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Quasinormal modes of growing dirty black holes
Jamie Bamber®, Oliver J. Tattersall,” Katy Clough®,” and Pedro G. Ferreira®
Astrophysics, University of Oxford, DWB, Keble Road, Oxford OX1 3RH, United Kingdom

® (Received 8 April 2021; accepted 13 May 2021; published 7 June 2021)

The ringdown of a perturbed black hole contains fundamental information about space-time in the form
of quasinormal modes (QNM). Modifications to general relativity, or extended profiles of other fields
surrounding the black hole, so called “black hole hair”, can perturb the QNM frequencies. Previous works
have examined the QNM frequencies of spherically symmetric “dirty” black holes; that is black holes
surrounded by arbitrary matter fields. Such analyses were restricted to static systems, making the
assumption that the metric perturbation was independent of time. However, in most physical cases such
black holes will actually be growing dynamically due to accretion of the surrounding matter. Here we
develop a perturbative analytic method that allows us to compute for the first time the time dependent QNM
deviations of such growing dirty black holes. Whilst both are small, we show that the change in QNM
frequency due to the accretion can be of the same order or larger than the change due to the static matter
distribution itself, and therefore should not be neglected in such calculations. We present the case of
spherically symmetric accretion of a complex scalar field as an illustrative example, but the method has the
potential to be extended to more complicated cases.
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I. INTRODUCTION

The final stage of black hole formation, either from a
binary merger or gravitational collapse, is a perturbed
single black hole (BH) which “rings" like a bell. The
gravitational waves emitted during this “ringdown” phase
are dominated by a discrete set of damped oscillatory
modes dubbed quasinormal modes (QNM), whose frequen-
cies are strictly determined by the underlying space-time,
and are indexed by overtone number n and angular
numbers [, m. In the case of standard general relativity
(GR) and an isolated Kerr BH, the QNM frequencies are
uniquely determined by the BH mass and spin. The
detection of gravitational waves from binary mergers by
the Advanced LIGO/Virgo network (recently augmented
by the addition of KAGRA) [1-3]) provides a means by
which to directly measure these QNM frequencies [4—7]
and thus probe the space-time around black holes directly.
The prospects for this field of “black hole spectroscopy”
will only improve as future detectors such as LISA and the
Einstein Telescope come online [8—12].

Methods for calculating and studying the QNMs of Kerr
BHs in standard GR, both numerical and analytic, are well
established [13—-19], but only a few works have extended
these techniques to cases of modified gravity or nontrivial
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matter environments; so called “dirty” or “hairy” black
holes [20-26]. A change in the black hole metric 6g,,,
arising from modifications to GR or from the backreaction
of surrounding matter, will result in a corresponding shift in
QNM frequencies dw,,;,,. Such effects are likely to be small
[23], but have yet to be fully quantified.

One simple and physically motivated situation in which
there is nonzero hair around a black hole is where the BH
accretes matter from the surrounding environment.
Observational evidence of an electromagnetic counterpart
to the gravitational wave event GW190521 suggested that it
may be a binary black hole merger occuring within the
accretion disc of an active galactic nucleus [27], meaning
that “dirty” black hole mergers in matter-rich environments
are not an entirely theoretical concept.

While baryonic accretion discs are perhaps the most well
motivated example of matter accretion, in this paper we first
examine the more straightforward case of spherically
symmetric accretion. We use as an illustrative example
the accretion of a massive complex scalar field onto a
Schwarzschild BH, for which stationary solutions are
known. Such an environment could describe a black hole
located inside a bosonic dark matter halo [28—-32] or the end
point of boson star mergers or collapses [33-41], among
other scenarios. Whilst such an accreting black hole is
ultimately not a truly stationary state (at some point one
would expect the asymptotic source of matter feeding
the accretion to be “used up”), over any short period of
time the configuration is well described by a steady state
profile, with a fixed rate of flow into the horizon.

© 2021 American Physical Society


https://orcid.org/0000-0001-7181-3365
https://orcid.org/0000-0001-8841-1522
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.124013&domain=pdf&date_stamp=2021-06-07
https://doi.org/10.1103/PhysRevD.103.124013
https://doi.org/10.1103/PhysRevD.103.124013
https://doi.org/10.1103/PhysRevD.103.124013
https://doi.org/10.1103/PhysRevD.103.124013

BAMBER, TATTERSALL, CLOUGH, and FERREIRA

PHYS. REV. D 103, 124013 (2021)

Even restricting to the case of spherical symmetry,
calculating the QNM perturbations for such a growing,
“dirty” BH presents several novel challenges. The first is
that since the matter is continually accreting onto the BH,
the BH mass increases with time, and the metric deviation
acquires a time dependence, Jg,, = Jg,,(t,r). Most pre-
vious works have been limited to static metric shifts
89,,(r). Numerical results have been obtained for the
quasinormal modes of scalar and electromagnetic pertur-
bations in a time dependent Vaidya metric [42—45], how-
ever as far as we are aware perturbative analytic results for
gravitational quasinormal modes on a time dependent
background have not been obtained.

The second challenge is that in the standard coordinate
choice—Schwarzschild coordinates—the accreting matter
piles up around the horizon because the time coordinate
there is singular. A different choice is required to avoid the
resulting divergence in the backreaction.

To overcome these challenges we combine and extend
techniques from two previous works. Firstly, Cardoso et al.
[46], who demonstrated a procedure of redefinitions to
produce modified QNM equations (i.e., modified Zerilli
and Regge-Wheeler equations) for spherically symmetric
and static metric shifts on a Schwarzschild background, and
from this a numerical code for computing the QNM shifts.
Secondly, Dolan and Ottewill [47], who described a
perturbative analytic technique for computing quasinormal
modes of known static, spherically symmetric space-times.
We combine these approaches to produce a novel way of
computing QNMs, and show how the use of an adapted
coordinate system can be used to tackle the accreting case.

This paper is organized as follows. In Sec. II we set up
the background space-time of an accreting black hole. In
Sec. III we derive the quasinormal mode equations for the
perturbed metric. In Sec. IV we compute an analytic
perturbative expression for the QNM deviations of a
growing, dirty, Schwarzschild BH and in Sec. V we give
explicit results for massive complex scalar field “dirt”.
We conclude in Sec. VI, discuss our results and propose
directions for future work. In a series of Appendixes we
discuss, in more depth, key steps in our work and, in
particular, in Appendixes B and C we verify our method by
applying it to simpler, well studied examples for which we
have numerical results, to demonstrate that our analytic
method gives good agreement.

Throughout this paper we assume the metric signature
(=, +,+,+) and geometric units G = ¢ = 1.

II. THE PERTURBED METRIC OF ACCRETING
DARK MATTER

Consider a situation in which one has a sufficient
reservoir of material far from the BH such that the system
can reach an equilibrium where the loss of matter into the
BH is balanced by the infall of matter from infinity, forming
a long lived quasi-stationary cloud. This massive cloud will

perturb the metric, and thus change the frequency of
quasinormal modes.
We can write the metric as

G = )+ 8G,0 (1)

where gig) is the Schwarzschild background metric and dg

is the matter induced perturbation. Let ¢,,, for now,
represent general “matter” fields that source FEinstein’s
equations. The zeroth order field solution ¢,, () satisfies
the equations of motion on the Schwarzschild background

VT, 9, g9 = 0. (2)

The metric perturbation &g, then satisfies

5G,19%) . 89) = 82T [0 @, 47, (3)

where 6G,, is the first order perturbation in the Einstein
tensor.

For simplicity we will consider a spherically symmetric
cloud on a spherically symmetric Schwarzschild back-
ground. Consider a diagonal perturbed line element of the
form

ds? = —(f +8)d + (f +89)7'dr? + rdQ.  (4)

where f(r) = 1-2M/r, dQ = d6? + sin?(0)d¢?> and M is
the mass of the black hole. The perturbed Einstein field
equations are then

1
5Gh = par(rég) = 8xT!, (5)

567 = (69~ 5)/ (/) + 5 0,(rof) = 82T}, (0

6G] = —0,69/r = 8xT}. (7)

Now assume that the black hole is surrounded by a cloud
of accreting matter described by a density p := —T". As the
background Schwarzschild metric is static, conservation of
energy implies that

0,(4xr*Tt) + 0,(4nr*Tr) = 0. (8)

[This can also be derived from Egs. (5) and (7)]. If the
density is static p = p(r) then 9,.(4zr*T%) = 0 hence T} =
5A/(4zr?) for some radially constant value SA(7) which
relates to the flux into the BH at some point in time ¢.

If we now choose to reparametrize dg as &g =
—26M(t,r)/r, Egs. (5) and (7) give

9,6M = 4nr’p, 9)

0,0M = SA., (10)
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from which we can see that 6M is the additional effective
mass of the black hole due to the cloud, and A is the rate of
increase of mass of the BH due to accretion. Note that
whilst in principle the quantities p and A are independent,
such that one could choose to have nonzero density of
matter near the horizon, but not have any flux into the BH,
in most physical situations they will be related and of the
same order. This can be seen explicitly in our illustrative
example for a complex scalar field below, and explains our
finding that the QNM frequency shift due to the accretion
is of the same order as that due to the static matter
distribution.

As alluded to in the Introduction, the wuse of
Schwarzschild coordinates presents problems for realistic
examples. Consider our example case of a complex scalar
field ¢ accreting onto a BH from an asymptotically
constant energy density. As discussed in [28], the stationary
solution close to the horizon is

@ = poe” ) oM (11)
and so
2|(ﬂ0|20)§
- 2M 12
1—om/r (12)

diverges there. As a result our metric perturbation 8g also
diverges, which breaks our assumption that &g, is small.
This is a typical result for matter distributions with a
nonzero flux into the horizon, due to the coordinate
singularity of the Schwarzschild metric at the horizon.

The standard solution is to change to ingoing Eddington-
Finkelstein (EF) coordinates, v = r + r,, where the tortoise
coordinate r, is defined as

dr, =dr/f(r), (13)
r.=r+2M <$—1). (14)

In the ingoing EF coordinates the Schwarzschild line
element is

ds? = —fdv? + 2dvdr + r2dQ. (15)

We define a perturbation in the metric 54(v, r) such that the
line element is

ds? = —Fe? 0N dp? + 264D dodr + r2dQ,  (16)
where
F=f-=2M(v,r)/r, (17)

One can then show [48] that similarly to the Schwarzschild
case

0,0M = —4xr*T! = 4nr’pgp, (18)
0,0M = — 4xr*T!, = A, (19)
where pgp = =T} is the energy density measured by

coordinate observers in ingoing EF coordinates, and 6A
is the rate of increase in mass of the BH as before. In these
coordinates the scalar field (v, r) = @oe™"" as r - 2M,
SO

per = (f10,01* + 1|o|?) = 12lpol*. r—2M (20)

is perfectly well behaved at the horizon. We also have

0,00 = —4nrT? = —4zrT,, = |0,¢)%,
r— 2M. (21)

- 0,

so the metric perturbation 04 is also well behaved. For the
scalar field we have explicitly

SA = 87(2Mw,)?|py

2, (22)

which, as expected, is independent of r as the scalar field
solution is stationary. In general, at any (v, r) we have

SM(v,r) = 5Av + /r 477 pgrdF, (23)
2M
SM(v,r) = — / " 4xFT,,dF. (24)
2M

For the specific case of the scalar field we find
M (v, ) = 8z(2Mw,)*|go|*v

T / 4P (1o + ilpl)dr (25)
2M

SA(r) = =2 / " 477050 2dF. (26)
2M

From this point on we will assume that, as in the case of the
stationary scalar field solution, A is a constant and 64
depends only on r.

In this section we have formulated the necessary
expressions for the backreaction onto a Schwarzschild
black hole due to stationary accretion in ingoing EF
coordinates. We can now use the resulting metric to
construct modified equations for the quasinormal modes.
Note that some further commentary and clarifications on
the orders of perturbation required are provided in
Appendix A.
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III. QUASINORMAL MODE EQUATIONS ON THE
PERTURBED BACKGROUND

A general spherically symmetric 4D space-time can be
written as the product of a 2D pseudo-Riemannian mani-
fold (M, g,;,) and the 2-sphere (S5, Gag),

ds? = §,,dx*dx? + r2g,pdxAdx5, (27)

where indices a,b € {7,r}, A, B € {0, ¢}, with 1 =1(z, r).
It can be shown [49,50] that odd linear gravitational
perturbations about such a metric can be described by a
Regge-Wheeler-like master equation,

V.V - V¥ =&, (28)
where
14 :7(”2)2(1_ D +%g’r—l?ﬁ“r, (29)
r r r
- 1
V. V4 = ——0,(/=55"0,). 30

and @ is a matter source term derived from 7', . To find the
quasinormal mode frequencies we solve the homogeneous
equation with © = 0.' For the perturbed ingoing EF metric
f=0,5" =F,\/=§ = e*, and so the homogeneous equa-
tion is

Re 50,0, + e, (¥ F,) —V]¥ =0,  (31)
[Zaf)ar + 8}"(F*ar) - V*]‘P =0, (32)
where F, = ¢*F and v, = ¢**V. Then

G Gl B Y A )
r2 r2 r

66M  26M’ 1

72

where the prime ’ denotes 0,. If we take the effective BH
horizon as being at F, (r) = 0 then to first order the horizon
radius is shifted from 2M to

ru(v) =2M[1 4+ 6M(v,2M)/M],
— 2M[1 + 5Av/M]. (35)

We can introduce a function Z(v, r) such that

F.(v.r) = fu(r)Z(v.r), (36)

'Unfortunately an equivalent generalisation of the even mode
Zerilli equation to nonvacuum backgrounds has not been found,
so we will focus on the odd modes.

fu=1=ry/r, (37)
Zx~1+4 67, (38)

(M (v, r) — M (v,2M))
r—2M

2
8Z(r) ~ — +6A(r), (39)
where our choice of definition means that 6Z does not
depend on ». Note that v =0 is defined as when the
effective horizon r; = 2M. Following the method of [46],
we define ® = /ZW. Then

[0,(fr0,) +2(1 = 62)0,0, — 6Z'0, — V]® =0, (40)

where

oV, 1

V= 432422, (41)

3 1

VRV, =62V, + 5 (f6Z). (42)

~2)(1+1 1
zv_+W(5A—5z)+§(faz/)'—faz’, (43)
r r

to linear order in o.

We now wish to solve for quasinormal mode solutions.
For time independent metrics we look for solutions of the
form @ ~ e~ "y(r). We can write this in ingoing EF
coordinates as ® ~ e~™?y(r), incorporating the factor of
et into u(r). However as the metric now has a small
linear time dependence we need to allow for the frequency
and the u function to drift with v,

® = exp(—iw(v)v)u(r,v), (44)

where
o(v) = wy + dw(v), (45)

and w is the unperturbed Schwarzschild QNM frequency,
giving

[8r(fHar) - 2i(aﬂ (Uw) - 520)0)(9,,
—(V=6Z'iwy) + (2(1=62)0,—6Z")0,|u(v,r) =0. (46)

This expression cannot be directly solved using our
method, which requires a differential equation in a single
variable. To enable this we introduce a “comoving"
coordinate 7 (from now on we use units where M = 1),
which we define as

" dAve(n)” 1)

and where we choose function ¢ such that o(r) = 1 for
r<rygand ¢ - 0 for r - o0. The ry is some constant
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radius much larger than the black hole but much smaller
than the distance between us and the black hole (one can
think of it as the size of the accreting cloud). Then we can
have for r < r

2r
r%r—, szl—
H

Nt N

, (48)

while for r > r we recover 7 = r. We now derive the QNM
equation in terms of this single variable 7. We have

OAroc

O == (1 + 6Avo)

9, +9,, (49)

1=6A vro’
= 1+5Ave 8;. (50)
(1 + 5Avo)

where ¢’ = 0,0(r). Now let

OF\ _ 1-sATET
= _— :71”y 1
o (ar)v (1 + 6Ave) (51)
oF SArc
= () =22 2
o <av>, (1 + 6Avo) (52)

If we now define f, = fy + 2% (1 — 6Z), we have that

[a;ma;) ! (—ziwv(w) ~5z(rjon) + £, + %az') 0, — K72(V — 62!(r)ia)

r

+ (2(1 = 8Z(r))k;10; — K,—252’(r))av] u(v,7) =0. (53)

In the regime r < r Eq. (53) reduces to

4

0:1404) = rai(0,(00) = 52(0)an)0 =V = 62/ ()ion) + (1 = 52(0))0r = 262/1) )0, 0.7 =0, (54)

to order 6> where f, ~ 1-2/7 — 26A7. We then have

8Z(r) = 6Z(F) + (r—7)8Z(r)' + ..., (55)
~ 6Z(F) 4+ 6Avo(r)réZ(r) + ..., (56)
~ 8Z(7) + O(8%) (57)

provided 5Avo(r)r < 1 for r < ry. We can thus approxi-
mate 6Z(r) ~5Z(7), and do the same for other order §
quantities. This means we can approximate

TV — iwgZ) % (V(F) - iwgdZ (). (58)

where primes now denote J;. If we now look for solutions
where u = u(7) we have that

Q= %18”(1)0)) — wydZ(2), (59)

is independent of v. This gives us an equation in a single
variable,

[05(fa05) = 2i(Q = [6Z — 5Z(2)]w) 05
— (V(F) = iwy6Z' (7))]u(7) = 0. (60)

We can further simplify this by letting

u(7) =exp (—iwo / "52(7)-52(2)/ med;) a(?). (61)
Again neglecting O(5%) terms this gives us
0:(£405) - 2i90; — (V_(7) + AV(P))a(r) =0, (62)

where AV/(7) contains all the potential terms of order 6.
The aim of this section was to derive a differential
equation in a single comoving variable, for odd quasinor-
mal modes about the perturbed Schwarzschild metric
associated with the growing dirty black hole we described
in the previous section. The equation derived, Eq. (62), can
now be used to compute the quasinormal mode frequencies.

IV. PERTURBATIVE METHOD FOR
COMPUTING THE
QUASINORMAL MODES

While there are a host of numerical methods for
calculating quasinormal mode spectra, here we adapt the
method of [47] to compute analytic, perturbative expres-
sions for the corrections to the spectra described by Eq. (62)
for the fundamental n = 0 modes. The advantage of using
this method over other numerical techniques is that we can
obtain perturbative analytic expressions that make it easy to
substitute in for many different matter distributions, and to
analyze the eikonal high / limit.
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Due to the spherical symmetry the frequencies are
independent of the spherical harmonic number, m. For
ii(7) we take an anzatz of the form

il = exp (iQ / " Y(?)dh)q(?), (63)

The principle idea is to expand in powers of L = [ —l—% SO
that

Q=LQ_ | +Q+L7'Q + ..., (64)

q(F) = exp(So(F) + L7181 (F) + ... (65)

Substituting (63) into (62), we find the modified Regge-
Wheeler equation takes the form

faq" +1fy +2iQ(Y - 1)]¢

W2 2
iQY’+922Y Y —%— Vo—AV|qg=0, (66)
fa
where Vy = 4 (—6/F — 1/4) and
AV = Tg/(m 8Z) + = (fH(SZ’)’ fH
- 20 6Z(r) - 6Z(2)]. (67)
fu

We can now match terms in orders of L. At order L? we
have that

2y - Y?)Q?, {’g , (68)
1= (=17 Qf’iy (69)
Y=1=+ <1 Q{A~2>1/2. (70)

Let us now focus on the quasinormal mode boundary
conditions. We want ingoing modes at the horizon and
outgoing at r — oo, SO

it ~ @, r, = —0oo, (71)

it ~ D, e r, — oo. (72)

If we take A = 0and Q_; = 1/v/27 asin [47] then 7 = r
and

fa /2 F27\ 1/ 3 6\ 1/2
(atm) =(=7) =+(=)(+)"

(73)

We then can obtain the correct boundary conditions by

taking
3 6\ 1/2
Y:1+(1—)<1+> . (74)
r r

This is a modified form of the ansatz used in [47] corrected
for the fact that we have included a factor of r, into the v.

We can try something similar with A # 0. For small r
(i.e., r < ry) we find

2
fam fy—28AF = 1 — = — 25AF. (75)
r
If Q_, =1/v27+ 6Q_,, one can show that

Y=14+ (1 3 3(1 —i:35A)> (1 n 6(1 +~125A)> 1/2’ (76)

5Q_ = —V/36A, (77)

satisfies the order L? equation to order &. The repeated root
for Y = 1 corresponds to the null unstable circular orbit,
which shifts to r = 352 (1 + 36A). We also note that f,
and Y(7) have zeros at 7 =2+ 85A + O(5A?) instead of at
7 = 2; however in the expression

[ v = [yoinme os)

these zeros cancel so that the integral is well behaved.
Hence for well behaved ¢(7) we obtain the correct
boundary condition at r — ry.

Now let us examine the limit of large r (i.e., r > ry). We
want to confirm we obtain outgoing waves, i.e.,

i(7) ~ exp(2iQr,) (79)

as r — oo. We have Y ~2 — f,/(2Q%,7) + - so

it — exp ( iQ27, +

and

az/ (1—M—f—éA(v(Gr)’—&rr)+(’)(5A2)>_ldr,

r

(81)
~r+2In(r—2)+8A(v(2In(r) = (or)") —20r) + O(5A?),
(82)
~r, +O(5). (83)

Thus our anzatz does give us outgoing waves at large r,
provided ¢(7) is suitably well behaved and & goes to zero
with large r suitably fast.
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Having established our modified anzatz still satisfies the
quasinormal mode boundary conditions we can go back to
solving for the Q,, S, terms, using the r < ry limit. At
order L' we have

20,
2i8y(Y = 1) +1¥' + 5 0

=0.
e

(84)

If we require that S, be continuous and differentiable at the
null unstable orbit, at 7. = 3(1 + 35A), then setting 7 = 7.
we find

At order L° we have

20,Q_, - Q2

S/2
fA( 0 rQ%I

+ 83) + (f%4 + iwo6Z)Sg +

We can again set 7 = 7. to find Q;, and then rearrange to
obtain the function .
The above procedure can be repeated to obtain higher

order terms. For order L™, n > 1 the general expression is

3 2 fa (Z SShm +S¢;)
Qy=—-i—Q_Y'(F.)= —S8A+0(8%).  (89) m=0
T AR -
+ ! + . 5Z S;’l QWLQIL m
We can also extract S, as (fa = iwodZ) ZQ% ,Z;l
51(7) = (Y 4200/ (2 |F)? (86) +iQ, Y +2i(Y — 1) Z QS =0. (88)
2(Y=1) m==1
|
The next few Q, terms are explicitly given by
281 1135 9
27Q) = ———+——06A AV(3 8
vaTe, 216 T 72 AT RAVE) (89)
1591 1591 27 1
27Q, =i AV AV’ —A
V279, e <8 V'(3) +9AV(3) + V(3)>, (90)
710185 2922805 81 21 185 29 1061
27Q; = — —— AVW(3) = AV (3) = ——AV"(3) = == AV’ —A 1
V219, 1259712+ 419904 64 3) 2 vEe) 8 vi3) 3 Vi3)+ 144 Vi), 1)
92347783 69151003 81 171 1845 341
27Q, =i —i SA+i|—s—=AVO(3) = —AVE)(3) - —= AV (3) - —AVO)(3
V2104 = i asnse ~ 13116544 ’[ 2562V 08 =33 () -4 AVH0O) - 3)
8087 449 16331
———AV” A ——A 2
384 Vi3 + 16 16 Vi) + 1728 V(3)]’ (92)
7827932509 1376065091 243 27 8675 71519
27Q5 = — - AVE)(3 AV (3) + ——AVO(3) + ——AVO)(3
V2105 39182082048 1451188224 4096 (3)+76 16 (3)+ 512 (3)+ 960 3)
1259827 255217 8562439 2427761 7696651
—————AVH3) + == AV (3) - ———AV"(3) - = ——AV'(3) + ————— AV(3),
9216 (3)+ 5184 (3) 93312 (3)- 69984 (3)+ 419904 3)
(93)
|
Note that the terms zeroth order in 6 are the same as [47], We can rewrite this as
showing we obtain the correct unperturbed frequency.
If we now examine Eq. (59), we have that 50> = S+ 54 <THA B a)oév) LO@). (%)

9,(vw) =

which, when integrated and Taylor expanded gives us

(Q 4 wy6Z(2))/(1 4 6Av), (94)

1
6w = 5Q + wgdZ(2) — wy 5 540 + O(F).  (95)

where dw is the correction with zero accretion (arising from
the static matter distribution around the horizon) and
8A(w, — wy3v) is the accretion term.

So far we have obtained a solution in our adapted EF
coordinates of the form
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¥ =d/VZ,

= exp <—i[a)0 + 6w + 6A <wA —%U/M)] 11)

x Z72(r)u(F), (97)

where we have restored the factors of M. However, if we
were to measure this scalar we would of course do so as
asymptotic observers in ¢ and r coordinates not v and 7
coordinates. Suppose we measure the scalar fluctuation at
some fixed distance r = R > 2M from the black hole.
Then v = r, + ¢ only changes with ¢. Hence we can define
a local time ¢ =¢—R,, where R,=R+2MIn(R/(2M)—-1),
such that at our position we just have v = ¢'. The origin at
¢ = v = 0 is defined by the point at which the BH mass is
defined to be M, that is, when the effective black hole
horizon ry; = 2M. Recall that we have also defined our 7
coordinate such that 7 — r for r > r;. As we expect that
R > r, we observe

W(f R)

xexp <—i [w0+5w+5A <wA—%t’/M>] z’) ZHR)u(R).

(98)

This means that the effective quasinormal mode frequency
is given by

W = wy + 6w + 5A (m - %t’/M) +O(2).  (99)

Note that if we are only interested in the time variation of
the scalar at a fixed R we can be agnostic about the precise
form of the function o(r), only assuming that it obeys the
correct asymptotic boundary conditions.

Previous works have calculated dw, assuming the
accretion terms are zero. Yet as we shall see in the example
of the massive complex scalar field in the next section, the
contribution from the accretion terms 6A(w, — %1 /M)
can in fact be larger than é@. In the general case we would
expect them to be at least of the same order, therefore the
latter should not be neglected.

In this section we have arrived at our key result; a general
formula for odd parity quasinormal mode style solution for
growing dirty black holes, which can be used to study
frequencies which are perturbed by the accretion of matter
and how they drift with time. It is useful to check our
approach, and in particular the expansion order required for
accuracy, in simpler regimes where quasinormal mode
frequencies have been calculated using other methods;
we do so in Appendix C. We find that, in the static cases
considered, the method is highly accurate to the fifth order
expansion used, and that going to higher orders does not
result in significant corrections. In the following section we

apply the result to our illustrative example of scalar field
accretion.

V. COMPLEX MASSIVE SCALAR FIELD
ACCRETION

Having set up the framework and formalism, we can now
apply it to our test case: a complex massive scalar field.
Once again we set M = 1. From [28] we can approximate
the ¢ solution for small My < 1 and w, = u as
2<rsu?/2,

@ ~ e H), (100)

pocr=34emi=r) cos(2un/2r =37 /4), w2/25r. (101)

In the regime where r < u~2/2, from Eqs. (23) and (24) we
have

0A = 321u®|po|? = 32npy,, (102)
1
M =~ 32zpy |v + o7 (2r* =3r2—4)(,  (103)
A~ Amp,[4 -7, (104)
4 2
5Zz§7zph[—7r -2r+8|, (105)

which in turn gives

L? 1
AV (7) = 8xp, [? (2471 42F2) - 6 (77 + 167)w}

(106)

where we have expressed all quantities in terms of p;,, the
scalar field density on the horizon in ingoing EF coor-
dinates. Substituting in these values of AV and 6Z gives the
perturbations to the quasinormal mode frequency as
dw = 32mp, M[0.0360844L + 0.0160375i

—0.0522147L7" —0.0222155iL7> - 0.105189L~3

+0.0307956iL~* —0.245579L~> + O(L%)], (107)
and

SAw, =327mp,M[—1.73205L + 1.1547i
+3.03376L"1—0.708769i L2 +1.33958 3

—0.880368iL* —0.182488L~5 + O(L™®)], (108)

where we have now restored the factors of M. We note that
the accretion term, 0Aw 4, is in fact substantially larger than
the nonaccretion term, dw, showing the importance of

124013-8



QUASINORMAL MODES OF GROWING DIRTY BLACK HOLES

PHYS. REV. D 103, 124013 (2021)

properly accounting for the accretion and the time depend-
ence of the backreaction.
Putting both contributions together we obtain

6w + 6Aw, = 3271p,M[-1.69597L + 1.13866i
+2.98155L"!1 — 0.730984i L2
+ 1.23439L73 — 0.849572iL~*

— 0.428067L~5 4+ O(L79)]. (109)

For comparison the equivalent expression for @ is

wy = M~'[0.19245L — 0.096225i —0.250363L~!
+0.039376iL72 —0.108497L~3

+0.048987iL~* —0.0384483L~> + O(L~°)]. (110)
Suppose we can measure the QNM ringdown signal for N
oscillations before it passes below our sensitivity threshold.
Then the shift in frequency with time over the course of the
ringdown will be order

AY SA
A2l L _aND — aN32ap,M.

111
2 M M (1)

Hence if N is order 1, for a detector with a decent signal to
noise ratio, then this shift with time is of a comparable size
to the constant frequency change dw + 0Awy.

We can now assess how large this shift in QNM
frequency actually is. For the complex scalar field the size
of the deviations can be parametrized by the nonzero
dimensionless accretion rate A which is related to the
density on the horizon as described above

Sw 6w+ 6Aw, —36Awyl /M

@ @y

~8A = 327p,M>.

(112)

Plugging in the fundamental constants we find that a
fractional BH mass growth rate of 107'* Gyr~!' corre-
sponds to a A of (M/My)*107%. Assuming that the
complex scalar is dark matter, we can also express 0A in
terms of a typical asymptotic dark matter density, as
follows. For the massive scalar field with @ = u the density
decays as ~r~3/2 at large r so we find

2R. 3/2
~ M3 [ =< ,
pu~ pr7(UM) (M)

(113)
where pp is the density at some large radius R, which we
take to be the effective radius of the cloud. If we set R, by
equating the virial velocity to a typical dispersion velocity
of dark matter

100 km s~ 2
RL./MN(vdisp)—%(i) ~100,  (114)

c

then

M \? PR
5A~10—31<—) yM3(70>. 115
o iy (2)- )

Hence we see that for an asymptotic scalar field mass
density of ~1 Mgpc™ and Mu < 1 this is a very small
effect. However in more extreme environments with larger
matter densities or steeper density profiles the accretion
may provide a more significant contribution to the fre-
quency shift.

Whilst we have chosen a specific form as an illustrative
example, one can easily choose different profiles for ¢, or
indeed different 7', profiles, compute AV, and substitute
into the expressions for Q to get the corresponding QNM
frequency shifts.

VI. DISCUSSION

While previous authors have attempted to estimate the
QNM frequencies for “dirty” black holes, that is black
holes where the metric is perturbed by a stationary or
quasistationary cloud of matter, their analyses were limited
to simple, static, spherically symmetric metric perturba-
tions around a Schwarzschild black hole [20,21,23].

However, in most physical cases such a cloud results in a
steady flow of matter falling into the black hole, causing the
mass of the black hole and the perturbed metric to acquire a
time dependence. Here we present a perturbative analytic
method to estimate, for the first time, the time dependent
quasinormal mode frequencies for such a growing dirty
black hole in spherical symmetry, assuming a linear time
dependence. This method is based on the perturbative
method of Dolan and Ottewill [47] and the techniques for
dealing with perturbed Schwarzschild metrics described in
Cardoso et al. (2019) [46]. While the formula we derive can
be applied to any kind of matter cloud, we give an
illustrative result for a massive complex scalar field, in
the context of wave-like dark matter. The advantage of
using the Dolan and Ottewill method is that we may obtain
perturbative analytic formulas for the frequency correction
0w in terms of a general T,. It is then easy to plug in a
specific matter distribution and accretion rate.

For small L the series we obtain may not be formally
convergent; however we expect that as in Dolan
and Ottewill truncating the series at finite order
nonetheless gives very good approximations to the fre-
quency corrections.

For our example we find that the size of the expected
frequency shifts dw can be related by the matter density
near the BH horizon. We find that the frequency correction
due to the time dependence of the metric, which other
authors have neglected, is in fact larger than the contri-
bution from the static matter distribution. While these
frequency shifts are tiny for typical astrophysical dark
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matter densities, it is possible that they could become
relevant in very dense astrophysical environments.

Further details of the method are contained in the
Appendixes. In particular, in Appendixes B and C we
have verified our method by applying it to several well
studied static perturbed Schwarzschild space-times, includ-
ing generic potential deviations around a Schwarzschild
background, a charged Reissner-Nordstrom black hole and
a Schwarzschild-de Sitter black hole, and compared to
previous numerical results where available. We find excel-
lent agreement with previous results, demonstrating the
versatility and utility of this technique even in nontime
dependent cases, and the accuracy of the perturbative order
for our method.”

Whilst in this work we have only treated spherically
symmetric background space-times and hence spherically
symmetric “dirt” around Schwarzschild black holes, our
methods have the potential to be adapted for more complex
scenarios. We are now extending our analysis to axisym-
metric space-times, allowing us to consider perturbed Kerr
space-times with axisymmetric matter clouds. This will
allow us to treat more astrophysically relevant cases such as
baryonic accretion disks.
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APPENDIX A: PERTUBATION THEORY

To find QNM for perturbed BH space-times we need two

metric perturbations
G = 0 + egl) + Lot (A1)

where ¢ and { are both small, but { < e. The larger
perturbation egﬂ}) is static or slowly varying and captures
the change to the metric from additional fields, modifica-
tions to GR, or the backreaction from clouds of matter. This
perturbation is denoted dg,, earlier in previous sections.
The smaller perturbation (g, is the one which will
oscillate at the quasinormal mode frequencies. The g,g)
is a vaccuum background BH metric (Schwarzschild in
this paper).

We have two sets of equations for the metric g,;, and the
matter fields ¢,,: the Einstein field equations

*We note, however, that we have restricted ourselves to odd
metric perturbations, due to the difficulty in obtaining a master
equation for even perturbations when matter is present.

G/w [gab] = SﬂTﬂl/ [(pm’ gab]’ (AZ)
and the equation of motion
Vul9a] T [@m- gap] = 0. (A3)

Here we will assume GR and assume g,(,L) comes from the

matter backreaction, and assume 7, to be order & with
T, = eT,,. We will also expand ¢,, as

Pm = (pm(o) + 8(pm(]) + ggom(z) + ... (A4)

First let us expand in powers of {. At order £ we have

0 F 0
Guuloky + 9] = 87T, o0 + e,V ) + el

(AS)
and

eV, [0 + g1 [, O + £, D, g% + 6] = 0. (A6)

We can then expand in powers of e. At order £” we have
Gl © ]=0as ©)'is a vacuum solution. At order ¢ we
h wl9ap ) = Yab :

ave

G  (0)

1 F 0
5o 900 = 87T ulon®.gy). (A7)

and
VO, ), g9 = 0, (A8)

which can be solved for the zeroth order field solution ¢,, )
and the backreaction g,(,p. At order ¢! we obtain

G ¢ (0) (D7,.(2)
~ |9 + &g ga
5gab [ rq P‘Z] b
6T, 0 1
- “’Sﬂj 9@ + e,V g5 + egpi)pn®

6T,
+ 87— (g, + sgom“),ggj()q) + egf,,lq)]g(az) + ...,

5gab
5T oT 5
— 87 Wip 0 g(O) 0, + [ (0), g(O) gi, )>
(G om0 + 52 0. 1
+ O(&). (A9)
Then let ¢,,® = 32 + #? such that
oT oT
My 0 07, (2) Hy ©) 491,32 _ A10
m 7g m 9g ga -
50w gl 5 [ gl (A10)
Then
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5T, PRGN

Py,

Gy (0) (D7 (2)
+ €9pq 19, =
50up [9p4 pa)Yas

(Al1)

o™ -
oV, 1) (G o010 ) <0, (a12)

to order e. We see that Eqs. (All) and (Al2) can be
written as

Lebg? = 8,0, (A13)
o) =0, (A14)
where &, Emlf .S, are differential operators. Eq. (Al4)

provides an equation of motion for @f,f), which then provides

a source term S, m,(])ff ) to the equation of motion for the metric

perturbation g,(ﬁ,). The perturbed quasinormal modes are

solutions of the homogeneous, unsourced equation
gy = 0. (A15)
When decomposed into odd tensor harmonics, Eq. (A13)

gives Eq. (28) where the source term & is explicitly (see for
example [51])

e ——rz%e”bva / AT (X5 )*dQ,  (A16)
A = =T, Y0, ), (A17)

AT,, = % 22, (A18)

where €% is the Levi-Civita symbol, @A is the covariant

derivative on the 2-sphere, ““*”” denotes complex conjugation
and Y (0, ¢) are the complex spherical harmonics.

APPENDIX B: METHOD IN SCHWARZCHILD
COORDINATES

If the metric perturbation is time independent and
sufficiently well behaved near the horizon we do not need
to introduce ingoing EF coordinates and can instead repeat
the derivation in the more familiar Schwarzschild coor-
dinates, which we shall do now.

Let us again consider a perturbed Schwarzschild back-
ground metric of the form

ds* = —(f +6f)de> + (f + 69)~'dr* + r2dQ, (B1)
where we require 5f(r), 5g(r) < 1 in Schwarzschild coor-
dinates. For odd modes in general, and for even modes in
vacuum, this gives a modified QNM master equation of the
form

F.0,(F.0,) + (@~ FV¥ =0, (B2)

F = f+ of, (B3)

F0r) = VTN + o x 1~y AL 000)
(B4)

V.() = Valr) +5V(0). (B5)

where again V. corresponds to even/odd modes respec-
tively and we have let ¥(z, r) = ¢~"¥(r). In Eq. (B2) we
allow the 6V to be an arbitrary function of r, containing
both the terms arising from metric perturbations &f, dg, as
we saw in the previous section, as well as from (for
example) modified gravity effects. The only requirement
we will impose is that §V is small compared to the zeroth
order potential V. If 6g # 0 the location of the BH horizon
will be shifted to

ry = 2M[1 — 8g(2M)). (B6)
We can then rewrite F, (r) as

F.(r) = fu(r)Z(r). (B7)

futr) = (1-"2). (B8)

Z(r) = 1+ 62(r), (B9)

5Z(r) = ’%_‘jf‘sg(w ) (B10)

again working to first order in all perturbed quantities. Note
that for 6Z to be well behaved at r =2M we need
5f(2M) = 6g(2M). In the case with no modified gravity

and with g(2M) = f(2M) = 0 we can directly compare to
the expressions from Sec. III and find
64 = (8f = 69)/(2f), (B11)
and
267 261 M
(5V—J—c< 5Z’> — (1——). (B12)
r\r r r

If we again define @ := \/ZW¥ Eq. (B2) can be rewritten as

0 ?
Fuge 5] + |

7 —va}cp =0, (BI3)

where to first order in
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1
V=V,.+8V+(5f—282)V. +§(fH(SZ’)’, (B14)
and we separate the @ term as

w/Z* = @?[1 = 26Z(ry)] — 203[8Z(r) — 6Z(ry)),

= Q% = 2w3[6Z(r) — 6Z(2M))], (B15)

to first order in small quantities. We can also rewrite the
potentials V. in terms of ry:

V.=V, +éV, (B16a)

Vo=V_+6V_ (B16b)

where

204+22( -1+ +1)
T3 TR 3B+ () (e - 1)r)?
(B17a)

N G G VO

5V = 5g(2M) (2_1;4 C8M(£ 422 1) (P + £ + 1))

r 3(6M + (£ 42)(¢ = 1)r)
(B17b)
- CC+1) ry 5
V_:T+?(l—s) (B17¢c)
SV_ = 6g(2M)2r—];/[(1 —52). (B17d)

Finally we obtain

fH% [fH?;’I,)} +[Q2 = fu(Vy +AV)]® =0 (B18)

where AV again collects all the order 6 terms, both from the
original potential perturbation 6V as well as from modified
geometry terms. Explicitly,

AV =6V + 6V, + V. (8f/fy —26Z)

Za)% [

+%(fH62’)’+ 7 8Z(r) - 6Z(2M)].  (B19)

H

Unlike in the time dependent case @ and Q are related by a
simple constant rescaling
Q=w(l -56Z(2M)). (B20)

We can relate 6Z(2M) to §f, g through use of I’'Hopital’s
rule:

8Z(2M) = 69(2M) + M[5f'(2M) + 64/ (2M)].  (B21)
If we then again apply the method of [47] we find
solutions of the form
® = wy + 0e6Z(2M) + 6Q(Av), (B22)
from which we can check that the perturbative expressions
for 6Q(AV) match those we derived in the main text
with 6A set to zero. In Appendix D we present the full
expressions for 6Q(AV) for general spin s and zero
accretion (0A = 0) used in Appendix C.

APPENDIX C: TESTING THE METHOD

We do not have numerical results for the QNM pertur-
bations of a growing dirty black hole to compare to the
analytic results derived in the previous section. However
we can apply the same techniques to several other examples
in Schwarzschild coordinates for which results have been
previously obtained—specifically, power law potentials,
exponential potentials, Reissner-Nordstrom and de Sitter.
In particular, we confirm that the fifthth order perturbative
expansion of the frequency shift should be sufficiently
accurate, and that higher corrections will not significantly
change the result.

1. Power law potentials

First we will try potential deviations oV about a pure
Schwarzschild background, such that of = dg = 0. To
compare with the numerical results of Cardoso et al.
(2019) [46], we will first assume the following form for
the potential deviations (for both Regge-Wheeler and
Zerilli type equations):

a 2M\ P
oV = — (== > 0.
() e

(C1)
and a is a dimensionless constant. In Cardoso et al., p is
assumed to be an integer and numeric results for QNM
deviations are provided for values of p from 0 to 50. In this
section we will first compare the analytic results at integer
values to the Cardoso et al. values before allowing p to vary
continuously.

Tables I and I show a comparison for the first few values
of p for the odd and even parity £ = 2 gravitational QNMs
respectively to order L=, We see that very good agreement
between the two methods is found in the real part of the
frequency deviation Awpg, with slightly worse agreement in
the imaginary part Aw;. Note that some of the percentage
errors can be misleading when the values of the deviations
are extremely close to 0, for example in the case of the
p =5 deviation for the £ = 2 even parity QNM.

We’ve seen that for potential deviations of the form given
in Eq. (C1) the analytic QNM deviations presented here
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TABLE 1.

gravitational QNM deviation Aw to order L8,

Comparison between the analytic results presented here and the numeric results of Cardoso et al. for the £ = 2 odd parity

p 2MAw (analytic) 2MA® (numeric) % error Awpg % error Aw;
0 0.243747 + 0.0913876i 0.247252 + 0.0926431i —1.41747 —1.3552

1 0.158967 + 0.0180090: 0.159855 + 0.0182085: —0.555267 —1.09556
2 0.0966513 — 0.00277561i 0.0966322 — 0.0024155i 0.019719 14.9086

3 0.0585225 — 0.00410688i 0.0584908 — 0.00371786i 0.0542632 10.4635

4 0.0366465 — 0.000745599i 0.0366794 — 0.000438698i —0.0896896 69.9573

5 0.0240123 + 0.00249465i 0.0240379 + 0.00273079i —0.106785 —-8.64721
TABLEII. Comparison between the analytic results presented here and the numeric results of Cardoso et al. for the £ = 2 even parity

gravitational QNM deviation Aw to order L5,

2M A (analytic)

2M Aw (numeric)

% error Awp

% error Aw,;

N AW = O

0.224732 4 0.0916972i

0.153719 4 0.0195864
0.0974921 — 0.00328011:
0.0614226 — 0.00618217i
0.0399055 — 0.003342361
0.0271051 + 0.0000307656i

0.22325 +0.09312:
0.154195 + 0.019927ii
0.0978817 — 0.0034275i
0.0616142 — 0.00644031
0.0400156 — 0.0036191i
0.0271849 — 0.0002403:

0.663953
—0.308834
—0.398015
—0.310969
—0.275227
—0.293483

—1.52787
—1.70931
—4.30028
—4.00799
—7.64665
—112.803

compare well with those calculated numerically as long as
the index p doesn’t exceed around 15, though this ‘guide’
is dependent on the angular harmonic index ¢ (good
agreement is found for larger p with high ) and on
whether the perturbations are of scalar, vector, or gravita-

tional type.

0.25
0.20

0.15

2M Awg

0.10

0.05

0.08

0.06

0.04

2M Awy

0.02

FIG. 1.

Figure 1 shows a plot of the numeric results of Cardoso
et al. with the analytic QNM deviations presented here, for
both the # = 2 odd and even parity gravitational QNMs. In
this case we are allowing p to be continuous for the analytic
results. Good agreement is shown between the two methods

up to around p =10, at which point the imaginary

0 5 10 15 0 5 10 15
T T T T T T T
— Analytic 8th order . — Analytic 8th order
020+
— Analytic 5th order ‘\‘ — Analytic 5th order
\
@® Numeric 0.15F ‘\ ® Numeric
& 5
3 ‘\
= o10} Y
N \
N,
\.
0.05 N
\\
.,
e 0 il et TIPS
b !
! 1
]
4 0.08 -
i ]
‘; «\
] 0.06 |
;o1
g 0.04f 4
TR
[}
1
0.02 - \
_r__;i—:,-g-\_—._-..-,..-....__‘.._,.__,.._—_—_o_ [ P o N . B i ]
T L
. . . . . . . .
0 5 10 15 0 5 10 15

p

p

Graphical comparison between the analytic results presented here and the numeric results of Cardoso et al. (2019) [46] for the

¢ =2 odd (left panel) and even (right panel) parity Aw to order L~ (red) and order L™ (green).
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TABLE III.

Comparison between the analytic results presented here and the numeric results of Cardoso et al. (2019) [46] for an

exponential potential deviation for the even parity gravitational modes to order L3

£ 2MAw (analytic) 2MAw (numeric) % error Awp % error Aw;
2 0.439353 4 0.108479i 0.438579 + 0.110111: 0.176484 —1.48256
3 0.274923 + 0.0447816i 0.274902 + 0.0448262i 0.00780032 —0.0996234
4 0.202828 4 0.0250234i 0.202826 + 0.0250268i 0.000874023 —0.013268
5 0.161632 4+ 0.0161213i 0.161632 4- 0.0161217i 0.000123541 —0.002308
component of the analytic Aw starts to visibly deviate 2,2 s=0
from the numeric results. We find that above around 573 B
p = 15 large deviations from the numeric results are seen ~ '1s*%s = 43-V9+H4g (L2 -9/4) s =1 (C5)
in both the Awg and Aw,, with the analytic curve showing 4,34+ /9+4¢*(L>-9/4) s=2.
oscillatory behavior. We do not have an explanation for this
shortcoming at the moment, so clearly the analytic results  The Reissner-Nordstrém metric is
are best restricted for use up to p ~ 15. Similar behavior is
seen for vector and scalar perturbations, with better agree- ds? 5 112 5

§7 = —f,d* + fo dr" + r'dQ. (Co)

ment between the analytic and numeric results found for
larger values of Z.

2. Exponential potential

We will now study more unconventional potential
deviations and again compare the analytic QNM deviation
results with those calculated numerically. First, we consider
the addition of an exponential function to the potential,

OEAA

(C2)
If we use the Taylor series representation of the exponential
function we can write Eq. (C2) as a sum of integer powers
of 2M/r, thus allowing us to use the results of Cardoso
et al. (as a comparison for the analytic results. Table III
gives the deviations calculated with both methods for the
¢ = 2-5 even parity gravitational modes, with extremely
good agreement found between the two methods.

3. Reissner-Nordstrom background

Following Dolan and Ottewill [47] we can write the
unperturbed master equation for the charged Reissner-
Nordstrom black hole as

0 ov
fq5|:fq5:| +[w2—fqvi]q,:0, (C3)

where g = Q/M the charge-to-mass ratio, f,(r)=
1-2M /r+¢*M?/r?, and the odd mode potential is

v 7L2—l/4 Mk, q*M*n,
_= R + A

(C4)

where

Consider the weakly charged case where ¢ < 1. In that
limit we can assign

8f(r) = 8g(r) = ¢*M*/r?, (C7)
oV (r) = ¢ M(% ;ng) + 41‘:‘[2 . (C8)

This gives for the n = 0, [ = 2 odd mode (again to order
L™%)

(0.0252499 — 0.00267011 i)q2
a)QNM = @y + M

+0(4).
(C9)

which compares favorably to the numerical result from
Cardoso et al. of

(0.0258177 — 0.002824i)g>

Wonm = @ + " + O(q%),

(C10)

with a relative difference of 2.2%, 5.4% between the two
for the real and imaginary parts respectively.

4. de Sitter background

In Schwarzschild-de Sitter space-time the line element
takes the form

ds? = —fspd?? + f5Ldr? + r2dQ (C11)

where fs5(r) = 1-2M/r — 5Ar? /3. The master equation is
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fon [ } Lo~ faVa ¥ =0, (CI2)

where V. are the standard Zerilli and Regge-Wheeler
potentials. Let §A = SAM?. If we take A < 1 we can
proceed as before

Sf(r) = 8g(r) = —6Ar?/3, sV(r)=0. (C13)

For the n =0, I = 2 odd mode to order L= we find

wonm = @y + (—1.67328 + 0.332735i)5A/M + O(5A?).
(C14)

The equivalent calculation for nonlinear A dependence to
order L% (see [52]) gives

wonm = @o + (—1.67328 + 0.332735i)6A /M
+ (=3.90506 + 1.15466i)6A% /M
+ (=16.9027 4 5.13741i)6A3 /M + O(5A*),
(C15)

so for small 6A we have excellent agreement with the
nonlinear calculation with a fraction of the effort. Note that
this is mathematically equivalent to the case of nonaccret-
ing uniform density dark matter as described in [23]

APPENDIX D: FULL EXPRESSIONS FOR 6Q(AV)

In this Appendix we provide the full expressions for 582
up to order L~® for perturbations of spin s (where s = 0, 1
or 2) and zero accretion 0A = 0. These expressions were
used to compute the simple examples in Schwarzschild
coordinates in Appendix C.

7-7252 9
V2IQ_, =1, V2IQy = —i/2, V279, = 216s +5AV(), (D1)
43252 — 137 27 15
V270, = i 20 L i ZEAVY(3) 4+ 9AV!(3) + —AV(3) ). (D2)
7776 8 4
2615 + 84245 — 466565 81 21 185 952 — 94
V27Q; = — - —AVO3)——A AV
s 1259712 6’ ve) 5 AVEIB) - AVIR) + Vi)
360s2 — 379
T T I2UN D
;590983 — 393465652 + 6718464s* 81 171 1845
V270 | ———AV©)(3 ——AV 5(3) = —=AV#(3
4= 362797056 |- 75 AV 0) B - '3)
275% — 1472 302452 — 20183 180s2 — 271 47525% — 2677
T TAVO(3 I T T AV = AV T T A D4
+ 24 (3) 384 ViE) + 16 viG)+ 1728 V3| (D4
537477125° — 817413120s* + 46334937652 — 42573661 243 27 8675
V27Qs = — AV®)(3 AV (3) + —=AV©)(3
5 39182082048 4096 ( )+16 '3+ 512 (3)
40552 — 73139 59(1008s> — 25385) 14752852 — 845329
— 7 TP AVO)(3) — AV#)(3) = AV3)(3
960 (3) 9216 () 5184 (3)
233285 — 395539252 + 6885881 151632s* — 146205052 + 994327
A 1/ A !
+ 93312 Vi3 + 69984 Vi)
746496s* — 115246852 + 362587
+ 419904 Av(3), (D5)
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= 63852281856s% —2572231127045* + 1303788830405 — 11084613257
70, =i N st 4+ N

8463329722368
729 783 50595 13552 — 61844
| AVUD(3)  ———AVOI(3) 4+ AV (3) - ——AV)(3
81920 3)+ 2048 () + %102 3) 1280 ®)
2 2
_ 258120s —-1820557313v4®(3)__14319Os — 2467213 5(3)
92160 5760
1866245* — 913593605 + 481611101 1749600s* — 817842425 + 154525435
AV# (3 AV (3
N 995328 3)+ 559872 3)
4_644972544s4--5253263424524—420017674913‘/,,,(3)4_226748160s4--512815536s24—211893685
53747712 20155392
N 403107840s* — 41338771252 4 100404965 AV(3)
241864704 ’

V270 79409019617285% — 434601849323525% + 60941332647936s* — 237018962928965% + 1879506373235
7 =

914039610015744
729 " 1377 13077 10 364552 — 3566456
655360 ()()_§6E6AV(M&'“QEEAV()6y+ 184320 Ave3)
2972705 — 48183929 771078052 — 326646277 -
368640 AVE(3) + 645120 avoa)
__139968054—-1635851808524—22346335649‘Av4®(3)
19906560
__43506720s4—-6261980886s2%—31243234027zﬁvd$( )
22394880
__771876864s4—-22557978048s24—45243947725‘Avd®<3)
47775744
4_6718464s6—-11920794624s4%—93162331872s2—-84477890945‘Avdw(3>
241864704
6967296s° — 6481935365 + 17394068485% — 845098063

+ AV"(3)

11943936
+_107495424s6—-933061680s4%—1082530440s2—-311844479zﬁv”(3)

45349632
4_3439853568s6—-6422851584s44—3503872512s2—-5855511731&V(3)

2902376448 ’

/70 .51557350842040325% — 21723753676013568s° + 259500620850094085* — 940779903472243252 + 745984767048523
g = —1

263243407684534272
2187 (14) 3159 20727 729s% — 1352276

__ 2% AyU4)(3) _ 13) 2y _ 20140 ) va2)
! 18350080 (3) 327680AV (3) 65536AV (3) + 245760

202824052 — 658575301 39484620s2 — 3540638117
AV19(3) 4
11796480 10321920
_ 1632960s* — 392437558857 + 119634523049 AV (3) - 152681760s* — 524933461085 + 611743650179
92897280 209018880

44705779200s* — 3529699104960s2 4 16946416262557
a 4299816960

16796160s% — 51741504000s* + 1178222752278s* — 2478185801255
+ 806215680

AV (3)

AVO)(3)

AV()(3)

AVO)(3)
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n 3404021760s° — 929623661568s* + 7122946383552s — 7150891869199 AV

5159780352

'(3)

n 489372917765° — 1967388248448s* + 5862508594974 5% — 3228281091139
8707129344

AVO)(3)

n 182037050818565° — 1535220890542085* + 209769196672800s% — 70701343338839 A
1253826625536
n 4417416953856s° — 12231551577600s* + 9065440351080s> — 1972587779267 A

V”(3)

470184984576
n 489921144422455 — 69811828162565* + 3164201959968s2 — 454770105433 AV

V'(3)

5642219814912
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