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It has been proven that the general relativistic Poynting-Robertson effect in the equatorial plane of the
Kerr metric shows a chaotic behavior for a suitable range of parameters. As a further step, we calculate the
timescale for the onset of chaos through the Lyapunov exponents, estimating how this trend impacts
the observational dynamics. We conclude our analyses with a discussion on the possibility to observe this
phenomenon in neutron star and black hole astrophysical sources.
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I. INTRODUCTION

The general relativistic Poynting-Robertson (PR) effect
is a phenomenon occurring in high-energy astrophysics.
The motion of accreting matter in the vicinity of compact
objects, such as black holes (BHs) and neutron stars (NSs),
is strongly affected by the gravitational field. In addition,
there could be the presence of other perturbing effects
responsible for altering the geodesic motion of the sur-
rounding matter (e.g., magnetic fields, hydrodynamical and
magneto-hydrodynamical processes).
The x-ray electromagnetic radiation produced by an

emitting source located close to the compact object (e.g.,
very hot corona around supermassive BHs in active galactic
nuclei, stellar mass BHs, and weakly magnetised NSs in x-
ray binary systems [1–3], boundary layers around NSs or
the NS surface itself [4,5], and thermonuclear flashes
occurring in the outermost layers of accreting NSs [6])
can intercept the inflowing matter modifying its motion.
Indeed, the radiation force acting on relatively small-sized
matter elements, treated as pointlike particles, is composed
by the radiation pressure (being opposite to the gravita-
tional attraction) and the PR radiation drag force, origi-
nating when the test particle absorbs the incoming radiation
and then reemits it isotropically in its rest frame [7–10]. The
PR effect removes very efficiently energy and angular
momentum from the affected test particle, thus configuring
as a dissipative and nonlinear dynamical system in GR.
From a modeling perspective, there are different treat-

ments of the general relativistic PR effect going from
Schawarzschild and Kerr to also other spacetimes from the

two-dimensional (2D) [9–11] to the three-dimensional (3D)
formulations [12–16]. The common feature of all models is
the presence of the critical hypersurface, a region where
gravitational and radiation forces balance and the test
particle moves on it stably [10,17,18].
From a theoretical point of view, the general relativistic

PR effect has been treated under a Lagrangian formalism,
determining, for the first time in the GR literature, the
analytical form of the Rayleigh potential [18–21].
There are also several high-energy astrophysical appli-

cations, like investigating the way in which type I x-ray
bursts on the NS surface may induce an increased mass
inflow rate in the inner edge of the accretion disk [22–24];
studies on the matter velocity field close to a slowly rotating
NS as a result of the PR effect for different star luminosities
[25–28]; modeling the photospheric expansion occurring
during Eddington-luminosity x-ray bursts [29,30] and
associated oscillations [31,32]; observational evidences
for changes in the inner disk properties, possibly induced
by the PR effect from high signal to noise observations of
type I x-ray bursts [33–36]; diagnosing the presence of
wormholes through the detection of metric changes occur-
ring in strong field regimes around BHs through the PR
critical hypersurfaces [37,38]; and the PR effect that can
drive the dynamical evolution of unequal supermassive
BHs coalescence in galactic nuclei [39].
Recently, it has been shown that the general relativistic

PR effect in the equatorial plane of the Kerr metric shows
chaotic dynamics for a suitable parameter range [40]. In
this paper, we would like to explore the timescale of the
chaos onset and check how these configurations influence
the PR dynamics within the Lyapunov exponents theory.
The paper is organized as follows: In Sec. II, we briefly

describe the general relativistic PR effect model and its
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equations of motion; in Sec. III, we calculate the Lyapunov
exponents of the general relativistic PR effect; in Sec. IV,
we discuss our results proposing some observational
classes of astrophysical sources to detect the chaos in
the PR dynamics and finally, draw the conclusions.

II. GENERAL RELATIVISTIC POYNTING-
ROBERTSON EFFECT IN THE EQUATORIAL

PLANE OF THE KERR METRIC

We consider a test particle orbiting in the equatorial
plane, θ ¼ π=2, around a rotating compact object, whose
outside spacetime is described by the Kerr metric. In
geometrical units (c ¼ G ¼ 1), its line element,
ds2 ¼ gαβdxαdxβ, in standard Boyer-Lindquist coordinates,
is parametrized by the mass, M, and spin, a, as

ds2 ¼
�
2M
r

− 1

�
dt2 −

4aM
r

dtdφþ r2

Δ
dr2 þ ρdφ2; ð1Þ

where Δ ¼ r2 − 2Mrþ a2, and ρ ¼ r2 þ a2 þ 2a2M=r.
We assume that the motion of the test particle is

influenced by the x-ray electromagnetic radiation field
coming from an emitting source located in the vicinity
of the rotating compact object. Radiation is treated here as a
field superimposed on the Kerr spacetime, located in the
equatorial plane and constituted by a coherent flux of
photons, propagating outward from the center of the
radiation source. At each time instant, the test particle is
hit by a photon, moving along null geodesics in the
equatorial plane on the Kerr spacetime. The radiation field
includes also the effects of nonzero angular momentum of
the photon field, b, which would result from the rotation of
the central radiation source and/or frame dragging due to
the rotating compact object. Therefore, the photons can be
emitted either radially, b ¼ 0, or in any other direction,
b ≠ 0, in the equatorial plane. It is useful to introduce the
parameter β, defined as the azimuthal angle of the photon
four-momentum measured clockwise from the φ axis in the
local zero angular momentum observer (ZAMO) frame,
which is related to the photon angular momentum b
through the formula [10],

cos β ¼ bNffiffiffi
ρ

p ð1þ bNφÞ ; ð2Þ

where β ∈ ½0; 2π� and the functions N;Nφ read as

N ¼
ffiffiffiffi
Δ
ρ

s
; Nφ ¼ −

2aM
rΔ

: ð3Þ

It is important to note that for sin β > 0 (sin β < 0), we are
considering outgoing (ingoing) photons [10].
We assume that the interaction between the radiation

field and the test particle occurs through coherent and

isotropic scattering in the test particle rest frame with
Thomson cross section, σT ¼ 6.7 × 10−25 cm2. The rela-
tive luminosity of the radiation field is encoded in the
parameter A, which can be written as A=M ¼ L∞=LEdd [9],
where L∞ stays for the luminosity measured by an observer
at infinity, and LEdd ≃ 1.26 × 1038ðM=M⊙Þ erg s−1 repre-
sents the Eddington limiting luminosity.
The dynamical system describing the equatorial motion

of the test particle influenced by the Kerr gravitational field,
the radiation pressure, and the PR effect is governed by a
set of four coupled and fully general relativistic ordinary
differential equations of the first order. The first two
equations describe the test particle motion in the ZAMO
frame in terms of the local spatial velocity ν and its
azimuthal angle α measured clockwise with respect to
the φ axis in the ZAMO frame. The last two equations
transform these ZAMO quantities into the radial r and
angular φ velocities. The set of equations of motion in the
Kerr metric reads as [9,10]

dν
dt

¼ −
N sin α
γ2

½aðnÞr̂ þ 2ν cos αθðnÞr̂φ̂�

þ A
ð1þ bNφÞ
γNr

ffiffiffi
ρ

p ½cosðα − βÞ − ν�½1 − ν cosðα − βÞ�
j sin βj ;

ð4Þ

dα
dt

¼ −
N cos α

ν
½aðnÞr̂ þ 2ν cos αθðnÞr̂φ̂ þ ν2kðlieÞðnÞr̂�

þ A
ð1þ bNφÞ
γNr

ffiffiffi
ρ

p ½1 − ν cosðα − βÞ� sinðβ − αÞ
νj sin βj ; ð5Þ

dr
dt

¼ Nν sin αffiffiffiffiffiffi
grr

p ; ð6Þ

dφ
dt

¼ Nν cos αffiffiffiffiffiffiffigφφ
p − Nφ; ð7Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
is the Lorentz factor, and

aðnÞr̂; θðnÞr̂φ̂; kðlieÞðnÞr̂ are the acceleration vector, the
expansion tensor, and the relative Lie curvature tensor,
respectively, whose explicitly expressions are [10]

aðnÞr̂ ¼ M½ðr2 þ a2Þ2 − 4a2Mr�
r3ρ

ffiffiffiffi
Δ

p ; ð8Þ

θðnÞr̂φ̂ ¼ −aMð3r2 þ a2Þ
r3ρ

; ð9Þ

kðlieÞðnÞr̂ ¼
−

ffiffiffiffi
Δ

p ðr3 − a2MÞ
r3ρ

: ð10Þ
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A. Critical hypersurface

The general relativistic PR effect model admits as a
particular solution one where gravitational attraction, radi-
ation pressure, and radiation drag force balance. This
configuration defines a region, dubbed as critical hypersur-
face, describing a circular orbit in the equatorial plane, where
the test particle moves on it stably with constant velocity
[10,17]. Therefore, imposing ν ¼ νcrit; α ¼ 0; r ¼ rcrit in the
equations of motion, we obtain dν=dt ¼ dα=dt ¼ dr=
dt ¼ 0, which entails [10]

νcrit ¼ cos β; ð11Þ

aðnÞr̂ þ 2θðnÞr̂φ̂νcrit þ kðLieÞðnÞr̂ν2crit
¼ Að1þ bNφÞ2sgnðsin βÞ

N2r
ffiffiffi
ρ

p
γ3crit

: ð12Þ

The first equation gives the constant velocity of the test
particle on the critical hypersurface, whereas the second
solved implicitly in terms of r permits one to determine the
radius of the critical hypersurface in terms of M, a, A, b.

III. LYAPUNOV EXPONENTS OF THE GENERAL
RELATIVISTIC PR EFFECT

The theory of the Lyapunov exponents is a generaliza-
tion of the linear stability theory for dynamical systems,
which allows one to quantify the rate of separation of
infinitesimally close trajectories. Roughly speaking, it
relies on studying the asymptotic properties of the tangent
map to the dynamical system, and this is usually achieved
analyzing the linearized flow. We give a short account on
the method, referring to [41,42] for more details.
We first quickly introduce the general framework, before

describing the concrete situation we are interested in. Let
Φt be a differentiable flow on an n-dimensional connected
Riemannian manifold ðM; hÞ, where h is the metric on the
manifold M1 and dΦt

x∶TxM → TxM the associated
tangent map. Here, TxM denotes the tangent space to
M at x ∈ M. The Lyapunov exponents are associated with
the evolution of tangent vectors to M. Namely, given a
nonzero v ∈ TxM, they are defined as

χðx; vÞ ≔ lim
t→þ∞

ln kdΦt
xvkh

t
: ð13Þ

As v varies in TxM, χðx; vÞ takes s ≤ n distinct values
ν1ðxÞ > … > νsðxÞ, with s ¼ sðxÞ. Then, one can compute
all the Lyapunov exponents, letting vary the vectors v ∈
TxM in Eq. (13). However, as explained in [41], in
practical computations, a random choice of vectors always

leads to the largest Lyapunov exponent because the others
have essentially zero probability to be obtained.
Let χiðxÞ, with χ1ðxÞ ≥ … χnðxÞ, be the Lyapunov

exponents at x counted with their multiplicity. The sum
of the first p ≥ 1 Lyapunov exponents can be computed
choosing p vectors v1;…; vp ∈ TxM and then evaluating
the volume of the parallelepiped generated by the trans-
formed vectors dΦtv1;…; dΦtvp through the formula,

lim
t→∞

1

t
Volphð½dΦt

xv1;…; dΦt
xvp�Þ ¼

Xp
i¼1

χiðxÞ: ð14Þ

As an example of the applicability of the above formula, let
us suppose, for instance, we want to compute the second
Lyapunov exponent, χ2ðxÞ. The first one χ1ðxÞ is easily
determined by randomly choosing a vector v1 ∈ TxM and
then employing Eq. (13). Therefore, now one needs to
choose just another independent vector v2 ∈ TxM, com-
pute the volume of the paralleliped ½dΦtv1; dΦtv2�, and
finally, take the limit for t → ∞:

lim
t→∞

1

t
Vol2hð½dΦt

xv1; dΦt
xv2�Þ ¼ χ1ðxÞ þ χ2ðxÞ: ð15Þ

Subtracting from this sum the value of χ1ðxÞ, one obtains
χ2ðxÞ. It is now evident how to iteratively apply this method
for computing all the Lyapunov exponents χiðxÞ. One
simply needs to add each time a new indepedendent vector
vi ∈ TxM and to use Eq. (14).
However, as clarified in [42], this procedure requires a

careful implementation from a numerical point of view, as
two main issues arise. First, randomly choosing v ∈ TxM,
kdTt

xvkh, it exponentially increases as t → ∞. Moreover,
when at least two vectors are involved in (14), the angle
between two of them can rapidly become too small to be
numerically handled. In [42], the authors solve all these
issues and then provide tests and examples illustrating their
computational strategy.
The concrete setting we are considering are those

dynamical systems governed by a set of ordinary differ-
ential equations of the following type:

dXiðtÞ
dt

¼ fiðX1ðtÞ;…; XnðtÞÞ; i ¼ 1;…; n; ð16Þ

where fi are supposed to be smooth functions for all
i ¼ 1;…; n, and t plays the role of the time. Let us
assume that a time-dependent stationary solution
ðX�

1ðtÞ;…; X�
nðtÞÞ exists for the dynamical system (16);

i.e., fiðX�
1ðtÞ;…; X�

nðtÞÞ ¼ 0 for all i ¼ 1;…; n. Let us
consider now a small perturbation around the stationary
solution, i.e.,XiðtÞ ¼ X�

i ðtÞ þ δXiðtÞ for all i ¼ 1;…; n, and
thus linearize the dynamical system (16),

1In Sec. III B 1, we will see that the spacetime M ¼ R3 and
the metric h on M is the usual Euclidean metric.
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dðδXiðtÞÞ
dt

¼ AijðtÞδXjðtÞ; i; j ¼ 1;…; n; ð17Þ

where AijðtÞ is the linear stability matrix obtained as

AijðtÞ ¼
∂fi
∂Xj

����
X�
i ðtÞ

; i; j ¼ 1;…; n: ð18Þ

The solution of the linearized Eq. (17) is

δXiðtÞ ¼ LijðtÞδXjð0Þ; i; j ¼ 1;…; n; ð19Þ

where the evolution matrix LijðtÞ satisfies

_LijðtÞ ¼ AimðtÞLmjðtÞ; i; j ¼ 1;…; n; ð20Þ

and Lijð0Þ ¼ δij. We observe that, a priori,Aim depends on
the time t. In the special case where the stationary solution is
independent from the time t, the Lyapunov exponents are
simply the eigenvalues of the time-independent matrix Aij.
Then, the principal Lyapunov exponent is the maximal
eigenvalue of such a matrix.

A. Proprieties of the Lyapunov exponents

For conservative dynamical systems, the sum of all
Lyapunov exponents is zero because a volume element in
the phase space is conserved by the flow. Instead, if the
dynamical system is dissipative, the sum of Lyapunov
exponents is negative, as the volume element shrinks along
a trajectory. Therefore, the Lyapunov exponents provide
information concerning local expansion and contraction of
phase space, thus formalizing the concept of stretching rate
along different directions [43].
Positive Lyapunov exponents are a useful index of the

sensitive dependence on the initial conditions2 [44–48].
Therefore, they are usually taken as a possible indication of
chaos provided that some other conditions are satisfied.3

Lyapunov exponents are used to characterize unstable
orbits, along which, chaotic dynamics can develop. As
an example, the instability of some circular orbits around a
Schwarzschild BH can be quantified by a positive principle
Lyapunov exponent, although the geodesics around a
Schwarzschild BH are not chaotic [50]. If a dynamical
system shows a positive principal Lyapunov exponent,

λ̄ > 0, it is possible to define the Lyapunov time T λ̄ ¼ 1=λ̄.
This is a characteristic timescale on which a dynamical
system is unstable or chaotic and beyond which, our
predictions break down [46,50,51].
Despite being helpful, Lyapunov exponents must be

exploited with caution as they present some drawbacks,
especially in GR theory, which can be summarized as:

(i) They vary from orbit to orbit, not encoding the
collective behavior of all orbits and not usually
catching generic information [46]. In order to get
true and appropriate values, they should be averaged
over many different points on the same trajectory.
Sometimes, it can occur that in such a mean process,
they could return zero values when the considered
orbits move in and out of unstable regions [52–54];

(ii) They depend on the chosen time coordinate. Since
time is relative in GR, the same happens also for the
Lyapunov exponents. If this remark is not taken
properly into account, it can bring to erroneous
results. However, whenever a preferred time direc-
tion exists, the uncertainty of time can be eliminated.
For example, in the Schwarzschild and Kerr space-
times where a timelike Killing vector exists, the
coordinate time of the observer at infinity reveals
itself to be the most appropriate choice [50,51].

B. Application of the Lyapunov theory to the general
relativistic PR effect

The general relativistic PR effect is rotationally invariant
(independent from the azimuthal angle φ) and autonomous
(does not explicitly depend on the time t). Therefore,
Eqs. (4)–(6) represent the dynamical system to investigate.
Defined as X ¼ ðν; α; rÞ, the dynamical system can be
written as dX=dt ¼ f ðXÞ. We linearly perturb it around the
critical hypersurface X0 ¼ ðν0; 0; r0Þ (being a stationary
solution, i.e., f ðX0Þ ¼ 0), where ν0 and r0 can be deter-
mined by exploiting Eqs. (11) and (12). We consider the
following perturbations:

ν¼ ν0 þ εν1; α¼ εα1; r¼ r0 þ εr1; ε≪ 1; ð21Þ

also written as X ¼ X0 þ εX1, with X1 ¼ ðν1; α1; r1Þ.
The components of the linearized 3 × 3 matrix A ¼

ðdf=dXÞX¼X0
can be found in Table I, where we obtain the

linearized dynamical system dX1=dt ¼ A · X1.
As already explained, since the dynamical system is

autonomous, the Lyapunov exponents coincide with the
eigenvalues of the matrix A, denoted as fλ1; λ2; λ3g. The
characteristic eigenvalue equation in terms of λ is

c0 þ c1λþ c2λ2 − λ3 ¼ 0; ð22Þ

where

2A dynamical system shows sensitive dependence on the initial
conditions if tiny perturbations on the initial conditions lead to
significantly different future behaviors.

3The widely accepted definition of chaos is due to Robert L.
Devaney, and it fulfils three proprieties [49]: (1) sensitive
dependence on initial conditions, (2) topologically mixing (any
given region or open set of the phase space eventually overlaps
with any other given region in the phase space), and (3) the
presence of a dense set of periodic orbits (every point in the
dynamical real space is approached arbitrarily close by periodic
orbits).
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c0 ¼ detA; c2 ¼ TrA;

c1 ¼
X3
i;j¼1
i≠j

�
aijaji − aiiajj

2

�
: ð23Þ

Since the eigenvalues are the zeroes of a polynomial of
third order, we can analytically determine them [56].

1. Lyapunov and PR timescales

We can calculate the Lyapunov timescale for the chaos
onset as T λ̄ ¼ 1=λ̄, where λ̄ is the principal Lyapunov
exponent. This time must be compared with the PR
timescale TPR, defined as the time from the start of the
numerical simulation until the test particle reaches, for the
first time, the critical hypersurface for moving then on that

TABLE I. Explicit expressions of the coefficients of the linearized matrix A, where aij ¼ ∂fi=∂Xj. The quantities with subscript 0
mean that they are evaluated in ν0, r0. They can be found also in the related Mathematica notebook [55].

Coefficient Explicit expression

χ1 2aMρ3r0½2a2r0ð−8M2 þMr0 þ 6r20Þ þ a4ð4M þ 3r0Þ þ r40ð9r0 − 14MÞ�
χ2 −3ρ20½r70ð20a2M2 þ 1Þ −Mr60ð32a2M2 þ 5Þ þ 2r50ð12a4M2 þ a2 þ 3M2Þ

þa2r30ð−16a2M4 þ 4a2M2 þ a2 þ 12M2Þ − a2Mr20ð5a2 þ 12M2Þ þ 10a4M2r0 − 8a2Mr40 − 2a6M�
χ3 2aMρ0r20½−4Ma2r30ð2a2M2 þ 9Þ þ r60ð44a2M2 þ 3Þ − 18Mr50ð4a2M2 þ 1Þ þ 3r40ð16a4M2 þ 3a2 þ 8M2Þ

þa2r20ð4a2M2 þ 9a2 þ 36M2Þ − 2a2Mr0ð8a4M2 þ 9a2 þ 12M2Þ þ 3a4ða2 þ 4M2Þ�
χ4 r0½6a4r20ð−2a4M2 þ 12a2M4 þ a2 þ 2M2Þ þ 4a2r40ð−8a4M6 − 2a4M2 þ 3a2 þ 12M2Þ

þ2a2Mr30ð16a6M3 þ 6a4M2 − 24a2M3 − 15a2 − 4M2Þ þ 3r80ð1 − 16a4M4Þ
þ2Mr70ð40a4M4 þ 6a2M2 − 9Þ þ 2r60ð−24a6M4 − 6a4M2 − 12a2M4 þ 5a2 þ 18M2Þ
þ2Mr50ð8a6M4 þ 24a4M2 − 21a2 − 12M2Þ − 6a6Mr0ð4a2M2 þ 1Þ þ a8�

ξ1 −6aMr20ρ
2
0ða2 þ 3r20Þ

ξ2 ρ0½2r50ð18a2M2 − 1Þ þ 3a2r30ð4a2M2 − 1Þ þ a2r0ð6M2 − a2Þ − a2Mr20 − 2a4M þ 3Mr40�
ξ3 2aMr0½3r50ð1 − 4a2M2Þ þ a2r30ð3 − 4a2M2Þ þ 2a2M2r0 − a2Mr20 − 2a4M − 5Mr40�
ψ1 ν20½a2ð2M2 −Mr0 þ r20Þ þ r30ðr0 − 2MÞ� þMð2a2ðr0 − 2MÞ þ r30Þ
ψ2 2a3bMr30ð−2M2 þMr0 − 3r20Þ þ 4a5bM2r20 þ a2r40ð−12M2 þ 2Mr0 þ 5r20Þ

þa4r0ð2M þ r0Þð−6M2 þMr0 þ 4r20Þ þ a6ð2M þ r0Þ2 þ 2abMr60ð5M − 3r0Þ þ r70ð2r0 − 3MÞ
ψ3 −2aMν0½a2r30ð12M2 − 23Mr0 þ 17r20Þ þ 3a6ðM þ r0Þ − a4r0ðM − r0Þð4M þ 11r0Þ þ 3r60ð3r0 − 7MÞ�
ψ4 −M½2a4r0ð2M2 þ 5Mr0 − 4r20Þ þ a2r40ð25M − 7r0Þ − 3a6ðM þ r0Þ − 2r70�
ψ5 −a2r40ð20M2 − 9Mr0 þ r20Þ þ a4Mr0ð−2M2 − 5Mr0 þ 10r20Þ þ 3a6MðM þ r0Þ þ r70ð4M − r0Þ
a11 Aγ0

r0

ð1−2ν2
0
Þ½ðρ0−2abMr0Þ2þb2Δ0�−b

ffiffiffiffi
Δ0

p
ν0ð3ν20−1Þð2abMr0−ρ0Þffiffiffiffi

Δ0

p
ρ0ð2abMr0−ρ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− b2Δ0

ðρ0−2abMr0Þ2

q
a12 Aγ0

ffiffiffi
ρ0

p
r2
0
½ðν2

0
þ1Þð2abMr0þρ0Þ−2b

ffiffiffiffi
Δ0

p
ν0 �ffiffiffiffi

Δ0
p −M½−4a2Mr0−2a

ffiffiffiffi
Δ0

p
ν0ða2þ3r2

0
Þþða2þr2

0
Þ2�

γ2
0
ρ3=2
0

r3
0

a13 −A fbΔ3=2
0

ðν2
0
þ1Þ½b3ξ3þb2ξ2þbξ1þρ3

0
r0ða2þ3r2

0
Þ�þν0ðb4χ4þb3χ3þb2χ2þbχ1−roρ6Þg

γ0Δ
3=2
0

ρ2
0
r3
0

�
1− b2Δ0

ðρ0−2abMr0Þ2

�
3=2

a21
ffiffiffiffi
Δ0

p
ða4Mþγ2

0
r0ψ1Þ−Aγ0 ffiffiffiffi

ρ0
p ð−2abMr0−b

ffiffiffiffi
Δ0

p
ν3
0
þρÞffiffiffiffi

Δ0

p
ρ3=2r2

0
ν2
0

a22 A
ν0½ðρ−2abMr0Þ2−2b2Δ0�þb

ffiffiffiffi
Δ0

p
ðρ0−2abMr0Þ

γ0
ffiffiffiffi
Δ0

p
ρ0r0ν0ð2abMr0−ρ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2Δ0

ðρ−2abMr0Þ2
þ1

q
a23 − A

ffiffiffiffi
ρ0

p
r0½ψ2−bΔ

3=2
0

r2
0
ν0ða2þ3r2

0
Þ�−γ0Δ0M½

ffiffiffiffi
Δ0

p
ðν2

0
ψ5þψ4Þþψ3�

γ0Δ
3=2
0

ρ5=2
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stably.4 This time is calculated numerically for each
simulation. In order to understand whether the chaotic
behavior is influential on the global PR dynamics, we
compute the ratio T λ̄=TPR, and if it is smaller (greater) than
one, then the chaos is important (unimportant) [51].
As examples, we consider selected data from our

previous numerical simulations; see Fig. 1 (see also
Fig. 7 in Ref. [40], for comparison). The specific data
for these simulations are reported in Table II; see simu-
lations 1–15. We added also other five examples not
reported in previous studies in order to show some
variability of parameters; see simulations 16–20 in Table II.

IV. DISCUSSIONS AND CONCLUSIONS

The strategy to detect chaos in the PR dynamics relies on
computing the Melnikov integral ℳ, whose integrating
function is the Poisson brackets of the unperturbed Kerr
Hamiltonian function and the PR dissipative perturbations.
This is a function of mass M, spin a, homoclinic orbit
parameter ru, photon impact parameter b, and the test
particle’s initial condition r0, i.e.,ℳ ¼ ℳðM; a; ru; b; r0; Þ
[40]. If there is a combination of these parameters that
nullifies ℳ, this means that, in correspondence of these
values, chaotic dynamics occurs. The general relativistic
PR effect shows chaos for a suitable range of parameters;
see Fig. 1 for an example.5

As subsequent analysis, in this work, we have inves-
tigated whether the chaotic dynamics is observationally
relevant on the PR dynamics. To this end, we have
exploited the theory of Lyapunov exponents, which allows
one to estimate the timescale of the chaos onset. The
procedure is essentially based on perturbing the general
relativistic PR equations of motion (4)–(6) for low lumi-
nosities in terms of the parameter ε ¼ A=M ≪ 1 around the
critical hypersurface values (configuration of equilibrium
for the PR dynamical system); see Eq. (21). Therefore, after
performing these calculations, we obtain the linearized
matrix A, which is numerically determined once
M; a; A; b; r0 have been assigned. Since the PR model is
an autonomous dynamical system, the eigenvalues of A are
exactly the Lyapunov exponents fλ1; λ2; λ3g. Finally, con-
sidering the maximum of the real parts of the eigenvalues,
we determine the principal Lyapunov exponent λ̄, whose
inverse value corresponds to the Lyapunov timescale T λ̄ ¼
1=λ̄ for estimating the chaos onset. Another fundamental
information is encoded in the PR timescale TPR, defined as
the time from the start of the numerical simulation until the
test particle reaches, for the first time, the critical hyper-
surface for then moving on it stably. In order to understand
how the chaotic behavior impacts the PR dynamics, we
consider the ratio between the Lyapunov T λ̄ and PR TPR
timescales: If T λ̄=TPR ≤ 1, it means that the chaos is
observationally significant, whereas if T λ̄=TPR > 1, it is
unimportant.
We performed 20 numerical simulations, whose detailed

values are reported in Table II. We note that the chaos is
significant for simulations 7–20, while there is any influ-
ence for simulations 1–6. However, we checked by
performing other numerical simulations that varying the
luminosity parameter A, namely making it smaller and
smaller, it is possible to have also for simulations 1–6 a
ratio lower than one. Once we calculate the Lyapunov
timescale, we have an indication on how to tune the
parameters for having a PR timescale such that it is smaller
or greater than the time for the chaos onset. We note also
that when we fixed the value of the photon impact
parameter b, and chosen, for hypothesis, a small value
of the luminosity parameter A, it follows that an important
role is played by the spin a. Indeed, the test particle’s initial
conditions are also fundamental, but they are strongly
related to fM; a; bg via the Melnikov integral ℳ [40].
From an observational point of view, it is significant to

understand how to identify the astrophysical systems where
chaos in the PR dynamics can be detected. The requirement
of low luminosities permits one to provide a first stringent
criterion. The mass M and spin a of a compact object can
be normally estimated by means of several strategies (see
e.g., [58,59], for more details). In addition, the surrounding
accreting matter can be found distributed almost every-
where with generally different velocities, including some
initial configurations for having chaotic dynamics [60].

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

6

a

r u
(M

)

rIBCO

rISCO

FIG. 1. Parameter space ðru; a; bÞ, where ru is the homoclinic
orbit’s parameter, and b is fixed to b ¼ 3. This space is delimited
by the innermost bound circular orbit, rIBCO, and the innermost
stable circular orbit, rISCO. All the (blue and red) dots represent
the parameter subspace, in correspondence of which the chaotic
dynamic occurs. The red dots are the selected examples reported
in simulations 1–15 in Table II.

4There are some examples where the test particle can cross the
critical hypersurface and then not move anymore on that (see
Figs. in Sec. 3.4 of Ref. [57], for more details).

5For discovering other ranges of parameters for which chaos
occurs, we developed a code written in Mathematica, which
permits one to facilitate this research (see Ref. [47] in [40], for
more details).
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Therefore, only the photon impact parameter b must be
estimated. It cannot be measured directly from the obser-
vational data, but it can be linked to the emitting surface
radius R⋆ (supposed to be a spherical region) and angular
velocity Ω⋆ (assuming that the emitting surface rigidly
rotates) through the formula (see Ref. [13], for more
details),

b≡
�
−
gtφ þ gφφΩ⋆
gtt þ gtφΩ⋆

	
r¼R⋆

¼ a2R⋆Ω⋆ρðR⋆Þ
R⋆ þ 2MðaΩ⋆ − 1Þ : ð24Þ

In addition, we have that Ω⋆ ∈ ½Ω−;Ωþ�, being

Ω� ¼
−gtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ − gttgφφ

q
gφφ

: ð25Þ

Since R⋆ can be estimated from the observations, we can
relate Ω⋆ in terms of b; a;M; R⋆, via Eq. (24), as

Ω⋆ ¼ 2aM þ bðR⋆ − 2MÞ
ρðR⋆Þ − 2Mab

: ð26Þ

The last condition thus imposes a further constraint to
single out the astrophysical systems exhibiting chaos.
It is important now to distinguish the physics of BH and

NS systems. For a standard NS of mass M ¼ 1.4 M⊙ and
radius R⋆ ¼ 6M, if we consider the NS surface as emitting

region, then the spin a can be expressed as a function of the
NS angular velocity Ω⋆ through a ¼ CΩ⋆=z, where C
depends on the NS structure and equation of state, which
in our case, amounts to be C ¼ 1.1 × 10−4 s=rad [61], and
z ¼ ð1.4GM⊙=c3Þ=ð2πÞ is the conversion gravitational
factor. In this way, we have a ¼ aðbÞ, which for b ∼ 3,
we obtain a ∼ 10−6, corresponding thus to extremely
slowly rotating NSs, namely Ω⋆ ∼ 0.06 rad=s or spin
period T⋆ ≡ 2π=Ω⋆ ∼ 100 s. In Fig. 2, we plot how the
NS angular velocity Ω⋆ and spin period T⋆ changes in
terms of the photon impact parameter b. In addition, since
NSs are very small compact objects, they have a very low

TABLE II. Numerical simulations performed using as test particle’s initial conditions ðrp; αp; νpÞ and the PR effect model parameters
b, A, a, together with the critical hypersurface radius r0. As a result, we obtain the Lyapunov timescale Tλ, the PR timescale TPR, and the
ratio between these two times in order to see whether the PR effect is important [55].

SIM. νp αp rp b A a r0 T λ̄ TPR T λ̄=TPR

# (M) (M) (M) (M) (M)

1 0.82 0.52 2.84 3 0.0001 0 2.00 7.97 × 106 178703.57 44.59
2 0.72 0.30 3.51 3 0.0001 0 2.00 7.97 × 106 178703.57 43.60
3 0.89 0.76 2.39 3 0.001 0.1 1.9950 587441.09 47363.77 12.40
4 0.92 0.91 2.25 3 0.001 0.1 1.9950 587441.09 47397.65 12.39
5 0.79 0.45 2.80 3 0.01 0.2 1.9800 14352.60 5164.82 2.78
6 0.75 0.35 3.03 3 0.01 0.2 1.9800 14352.60 5187.24 2.77
7 0.75 0.34 2.92 3 0.01 0.3 1.9541 2470.75 5347.96 0.46
8 0.73 0.29 3.06 3 0.01 0.3 1.9541 2470.75 5350.97 0.46
9 0.77 0.36 2.70 3 0.01 0.4 1.9167 15.79 5558.25 2.84 × 10−3

10 0.73 0.29 2.88 3 0.01 0.4 1.9167 15.79 5583.53 2.83 × 10−3

11 0.29 0.73 14.31 3 0.1 0.5 4.55 24.14 3397.87 7.10 × 103

12 0.40 0.33 7.35 3 0.1 0.5 4.55 24.14 2691.15 0.01
13 0.62 0.04 3.37 3 0.1 0.6 5.62 213.32 3733.26 0.06
14 0.62 0.03 3.42 3 0.1 0.6 5.62 213.32 3727.37 0.06
15 0.14 0.24 21.31 3 0.1 0.7 6.16 264.20 264.20 0.06
16 0.70 0.22 3.29 3.1 0.1 0.3 1.9698 4.83 1029.39 4.69 × 10−3

17 0.67 0.11 3.17 3.1 0.1 0.5 5.88 619.76 4193.14 0.15
18 0.63 0.03 3.61 3.2 0.1 0.5 6.82 557.15 5227.02 0.11
19 0.61 0.05 4.03 3.3 0.1 0.4 7.22 415.77 5608.68 0.07
20 0.60 0.05 4.36 3.4 0.1 0.3 7.66 499.52 6182.17 0.08
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FIG. 2. Plot of the NS surface’s angular velocity Ω⋆ and spin
period T⋆ in terms of photon impact parameter b.
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luminosity. Assuming that the NS surface temperature is
T ¼ 106 K, its luminosity can be calculated through the
Stefan-Boltzmann law in terms of the Sun’s luminosity
(where Sun’s temperature T⊙ ¼ 5800 K and radius
R⊙ ¼ 7 × 105 Km), thus obtaining L=L⊙ ¼ 0.2. The
Eddington luminosity is LEdd ¼ 4.48 × 104L⊙; therefore,
A ≤ 4.46 × 10−6. In rows 1, 2, and 3 in Table III, we report
the data of some NSs, in which our study can be applied.
Instead, if we consider either a boundary layer around a

NS or a hot corona around a BH, a and Ω⋆ are now
independent. In the case of a boundary layer around a NS,
we know that it is located very close to the NS surface,
R⋆ ∼ ð5 − 7ÞM, and it is rigidly rotating with Keplerian
angular velocity Ω⋆ ¼ ΩKðR⋆Þ≡M=ðaþ R⋆Þ3=2 [5]. The
additional requirement of low luminosities sees these
configurations hosted in atoll sources, characterized by A≲
0.06 [65]. In Fig. 3, we plot the photon impact parameter b
in terms of the NS spin a, the only free parameter in this
case. Finally in rows 3, 4, and 5 in Table III, there are the
data of some astrophysical examples.

In the BH case, the emitting surface is represented by the
hot corona, which is located in the range of
R⋆ ∼ ð3 − 10ÞM. We assume that the matter is rotating
with Keplerian velocity Ω⋆ ¼ ΩKðR⋆Þ. There are, however,
different models of the hot corona’s angular velocity
proposed in the literature (see Ref. [66], for more details).
We impose also that these sources must be characterized by
very small luminosities A≲ 0.01. In Fig. 4, we plot the
photon impact parameter b in terms of the BH spin values
using different models of the hot corona’s angular velocity
as reported in Ref. [66], in order to show how the b range
values change in terms of different approaches. In rows 7,
8, and 9 in Table III, we show the data of some astro-
physical sources.
The above discussions, together with the related for-

mulas, plots, and examples, provide some basic strategies,

TABLE III. Information about six examples (ex.) of some astrophysical sources divided in three types analysed in Sec. IV.

Type EX. SOURCE M R⋆ T⋆ A Ref.
# id. (M⊙) (M) (s)

NS surface 1 A0535þ 26 1.50 4.52 103.00 4.46 × 10−6 [62]
2 GX 1þ 4 1.35 5.03 121.00 4.46 × 10−6 [63]
3 Vela X-1 1.88 3.61 283.00 4.46 × 10−6 [64]

Boundary layer around a NS 4 GX 3þ 1 1.40 6.67 0.74 × 10−3 0.058 [65]
5 4U 1702–429 1.40 5.35 0.53 × 10−3 0.058 [65]
6 GX 301–2 1.40 5.36 0.54 × 10−3 0.058 [65]

Hot corona around a BHa 7 NGC 5506 108 10.00 1.01 × 10−3 0.002 [1]
8 MCG-6-30-15 0.18 × 10−3 2.90 0.07 0.03 [1]
9 Cyg A 2.51 × 109 10.00 1.01 × 10−3 0.003 [1]

aThe sources we have chosen have all extreme spin values, namely 0.95 < a < 1.
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R = 7M

FIG. 3. Plot of the NS boundary layer’s photon impact
parameter b in terms of the NS spin a. The continuous
(R⋆ ¼ 5M) and dashed (R⋆ ¼ 7M) lines delimit the light grey
shaded area, which includes all admissible physical cases.
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FIG. 4. Plot of the BH hot corona’s photon impact parameter b
in terms of the BH spin a for different locations (light gray shaded
area), delimited by R⋆ ¼ 3M (continuous line) and R⋆ ¼ 10M
(dashed line) in terms of different models of angular velocity Ω⋆:
Keplerian ΩKðR⋆Þ coincident with the slablike in the equatorial
plane (black lines) and ZAMO ΩZAMO ¼ ½−gtφ=gφφ�r¼R⋆ (blue
line). Looking at Eq. (24), it is understandable why to ΩZAMO
corresponds always to b ¼ 0 for all possible values of a and R⋆.
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which could be more extensively investigated and
improved from an observational point of view through
the analysis of several data related to astrophysical BH and
NS sources. In addition, our approach is not only restricted
to the PR effect, but it can be further extended to study the
timescales of other relevant phenomena occurring in high-
energy accretion physics (see e.g., [67–70]).
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