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(Received 20 April 2021; accepted 17 May 2021; published 4 June 2021)

Although the idea that there is a maximum force in nature seems untenable, we explore whether this
concept can make sense in the restricted context of black holes. We discuss uniformly accelerated and
cosmological black holes and we find that, although a maximum force acting on these black holes can in
principle be introduced, this concept is rather tautological.
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I. INTRODUCTION

The idea that there exists a maximum value,

Fmax ¼
c4

4G
; ð1:1Þ

to any physically attainable force (or tension) was advanced
by Schiller [1–3] and Gibbons [4] and further explored by
several authors [2,3,5–10]. Extensions to include a cos-
mological constant [6], angular momentum [8], and a
maximum force in Brans-Dicke gravity [10] have also
been discussed.
The key idea leading to the sharp factor 1=4 in Eq. (1.1)

comes from the fact that there is a maximum deficit angle in
the geometry of a cosmic string [4,6]. A static cosmic string
aligned with the z-axis is described by a locally flat
spacetime with line element

ds2 ¼ −dt2 þ dr2 þ dz2 þ r2dφ2 ð1:2Þ

with 0 ≤ φ < 2πð1 − 4Gμ
c2 Þ and with a conical singularity

along the z-axis and a deficit angle

δ ¼ 8πGμ
c2

; ð1:3Þ

where μ is the string tension. The range of the φ coordinate
in cylindrical coordinates ðt; r;φ; zÞ is 0 ≤ φ ≤ 2πð1 − δÞ.
To prevent δ from spanning the entire three-dimensional
space it must be δ < 2π, which generates the upper bound
(1.1) on the string tension μ. It is not clear, however, how
this bound on a string tension has risen to the role of a
universal bound on any possible force acting on a particle.
Sometimes the factor 1=4 is replaced by 1=2, or by

factors of order unity, in weaker formulations of the upper

bound [9], while other works involving black holes
reproduce the 1=4 factor [7].
Another argument involves the Planck scale. Using only

dimensional analysis and the fundamental constants G, c,
and ℏ, one can construct the “Planck force” FPl ¼ c4=G
and the “Planck power” PPl ¼ c5=G. Contrary to the
Planck length, energy, temperature, and energy density,
these two new Planck scale quantities do not contain ℏ and
are purely classical. The construction of Planck scale
quantities, however, may lead to very vague concepts:
for example, ordinary objects like a football have masses
exceeding the Planck mass and, therefore, a force resulting
from the product of a mass times an acceleration could
easily exceed the Planck force even if there was an upper
limit to the acceleration of a particle (such a limit was
claimed by Caianiello on the basis of a generalized
uncertainty principle [11]).
The idea of a maximum force has been extended to

hypothesizing a maximum power for any system in general
relativity (GR), the Dyson luminosity [12]

Pmax ¼ cFmax ¼
c5

4G
; ð1:4Þ

which would be the maximum possible luminosity of an
isolated system [1,3] (for example, its luminosity in
gravitational waves [13,14]). An upper limit on entropy
production rates is discussed in Ref. [15].
Schiller’s maximum force proposal in [1] (see also [2,3])

even included the idea that the existence of a maximum
force implies general relativity as a consequence, in the
same way that a maximum possible velocity (c) leads to
special relativity [2]. The derivation parallels Jacobson’s
derivation of the Einstein equations as an equation of state
that began the area of research now known as the
thermodynamics of spacetime [16]. This derivation is
associated with the fact that the Einstein equations*vfaraoni@ubishops.ca
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Gab ¼
8πG
c4

Tab ð1:5Þ

contain the constant G=c4 and can be written as Tab ¼
Fmax
2π Gab [17].
Recently, the existence of a maximum force has been

criticized by Jowsey and Visser [17] who provide counter-
examples violating the Schiller-Gibbons upper bound using
fluid spheres, or the TOVequation, in GR. Counterexamples
to themaximum luminosity conjecture are given byCardoso,
Ikeda, Moore and Yoo [18].
Indeed, Barrow and Gibbons themselves mention pos-

sible counterexamples related with sudden future singular-
ities in cosmology, which cause unbounded pressure forces.
They mention the fact that the maximum force bound is
restricted to situations in which a suitable energy condition
is imposed to prevent sudden future singularities [6].
However, this example is rather vague and it is not clear
what the cosmological “force” applies to. Section 1.5 of [6]
begins with the usual Newtonian analogy for an expanding
universe, consisting of a Newtonian ball of material with
radius proportional to the scale factor aðtÞ of a (spatially
flat) expanding universe. Since the “force” is proportional
to ä, assuming a power-law expansion aðtÞ ≃ tn, the
“force” F grows like

F ¼ FPl

�
t
tPl

�
n−2

: ð1:6Þ

If n > 2 the Planck force is exceeded. In our opinion,
however, this Newtonian argument does not suffice to draw
firm conclusions. In fact, the only way to make the analogy
with a Newtonian ball work in GR is if the analogous
relativistic universe is filled with dust [19]. Then it is
n ¼ 2=3 and the “force” decreases after the Planck time.
This entire argument, however, is too vague and needs to be
put on a firmer basis (in particular specifying what is the
force acting on what).
Varying constants and entropic force theories, as well as

black hole thermodynamics in generalized entropy models,
also escape the force bound [20], while attempts have been
made to relate it to the holographic principle [21].
On the one hand, in view of the counterexamples

provided, it is hard to argue with Jowsey and Visser that
the maximum force acting on particles, in GR or in other
theories of gravity, is doomed. On the other hand, Gibbon’s
argument in the restricted context of cosmic strings is sound
and perhaps versions of the maximum force conjecture
restricted to well defined contexts may be true. Here we
explore this direction: although there is no universal
maximum force on particles and other objects, there may
exist an upper bound to the force (or to a similar quantity
with the dimensions of a force) acting on more fundamental
objects: black holes. We report two instances that corrobo-
rate this idea. They include (i) uniformly accelerated black

holes and (ii) black holes embedded in Friedmann-
Lemaître-Robertson-Walker (FLRW) universes and
described by the McVittie metric [22]. For these two
categories of black holes, we present first a purely classical
argument and then a second argument based on horizon
thermodynamics (therefore, ultimately based on quantum
field theory in curved space).
We follow the notation of Ref. [23].

II. UNIFORMLY ACCELERATED BLACK HOLE

The static C-metric discovered by Levi-Civita in 1917
[24], a member of theWeyl class of cylindrically symmetric
solutions of the Einstein equations [25], describes a pair of
uniformly accelerated black holes and has been generalized
to include electrically and magnetically charged and/or
spinning black holes, possibly with a positive or negative
cosmological constant. The C-metric has been the subject
of a long literature [26]. It can be studied in several
coordinate systems, each one of which is more suitable
for certain purposes than others [27].
The C-metric can be written in coordinates ðt; p; q;φÞ

and in units in which c ¼ G ¼ 1 as the 2-parameter family
of solutions [28]

ds2 ¼ 1

a2ðpþqÞ2
�
−FðqÞdt2þ dq2

FðqÞþ
dp2

GðpÞþGðpÞdφ2

�
;

ð2:1Þ

where

FðqÞ ¼ −2amq3 þ q2 − 1; ð2:2Þ

GðpÞ ¼ −2amp3 − p2 þ 1: ð2:3Þ

The parameters m and a are related with the black hole
mass and the uniform acceleration. The coordinates have
the range −∞ < t < þ∞, 0 ≤ φ ≤ 2π, while p and q have
different ranges chosen to satisfy GðpÞ > 0. The cubic
polynomial GðxÞ ¼ −Fð−xÞ has three real roots if am <
1=

ffiffiffiffiffi
27

p
[28]. If qR;S and p0;π denote the roots of FðqÞ ¼ 0

and GðpÞ ¼ 0, it is qR ≤ q ≤ qS and p0 ≤ p ≤ pπ.
In the limit m → 0, the line element (2.1) reduces to the

Minkowski one in Rindler accelerated coordinates, which
allows the identification of the parameter a with the
uniform acceleration [28]. The limit a → 0 reproduces
the Schwarzschild metric, but a transformation to different
coordinates that reduce to the usual Schwarzschild ones
when a ¼ 0 is necessary to see that [27]. The metric is of
algebraic type D, has a spacetime singularity inside the
black hole horizon, and is static and cylindrically sym-
metric since it admits a timelike Killing vector ξt and
a rotational Killing vector ξφ, plus a boost vector [28].
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The timelike and boost Killing vectors generate null Killing
horizons, located by the vanishing of their norms. The first
is a black hole horizon distorted by the acceleration, while
the second is an acceleration (Rindler) horizon distorted by
the presence of the black hole. These Killing horizons are
best studied in the accelerated coordinates associated with
observers comoving with the uniformly accelerated black
hole [28]. Ifma < 1=ð3 ffiffiffi

3
p Þ, the black hole and the Rindler

horizon are separated, the black hole horizon is elongated
along the direction of its motion, and the Rindler horizon is
an infinite open surface around the black hole horizon
(most of the literature on accelerated black holes restricts to
this situation [26]). A second black hole, joined to the first
by a cosmic string, is located in the region behind the
Rindler horizon [26]. If ma ¼ 1=ð3 ffiffiffi

3
p Þ, the two horizons

touch each other while, if ma > 1=ð3 ffiffiffi
3

p Þ the Rindler
horizon penetrates the black hole horizon and the black
hole effectively disappears from this region of spacetime.
The geometry has a conical singularity along the axis

corresponding to the direction of motion and to a cosmic
string, aligned with this axis, that pulls the black hole.
There is a deficit angle δ that manifests itself when the
length of a circumference in a plane orthogonal to this axis
is computed for 0 ≤ φ < 2π. The string tension is μ ¼ c4

G
δ
8π;

imposing Gibbons’ argument [4] that this deficit angle be
less than 2π yields μ ≤ c4

4G. This bound is not the same as the
bound on am; however, m cannot be interpreted literally as
the black hole mass since the spacetime is not asymptoti-
cally flat and the mass parameter is redefined in a
complicated way [29] when the coordinates are trans-
formed. In any case, the quantity ma no doubt has the
dimensions of a force acting on the black hole horizon,
although the physical interpretation of the C-metric com-
pels one to regard the string tension as the force acting on
the black hole.
From the point of view of accelerated observers comov-

ing with the black hole, the black hole is destroyed (i.e., it
disappears from these observers’ world) if the parameter a
becomes too large. The condition ma ≤ c4

3
ffiffi
3

p
G
can also be

obtained naively by remembering that the distance of a
uniformly accelerated observer to the Rindler horizon is
d ≤ c2

2a, which implies that the size of a uniformly accel-
erated object must be not larger1 than c2=ð2aÞ. When the
“object” is a Schwarzschild black hole of radius
RS ¼ 2Gm=c2, the bound RS ≤ c2=ð2aÞ reproduces
ma ≤ c4

4G. This is, however, rather hand-waving while the

derivation using the Farhoosh-Zimmerman solution is
exact.
A thermodynamical argument can be given. The black

hole and acceleration horizons are distorted,2 however one
can still approximate their temperatures with the quantities
pertaining to an isolated black hole and a Rindler horizon in
Minkowski space. The result is not rigorous but is very
suggestive.
The Unruh temperature of the thermal bath perceived by

a uniformly accelerated observer is

TU ¼ ℏa
2πKBc

; ð2:4Þ

while the Hawking temperature of a Schwarzschild black
hole of mass m is

TH ¼ ℏc3

8πGKBm
: ð2:5Þ

The requirement TU ≤ TH translates to

ma ≤
c4

4G
; ð2:6Þ

which is exactly the maximum force proposed by Gibbons
and Schiller for a particle of mass m. However, in their
proposals, the particle is not a black hole and the accel-
eration a is not uniform.
A physical interpretation of this argument can be given

as follows. The typical quanta of Hawking radiation from
the black hole have wavelength λ ∼ Rs. When TU > TH,
this wavelength is larger than the acceleration horizon and
one can no longer talk about thermal emission. This is
consistent, of course, with the fact that when the black hole
horizon becomes larger than the acceleration horizon, it
does not make sense to talk about a black hole. This echoes
a situation discussed by Barrow [37] in the independent
context of varying speed of light cosmologies, in which the
Compton wavelength of a particle crosses outside the
particle horizon of the universe.
The thermodynamical argument is conceptually different

from, and independent of, Gibbons’ argument based on the
deficit angle caused by the cosmic string pulling the black
hole. It is interesting that it provides the same bound,
although the coefficient of c4=G cannot be taken literally
because the Unruh and Hawking temperatures employed
are approximations. In the next section we examine a
physical situation in which black hole horizons appear in
the complete absence of cosmic strings, but similar con-
siderations ensue.

1Incidentally, by imposing that the Compton wavelength λ ¼
h=ðmcÞ of a particle of mass m lies outside its Schwarzschild
radius, one obtains the bound a ≤ acðmÞ=ð8πÞ on the acceler-
ation a, where acðmÞ≡ 2mc3=h is Caianiello’s maximal accel-
eration [11]. (Loose arguments like this are very unlikely to
produce exactly the same numerical factors.) This argument,
however, brings in quantum physics.

2See Refs. [30–36] for the exact thermodynamics of accel-
erating black holes in anti–de Sitter space.
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III. BLACK HOLES EMBEDDED IN FLRW
UNIVERSES

The McVittie spacetime [22] generalizes the
Schwarzschild–de Sitter (or Kottler) solution of the
Einstein equations and is interpreted as describing a central
object embedded in a generic FLRW space [38–50]. The
geometry in the region between black hole and cosmo-
logical apparent horizons is time-dependent.
The McVittie line element in isotropic coordinates is

ds2 ¼ −
½1 − m0

2r̄aðtÞ�2
½1þ m0

2r̄aðtÞ�2
dt2 þ a2ðtÞ

×

�
1þ m0

2r̄aðtÞ
�
4

ðdr̄2 þ r̄2dΩ2
ð2ÞÞ: ð3:1Þ

Apart from the special case of a de Sitter “background” (in
which McVittie reduces to Schwarzschild–de Sitter), there
is a spacetime singularity at r̄ ¼ m=2 (which reduces to the
Schwarzschild horizon if a≡ 1) [38,40–42,51], which is
spacelike [40–42]. The pressure of the fluid source,

P ¼ −
1

8π

�
3H2 þ 2 _Hð1þ m

2r̄Þ
1 − m

2r̄

�
; ð3:2Þ

diverges at r̄ ¼ m=2 together with the Ricci scalar R ¼
8πðρ − 3PÞ [38,40–42,51–53].
The areal radius is

R≡ aðtÞr̄
�
1þ m

2r̄

�
2

; ð3:3Þ

restricting to a spatially flat FLRW universe for simplicity,
the apparent horizons of the McVittie metric are the roots of
the equation ∇cR∇cR ¼ 0, or

H2ðtÞR3 − Rþ 2m0 ¼ 0; ð3:4Þ

which is familiar from the Schwarzschild–de Sitter case if
H ¼ const. Since here H ¼ HðtÞ, the apparent horizon
radii are time-dependent. There are two real and positive
roots R1ðtÞ and R2ðtÞ if m0HðtÞ < 1=ð3 ffiffiffi

3
p Þ. To fix the

ideas, consider a dust-dominated FLRW universe with
HðtÞ ¼ 2=ð3tÞ. Then there is a critical time t� ¼ 2

ffiffiffi
3

p
m0

at which m0HðtÞ ¼ 1=ð3 ffiffiffi
3

p Þ. We can distinguish three
situations occurring during the history of the McVittie
universe:

(i) At early times t < t� we have m0 > 1

3
ffiffi
3

p
HðtÞ, R1ðtÞ

and R2ðtÞ are complex and there are no apparent
horizons.

(ii) At t ¼ t� we have m0 ¼ 1

3
ffiffi
3

p
HðtÞ and two coincident

apparent horizons R1 ¼ R2 ¼ 1ffiffi
3

p
HðtÞ appear simulta-

neously.

(iii) As t > t� it ism0 < 1

3
ffiffi
3

p
HðtÞ and there are two distinct

apparent horizons R1;2ðtÞ: a black hole and a
cosmological horizon.

The physical interpretation is that at late times the black
hole fits inside the cosmological horizon and can properly
be called a black hole, while this is impossible as t ≤ t�,
when the “force” caused by the attraction of cosmic matter
enlarges the black hole horizon.
Instead of considering a “force” acting on the black hole

apparent horizon and stretching it, we can consider a
quantity with the dimensions of a force, i.e., the product
Gm=c2 ·H=c that measures the ratio of the sizes of the
black hole apparent horizon (∼Gm=c2) and the cosmo-
logical apparent horizon (∼c=H). The black hole apparent
horizon is smaller than the cosmological apparent horizon,
or touches it, when

mH ≤
c4

3
ffiffiffi
3

p
G
: ð3:5Þ

If mH > c4=ð3 ffiffiffi
3

p
GÞ, the black hole horizon is outside the

would-be cosmological horizon and the comoving observ-
ers of the underlying FLRW cosmology do not see a black
hole at all.
One can consider again the corresponding thermody-

namics. Approximating the temperature of the black hole
with that of a Schwarzschild black hole of the same mass
m, TH ¼ ℏc3

8πGKBm
, and the temperature of the FLRW

apparent horizon with the Gibbons-Hawking temperature
(originally obtained for de Sitter space with H ¼ const.
[54]), TGH ¼ ℏH

2πKBc
, the requirement that TGH ≤ TH is

equivalent to

mH ≤
c4

4G
ð3:6Þ

which is, again, the upper bound proposed by Gibbons and
Schiller. The coincidence of the numerical coefficients of
c4=G is, again, not significant because the black hole and
cosmological horizons are modified with respect to the GR
solutions containing only one or the other, and so will their
temperatures. The following physical interpretation can be
given: when the wavelength of the thermal Hawking
radiation emitted by the black hole becomes larger than
the cosmological apparent horizon, corresponding to
TGH > TH, the concept of Hawking radiation loses mean-
ing, consistent with the fact that the black hole itself is no
longer seen by observers comoving with the FLRW cosmic
fluid. Particles beyond the Hubble horizon cannot fall into
the black hole singularity.

IV. CONCLUSIONS AND OUTLOOKS

In both cases the Schwarzschild null event horizon is
altered by the black hole environment: in the first case, it is
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distorted by the pull of the cosmic string causing the black
hole to accelerate while, in the second case, the horizon
remains spherical but it becomes a time-dependent apparent
horizon due to the gravitational pull of the cosmic fluid. It is
enlarged with respect to the Schwarzschild radius of a black
hole with the same mass (the central singularity is also
stretched to a finite radius singularity [50]).
Technically, in our two examples, the maximum force

principle is respected by black holes in the sense that when
it is violated the spacetime regions under consideration are
no longer black holes according to the observers located in
them. However, both examples are legitimate solutions of
the Einstein equations also in the spacetime regions beyond
the acceleration horizon (in the first case) or the cosmo-
logical apparent horizon (in the second case) and, as such,
the maximum force principle is violated. Alternatively,
there is no a priori reason why the Unruh temperature of an
accelerated black hole cannot be larger than its Hawking
temperature. According to Wien’s law of displacement,
λT ¼ b for a black body, where b is constant and λ is the
wavelength corresponding to the maximum of the black
body spectral energy density (taken here as a typical
wavelength). Then, the situation TU > TH corresponds to
the typical wavelength λU ¼ b=TU of Unruh quanta being
larger than the typical wavelength λH of Hawking quanta.
However it seems that, as long as observers can indisput-
ably establish the existence of a black hole horizon, a
restricted maximum force principle limited to these hori-
zons could be valid. This conclusion is not surprising:
although no universal force limits exists, the very fact that

observers are required to see a black hole imposes an
upper bound on the force (rather loosely defined) acting
on this black hole horizon. In both cases considered, the
solution of the Einstein equations is still mathematically
admissible, but it contains a naked singularity. This
statement is rather tautological, as we have decided to
consider a situation in which the black hole horizon exists,
but is located beyond the Rindler horizon or the cosmo-
logical apparent horizon. Imposing that the black hole
horizon is not removed and that the singularity inside it
remains invisible to what are deemed to be physically
relevant observers located outside the black hole horizon
amounts to limiting the force acting on the black hole
horizon. The lesson seems to be that the existence a
maximal force acting on black hole horizons is (a bit
tautologically) tied to cosmic censorship. The reference to
forces acting on event, apparent, or Killing horizons,
however, establishes a very special and restricted context
within which to talk about maximal forces and in no way
implies the existence of universal upper bound on the
forces acting on (classical or quantum) particles or bodies,
in agreement with the conclusions of Ref. [17].
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