1
1
8

44
4

A
L
F2

3.
00

1.
00

38
2

2
.9
9
þ0

.0
7

−
0
.0
2

0
.8
4
þ0

.1
4

−
0
.1
8

2
5
8
þ8

8
−
8
8

33
0

3
.0
0
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
6

−
0
.1
7

2
8
0
þ6

8
−
7
2

33
0

2
.9
9
þ0

.0
7

−
0
.0
2

0
.8
3
þ0

.1
6

−
0
.1
9

3
7
0
þ1

3
8

−
1
3
3

46
7

3
.0
0
þ0

.0
7

−
0
.0
3

0
.8
1
þ0

.1
7

−
0
.1
7

4
0
0
þ1

0
9

−
1
1
0

45
7

SL
y

2.
68

1.
00

40
1

2
.6
7
þ0

.0
6

−
0
.0
1

0
.8
4
þ0

.1
4

−
0
.1
8

2
8
6
þ1

2
0

−
1
2
0

34
9

2
.6
7
þ0

.0
6

−
0
.0
1

0
.8
4
þ0

.1
4

−
0
.1
8

2
9
5
þ7

2
−
8
0

35
0

2
.6
8
þ0

.0
7

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
9

3
9
7
þ1

7
3

−
1
6
9

43
4

2
.6
8
þ0

.0
7

−
0
.0
2

0
.8
2
þ0

.1
6

−
0
.1
9

4
2
3
þ1

2
2

−
1
2
4

43
0

SL
y

2.
69

0.
88

40
1

2
.6
8
þ0

.0
6

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
8

2
9
0
þ1

2
3

−
1
2
4

35
8

2
.6
8
þ0

.0
6

−
0
.0
2

0
.8
3
þ0

.1
6

−
0
.1
8

2
9
4
þ7

7
−
8
5

31
3

2
.6
8
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
7

−
0
.1
8

4
0
4
þ1

7
6

−
1
6
9

55
7

2
.6
8
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
7

−
0
.1
8

4
2
6
þ1

2
7

−
1
2
5

38
6

SF
H
o

2.
72

0.
88

41
2

2
.7
0
þ0

.0
6

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
9

2
9
9
þ1

1
9

−
1
1
9

34
1

2
.7
0
þ0

.0
6

−
0
.0
2

0
.8
2
þ0

.1
6

−
0
.1
8

3
0
4
þ7

6
−
8
2

35
0

2
.7
1
þ0

.0
7

−
0
.0
2

0
.8
2
þ0

.1
7

−
0
.1
9

4
1
6
þ1

7
2

−
1
6
6

44
0

2
.7
1
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
7

−
0
.1
8

4
3
9
þ1

3
2

−
1
3
1

43
5

SF
H
o

2.
71

1.
00

41
3

2
.7
0
þ0

.0
6

−
0
.0
1

0
.8
4
þ0

.1
5

−
0
.1
8

2
9
3
þ1

1
8

−
1
1
7

38
8

2
.7
0
þ0

.0
6

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
8

3
0
6
þ7

5
−
8
4

35
2

2
.7
1
þ0

.0
7

−
0
.0
2

0
.8
2
þ0

.1
6

−
0
.1
8

4
0
9
þ1

7
4

−
1
6
9

45
3

2
.7
1
þ0

.0
7

−
0
.0
2

0
.8
2
þ0

.1
6

−
0
.1
8

4
4
3
þ1

2
4

−
1
2
5

44
9

L
S2

20
2.
69

0.
86

71
4

2
.6
8
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
6

−
0
.1
8

5
3
2
þ1

3
7

−
1
4
7

63
3

2
.6
9
þ0

.0
7

−
0
.0
3

0
.7
8
þ0

.1
9

−
0
.1
6

5
3
2
þ9

9
−
1
0
8

58
9

2
.6
8
þ0

.0
7

−
0
.0
2

0
.8
1
þ0

.1
7

−
0
.1
9

7
6
4
þ1

9
1

−
1
9
5

75
6

2
.6
8
þ0

.0
6

−
0
.0
2

0
.8
2
þ0

.1
6

−
0
.1
8

8
5
6
þ1

4
9

−
1
5
8

75
6

L
S2

20
2.
68

1.
00

71
5

2
.6
8
þ0

.0
6

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
9

5
2
5
þ1

3
5

−
1
4
0

66
0

2
.6
8
þ0

.0
6

−
0
.0
2

0
.7
9
þ0

.1
8

−
0
.1
6

5
2
8
þ8

7
−
1
0
4

61
3

2
.6
8
þ0

.0
6

−
0
.0
2

0
.8
2
þ0

.1
6

−
0
.1
8

7
5
8
þ1

8
8

−
1
9
5

75
4

2
.6
7
þ0

.0
6

−
0
.0
2

0
.8
4
þ0

.1
5

−
0
.1
8

8
4
4
þ1

4
5

−
1
4
4

75
8

D
D
2

2.
71

1.
00

84
0

2
.7
0
þ0

.0
6

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
8

6
2
8
þ1

3
0

−
1
4
4

75
8

2
.7
1
þ0

.0
6

−
0
.0
3

0
.7
8
þ0

.1
9

−
0
.1
5

6
2
2
þ9

3
−
1
1
2

71
1

2
.7
0
þ0

.0
6

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
8

9
1
6
þ1

8
8

−
1
9
2

91
8

2
.7
0
þ0

.0
6

−
0
.0
2

0
.8
4
þ0

.1
5

−
0
.1
8

1
0
1
1
þ1

4
4

−
1
5
2

92
0

D
D
2

2.
48

1.
00

13
66

2
.4
7
þ0

.0
5

−
0
.0
2

0
.8
3
þ0

.1
5

−
0
.1
6

1
1
0
4
þ1

8
6

−
1
8
9

12
69

2
.4
8
þ0

.0
4

−
0
.0
2

0
.7
8
þ0

.1
9

−
0
.1
2

1
0
5
7
þ1

4
1

−
1
3
8

11
70

2
.4
7
þ0

.0
4

−
0
.0
1

0
.8
4
þ0

.1
4

−
0
.1
7

1
5
4
2
þ2

4
6

−
2
4
5

14
77

2
.4
7
þ0

.0
4

−
0
.0
1

0
.8
5
þ0

.1
3

−
0
.1
7

1
6
6
8
þ2

0
0

−
2
0
7

14
84

WAVEFORM SYSTEMATICS IN THE GRAVITATIONAL-WAVE … PHYS. REV. D 103, 124015 (2021)

124015-11



ΓðPÞ ¼ exp

�X3
k¼0

γk logðP=P0Þk
�
; ð27Þ

where P0 is some reference pressure. The adiabatic index is
by definition related to the pressure-density function PðρÞ
through Γ ¼ ρ d lnP

dρ . The complete EOS is then built by
fixing the low-density sector ðP < P0Þ to the SLy descrip-
tion, and integrating the differential equation for ρðPÞ
implied by the definition of Γ in the core of the NS
(P > P0). Once the EOS is fixed, it is possible to calculate
the tidal polarizability parameters ΛA;B, which are then used
to model the tidal effects in the waveforms. These analyses
give a posterior distribution for the coefficients γi, which can
be mapped into the EOSs and radii of the merging NSs.
However, this method assumes implicitly that both NSs are
described by the same EOS and that no strong first-order
phase transitions happen in the core of the NS.
For both of the previous methods, the analyses are

performed with two different maximal frequencies, fmax ¼
1 kHz and fmax ¼ 2 kHz—i.e., in frequency ranges f ∈
½23 Hz; 1 kHz� and f ∈ ½23 Hz; 2 kHz�—in order to study
whether the extension to the higher-frequency cutoff
increases the differences between approximants. The priors
distributions are flat in mass components, in a range
corresponding to Mc ∈ ½1.0; 2.2� M⊙ and q ∈ ½1; 8�. We
use an aligned-spin configuration with isotropic priors on
the spin components and ai;z ∈ ½−0.05;þ0.05�, i ¼ A; B.
Regarding the tidal parameters, the prior distributions
are uniform in the free parameters involved in the
analysis: when we adopt the EOS-insensitive description,
pðΛiÞ ∝ 1 in the range Λi ∈ ½0; 5000� for i ¼ A;B;
while for the spectral parametrization cases, the prior
distribution is uniform in the spectral parameters in the
ranges γ0 ∈ ½0.2; 2�, γ1 ∈ ½−1.6; 1.7�, γ2 ∈ ½−0.6; 0.6�,
γ3 ∈ ½−0.02; 0.02�, and additionally ΓðPÞ is constrained
to be in the range [0.5, 4.5]. This setup is identical to the
one proposed in Ref. [3]. In comparison to previous studies,
we employ a larger set of simulated signals, in order to
better understand the behavior of the studied approximants
when different sources are considered [15,16].
In the remainder of this section, we (i) examine the

measurement of mass and spin parameters; (ii) discuss the
systematic effects that different approximants induce in
the recovered tidal parameters, NS radii, and EOS
reconstruction; and (iii) apply the faithfulness criteria
previously described to our data.

B. Masses, mass ratio, and spins

We first discuss the determination of the nontidal
parameters. Figure 4 shows the recovered posterior dis-
tributions of the total mass M and mass ratio q parameters
obtained with low-spin priors. The estimates obtained are
consistent between the different approximants and fre-
quency cutoffs, and with the injected signals, with the real

values always falling inside the 90% credible intervals.
This indicates that the systematic differences in phasing
observed at low frequencies (see the first column of Fig. 2)
are smaller than statistical uncertainties. We find that
the injected unequal-mass signals (with q ¼ 0.86 and
q ¼ 0.88) cannot be distinguished from the equal-mass
ones. This can partly be attributed to the known existing

FIG. 4. Distributions of the mass ratio q (top) and the deviation
from the injected total mass Minj (bottom), displayed for all the
simulated signals of Table I. The distributions recovered are
consistent between different approximants and frequency ranges.
The unequal mass signals cannot be distinguished from their
equal-mass counterpart.
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correlation between mass ratio and spin parameters [37].
In PN waveforms, the leading-order spin interactions are
described by the parameter β, given by [37,68]

β ¼ χeff −
38ν

113
ðχ1 þ χ2Þ; ð28Þ

where

χeff ¼
m1χ 1 þm2χ 2

M
· L̂ ð29Þ

is the mass-weighted sum of the component spin param-
eters, and is often used during PE as a measure of the
collective spin of the binary, as it is a conserved quantity of
the orbit-averaged precession equations over precession
timescales [104]. A Fisher matrix analysis reveals that spin
parameters, which at leading order have p ¼ −4 in the
notation of Sec. II, are measured over a very similar range
of frequencies to the (symmetric) mass ratio ν [39,41], and
so they are strongly correlated. In more detail, positive-
aligned spins have a repulsive effect on the binary

dynamics. By contrast, decreasing the symmetric mass
ratios (i.e., more unequal-mass systems) accelerates the
coalescence. The two effects are thus in direct competition,
and spin effects can be reproduced by varying ν [105]. As a
consequence, widening the spin priors leads to larger mass
ratio distributions. Hence, different prior assumptions on
mass ratio and component spins can lead to very different
posterior distributions, and are of key importance when
interpreting the data. In Appendix A, from Eq. (A5), we see
that this correlation may also reflect on the estimate of Λ̃
even in the case of high-SNR signals, leading to an overall
broadening of the Λ̃ posteriors.

C. Tidal parameter and NS radius

We now discuss systematics in the inference on tidal
parameters and the effect on constraints on the NS radius.
Figure 5 shows the posterior distributions of the tidal
parameters Λ̃ recovered through PN and phenomenological
approximants. The values coming from the posterior
samples are rescaled by the true injected value, adopting
the auxiliary parameter

FIG. 5. Main panel: violin plots of the fractional deviation between the injected values of Λ̃ and the recovered posteriors. The color
code depends on the approximant employed for the PE (red for IMRPhenomPv2NRTidal, blue for TaylorF2), and the results are
displayed for two different frequency cutoffs fmax, 1 kHz (top) and 2 kHz (bottom). As matter effects grow, the deviation between the
two approximants and the TEOBResumS baseline increases, reaching approximately �20% when Λ̃inj ¼ 1366. In the right panel, we
display the combined posterior distribution of the fractional deviation, reweighted as described in the text. An increase in fmax makes the
differences larger in the recovery of Λ̃ between models. This is especially true for TaylorF2: PN waveform models are known to
become less accurate close to merger frequencies.
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εðiÞΛ̃ ¼ Λ̃ðiÞ

Λ̃ðiÞ
inj

− 1; ð30Þ

which encodes the fractional deviation from the injected
value for each simulated signal i. We observe that, as the
injected values of Λ̃ increase, the relative uncertainties of
the recovered posterior distributions decrease and modeling
differences become more relevant (the median of the
distributions are shifted with respect to zero). The combi-
nation of these two effects leads to evident biases in
the recovered values. The overall bias due to waveform
effects is quantified by the combined posterior distribution
pðεΛ̃jdÞ shown in the right panel of Fig. 5. This quantity
is estimated by weighting each posterior distribution

pðεðiÞΛ̃ jdðiÞÞ by the respective prior distribution pðεðiÞΛ̃ Þ,
computed from the prior distributions for Λ̃ðiÞ. The result
is multiplied by the prior distribution pðεΛ̃Þ for the
combined parameter εΛ̃, taken as uniform in the range
½−2;þ2�, i.e.,

pðεΛ̃jdÞ ¼ pðεΛ̃Þ
Y
i

pðεðiÞΛ̃ jdðiÞÞ
pðεðiÞΛ̃ Þ

; ð31Þ

where the index i runs over all the injected binaries. We find
that IMRPhenomPv2NRTidal systematically recovers
lower values than those injected with TEOBResumS, while
TaylorF2 tends to systematically overestimate tidal
parameters as matter effects increase, although it is able
to capture the injected values for Λ̃ ≤ 400. These results
can be understood in terms of the Qω analysis of Sec. III,
coupled to the relevant frequency ranges computed and
discussed in Appendix B. To summarize, the analyzed
signals contain useful information up to approximately
1 kHz, depending on the source parameters. We are then
consistently in the situation where fthr is larger than fΛ̃5%,
whose values lie around 240–300 Hz. Then, as shown in the
third column of Fig. 2, for IMRPhenomPv2NRTidal
systematical differences in Λ̃ are dominated by the tidal
sector, which is more attractive than TEOBResumS and
leads to lower estimates of Λ̃. The attractive point-mass
contribution of TaylorF2, instead, leads to slight under-
estimates of the tidal parameters for values of Λ̃ ≈ 100,
while for Λ̃ ≈ 400 it compensates the tidal sector. The
latter dominates for larger values of Λ̃, and—being too
repulsive—causes overestimates of matter effects.
Translating information on the tidal parameters of a NS

into information on the NS EOS and radius is not
straightforward. Given that waveform models do not
explicitly depend on the NS radius, it is not possible to
directly extract R from GW data. It is necessary, instead,
to rely on either some representation of the EOS [102,
106–110], or on quasi-universal (EOS-insensitive) relations

(URs), which phenomenologically link macroscopic quan-
tities of the binary between each other. In particular, we
employ the spectral parametrization of Refs. [102,108] and
the EOS universal relations of De and Lattimer [111], of
Raithel et al. [112], and of Yagi and Yunes [113,114]. The
EOS-insensitve relations used here are summarized in
Appendix D and Table II.
In the reminder of this subsection, we focus on the

implication of waveform systematics on the recovery of the
NS radii and EOS reconstruction. We additionally gauge
the further biases that can be introduced by employing
quasiuniversal relations for the recovery of R. To do so,
we apply the above URs to the analyses performed by
sampling the component tidal parameters Λi independently
of each other, as well as (spectral) parametrized EOS runs.
Indeed, the parametrized posterior EOSs obtained are
usually employed in conjunction with the component mass
posteriors mi to solve the TOV structure equations and
obtain a direct estimate of R. At the same time, however,
given an EOS and the component masses, it is possible to
compute Λ̃, apply some URs, and obtain another—in
principle equivalent—estimate of R. This allows for a
direct comparison of the effects of using universal relations
in place of parametrized EOS runs, independently of the
choice of the sampling parameters (and, therefore, of the
implied priors on Λ̃). Figure 6 shows the distributions of
the deviation in the estimates of R1.4M⊙

(top panel) and of
the radius of the lighter star R2 (bottom panel) with respect
to the real radii values corresponding to the parameters
and EOSs listed in Table I. For a fixed approximant and
distribution of Λ̃, URs tend to recover smaller values of R2

than those obtained by solving the TOVequations with the
spectral EOSs. The same observation holds for R1.4M⊙

,
although the estimates are overall more consistent between
the two methods. The errors due purely to waveform
modeling can instead be gauged by comparing distributions
of R2 and R1.4M⊙

obtained with different approximants and
the same UR. We find that IMRPhenomPv2NRtidal
tends to underestimate R, while TaylorF2 behaves in the
opposite way. The difference between the estimates offered
by TaylorF2 and IMRPhenomPv2NRtidal becomes
more relevant as tidal effects grow, mirroring the behavior

TABLE II. Summary of the quasiuniversal relations used in
Sec. IV C. While the De et al. (De) relation immediately links the
radius of a 1.4 M⊙ NS to the mass-weighted tidal deformability
and chirp mass of a BNS system, the Yagi-Yunes (YY) and
Raithel et al. (R) relations require the numerical inversion of
Λ̃ðR; qÞ. For more detail, see Appendix D.

Shorthands References Expressions

De (De et al.) [111] Eq. (D1)
YY (Yagi and Yunes) [113,114] Eqs. (D2), (D4)
R (Raithel et al.) [112] Eq. (D5)
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of the Λ̃ distributions. The overall differences in radii are
then given by the combination of waveform systematics
and systematics coming from the method chosen to map the
intrinsic parameter of the source into the radii. The former
are dominant for large values of Λ̃, whereas for smaller
values of Λ̃ the two are comparable. In particular, this
means that some combinations of approximant and map-
ping method may attenuate (or exacerbate) the cumulative
error, depending on whether they tend to over- or under-
estimate R. In our study, with an injected EOB waveform,
we find that while using URs negatively impacts
IMRPhenomPv2NRTidal analyses, TaylorF2 runs
would gain from employing URs rather than a para-
metrized spectral analysis. The overall bias can amount
to approximately �5% between TEOBResumS and
PN/phenomenological waveforms, and 10% between
IMRPhenomPv2NRTidal and TaylorF2.

D. Faithfulness thresholds and PE biases

Finally, we apply the accuracy criteria of Sec. II to our
data and show that, while criteria based on faithfulness
alone are of little use to predicting the presence of biases,
an estimate of the parameter bias can be obtained using
Eq. (24). We begin by computing the unfaithfulness F̄
between waveform models evaluated with the same set
of true parameters θinj through Eq. (5). We place all sources
in GW170817’s sky location, and employ the analytical
aLIGODesignSensitivityP1200087 PSD [23],
provided by pycbc [115]. The results are summarized
in Fig. 7. We find that both TaylorF2 and

IMRPhenomPv2NRTidal give values largely above
the nominal threshold of F̄ ¼ 0.03 (not shown in the
figure), which corresponds to ∼10% of detection losses
[36,37]. When considering the thresholds provided by
Eq. (19) in its weaker formulation (ϵ2 ¼ 6), we find that
most signals fall above the value corresponding to

FIG. 6. Fractional deviation between the real “injected” values Rinj, computed for each signal listed in Table I, and the distributions of
R computed either by using the universal relations of Table II (colored lines) or by considering the parametrized EOS posteriors and
solving the NS structure equations (black lines). Whenever posteriors from the parametrized EOS (“spectral”) runs are involved, we
employ solid lines. Conversely, whenever we use posteriors from analyses performed by sampling ΛA and ΛB independently, we use
dashed lines. The under/over estimates displayed by IMRPhenomPv2NRTidal and TaylorF2 in Fig. 5 translate into similar biases
on R, amounting up to �5%.

FIG. 7. Unfaithfulness values between the IMRPhenomPv2-
NRTidal (red) or TaylorF2 (blue) waveforms and the injected
TEOBResumS waveforms. The plus and cross polarizations are
projected onto the Livingston detector, and the source is fixed at
the GW170817 sky location. Horizontal straight lines correspond
to the threshold values of F̄ obtained with SNRs of 80 (black)
and 32.4 (orange), computed through Eq. (19) with ϵ ¼ 6
(straight) and ϵ ¼ 1 (dashed). Dots correspond to waveforms
with q ¼ 1, while diamonds correspond to signals with q ≠ 1.
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GW170817’s network SNR (straight orange line), and
largely below the threshold corresponding to a network
SNR or 80 (straight black line)—i.e., the SNR above which
all of our injections are performed. By tightening the
constraints and enforcing ϵ2 ¼ 1 (dashed lines), we find
that already at the SNR of GW170817, none of the
considered waveforms are faithful enough to ensure that
no waveform systematics will be observed. However, not
all our injections give largely biased or incompatible
results. These facts indicate that these criteria give neces-
sary but not sufficient rules to identify biases and highlight
the strong dependence of the criteria themselves on the
arbitrarily chosen value of ϵ2.
To test the procedure outlined in Sec. II B, we

obtain an estimate of the biased values Λ̃E by applying
Eq. (24), and minimizing the quantity P

iðhTEOBResumSi −

hIMRPhenomPv2NRTidal;TaylorF2i jhTEOBResumSi − hIMRPhenomPv2NRTidal;TaylorF2i Þ,
where the sum is performed over the network inter-
ferometers considered (Livingston, Hanford and Virgo,
in our case). In particular, for each waveform
hIMRPhenomPv2NRTidal;TaylorF2, we fix the intrinsic
parameters ðmA;mB; χA; χBÞ to their real injected values,
and vary ΛA ¼ ΛB over the one-dimensional interval
Λ̃ ∈ ½minð0; Λ̃inj − 500Þ; Λ̃inj þ 500�. The simplifying
choice of imposing ΛA ¼ ΛB can be justified by consid-
ering that in our injection study we were unable to
distinguish q ¼ 1 from q ≠ 1 systems. While this might
not be true for more asymmetric systems than those studied
in the present paper, the issue can be easily circumvented
by employing Binary-Love universal relations [113]. The
straightforward procedure described leads to the values
displayed in Table I. We find that the Λ̃E values computed,
while often slightly overestimated with respect to the
medians of the distributions of the tidal parameters recov-
ered through PE, fall into the 90% Λ̃ credible limits in the
large majority of cases, thus providing a good approxima-
tion of the overall behavior of the approximants employed.
Due to the overestimate of Λ̃E, the bias ΔΛ̃B ¼ jΛ̃E − Λ̃injj
is larger than the real bias ΔΛ̃true ¼ jΛ̃median − Λ̃injj for
the TaylorF2 approximant, and smaller for
IMRPhenomPv2NRTidal. Estimates of waveform sys-
tematics based on the above method might then be slightly
optimistic (pessimistic) when comparing TEOBResumS to
IMRPhenomPv2NRTidal (TaylorF2).

V. GW170817

We now apply the approach developed and tested in the
previous sections to the analysis of GW170817.
We perform a Bayesian analysis of GW170817 using

the IMRPhenomPv2NRTidal, TaylorF2, and
TEOBResumS approximants, involving pbilby [116].
We adopt an almost identical configuration to the one
presented in Ref. [117] (see also Ref. [6]). In more detail,

we consider a strain of 128 s around the GPS time
1187008882.43 s. Data are downloaded directly from the
GWOSC [118], in its cleaned and deglitched version (v2).
We employ the PSDs provided by Ref. [6], and we fix the
sky location to the one provided by EM constraints.
Further, as we are mainly interested in estimating the
intrinsic parameters of the source, we marginalize over
distance, time, and phase. The sampling is performed with
uniform priors in chirp mass M ∈ ½1.18; 1.21� M⊙ and
mass ratio q ∈ ½0.125; 1�, with the additional constraints
mA;mB ∈ ½1.001; 4.314� M⊙. The quadrupolar tidal coef-
ficients ΛA, ΛB are uniformly sampled in the interval
[0, 5000]. The main differences with respect to the analysis
of Ref. [117] lie in (i) the different spin priors employed,
which are taken to be aligned to the orbital angular
momentum and such that ðχA; χBÞ ∈ ½−0.05; 0.05�, and
(ii) the high-frequency cutoff of 1024 Hz that we impose
(instead of the 2048 Hz of Ref. [117]).
Using the formalism of the Fisher matrix outlined in

Sec. II A, we investigate in which frequency region the tidal
information is effectively extracted, in accordance with the
extracted posterior samples: the Fisher matrix element IΛ̃ Λ̃
has its main support in the frequency band from 200 Hz
to 1.5 kHz. Subsequently, we compute fthr according to
Eq. (15) and, in order to achieve a more realistic result, we
neglect the contributions above merger frequency fmrg,
where this quantity is estimated using numerical relativity
fits introduced in Ref. [119]. As shown in Fig. 9, we find
that the SNR of GW170817 is located at frequencies lower

FIG. 8. Analysis of GW170817 data. Marginalized one-
dimensional Λ̃ posteriors, obtained by analyzing the data up
to fmax ¼ 1024 Hz with three approximants: TaylorF2
(blue), IMRPhenomPv2NRTidal (red), and TEOBResumS
(black). The posteriors shown are reweighted to flat in Λ̃ prior,
as is done in, e.g., Ref. [6]. The public bilby posteriors from
Ref. [117] (gray) are also displayed. Note that the bilby
analysis uses fmax ¼ 2048 Hz.
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than ∼700 Hz (depending on the chosen value of ρthr).
More precisely, we can say that the signal power enclosed
above ∼900–1000 Hz does not exceed an SNR of 1 (which
roughly corresponds to 3% of the total SNR), while the
power above ∼550 Hz cannot contribute more than an SNR
of 3 (10% of the total SNR). The large variability of fthr
with the chosen value of ρthr indicates that a relatively small
fraction of the SNR is accumulated over a rather large
frequency interval.
From the estimation of fthr and the discussion of

Sec. II, one expects the masses of the binary to be measured
rather accurately. The reduced tidal parameter, instead,
will be affected by significant statistical uncertainties:
from the posterior samples, we estimate a loss of tidal
information of LΛ̃ Λ̃ ∼ 20%–50%, for ρthr ∼ 1–3, and for
fthr ∼ 1000–550 Hz.
The marginalized tidal parameter posteriors reweighted

to flat in Λ̃ prior are shown in Fig. 8. All the measurements
agree within the 95% confidence region, thus indicating
that waveform systematics are not the main source of
uncertainty. However, the distributions for the different
approximants do suggest the presence of some systematic
effects. These posteriors should be interpreted in terms
of the phasing plots in Fig. 2 for f ≲ 700 kHz (the
low-frequency part of the right panel) and Λ̃≲ 1000.

The phasing analysis of Sec. III shows that
IMRPhenomPv2NRTidal is more attractive than
TEOBResumS and TaylorF2; the systematic differences
in the relevant frequency regime are dominated by the
tidal part (IMRPhenomPv2NRTidal vs others) or by a
mixture of the point mass and tides (TaylorF2 vs
TEOBResumS). This is consistent with the slightly smaller
Λ̃ measured with the IMRPhenomPv2NRTidal with
respect to the other approximants and attributable to the
particular design of IMRPhenomPv2NRTidal (PN tides
at LO in the low-frequency regime, TEOBResumS in the
middle-frequency regime, and NR data at higher frequen-
cies; with LO tides stronger than PN NLO, NNLO, and
EOB tides at low frequencies, and NR tides typically
stronger than EOB tides [97,120]). TEOBResumS meas-
urement is instead compatible with TaylorF2. This is
again understandable from the phasing plots discussed in
Sec. III: for ω̂ ∼ 0.035–0.06, the differences in the point
mass and tidal sector between the approximants have
opposite signs and partially compensate each other.
Nonetheless, it is not possible from this analysis to identify
whether a model is preferred by the data available, which is
consistent with the conclusion of Refs. [1,121]. We report
in Table III the evidences given by the different approx-
imants. We conclude that systematics effects are observable
in GW170817, but they do not dominate the measurement
of Λ̃. These effects are nonetheless expected a priori from
the phasing analysis of Sec. III.
Note that our IMRPhenomPv2NRTidal posteriors do

not present the double peak in Λ̃ that is instead found in
Refs. [1,121]. The reason for this difference lies in the high-
frequency cutoff imposed. This same effect had already
been noticed in Ref. [122]. The authors, using the spin-
aligned IMRPhenomDNRTidal model [62,63] to analyze
the data, together with the relative binning technique [123],
found a double-peak structure in the posterior of Λ̃ with
fmax ¼ 1.5 kHz; that, however, disappeared when fmax was
lowered to 1 kHz. Further investigation by Narikawa et al.
[124] showed how the bimodality in Λ̃ reflects the
distributions found when analyzing the Hanford and
Livingston data separately. The authors found that the

FIG. 9. Estimation of fthr (solid lines) and LΛ̃ Λ̃ (dashed lines)
from GW170817 posterior samples extracted with TaylorF2
(blue), IMRPhenomPv2NRTidal (red), and TEOBResumS
(black). The shadowed bands represent the 90% credible regions.
In order to evaluate fthr, we use the identical waveform models
involved in the extraction of the posterior samples, and we set a
cutoff frequency at merger fmrg, estimated with the fits introduced
in Ref. [119]. For the estimation of LΛ̃ Λ̃, we limit ourselves to
6.5PN phase corrections. The plotted values are computed using a
network of three detectors (two LIGOs and Virgo) and setting
fmax ¼ 2 kHz. For a single interferometer at ρthr ¼ 1, we get
fthr ≈ 700 Hz for LIGO’s detectors and fthr ≈ 250 Hz for Virgo.

TABLE III. Analysis of GW170817 data: log evidences and
corresponding standard deviations computed using different
waveform approximants: TEOBResumS, TaylorF2, and IM-
RPhenomPv2NRTidal. The values obtained, according to
standard Bayesian statistics, indicate that it is not possible to
identify a preferred waveform model exclusively by relying on
the GW170817 data.

Approximant lnpðdjApprox:Þ
TaylorF2 523.078� 0.102
TEOBResumS 522.585� 0.102
IMRPhenomPv2NRTidal 522.261� 0.103
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distribution of Λ̃ derived by the Livingston detector
changes irregularly when they vary the maximum
frequency above 1100 Hz, and that the Handford detector
does not display such a behavior. The authors suggest that
an in-depth study of noise properties and glitch removal
techniques might be necessary to improve our understand-
ing of the August binary. To this end, Pankow et al. [125]
performed injection-recovery studies to test the goodness
of glitch removal techniques, and found that for the
studied signals, the mitigation methods applied are able
to remove the glitch adequately. Conversely, Wade et al.
[126] performed injection-recovery studies with
different Gaussian noise realizations, and found that bimo-
dalities in Λ̃ similar to those observed for GW170817
may arise in some cases. Repeating our analysis with
IMRPhenomPv2NRTidal and fmax ¼ 2 kHz, we too
reobtain the double peak in Λ̃. The evidence of the newer
analysis is, however, compatible to the one reported in
Table III: lnpðdjIMRPhenomPv2NRTidal; 2 kHzÞ ¼
521.860� 0.103. Similarly, the maximum values of the
log-likelihood are comparable between the two analyses:
maxðlnpðdjθÞ1 kHzÞ ∼ 534.26 and maxðlnpðdjθÞ2 kHzÞ∼
534.12. This is not unexpected, and had already been
observed in Ref. [122]. This implies that negligible SNR is
accumulated above 1 kHz, and—given the yet unknown
nature of the bimodality—that caution should be exercised
when interpreting posteriors for Λ̃ obtained when consid-
ering data above 1 kHz.
Overall, we find consistent values for intrinsic param-

eters such as masses and spins with Refs. [1,121] and
higher Λ̃ values. To translate the information on Λ̃ to
constraints on the NS radius R, we apply the URs of
Ref. [111] to the reweighted TEOBResumS Λ̃ posteriors
and estimate the radius of a 1.4 M⊙ NS. We find
R1.4 ¼ 12.5þ1.1

−1.8 km. This value is slightly larger than—
though still compatible with—the one obtained in Ref. [1].
The effect of the key choices of our analysis—i.e., the high-
frequency cutoff employed, the use of TEOBResumS and
the low-spin priors imposed—is then that of pushing
towards higher R values and stiffer EOSs. In the literature,
additional radius estimates have been computed by includ-
ing further astrophysical information. We find our result,
which focuses on the implications of GW data alone, to be
in good agreement with the radii obtained when addition-
ally accounting for electromagnetic priors [127] and the
measurement given by NICER [128,129], which both also
favor Λ̃ values larger than ≈200.

VI. TIDAL INFERENCE WITH 3G DETECTORS

Third-generation detectors such as the Einstein
Telescope [22,27] and Cosmic Explorer [130] are expected
to start taking data in the late 2020s. Their increased
sensitivity at high frequencies will significantly improve
the detection of tidal signatures in the inspiral, and even

allow the detection of GWs from the remnant. Typical
SNRs expected for GW170817-like events detected by ET
are of the order of 1700. As a consequence, the importance
of waveform systematics is expected to further increase
with respect to second-generation detectors.
To summarize some the arguments of Sec. II, the SNR

enters the determination of Λ̃ through two main channels.
First, it determines the maximum useful frequency fthr
[see Eq. (15)], above which variations of ρ can be fully
attributed to statistical fluctuations and which determines
the regimes in which tidal measurements are performed.
Second, it is related to the width of the distribution of the
tidal parameter σΛ̃ ¼ Λ̃95th%ile − Λ̃5th%ile. If the signal is
loud enough—as is expected with ET and CE—fthr will be
above the merger frequency for a large fraction of events.
Therefore, when studying the signal with inspiral-merger-
only waveform models, the effect of varying the SNR will
mainly affect σΛ̃. To obtain a quantitative estimate of σΛ̃ for
3G detectors, we fit the values found in our injection study
and extrapolate them to higher SNRs. We find that a good
approximation of the behavior of σΛ̃ over the SNR range
we considered is obtained by assuming that

σΛ̃ðρÞ ¼
c

ρ − ρ0
: ð32Þ

This functional form is valid only for ρ > ρ0, in which case
the denominator can be expanded as a geometrical series,
and incorporates the corrections to the leading-order 1=ρ
asymptotical behavior expected from the Fisher matrix
analysis. Fitting Eq. (32) to the data, we find ðc; ρ0Þ ¼
ð7497.97; 63.09Þ for TaylorF2 and (4372.21,66.78) for
IMRPhenomPv2. As could already be observed from
Fig. 5, IMRPhenomPv2NRTidal constrains the tidal
parameter better than its PN counterpart: σPhenomΛ̃ ðρÞ is

(almost) parallel to σTaylorF2Λ̃ ðρÞ but shifted to lower values.
To obtain a unique estimate of σΛ̃, we compute the mean
value: σ̄Λ̃ ¼ ðσPhenomΛ̃ þ σTaylorF2Λ̃ Þ=2.
The expression of σ̄Λ̃ can then be used to compute the

SNR at which two independent measurements Λ̃1 and Λ̃2,
whose difference we denote as ΔΛ̃, become statistically
inconsistent. Figure 10 shows the quantity ΔΛ̃=σ̄Λ̃ as a
function of the optimal SNR ρ for values of ΔΛ̃ ∈
½−100; 100�. When ΔΛ=σ̄Λ̃ ≈ 1, statistical fluctuations
are of the same order of magnitude as systematical effects.
For jΔΛ̃j ≈ 100, we see that this condition is satisfied
already at the threshold ρ ≈ 125. As jΔΛ̃j decreases, the
threshold SNR increases, reaching ρ ≈ 300 in correspon-
dence of a ΔΛ̃ ≈ 20.
The above considerations are independent of the exact

waveform models employed and do not tackle the issue of
estimating the ΔΛ̃ associated with two specific chosen
approximants. While it is clear from the injection study of
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Sec. IV that large ΔΛ̃ are to be expected when employing
TaylorF2 and IMRPhenomPv2NRTidal, we take a
step further and qualitatively estimate the bias ΔΛ̃ ¼ Λ̃E −
Λ̃ through Eq. (24) for two additional state-of-the-art
approximants, IMRPhenomPv2NRTidalv2 [93] and
SEOBNRv4Tsurrogate [90]. We thus compare the
latter and TEOBResumS in pairs and report the
differences with respect to two baselines (TEOBResumS
and SEOBNRv4Tsurrogate). Following the procedure
described in Sec. IV D, we consider values of Λ̃ equal to
400, 800, and 1000, place the sources in GW170817’s
location, and employ the EinsteinTelescope-
P1600143 PSD [131]. We compute waveforms from
30 to 2048 Hz (left panel) or 1024 Hz (right panel).
Results are again displayed in Fig. 10.
We find that both SEOBNRv4Tsurrogate and

IMRPhenomPv2NRTidalv2 “underestimate” the
values of Λ̃ at the TEOBResumS baseline (right panel),
and that the jΔΛj values found are always below ≈100.
This indicates that tides are stronger in the SEOBNRv4T-
surrogate and IMRPhenomPv2NRTidalv2 models
than in TEOBResumS. When restricting below 1 kHz
(large Λ̃), the systematic bias in Λ̃ due to the
differences between IMRPhenomPv2NRTidalV2 and
TEOBResumS is ≲2σ, corresponding to ΔΛ̃� 50, while
it varies ∼2σ–4σ when considering differences with respect
to SEOBNRv4Tsurrogate. This indicates that the
differences between IMRPhenomPv2NRTidalv2 and
TEOBResumS are mostly related to the modeling of tides
at high frequencies, while the tides in the EOB models
differ from each other already at lower frequencies.
Some caution is needed when interpreting the results

obtained for the different waveform approximants: in

Sec. IV D, we have seen that at times the estimated Λ̃E

would overestimate Λ̃median by up to 100. This difference
was acceptable at the injected SNRs, but it indicates that
our estimate might not be precise enough at the SNRs
which characterize 3G detectors. Nonetheless, we expect
the behavior of the approximants (i.e., their being more/less
attractive) to be correctly captured.
Overall, our findings indicate that above SNR≈

100–200, σΛ̃ will be small enough that the models will
appear to be fully inconsistent with each other. The
estimated systematic biases reflect differences in the tidal
modeling at frequencies corresponding to the very last
orbits and thus accessible to NR. We stress that at
frequencies ω̂≳ 0.06, the NSs are in contact, and the
waveform modeling based on tidal interactions can only be
considered an effective description, since the dynamics are
dominated by hydrodynamics [97]. We demonstrate in
Appendix C that current NR simulations are not sufficiently
accurate to produce faithful waveforms. New, more precise
NR simulations appear crucial to further develop tidal
waveform models for future detectors.

VII. CONCLUSIONS

In this paper, we discussed a possible approach for the
analysis of waveform systematics in the estimation of tidal
effects in BNS. We demonstrated the effectiveness of our
method in a mock experiment using a large set of injected
signals and applied the method to GW170817. We rec-
ommend using this method for future analysis and point
out that the approximants used for the main analysis of
GW170817 should be significantly improved for future
robust analysis at SNR ∼ 80 and beyond. We expand on
these conclusions here below.

FIG. 10. The ratio between systematic effects ΔΛ̃ and statistical uncertainties σΛ̃, shown as a function of the SNR ρ for a range of
different ΔΛ̃ ∈ ½−100;þ100�. Colored lines refer to values of ΔΛ̃=σΛ̃ estimated between a baseline approximant Y and a recovery
approximant X, labelled as “X-Y” in the bottom-left legend, and computed for two different frequency cutoffs (left and right panels) and
three different values of Λ̃ (dashed, dotted, and dash-dotted lines). We find that ΔΛ̃=σΛ̃ ≈ 1 at SNRs ranging from 175 to 200 for all Λ̃
values. Therefore, with 3G detectors, all the current approximants will appear to be statistically inconsistent.
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The bottom-up method employed in this work is
composed of three steps: First, the waveform approxim-
ants should be compared using theQω analysis in order to
understand the effect of the modeling choices (and the
physics implemented in the models) on the GW phase.
The Qω diagnostic is key to determining the waveforms’
differences, and it is free from the ambiguities introduced
in the phase comparisons by the time/phase shift.
Second, it is important to identify the frequency regime
at which the tidal information is effectively extracted.
This can be accomplished by computing fractional losses
Lii defined in Sec. II. Third, the PE results should be
interpreted in terms of the ΔQω analysis on the relevant
frequency interval.
Our mock experiments show that this procedure is

effective in identifying the main biases introduced by the
waveform models. Note in this respect that the “target”
model used for the computation of the ΔQω should be
chosen among those that are considered sufficiently faithful
on the relevant frequency regime. For example, for analyz-
ing biases at low frequencies, the target model should
contain maximal analytical information (vs minimal fit-
ting), and high-order Taylor or EOB models represent the
best choice in this respect. At very high frequencies,
numerical relativity data would be the best choice, although
the accuracy of the data is not yet sufficient for robust
statements (See Appendix C).
The analysis of GW170817 shows that the measurement

of the tides shows minor systematic effects if performed
up to 1 kHz [122,127]. Extending the analysis to higher
frequencies introduces some waveform effects, albeit still
compatible with others in the 90% confidence region. In
particular, comparing our results to Fig. 9 of Ref. [6], we
observe a shift in the posterior of Λ̃ computed with
IMRPhenomPv2NRTidal that can be fully understood
from the Qω phasing analysis presented here. When
applying IMRPhenomPv2NRTidal to 2 kHz, the pos-
teriors have a double peak that is not present with the 1 kHz
cutoff. The similar inferences using the TaylorF2 and
TEOBResumS approximants are instead related to the fact
that, in the relevant frequency regime, the differences
between the TaylorF2 point mass and the tidal effects
have opposite signs and partly compensate each other
(see Fig. 2).
By applying the URs of Ref. [111] to the Λ̃ values

obtained in our GW170817 reanalysis, we obtain a new
measurement of R1.4 M⊙

which—based exclusively on the
information gathered from GW data—is in good agreement
with results coming from independent astrophysical obser-
vations; i.e., the NICER radius measurement and the
information coming from EM observations [127,128].
Significant waveform systematics are to be expected for

GW170817-like signals already for the current advanced
detectors at design sensitivity. Further, systematic errors
increase for large values of the tidal parameter Λ̃. These

events, with large tidal deformabilities or high SNRs, are
the best candidates for an actual measure (vs the upper
limit) of the tidal parameters and EOS constraints. At
design sensitivity, the expected bias in the reduced tidal
parameter using TaylorF2 and IMRPhenomPv2-
NRTidal is about 2σ (for average BNS parameters
as quantified in Fig. 5). This would be reflected in
systematics on the NS radius of about 1 km (10%), that
are comparable to or well above the current best estimates
of the NS radius, also including electromagnetic constraints
[3,111,127,132,133].
Moving to higher sensitivities and 3G detectors, we

estimate that the systematics between the approximants that
currently have the smallest differences among themselves
become dominant over statistical errors at a SNR of 200
and for Λ̃≳ 400 (Fig. 10). This implies that EOS con-
straints from the potentially most informative (and rare)
events will be harmed by tidal waveform systematics.
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APPENDIX A: EFFECT OF THE POINT-MASS
SECTOR ON Λ̃

In this Appendix, we explicitly show how uncertain-
ties in the point-mass phase (of both statistic and
systematic nature) can affect the determination of the
tidal parameter Λ̃. Starting from Eq. (7), writing
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expðiΔΨÞ ¼ cosðΔΨÞ þ i sinðΔΨÞ, and expanding the
cosine around ΔΨ ≈ 0, the SNR becomes

ρ ¼ 4ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp
Z

ÃdÃh

Sn

�
1 −

ðΔΨÞ2
2

þOðΔΨ3Þ
�
df

≃ ρopt −
2ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp

Z
Ã2ðΔΨÞ2

Sn
df; ðA1Þ

where the last step assumes Ãh ≈ Ãd ¼ Ã. By defining θ̄ as
the set of parameters such that ΔΨðθ̄; fÞ ≈ 0 over the
whole frequency range considered ½fmin; fmax�, and
expanding ΔΨ in Eq. (A2) around θ̄, the second integral
in Eq. (A2) can be connected to the Fisher matrix:

Z
Ã2ðΔΨÞ2

Sn
df ≈

Z
Ã2∂iΨh∂jΨh

Sn
ΔθiΔθjdf; ðA2Þ

with ∂i ¼ ∂=∂θi and Δθi ¼ θi − θ̄i (repeated indices
imply a summation). Under the assumption of high
SNR, the integrals over f in Eq. (A2) can be split as

−
ΔθlΔθm

2

Z
fc

fmin

Il;mdf −
ΔθΛ̃ΔθΛ̃

2

Z
fmax

fc

IΛ̃;Λ̃df; ðA3Þ

where fc is a “cutoff frequency” that identifies the
beginning of the relevant frequency support of IΛ̃;Λ̃ [see
Eq. (14)] and has the value of ≈300 Hz for fiducial BNS.
Equation (A3) clearly shows the different frequency
regimes at which the parameters are measured during
PE. M̄, q̄, and χ̄ are determined during the early inspiral

(f ≤ fc);
¯̃Λ at higher frequencies ðf ≥ fcÞ. Sampling

methods will tend to recover the parameters θ → θ̄.
However, due to the varying sensitivity of the detector
over different frequency ranges, the parameters measured
during the early inspiral θinsp ¼ ðM; q; χÞ converge faster
than tidal parameters. Let us then go back to Eq. (A2) and
express its left-hand side as

−
ΔθlΔθm

2

Z
fc

fmin

Il;mdf −
1

2

Z
fmax

fc

Ã2ðΔΨÞ2
Sn

df: ðA4Þ

The first integral has, again, been expanded about the
set of parameters θ̄insp. Taking the limit θinsp → θ̄insp, its
contribution tends to zero by definition. The remaining
second integral can be explicitly written as

−
1

2

Z
fmax

fc

Ã2

Sn
½ΔΨPMðθ̄insp; Λ̃ ¼ 0Þ þ ΔΨTðθ̄insp; Λ̃Þ�2df;

ðA5Þ

where we have separated ΔΨ into its point-mass
(ΔΨPM) and tidal (ΔΨT) contributions. Critically,

ΔΨPMðθ̄insp; Λ̃ ¼ 0Þ is not necessarily close to zero above
fc, as the parameters θ̄insp are determined over a different
regime and chosen to minimize ΔΨPMðθ̄insp; Λ̃ ¼ 0Þ below
fc. The value

¯̃Λ therefore will have to minimize not only
ΔΨT over ½fc; fmax�, but rather the sum of ΔΨT and ΔΨPM.
This means that both the tidal and the point-mass sectors
of a waveform model can introduce biases in the recovery
of tidal parameters, and that overall phase differences
accumulated over fc are absorbed mainly by Λ̃.

APPENDIX B: TIDAL INFORMATION

In this Appendix, we apply the method presented in
Sec. II A to the signals involved in the PE studies of Sec. IV,
proving that the injections are actually performed in an
informative framework for the tidal parameter, in which
statistical fluctuations cannot be considered as the domi-
nant source of the differences observed in the tidal
parameter (see Fig. 5).
Table IV shows the values of the frequency support

½fΛ̃5%; fΛ̃95%� defined in Eq. (14) computed for the injected
signals, including all the detectors involved in the analysis.
For all the cases, fmrg > 1 kHz, indicating the presence of a

signal in the high-frequency regime, and fΛ̃95% > 1 kHz,
meaning that the tidal contributions are relevant above this
value. Furthermore, Table IV reports the values of fthr and
LΛ̃ Λ̃, defined in Eqs. (15) and (16), respectively, computed
for the same signals for ρthr ¼ 1; 3. We observe that these

TABLE IV. Values of fΛ̃5%, f
Λ̃
95%, fthr, and LΛ̃ Λ̃ computed for

the signals involved in the injection studies in Sec. IV. We recall
that the injected signals have extrinsic properties identical to the
maximum posterior parameters of GW170817 [1]. The reported
values are estimated with a three-detector network (two LIGOs
and Virgo) at a design sensitivity using the TEOBResumS
waveform model.

EOS M q fmrg fΛ̃5% fΛ̃95% ρthr ¼ 1 ρthr ¼ 3

[M⊙] [Hz] [Hz] [Hz] fthr [Hz] LΛ̃ Λ̃ fthr [Hz] LΛ̃ Λ̃

DD2 2.71 1.00 1287 245 1460 1085 0.18 731 0.52
LS220 2.68 1.00 1366 259 1800 1152 0.23 740 0.57
LS220 2.69 0.86 1241 242 1332 1055 0.15 731 0.51
SFHo 2.71 1.00 1426 271 1825 1207 0.23 766 0.59
SFHo 2.72 0.88 1416 278 1862 1252 0.25 772 0.61
SLy 2.68 1.00 1588 273 1746 1211 0.22 772 0.60
SLy 2.69 0.88 1480 272 1816 1208 0.23 766 0.59
DD2 2.48 1.00 1206 240 1666 1033 0.21 693 0.55
DD2 3.18 1.00 1192 249 1715 1125 0.19 782 0.49
2B 2.70 1.00 1646 293 1834 1311 0.24 804 0.63
SLy 3.00 1.00 1540 278 1744 1254 0.20 828 0.56
LS220 3.20 1.00 1288 255 1443 1332 0.30 826 0.63
SFHo 2.92 1.00 1449 281 1874 1285 0.24 802 0.59
SFHo 2.80 1.00 1519 273 1698 1222 0.20 788 0.58
ALF2 3.00 1.00 1299 250 1395 1121 0.15 787 0.50
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ρthr values correspond to power losses of ∼1.5% and ∼4%
of the total power, respectively. For ρthr ¼ 1, we have
fthr > 1 kHz, showing that the signal power is relevant
above this threshold. For this value, LΛ̃ Λ̃ ≤ 30%. These
facts are reflected in a lower variance on the posterior
distribution for Λ̃ coming from the PE analyses with
fmax ¼ 2048 Hz with respect to those with
fmax ¼ 1024 Hz. Finally, for all the injected signals, we
have fthr > fΛ̃5%, which proves that these data contain
information on the tidal parameter in an accessible fre-
quency range.

APPENDIX C: FAITHFULNESS OF NUMERICAL
RELATIVITY WAVEFORMS

Numerical relativity (NR) simulations are fundamental
for understanding the merger physics and the waveform
morphology in the high-frequencies regime. They incor-
porate hydrodynamical effects and can model not only the
late-inspiral–merger parts of the coalescence, but also
the postmerger phase. While NR waveforms are often
regarded as exact with respect to those provided by
waveform approximants in the same regime, the complex
3D simulations can introduce significant uncertainties, e.g.,
Refs. [97,135–138]. The latter are due both to systematics
(finite radius extraction of the GWs, numerical dissipation,
etc.) and to finite grid resolution. Systematics are difficult
to control, but finite resolution errors can be studied
by simulating at different resolutions and performing
convergence tests.
In this Appendix, we apply the method of Sec. IV D to a

set of NR waveforms taken from the CoRe database [139],
with the aim of testing the accuracy of current state-of-the-
art NR simulations and guiding future efforts. In particular,
we consider multiorbit and eccentricity-reduced simula-
tions performed with the BAM code, and we focus on the
late-inspiral–merger phase, where waveforms are shown to
be convergent. To the best of our knowledge, accuracy
standards for BNS NR waveforms at multiple grid reso-
lutions have been computed only in Ref. [135] for data that
are currently superseded by the those produced with
simulations employing high-order numerical fluxes
[136,138] and higher resolutions than we consider here.
We use here a sample of CoRe waveforms computed at
multiple resolutions and produced in Refs. [92,140–143].
Table V displays the faithfulness values computed

for a set of BAM waveforms. Each value is obtained by
comparing the two highest-resolution simulations available
for each considered set of intrinsic parameters. For each
resolution R, the simulations compute the multipoles
hlmðtÞ; the waveform polarizations hRþ; hR× are recon-
structed from

hþ − ih× ¼ D−1
L

X∞
l¼2

Xl
m¼−l

hlmðtÞ−2Ylmðι;ψÞ; ðC1Þ

where −2Ylmðι;ψÞ are the spin-weighted spherical har-
monics of spin s ¼ −2 and DL is the luminosity distance.
Assuming for simplicity that the radiation is emitted along
the z axis, perpendicular to the orbital plane, one has that
ι ¼ ψ ¼ 0, and −2Y2�2ð0; 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=ð64πÞp ð1� 1Þ2. Fixing

the source in GW170817’s sky location and projecting the
polarizations on the Livingston detector, matches are
finally computed over a frequency range f ∈ ½flow; fmrg�,
where flow is defined as the frequency at which the
amplitude of the Fourier transform FT½Reðh22Þ� is highest
and fmrg is the merger frequency—i.e., the instantaneous
frequency corresponding to the peak of the amplitude
jh22ðtÞj. Such values are then contrasted to the threshold
faithfulness F thr of Eq. (19). Similarly to Sec. IV D, we
choose ϵ2 to be equal to 1, for a stricter requirement, or to
the number of intrinsic parameters of a BNS system
(ϵ2 ¼ 6). Note that while F < F thr is a necessary but
not sufficient condition for biases to appear, F > F thr is a
sufficiently strong requirement to ensure that two wave-
forms are faithful. While for low-SNR signals most of the
waveforms considered are accurate enough, we find that—
out of the twelve simulations examined—none passes the
accuracy test when (SNR 80, ϵ2 ¼ 1), and only one
(BAM:0095) manages to pass it when (SNR 80, ϵ2 ¼ 6)

TABLE V. Faithfulness values F computed considering
frequencies from flow to fmrg between simulations with the same
intrinsic parameters and two different resolutions, extracted at
r=M ¼ 1000. The source is situated in the same sky location as
GW170817, and the waveform polarizations hþ and h× are
computed and projected on the Livingston detector. We employ
the aLIGODesignSensitivityP1200087 [23] PSD from
pycbc [115] to compute the matches and compare the values
obtained to the thresholds F thr calculated with Eq. (19) with ϵ2 ¼
1 or ϵ2 ¼ 6. A tick✓ indicates that F > F thr. Conversely, a cross
✗ indicates that F < F thr.

SNR

14 30 80

Sim na F 6 1 6 1 6 1

BAM:0011 [96, 64] 0.991298 ✓ ✗ ✗ ✗ ✗ ✗
BAM:0017 [96, 64] 0.985917 ✓ ✗ ✗ ✗ ✗ ✗
BAM:0021 [96, 64] 0.957098 ✗ ✗ ✗ ✗ ✗ ✗
BAM:0037 [216, 144] 0.998790 ✓ ✓ ✓ ✗ ✗ ✗
BAM:0048 [108, 72] 0.983724 ✗ ✗ ✗ ✗ ✗ ✗
BAM:0058 [64, 64] 0.999127 ✓ ✓ ✓ ✗ ✗ ✗
BAM:0064 [240, 160] 0.997427 ✓ ✗ ✓ ✗ ✗ ✗
BAM:0091 [144, 108] 0.997810 ✓ ✓ ✓ ✗ ✗ ✗
BAM:0094 [144, 108] 0.996804 ✓ ✓ ✓ ✗ ✗ ✗
BAM:0095 [256, 192] 0.999550 ✓ ✓ ✓ ✓ ✓ ✗
BAM:0107 [128, 96] 0.995219 ✓ ✗ ✗ ✗ ✗ ✗
BAM:0127 [128, 96] 0.999011 ✓ ✓ ✓ ✗ ✗ ✗

aNumber of grid point (linear resolution) of the finest grid
refinement, roughly covering the diameter of one NS.
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and (SNR 30, ϵ2 ¼ 1). Note that the stars are resolved in
this case with ≳200 grid points.
Our findings indicate that the largest portion of the NR

simulations available to date may not yet be sufficiently
accurate for GW data-analysis purposes. High-order meth-
ods for hydrodynamics and resolutions >200 grid points
per star appear necessary for GW modeling.

APPENDIX D: UNIVERSAL RELATIONS

In this Appendix, we collect the quasi-universal relations
employed in the main text.
(1) De et al.: This phenomenological relation was first

introduced in Ref. [111], and it links the chirp mass
of a BNS system Mc and its mass-weighted tidal
parameter Λ̃ to the radius of a 1.4 M⊙ star, R1.4.
Explicitly,

R1.4 ≃ ð11.2� 0.2ÞMc

M⊙

�
Λ̃
800

�
1=6

km ðD1Þ

Note that this expression is valid for GW170817-like
systems, and it is expected to fail for stars lighter
than 1 M⊙ or heavy systems, with a chirp mass Mc
larger than 1.5.

(2) Binary-Love and C-Love: These relations were
obtained in Refs. [113,114]. The Binary-Love
relation links the asymmetric combination of the
tidal parameters, Λa ¼ ðΛ1 − Λ2Þ=2, to the sym-
metric one, Λs ¼ ðΛ1 þ Λ2Þ=2, in a mass-ratio (q)
dependent way:

Λa ¼ FnðqÞΛs

aþP
3
i¼1

P
2
j¼1 bijq

jΛ−i=5
s

aþP
3
i¼1

P
2
j¼1 cijq

jΛ−i=5
s

; ðD2Þ

FnðqÞ≡ 1 − q10=ð3−nÞ

1þ q10=ð3−nÞ
; ðD3Þ

where the coefficients n, a, bij, cij can be found in,
e.g., Ref. [113]. It can be used in PE to reduce the
dimensionality of the parameter space by linking Λ2

FIG. 11. This figure is the equivalent of Fig. 2 with TaylorF2 at 5.5 PN PM and 7 PN tides (blue), 5.5 PN PM and 7.5 PN tides
(magenta), and IMRPhenomPv2NRTidalv2 (green). Note that the 5.5 PN PM and NRTidalv2 descriptions improve the ΔQPM

ω̂ and
ΔQT

ω̂ in the low- and high-frequency regimes, respectively. When coupled to a 5.5 PN PM, 7.5 PN tides are closer to TEOBResumS for
Λ̃ ¼ 100 than the 7 PN description, which in turn performs better for Λ̃ ¼ 400 over a large portion of the frequency range.
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and Λ1 [144]. The C-Love relation, instead, links the
compactness of a NS to its tidal deformability:

CiðΛiÞ ¼
X2
k¼0

akðlnΛiÞk; ðD4Þ

and a0 ¼ 0.3616998, a1 ¼ −0.0354818, a2 ¼
0.0006193849. To obtain an estimate of the radius
of one of the NSs, we combine them. Indeed, rather
than directly applying Eq. (D4) to the posterior
samples of Λ2, we wish to map Λ̃ onto R, as Λ̃ is the
better measured quantity from GW analysis. To do
so, we obtain the relation Λ1 ¼ Λ1ðΛ2; qÞ from the
inversion of Eq. (D2), and we compute Λ2 ¼
Λ2ðΛ̃; qÞ from the definition of Λ̃. Finally, we apply
Eq. (D4).

(3) Raithel et al.: The relation found in Ref. [112] is
based on a quasi-Newtonian approximation of the
full relativistic expression for the tidal deformability
of a star, given by Eq. (96) of Ref. [31] with β ≈ 1.
Explicitly,

Λ̃ ¼ Λ̃0ð1þ δ0ð1 − qÞ2Þ; ðD5Þ

Λ̃0 ¼
15 − π2

3π2
ξ−5ð1 − 2ξÞ5=2; ðD6Þ

δ0 ¼
3

104
ð1 − 2ξÞ−2ð−10þ 94ξ − 83ξ2Þ; ðD7Þ

ξ ¼ 21=5GMc

Rc2
: ðD8Þ

The above equations can be inverted numerically to
obtain RðΛ̃; q;McÞ.

APPENDIX E: Qω ANALYSIS WITH OTHER
APPROXIMANTS

In the present Appendix, we repeat the discussion of the
second part of Sec. III, and we compute ΔQω̂, ΔQT

ω̂, and
ΔQPM

ω̂ for two additional state-of-the-art approximants:
(i) IMRPhenomPv2NRTidalv2, which differs from the
IMRPhenomPv2NRTidal model exclusively in its tidal

FIG. 12. This figure is the equivalent of Fig. 2 with TaylorF2 at 5.5 PN PM and 7 PN tides (blue), 5.5 PN PM and 7.5 PN tides
(magenta), and IMRPhenomPv2NRTidalv2 (green). We note that in the low-frequency regime, the 5.5 PN PM, which gives the best
approximation of the TEOBResumS PM between the approximants considered for nonspinning equal-mass binaries, becomes
increasingly more negative as spins grow. On the other hand, the Phenom description over the same range consistently has
jΔQPM

ω̂ j < 0.2. When considering the high-frequency contributions, instead, the hierarchy displayed in Fig. 3 is maintained.
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sector, which now incorporates a 7.5 PN low-frequency
limit and PN-expanded spin-quadrupole interactions up to
3.5 PN in the waveform phase; and (ii) TaylorF2,
endowed with quasi-5.5 PN point-mass terms, 7.5 PN
tides, and spin-spin terms up to 3.5 PN. We note that it is
not possible to obtain meaningful information from Qω for
SEOBNRv4Tsurrogate, as it is not continuous and
derivable over the whole range of frequencies considered.
Figure 11 shows Qω̂ for the aforementioned approxim-

ants, computed for three reference signals with varying Λ̃
and zero spins, once again divided into three ω̂ intervals,
corresponding to the regimes in which tidal contributions
are roughly smaller than, comparable to, or dominant
with respect to ΔQPM

ω̂ . Inspecting the first column (which
corresponds to the early frequencies interval), we notice
that the ΔQPM

ω̂ of TaylorF2 is comparable to that of
IMRPhenomPv2NRTidalv2, and is overall closer to
TEOBResumS’s description than the one provided by
considering a 3.5 PN point-mass baseline. When consid-
ering the tidal sector, instead, we note that the behaviors of
NRTidalv2 and 7.5 PN tides are opposites from the start.
Moving to higher frequencies, tidal effects dominate both
the late inspiral and merger regimes for both approximants.
IMRPhenomPv2NRTidalv2 is less attractive than

IMRPhenomPv2NRTidal, while the 7.5 PN tidal
description is more repulsive than the 6 PN one. Close
to merger, we find that—as expected—the point-mass
contribution of the 5.5 PN approximant becomes large
and positive, and partially compensates the negative ΔQT

ω̂.
Overall, we find that IMRPhenomPv2NRTidalv2 pro-
vides a description that is much closer to TEOBResumS
than the one offered by IMRPhenomPv2NRTidal, albeit
being still slightly more attractive.
Spinning configurations are studied in Fig. 12, which

shows ΔQω̂ for three target signals with Λ̃ ¼ 400 and
increasing spins χ1 ¼ χ2. Focusing on the low-frequency
contribution to ΔQω̂, we observe that IMRPhenomPv2-
NRTidalv2 is now overall closer to TEOBResumS
than IMRPhenomPv2NRtidal and TaylorF2 were.
Additionally, the 5.5 PN point mass, which in the non-
spinning case follows closely the behavior of
TEOBResumS, becomes more negative as spins grow.
Moving to the high-frequency regime, the improvements
of NRTidalv2 have a positive effect on ΔQT

ω̂ of the
phenomenological approximant. Indeed, while the Phenom-
EOB-PN hierarchy displayed in Fig. 3 for spinning binaries
is maintained, the differences decrease and NRTidalv2 is
closer to the TEOBResumS description than NRTidal.
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Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett. 113,
151101 (2014).

[62] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J.
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