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We consider tests of short-distance modifications of gravity based on neutron interferometry in the
scenario of large extra dimensions. Avoiding the noncomputability problem in the calculation of the
internal gravitational potential of extended sources, typical of models with zero-width brane, we determine
the neutron optical potential associated with the higher-dimension gravitational interaction between the
incident neutron and a material medium in the context of thick brane theories. Proceeding this way, we
identify the physical quantity of the extra dimension model that the neutron interferometry is capable of
constraining. We also consider interferometric experiments in which the phase shifter is an electric field, as
in the test of the Aharonov-Casher effect. We argue that this experiment, with this nonbaryonic source, can
be viewed as a test of the short-range behavior of post-Newtonian parameters that measure the capacity of
the pressure and the internal energy for producing gravity.
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I. INTRODUCTION

Braneworld scenarios [1–4], according to which our
ordinary four-dimensional spacetime is embedded in a
higher-dimensional ambient space, have motivated many
recent studies on the modifications of gravity in short-
distance scale [5].
Compared to the Kaluza-Klein pioneering work on extra

dimension formally based on general relativity, these new
higher-dimensional theories, among which the ADD model
[1] is a prototype, are distinguished by a peculiar feature.
They are based on the fundamental assumption that matter
and fields are confined in the 3-brane (the ordinary three-
dimensional space) while gravity has access to all direc-
tions [1–4]. The dilution of the gravitational field through
the whole ambient space would be the reason for the
feebleness of gravity in comparison to the strength of the
localized fields and, therefore, could be the explanation for
the hierarchy problem, whose resolution was originally the
main motivation for some braneworld models [1,2].
In these scenarios, the effects of extra dimensions on the

gravitational field may become significant in a length scale
R much greater than the scale in which the confined fields
would feel them directly. Thus, extra dimensions with a
size much larger than the Planck length are phenomeno-
logically feasible since gravity, differently from what
happens to the other fields, is being empirically tested in
submillimeter domains only recently [5,6].
An important prediction of the existence of large extra

dimensions according to these braneworldmodels is a strong
amplification of the gravitational field in short distances
(r ≪ R), implying that the theory could be experimentally
checked. This possibility has motivated the search for

empirical signs of the supposed hidden dimensions in
laboratory tests from areas such as spectroscopy [7–17],
neutron interferometry [18–22], torsion balance experi-
ments [6], and Casimir effect tests [23–25]. Besides these
table-top experiments, there are important tests from astro-
physics [26–28] and high-energy colliders [29,30].
Regarding the laboratory tests, modifications of gravity

are usually parametrized bymeans of an additional Yukawa-
like potential energy of the form ðαGMm=rÞ expð−r=λÞ,
whereM andm are the masses of interacting particles andG
is the Newtonian gravitational constant. Experiments from
diverse areas put upper bounds on the amplification factor α
in different ranges of the length scale parameter λ [5].
The Yukawa parametrization is very useful because it

may encompass modifications of gravity with different
theoretical origins [31–33]. The ADD model predicts a
correction of the same type for the external gravitational
potential produced by a particle in the domain of large
distances r ≫ R [34]. In this case, the parameter α is
proportional to the number of hidden dimensions δ. The
exact relation depends on the topology of the supplementary
space and on the length scale at which the stabilization of its
volume takes place [34,35]. In its turn, in short distances, the
gravitational potential is expected to exhibit a power-law
behavior, i.e., it should be proportional to ðR=rÞδþ1 [1].
It is important to remark that both Yukawa and the

power-law approximations are valid for pointlike particles.
In configurations where the particles’ wave functions
overlap, the internal gravitational potential of the source
should be considered. It happens that inside an extended
source, the gravitational potential is not computable in
a scenario of zero-width brane with δ ≥ 2 [13,29,36].
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One way to circumvent this difficulty is to consider a thick
brane model [37–40], which allows us, for instance, to
estimate the influence of hidden dimensions in the energy
shift of S − states in the hydrogenlike atoms [13,41].
Experiments based on the interferometry of neutrons

constitute important tests of nonstandard gravity and provide
some of the most stringent upper bounds on the Yukawa
parameter α in the range between 10−12 m and 10−9 m [21].
Schematically, in this kind of experiment, incident neu-

trons are divided into two beams that follow spatially
separated paths and are then recombined to form an
interference pattern in the detected intensity of the neutron
flux [42]. A quantum mechanical phase difference is
acquired when the partial beams are subjected to different
physical interactions along the two paths as they have to pass
through material plates or to cross regions with electromag-
netic fields, according to the aim of the experiment.
In general, most analyses are based on the Yukawa

parametrization. However, when the neutron is in contact
with the medium, its phase is affected by the neutron
optical potential which depends on the internal gravita-
tional potential of the material. Thus, in order to estimate
the effects of hidden dimensions on the neutron interfer-
ometry, we calculate the internal potential of a solid phase
shifter in the context of a thick brane scenario, thus
avoiding the divergence problems related to models with
zero-width brane. More specifically, in Sec. II, we deter-
mine the forward scattering length of the anomalous
gravitational interaction between the incident neutron
and the nucleus of the material in the leading order,
identifying, thus, the physical quantity of the extra dimen-
sion model that the neutron interferometry is able to
constraint. As expected, this quantity depends on a param-
eter related to the localization of the matter in the brane,
but, as we shall see, it also depends on the nuclear model of
the atomic nuclei that constitute the material.
One way to surpass this limiting aspect is to consider

experiments in which the phase shifter is a nonbaryonic
source. An example is the experiment conceived to test the
Aharanov-Casher (AC) effect [43], which can be described
as a version of the Aharonov-Bohm effect for an electric
neutral particle [42,43]. In the AC experiment [44], the
phase difference arises from the interaction between the
neutron’s magnetic moment and the electric field as the
beams cross the interior of electrostatic chambers.
According to the general relativity theory, all kinds of

energy are capable of curving spacetime. So, in that
experiment, incident neutrons also interact with the gravi-
tational field produced by the electric field. In Sec. III, we
calculate the additional phase shift due to this interaction
and discuss the possibility of extracting independent
constraints for short-distance modifications of gravity from
the AC experiment.
These interferometric bounds can be considered in

a more general context of metric theories and their

post-Newtonian parameters [45]. As we shall see, the
constraints put from this nonbaryonic source can be seen
as limits for short-distance deviations of two post-
Newtonian parameters that measure the capacity of the
internal energy and pressure to bend spacetime in com-
parison to the rest mass of matter.
For a restricted class of metric theories, the interfero-

metric constraints obtained here can be compared to the
bounds extracted from the MTV-G experiment [46–48] and
from the spectroscopy [48] concerning short-distance
modifications of the post-Newtonian γ-parameter (related
to the curvature of spatial sections of the spacetime). As we
shall see, neutron interferometry establishes the most
stringent bounds for this parameter in the length scale
between 1.4 × 10−7 m and 10−4 m.

II. INTERNAL POTENTIAL OF AN EXTENDED
SOURCE IN THICK BRANE SCENARIO

According to the ADD-model, the spacetime has a
certain number (δ) of compact spacelike extra dimensions.
The background spacetime is flat and contains a supple-
mentary space with a finite volume, ð2πRÞδ. Matter and all
the standard model fields are confined in the brane. Hence,
the energy-momentum distribution of the localized fields
may be described by a tensor of this kind [29]:

TAB ¼ ημAη
ν
BTμνðxÞfðzÞ: ð1Þ

Here we are adopting the following notations: Greek
indices run from 0 to 3, and capital Latin indices go from
0 to 3þ δ. The ordinary spacetime coordinates are repre-
sented by x, while z indicates coordinates of the compact
space. The tensor ηAB is the Minkowski metric. For an
idealized zero-width brane, fðzÞ is a Dirac delta distribu-
tion, but, in the case of a thick brane, fðzÞ is some
regularization of that singular distribution.
The confined fields are the source of a gravitational field

in the bulk that obeys a higher-dimensional version of
Einstein equations. In the weak-field regime, the metric is
approximately given by gAB ¼ ηAB þ hAB, where the tensor
hAB, which describes small perturbations in the geometry,
satisfy the linearized Einstein equations:

□hAB ¼ −
16πGD

c4
T̄AB: ð2Þ

Here the symbol □ is the D’Alembertian operator asso-
ciated with the Minkowski metric with a signature
ð−;þ; � � � ;þÞ and T̄AB ¼ ½TAB − ðδþ 2Þ−1ηABTC

C�. It is
important to remark that the above equation is valid in
the harmonic gauge that is defined by the condition:
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∂A

�
hAB −

1

2
ηABhCC

�
¼ 0: ð3Þ

The gravitational constant GD of the higher-dimension
theory, that appears in equation (2), should satisfy the
relation GD ¼ Gð2πRÞδ to recover the conventional results
of general relativity at large distances [1,29]. Another
requisite is the asymptotic stabilization of the volume of
the supplementary space [49].
On the other hand, in short distance, the dominant term

of the solution is independent of the topology of the
supplementary space. In the static regime, the solution
of Eq. (2), in this approximation order, is given by:

hABðX⃗Þ ¼
16πΓðδþ3

2
ÞGD

ðδþ 1Þ2πðδþ3Þ=2c4

�Z
T̄ABðX⃗0Þ

jX⃗ − X⃗0j1þδ
d3þδX0

�
;

ð4Þ

where X⃗ and X⃗0 are spatial coordinates of the ambient
space. By ignoring the topology, we are taking a lower
estimate of the potential strength. To illustrate this, consider
a torus topology, as an example. As a consequence of the
periodicity along each transversal direction of the brane
that is implied by this topology, the resulting potential is
mathematically equivalent to a superposition of potentials
produced by a net of images of the source regularly spread
in unfolded extra dimensions [34]. Therefore, by consid-
ering only the term (4), we are not taking into account the
contribution of all images.
In the context of an interferometry experiment, Eq. (4)

gives the higher-dimensional gravitational potential pro-
duced by the phase shifter, which can be a material plate or
an electric field (see Fig. 1), as we are going to consider
later. In its turn, the coupling of the incident neutron with
that gravitational field can be extracted, in the ray optic
approximation, from the Lagrangian of a test particle with
mass m that is moving in the brane:

L ¼ mcðgμν _xμ _xνÞ1=2; ð5Þ

where _xμ means the derivative of the particle’s coordinates
with respect to its proper time. As the motion is restricted to
the brane, gμν is the induced metric in z ¼ 0. For a non-
relativistic test particle, as the slow neutron in the experi-
ment, it follows from (5) that the gravitational interaction is
described by the potential energy UG ¼ mφ, where φ ¼
−h00c2=2 is the modified gravitational potential calculated
from (4).

A. Baryonic source

Crossing a material medium, the neutron interacts with
the atomic nucleus via the anomalous gravitational force
according to the large extra dimension scenario. Each
nucleus can be treated as a nonrelativistic source with

an energy-momentum tensor approximately given by
Tμν ¼ ρNuμuν, where ρN is the proper baryonic mass of
the nucleus and uμ is its four-velocity. In the rest frame of
the medium, uμ ¼ cδμ0 in the first approximation. Thus, it
follows that the gravitational potential of a single nucleus
evaluated in a point x⃗ in the brane is given by:

φðx⃗Þ ¼ −ĜD

�Z
ρNðx⃗0ÞfðzÞ

ðjx⃗ − x⃗0j2 þ z2Þ1þδ
2

d3x0dδz
�
; ð6Þ

where, for convenience, we have defined ĜD ¼ 4ΩδGD and
Ωδ ¼ Γðδþ3

2
Þ=ðδþ 2Þπðδþ1Þ=2. As we have already men-

tioned, if fðzÞ is a Dirac delta distribution, the potential is
not computable in any interior point (i.e., for jx⃗j < RN, the
nuclear radius) in the case of a codimension greater than
one. However, an estimate of the internal potential (φint)
can be determined by considering that the brane has a
thickness and that the baryonic mass of the nucleus is
distributed along the extra dimensions according to some
regular function fðzÞ, such as a Gaussian function centered
at z ¼ 0. In the leading order, it is possible to show that
φintðx⃗Þ is proportional to the baryonic mass density dis-
tribution ρNðx⃗Þ of the nucleus [13]. Therefore, this internal
interaction cannot be distinguished from the strong inter-
action between the neutron and the nucleus, which is
described by a semiempirical potential of Wood-Saxel
type [18,50].
An instructive, although nonrigorous, way to estimate

the magnitude order of the potential (6) is to consider that,
due to the mass distribution in the extra dimensions, the
neutron and the source are separated in the z − direction by
an effective distance σ, whose exact value depends on fðzÞ.

FIG. 1. This picture shows schematically an interferometric
experiment as seen from the higher-dimensional perspective. The
z-axis represents the extra-dimensional directions. The variables
x1, x2 and x3 (not visualized) correspond to coordinates of the
perceived three-dimensional world. The incident neutrons move
(black thin lines) in the brane center, which is illustrated by the
plane z ¼ 0. The beams follow two different paths after being
split by silicon crystal (the first thick grey line at left). Due to the
gravitational interaction of the neutron with the phase shifter
(a material medium or an electric field), the beams acquires a
phase difference that produces an interference pattern as the two
beams are recombined at the third silicon crystal and follow to the
detectors (disks).
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At this distance, only a fraction of the source inside
a 3-ball of radius σ in the brane parallel directions
contributes significantly to the potential. Thus, inside the
nucleus, the gravitational potential will be proportional to
GDðσ3ρNÞ=σδþ1, therefore, φintðx⃗Þ is proportional to the
density distribution ρNðx⃗Þ, in this approximation as men-
tioned above.
Perfect silicon crystal interferometers use a slow neutron

with a wavelength ðλnÞ of Angstrom order. Thus, the
nuclear interaction, whose effective action is restricted to
the nucleus size, can be approximated by the Fermi
pseudopotential. The average of this potential energy in
the medium is given by [42]:

UF ¼ 2πℏ2N
m

b; ð7Þ

where the parameter b is the forward scattering length and
N is the atomic density of the material. The effects of the
so-called neutron optical potential (7) on the phase shift of
the neutron beam can be determined empirically.
According to the available data, the extracted value of b
is roughly proportional to A1=3, where A is the atomic mass
of the nucleus [21]. If there are hidden dimensions and the
gravitational interaction between the neutron and the
nucleus is described by the hypothetical potential (6), then
the measured value of b should contain a small contribution
(bintG ), associated with the influence of the internal gravi-
tational potential φint. However, bintG would be indiscernible
from the nuclear scattering length because of the reasons
we have pointed out previously. The incident neutron may
also have other interactions with the atom, which can
influence the parameter b, but they are weaker than the
nuclear force and can be ignored here, considering our
purposes.
The external part of the potential (6) also give a

contribution (bextG ) to the scattering length which, in
principle, could be differentiated from the effective nuclear
scattering length ðbNÞ. Thus, we could write b ¼ bN þ bextG .
In order to estimate bextG , let us calculate explicitly φextðx⃗Þ,
the gravitational potential outside the nucleus. As we shall
see, in braneworld models, the exterior gravitational poten-
tial depends on internal characteristics of the nucleus (its
radius, for instance) even when we assume a spherically
symmetric distribution in the ordinary space. To illustrate
this, let us consider the case of five extra dimensions
(δ ¼ 5). For the sake of simplicity, let us model the nucleus
as a 3-sphere (in the ordinary three-dimensional space) with
a certain radius RN and a uniform mass density. As we are
calculating the potential outside the nucleus, then we can
also consider a deltalike confinement of matter in the brane
in z ¼ 0, i.e., we can take fðzÞ as a Dirac delta distribution
with support on z ¼ 0. It follows from (6) that the potential
of the single nucleus with total mass M is given by:

φextðx⃗Þ¼−ĜD

Z
jx⃗0j<RN

ρN
jx⃗− x⃗0j6d

3x0 ¼−
ĜDM

ðr2−R2
NÞ3

; ð8Þ

where ρN ¼ M=ð4πR3
N=3Þ and r ¼ jx⃗j. Around the

nucleus, the external potential (8) is quite different from
the potential produced by a pointlike mass and even
diverges at RN . However, as the expression (8) is obtained
in the thin-brane limit, then the validity of this approxi-
mation is restricted to r > RN þ σ, where σ is the length
scale in which the idealized model of delta-like confina-
ment fails. The parameter σ is of the order of the brane
thickness (smaller than 10−18 m [1]). It is interesting to
observe that the external potential evaluated at RN þ σ is of
the same order of the internal potential, ðĜDρÞ=σ3 for
δ ¼ 5, as we should expect.
Based on these considerations, we could estimate bextG , in

the Born approximation [50], by taking

bextG ¼ m
2πℏ2

Z
∞

RNþσ
mφextðx⃗Þd3x⃗: ð9Þ

In the leading order, we find:

bextG ¼ −
m

2πℏ2

�
ĜD

πmM
4RNσ

2

�
: ð10Þ

In general, for codimensions δ > 3, we have similar results
which can be summarized in a single formula. Writing GD
in terms of the Newtonian constant G and R (the compac-
tification scale of the hidden dimensions), we obtain:

bextG ¼ −
m

2πℏ2

�
ϑ

Rδ

RNσ
δ−3GMm

�
ð11Þ

where ϑ is a coefficient whose value depends on the
number of hidden dimensions. For comparison purposes,
it is interesting to also calculate bG considering an
anomalous gravitational potential in the Yukawa form. In
this case, we obtain bG ¼ −ðm=2πℏ2Þð4παλ2GMmÞ. From
these results, we see that the expression (11) can be
rewritten in a notation that resembled the Yukawa para-
metrization, provided we formally take λ ¼ R and reinter-
pret the amplification factor as α ¼ ϑRδ−2=ð4πRNσ

δ−3Þ
Thus, when experimental bounds from neutron interfer-
ometry are expressed in terms of the Yukawa parametriza-
tion, which is usual in the literature, the Yukawa parameter
should be interpreted in this special form in the context of
large extra dimensions. It is interesting to mention that the
Yukawa amplification factor, according to the new inter-
pretation, can reach much higher values in comparison to
the standard α, which is just proportional to number of extra
dimensions (δ) as predicted by the original ADD theory for
large distances [34,35].
In principle, this bextG calculated above could be distin-

guished from nuclear scattering length due to its peculiar
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dependence on the atomic mass. Indeed, following the
method described in Ref. [21], we could check whether the
data, collected from different types of materials, are
compatible with an extra scattering length that is propor-
tional to M=RN and, therefore, to A2=3. However, it is
important to highlight that bextG is influenced by the
behavior of the external potential φext, which depends on
details of the mass distribution of the nucleus.
Equation (11) corresponds to the simplest nuclear model,
characterized by a uniform distribution inside the nucleus.
Thus, as the density mass distribution is not precisely
known, our ability to establish clear constraints on the
parameters of the extra dimensions theory from the analysis
of bextG is limited.

B. Nonbaryonic source

It is possible to obtain empirical bounds that do not
depend on nuclear models, considering a nonbaryonic
phase shifter as a source for the gravitational field inside
the interferometer. In the experiment designed to test the
Aharonov-Casher effect [44], neutron beams pass through
the interior of capacitors, accumulating phase shifts due to
the interaction between the electric field (E⃗) and the
neutron’s magnetic moment ðμ⃗Þ imposed by the spin-orbit
coupling ðμ=mcÞσ⃗ · ðE⃗ × p⃗Þ, where σ⃗ stands for the Pauli
matrices.
In contact with the electric field, the incident neutron

does not interact via nuclear force, but it interacts gravi-
tationally. Indeed, according to general relativity, the
energy and the stress of the electric field inside the
capacitor produce a gravitational field which affects the
motion of the neutron. The standard theory predicts a
negligible effect that is not detectable within the current
precision of the instruments. However, in the context of
modified gravitational theory, such as the large extra
dimension models, the expected amplification of gravity
in short distances could be tested without being masked by
the nuclear interaction, even in the case when the length
scale of the anomalous interaction is smaller than the
nuclear size.
In the mentioned experiment, the field is approximately

uniform in the region between the electrodes, and its
direction, let us say x2, is perpendicular to the direction
of the neutron beam (x1-axis), see Fig. 1. In SI units, the
stress-energy tensor of the electromagnetic field is given by:

TðEMÞ
μν ¼ ϵ0c2

�
FμλF λ

ν −
1

4
ημνFαβFαβ

�
; ð12Þ

where Fμν is the electromagnetic tensor and ϵ0 is the
electric permittivity of the free space. Inside the capacitor,
the non-null components are F20 ¼ −F02 ¼ E=c, where E
is the field strength. Therefore:

TðEMÞ
μν ¼ 1

2
ϵ0E2

0
BBB@

þ1 0 0 0

0 þ1 0 0

0 0 −1 0

0 0 0 þ1

1
CCCA: ð13Þ

This tensor describes an anisotropic stress distribution with
an energy density u ¼ ϵ0E2=2. In the orthogonal directions
of the field E⃗, the effective pressures measure
P1 ¼ P3 ¼ P⊥ ¼ u. But, in the parallel direction, the field
configuration gives rise to a tension P2 ¼ Pk ¼ −u. The
average pressure satisfies the usual state equation of
radiation, P̂ ¼ u=3.
This electromagnetic field produces a gravitational

potential (χ ¼ −h00c2=2) that can be calculated from (4).
The 00-component of the reduced energy-momentum can
be written as T̄00 ¼ δþ1

δþ2
uþ 3

δþ2
P̂. As the pressure is of the

same order as the electromagnetic energy density, its
contribution to the gravitational potential χ cannot be
ignored in this experiment. Taking into account the
equation of state, P̂ ¼ u=3, it follows that the gravitational
interaction of the electromagnetic field with the incident
neutron can be described by the potential:

χðx⃗Þ¼−
ðδþ2Þ
ðδþ1Þ

ĜD

c2

�Z
uðx⃗0ÞfðzÞ

ðjx⃗− x⃗0j2þ z2Þ1þδ
2

d3x0dδz
�
; ð14Þ

which is greater than the potential produced by a non-
relativistic source with the same energy density by a factor
ðδþ 2Þ=ðδþ 1Þ. This is related to the fact that pressure,
which also produces gravity, is of the same order of the
energy density in the case of an electromagnetic field, as
mentioned before, but it is negligible in comparison to the
rest energy of nonrelativistic matter.
In the zero-width brane idealization, the potential χðx⃗Þ

diverges in any point x⃗ where u is non-null, in the case of
δ ≥ 2. However, this internal potential can be calculated in
a thick brane scenario, admitting that the confinement of
the electric field in the brane is described by any regular and
normalized distribution fðzÞ.
In order to simplify the calculation of the internal

potential, let us assume the realistic hypothesis that R is
much smaller than the distance between the electrodes
(d ¼ 1.54 mm). Then, in any interior point x⃗, away from
the capacitor’s boundary, the major contribution for the
potential comes from a portion of the source contained in a
region B3ðRÞ, which corresponds to a spherical neighbor-
hood of radius R in the ordinary three-dimensional space
centered at x⃗. For δ > 2, in the leading order, we get
from (14):

χðx⃗Þ ¼ −
4πζĜD

εδ−2
1

2

ϵ0E2

c2
; ð15Þ
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where the coefficient ζ, in terms of the gamma
function (Γ), is:

ζ ¼
ffiffiffi
π

p
8

δðδþ 2ÞΓðδ−2
2
Þ

ðδþ 1ÞΓðδþ1
2
Þ : ð16Þ

The next correction term has a relative order of ε=R, at
least. The potential χ also depends on the parameter ε that is
defined as:

1

εδ−2
¼ 2

δ

Z
fðzÞ
zδ−2

dδz; ð17Þ

which is the average of the function 1=zδ−2 with respect to
the distribution fðzÞ. As pointed out in Ref. [51], in the
leading order, the gravitational field produced by localized
sources inside the brane does not depend on many details of
the confinement mechanism, but on a specific statistical
moment (the expected value of z2−δ) of the field distribution
in the supplementary space.
The part of the source which lies outside the region

B3ðRÞ gives a contribution for the resulting potential that
has a relative order of ðε=RÞδ−2.
In the next section, we are going to discuss the effect of

this potential on the incident neutron.

III. CONSTRAINTS FROM THE
NEUTRON INTERFEROMETRY

For the sake of simplicity, let us consider a minor change
of the AC experiment. Let us admit that only one of the
partial beams passes through the region filled with the
electric field, while the other beam is shielded (see Fig. 1).
Inside the capacitor, the neutron will interact with the
electric field through the gravitational anomalous interac-
tion too. This extra interaction will provide an additional
phase factor to the beam’s wave function. Considering that
it is a short-range interaction, the second beam will not be
affected by the anomalous potential. Thus, the relative
phase between the two paths will be given by [42]:

ΔΦ ¼ 1

ℏ

Z
C
Δp⃗ · ds⃗; ð18Þ

where ℏ is the reduced Planck constant and Δp⃗ is the
variation of the neutron linear momentum caused by the
anomalous gravitational interaction in relation to the linear
momentum of the free neutron. The integration is per-
formed along the path of the first beam inside the capacitor.
In this approximation, we are neglecting the contribution
from the potential outside the medium.
The variation of the linear momentum can be determined

from the energy conservation and can be expressed in terms
of the wavelength of the incident neutron. Along the
direction of motion (x1-axis, inside the capacitor), we find
Δp1 ¼ m2χλn=h, where χ is constant and is given by (15)

in the leading order. Therefore, the phase difference
acquired by the beam after traversing the capacitor of
length L is

ΔΦ ¼ m2

h2

�
4π2ζĜD

εδ−2
ϵ0
E2

c2

�
λnL: ð19Þ

As we have pointed out before, interestingly, the result (19)
can be formally derived from a Yukawa parametrization
too. If we take λ ¼ R and reinterpret the dimensionless
Yukawa parameter as α ¼ ð2πÞδζΩRδ−2=εδ−2, then
the formula above could be rewritten as ΔΦ ¼
Gαλ2m2ϵ0E2λnL=h2c2, i.e., in the same form that would
be obtained from an anomalous gravitational field
described by the Yukawa parametrization. Thus, consider-
ing that the Yukawa parametrization can describe mod-
ifications of gravity with other physical origins besides
hidden dimensions, then in order to be more generic as
possible from the phenomenological point of view, we are
going to express our results in terms of the Yukawa
parameters hereafter.
In the AC experiment [44], the field strength is

E ¼ 30 kV=mm, L ¼ 2; 53 cm, and the neutron wave-
length is λn ¼ 1.477 Å. The predicted phase shift ΦAC ¼
1.50 mrad is compatible with the measurements within an
error of the order of η ∼ 10−3 rad [44]. Therefore, addi-
tional effects from any hypothetical interaction could not be
greater than η.
In principle, the gravitational phase shift, which depends

on E2, can be distinguished from the AC shift, which is
proportional to E. Thus, it seems reasonable to expect that
we can get constraints for the anomalous gravitational
interaction from the analysis of an experiment of this kind.
In order to make an estimate, let us assume that the
empirical procedure of testing the modified gravity pro-
duced by the capacitor electric field has a precision of the
same order of η. Thus, it follows from (19) that the
corresponding Yukawa parameter should satisfy the upper
limit:

αλ2 < 0.26 × 1020 m2

�
η

10−3 rad

��
Å
λn

��
cm
L

�

×

�
30 kV=mm

E

�
2

; ð20Þ

which is valid for λ < 10−4 m. This bound is very weak
compared to the traditional constraints based on baryonic
sources [21]. For example, according to Ref. [21], the
analysis from data of forward scattering length imposes the
constraint: αλ2 < 2.150 × 105 m2. When the analysis also
includes data from the total and differential cross section of
the neutron-nucleus interaction, it establishes an even more
stringent bound: αλ2 < 482 m2 valid for 1nm<λ<1mm
[50,52]. However, we should emphasize that, unlike the
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other bounds, the condition (20) can be extended to length
scales smaller than nuclear size, since it is extracted from a
nonbaryonic source. Moreover, we should highlight that
the restriction (20) imposes bounds on post-Newtonian
potentials (since in this experiment the neutrons probe the
gravitational field produced by an electromagnetic field),
while the baryonic bounds constrain modifications of the
Newtonian potential. Thus, in this sense, the baryonic
bounds and the constraint (20) establishes empirical bounds
on different physical quantities. We shall discuss this point
in more detail in the next section.

IV. POST-NEWTONIAN POTENTIALS

Strictly speaking, the potential χ cannot be interpreted as
a modification of the Newtonian potential since its source is
not the matter’s rest mass. Instead, it should be considered
as a short-distance deviation of a post-Newtonian correc-
tion potential, given that the electric energy acting as a
source of a gravitational field has no correspondence in the
Newtonian theory.
In the weak-field regime, alternative metric theories can

be distinguished by means of parameters that work as
effective gravitational couplings related to post-Newtonian
potentials. In the standard PPN formalism, there are ten
parameters [45]. Two of them, β3 and β4 (following the
notation of Ref. [53]), are of special importance here. They
measure how much gravity is produced by internal non-
baryonic energy and by pressure in comparison to the
general relativity predictions, respectively.
The post-Newtonian potential χ is influenced by a

combination of the energy density (u) and the average
pressure ðP̂Þ associated with the electric field. Thus, in
accordance with this more general formalism, in which a
broader class of metric theories could be considered
(not only extra dimensions models), the parameter α should
be replaced, in the constraint equation (20), by a combi-
nation of two Yukawa parameters associated with short-
distance modifications of the post-Newtonian parameters
β3 and β4.
In general, the post-Newtonian parameters are indepen-

dent, and their values are to be determined from phenom-
enology. However, for a restricted class of metric theories
that satisfy the full global conservation laws and that are
free of preferred spatial position, β3 ¼ 1, automatically
[45,53]. This implies that all kinds of energy have the same
capacity of curving spacetime. On the other hand, the
gravitational coupling associated with the pressure is not
fixed in this class of theories, but should satisfy the relation
[45,53]: β4 ¼ γ, where γ is another post-Newtonian param-
eter, that is associated with the curvature of the pure spatial
sections of the spacetime.
The prediction of GR theory, γ ¼ 1, has been confirmed

by tests such as the Cassini experiment that investigated
the time-delay and the deflection of radio waves under
the influence of the gravitational field of the Sun [54].

The empirical value, γ ¼ 1þ ð2.1� 2.3Þ × 10−5, is the
most stringent bound for that parameter in the length scale
of the solar radius [54].
In the microscopic domain, this parameter γ has been

investigated too, by examining possible effects of an
anomalous gravitational field produced by a nucleus on
the precession of the electron’s spin (see, for example,
[46,48]). The analysis is based on the gravitational spin-
orbit coupling [55], which is described by a Hamiltonian
that can be appropriately written as [48]:

HGso ¼
1

mec2
1

r

�
1

2

dφ
dr

þ dφ̃
dr

�
ðS⃗ · L⃗Þ; ð21Þ

where me is the mass of the electron, S⃗ and L⃗ corresponds
to its spin and angular momentum, respectively. The
function φ is the modified version of the Newtonian
potential produced by the nucleus and φ̃ corresponds to
the Post-Newtonian potential associated with the spatial
components of the metric, which is related to PPN-
parameter γ. By using the Yukawa parametrization, the
post-Newtonian potential can be written as φ̃ ¼ γðrÞGM=r,
where γðrÞ ¼ ð1þ αe−r=λÞ is the short-range modification
of that parameter.
Thus, experiments that are sensitive to the spin preces-

sion of the electron can probe the behavior of the PPN-
parameter γ in the microscopic domain. An example is the
MTV-G experiment, which investigates the evolution of the
spin of electrons that are scattered by heavy nuclei [46,47].
The absence of any anomalous signal in the empirical data
establishes some bounds on short-distance deviations of the
parameter γ [46,48].
Other constraints on γ were extracted from the spec-

troscopy of the hydrogen atom in Ref [48]. The fine
structure of P-states is influenced by the spin-orbit cou-
pling HGso. As discussed in Ref. [48], the analysis
of 2P1=2 − 2P3=2 transition put independent constraints
on the short-range behavior of that post-Newtonian param-
eter too.
Here we are arguing that the constraint (20), extracted

from neutron interferometry, establishes upper bounds on
the PPN-parameters β3 and β4. It happens that, for a class of
metric theories, β3 ¼ 1 and β4 ¼ γ. In this case, the
coefficient α in (20) can be viewed effectively as the
Yukawa parameter related to the short-distance modifica-
tions of γ, i.e., γðrÞ ¼ ð1þ αe−r=λÞ. With that motivation,
in Fig. 2 we compare the constraints from the neutron
interferometry (equation (20), obtained here) with the
MTV-G and spectroscopic bounds previously determined
in the literature [46,48].
The neutron interferometry yields the strongest upper

limits for amplification of the post-Newtonian γ − parameter
in the range 1.4 × 10−7 m and 10−4 m. Clearly, these
restrictions are very weak in comparison to the traditional
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bounds on modifications of the Newtonian gravitational
constant G at short distances. In the mentioned range, the
most stringent constraints are given by Casimir experiments
(for instance,α < 2 × 109 at λ ¼ 1 μm, seeRef. [24]) and by
torsion balance tests (α ≤ 1 at λ ¼ 56 μm, see Ref. [6]). In
these experiments, the tested gravitational fields are pro-
duced by baryonic sources, while in the NI experiment
considered here, neutrons probe the gravitational field
produced by an electromagnetic field.
Therefore, as we have mentioned in the previous section,

the constraints shown in Fig. 2 determines empirical
restriction on certain post-Newtonian parameters, whereas
the baryonic bounds impose limits on the modifications
of the Newtonian potential. It turns out that, within the
general context of the metric theories, the post-Newtonian
and Newtonian potentials are phenomenologically inde-
pendent physical quantities, as pointed out in the PPN
formalism. Thus, it is interesting to investigate them
separately.

V. FINAL REMARKS

Large extra dimensions theories are often cited as
motivation in the search for modifications of gravity on
short-distance scales in several laboratory tests. However,
the thin brane models cannot be probed by experiments
based on neutron interferometry straightforwardly, since
the internal potential of a material sample, playing the role

of a phase shifter, is not computable in scenarios where the
brane has no thickness and the number of codimensions is
greater than one.
Therefore, when interferometric constraints are expressed

in terms of Yukawa parameter α, it is not clear what physical
quantity related to the higher-dimensional theory could, in
fact, be bound by the empirical data.
The ADD model predicts that, far from a pointlike

source, the Newtonian potential is corrected by an addi-
tional Yukawa term. Considering a supplementary space
with a flat torus background and a model with massless
radion, the Yukawa parameter is α ¼ 2δ [34]. This inter-
pretation is valid, for example, in torsion-balance tests,
since the bodies used in the experiment are spatially
separated. Thus, taking into account the finite size effects
of the interacting bodies, constraints on the compactifica-
tion radius of large extra-dimensional models can be
extracted from the torsion-balance experiments employing
the Yukawa parametrization [6].
However, in the interferometry experiment, the neutron

is in contact with the material (the phase shifter) in a certain
interval of its path. Therefore, the Yukawa parametrization
is not appropriate to describe the effects of hidden dimen-
sions on the neutron’s phase factor. By the way, if we
inadvertently employ the above interpretation for αwith the
purpose of analyzing the interferometric bounds, the upper
limits we obtain for the number of hidden dimensions are
practically irrelevant.
Inside the material, the power-law parametrization would

be the adequate one to study modifications of gravity in the
context of the braneworld scenario. However, it leads to
divergence problems in the calculation of the internal
gravitational potential.
This difficulty can be circumvented in the context of a

thick brane scenario. Indeed, considering that the localized
fields have a regular distribution inside the thick brane, we
have calculated the forward scattering length, bG, associated
with the higher-dimensional gravitational interaction
between the neutron and the nucleus. As we have seen,
the part of bG that can be distinguished from the nuclear
scattering length, bextG , is proportional to ratio Rδ=ðRNσ

δ−3Þ,
which involves the compactification radius R, the nucleus
radiusRN and σ, a parameter of the order the brane thickness
that is associatedwith a statisticalmoment of the distribution
that describes the localized field inside the brane.
The explicit determination of bextG allows us to recognize

the higher-dimensional quantity that is subjected to the
empirical constraints put by neutron interferometry.
However, the parameter bextG depends on the nuclear model.
Hence, in order to obtain constraints free of this depend-
ence, we were led to consider experiments where the phase
shifter is nonbaryonic, as in the experiment that measures
the Aharonov-Casher shift.
In the context of PPN formalism, the AC experiment

can be seen as a test of the behavior of post-Newtonian

FIG. 2. Neutron interferometric (NI) bounds (obtained in this
paper) on the Yukawa parameter α related to the short-range
modifications of the Post-Newtonian γ− parameter in comparison
to the MTV-G and spectroscopy limits (extracted from [46–48]).
The region above the lines are excluded.
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γ − parameter on the short-length scale for a class of metric
theories. In comparison to other empirical constraints,
extracted from the MTV-G experiment and from the
2P3=2 − 2P1=2 transition in the hydrogen atom, we find
that the limits imposed by neutron interferometry on

deviations of that parameter are the most stringent in the
length scale between 1.4 × 10−7 m and 10−4 m.
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