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Reducing motion of particles to a two-dimensional potential problem, we show that there are stable
circular orbits around a squashed Kaluza-Klein black hole with a spherical horizon and multi–Kaluza-Klein
black holes with two spherical horizons in five dimensions. For a single horizon, we show analytically that
the radius of an innermost stable circular orbit monotonically depends on the size of an extra dimension.
For two horizons, the radius of an innermost stable circular orbit depends on the separation between two
black holes besides the size of an extra dimension. More precisely, the set of the stationary points of
the potential is composed of two branches. For a large separation, stable circular orbits exist on the two
branches regardless of the size of an extra dimension, and in particular, on one branch, the set of stable
circular orbits is connected for the small extra dimension but has two disconnected parts for the large extra
dimension. For a small separation, only on one branch it exists, and the radius of an innermost stable
circular orbit monotonically increases with an extra-dimension size.
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I. INTRODUCTION

Higher-dimensional black holes have played an impor-
tant role in understanding basic properties of fundamental
theories, such as string theory. A number of interesting
solutions of higher-dimensional black holes have been
discovered so far, revealing much richer structure of their
solution space than that of four-dimensional black holes,
and we are naturally led to address the question of how to
classify them [1]. However, since our real, observable
world is macroscopically four-dimensional, extra dimen-
sions have to be compactified in realistic, classical space-
time models [2,3]. Therefore, it is of great interest to
consider higher-dimensional Kaluza-Klein black hole
spacetimes, which look like four-dimensional ones at least
at large distances. The studies on such Kaluza-Klein black
holes may also help us to get some insights into the major
open problem of how to compactify and stabilize extra
dimensions in string theory. The simplest types of Kaluza-
Klein black holes are direct products of four dimensions
and extra dimensions. However, nontrivial, interesting
classes of Kaluza-Klein black hole solutions can be

obtained by a squashing transformation from the same
class of noncompactified black hole solutions, such as
asymptotically flat rotating black hole solutions with equal
angular momenta, which are often called squashed Kaluza-
Klein black holes [4].
The studies on stable bound orbits for particles moving

around black holes is one of the interesting issues because it
significantly depends on the spacetime dimensions, the
topologies of black holes and the types of theories whether
stable bound orbits exist or what the radius of an innermost
stable circular orbit is. For instance, in a four-dimensional
Schwarzschild background, such stable bound orbits exist
for massive particles, and in contrast, in higher-dimensional
Schwarzschild backgrounds they do not exist [5]. Moreover,
as for the rotating black holes in five dimensions, in a Myers-
Perry background with a spherical horizon [6], any stable
bound orbits do not exist [7–9], whereas in a black ring
background with the horizon topology of S1 × S2 and black
lens backgrounds with horizon topologies of lens spaces
Lðn; 1Þ (n: natural number) they exist [10–13], and the
shapes and number of the existence regions of stable bound
orbits are quite different according to the horizon topologies.
As is discussed in Refs. [14,15] for multi–black holes
with two spherical horizons, in four dimensions [14], stable
circular orbits always exist from near-horizon to infinity, in
five dimensions [15], they exist only when the separation of
two black holes is large enough, and in higher dimensions,
they cannot exist regardless of the separation [15].
In particular, understanding on geodesic motion of

particles and light propagation around Kaluza-Klein black
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holes has important roles in observation of the extra
dimensions since they closely depend on the size of the
extra dimension, as is discussed in Refs. [16–18]. In our
previous paper [19], we studied the motion of massive
particles in a five-dimensional spacetime with a compacti-
fied extra-dimensional space where a black hole is localized
in the direction of extra-dimensional space, which is
referred to as a caged black hole. We showed the existence
of circular orbits and their stability for both massive and
massless particles. In this paper, we study the motion of
massive particles around a squashed Kaluza-Klein black
hole with a compactified extra-dimensional space where a
black hole extends. In our analysis, we consider motion of
particles as a two-dimensional potential problem, focusing
on the static charged black hole solutions with a single
horizon and two horizons in the five-dimensional Einstein-
Maxwell theory, which were constructed in Ref. [20]. More
precisely, a problem of whether there exist stable circular
orbits for particles can be replaced with a simple problem
of whether the two-dimensional effective potential has a
local minimum. First, we analytically show the existence of
stable circular orbits for a static charged black hole with a
single horizon, which has a mass parameter (saturating a
Bogomol’nyi-Prasad-Sommerfield bound) and an extra-
dimension parameter. Near the horizon, the spacetime
behaves like a five-dimensional black hole, whereas at
infinity, it effectively behaves like a four-dimensional
spacetime. Therefore, as can be easily expected, stable
circular orbits do not exist near the horizon as the five-
dimensional Schwarzschild black hole [5] but exist at
infinity as the four-dimensional Schwarzschild black hole.
Next, we numerically clarify the existence of stable circular
orbits for static multi-charged black holes with two
horizons, which have a separation parameter between
two horizons, besides (equal) mass parameters
of the black holes and the extra-dimension parameter.
Moreover, we see that the existence region of stable circular
orbits significantly changes on the separation of the black
holes and the size of the extra dimension.
The rest of the paper is composed as follows: In the

following Sec. II, we briefly review the static solution of
multi–Kaluza-Klein black holes in the five-dimensional
Einstein-Maxwell theory (the five-dimensional minimal
supergravity). In Sec. III, we explain our formalism to
find stable circular orbits. In Sec. IV, we show that there are
stable circular orbits for a single black hole and two black
holes. In Sec. V, we summarize and discuss our results.

II. REVIEW OF KALUZA-KLEIN BLACK HOLES

For later use, we briefly review the static solutions of
multi–Kaluza-Klein black holes in the five-dimensional
Einstein-Maxwell theory [20]. As is shown in the
Appendix, these solutions can be obtained from the super-
symmetric solutions in the five-dimensional minimal super-
gravity [21]. Note that this theory is a five-dimensional

Einstein-Maxwell-Chern-Simons theory with a certain
special coupling constant, but the Chern-Simons term
vanishes for such a static charged case.
The metric and the gauge potential of the static

solutions of multi–Kaluza-Klein black holes are written,
respectively, as

ds2 ¼ −L−2dt2 þ L½H−1ðdζ þ ωÞ2 þHdxidxi�; ð1Þ

A ¼
ffiffiffi
3

p

2
L−1dt; ð2Þ

where dxidxi ¼ dx2 þ dy2 þ dz2 is the metric on three-
dimensional Euclidean space E3, and ζ is a periodic
coordinate with the range 0 ≤ ζ ≤ 2πl, where l corresponds
to the radius of the compactified extra dimension. The
functions H and L are the harmonic functions on E3

with point sources at r ¼ ri ½r ¼ ðx; y; zÞ; ri ¼ ðxi; yi; ziÞ;
ri ¼ jr − rij�,

H ¼ 1þ
Xn
i¼1

Ni

ri
; L ¼ 1þ

Xn
i¼1

Mi

ri
; ð3Þ

and the one-form ω ¼ ωidxi is given by

ω ¼
Xn
i¼1

z − zi
ri

ðx − xiÞdy − ðy − yiÞdx
ðx − xiÞ2 þ ðy − yiÞ2

: ð4Þ

Let us introduce the spherical coordinates ðr; θ;φÞ
defined by

ðx; y; zÞ ¼ ðr sin θ cosφ; r sin θ sinφ; r cosφÞ; ð5Þ

where r > 0, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. A point source with
Mi > 0 and Ni ¼ 0 or with Mi < 0 or Ni < 0 corresponds
to a naked singularity. Furthermore, a point source with
Mi ¼ 0 and Ni > 0 corresponds to a Gross-Perry-Sorkin
monopole with a nut charge Ni, in which case Ni ¼ l=2
must be required from regularity at r ¼ ri. A point source
with Mi > 0 and Ni > 0 denotes a black hole with mass
Mi, where Ni ¼ lni=2 (ni: natural numbers) is required
from regularity on the horizon, whose topology is the lens
space Lðni; 1Þ ¼ S3=Zni because the induced metric on the
ith point source r ¼ ri is written as

ds2 ¼ lMini
2

��
dψ
ni

þ cos θdφ

�
2

þ ðdθ2 þ sin2θdφ2Þ
�
;

ð6Þ

where 0 ≤ ψ ≔ 2ζ=l ≤ 4π. For ni ¼ 1, this coincides
with the metric on S3 written in the Euler angles, and
for ni ≥ 2, this coincides with the metric on the lens space
Lðni; 1Þ ¼ S3=Zni . At infinity r → ∞, the metric (1)
behaves as
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ds2 ≃ −dt2 þ dr2 þ r2ðdθ2 þ sin2θdφ2Þ

þ
�
dζ þ

Xn
i¼1

Ni cos θdφ

�
2

; ð7Þ

which has the structure of S1 fiber bundle over the four-
dimensional Minkowski spacetime. Thus, it turns out that
Eq. (1) describes the Kaluza-Klein black hole which looks
five-dimensional near the horizon but four-dimensional at
large distances.
In what follows, to find the stable circular orbits for

test particles moving around such a Kaluza-Klein black
hole, we consider only the case of Mi, Ni > 0 and
ni ¼ 1ði ¼ 1;…; nÞ, in which the horizon topology of
each black hole is S3. In the analysis below, we use
the cylindrical coordinates ðρ;φ; zÞ defined by ðx; y; zÞ ¼
ðρ cosφ; ρ sinφ; zÞ.

III. OUR FORMALISM

Our method to find stable circular orbits is based on the
previous work [12]. Now, we give the brief review as
follows. We assume that all the black holes exist on the
z-axis, i.e., xi ¼ yi ¼ 0, which does not lose generality
for the cases n ¼ 1, 2. Then, the spacetime described by
Eq. (1) has three Killing vector fields ðξt; ξφ; ξζÞ ≔
ð∂=∂t; ∂=∂φ; ∂=∂ζÞ, and therefore, three scalars
ðE;Lφ; LζÞ ≔ ð−gμνξμt uν; gμνξμφuν; gμνξμζuνÞ are constants
of motion along a geodesic with a tangent vector uμ ≔
dxμ=dλ (λ: affine parameter), which correspond to the
energy, the angular momentum around the z-axis and the
momentum along ∂=∂ζ of a particle, respectively. Then,
the normalization condition gμνuμuν ¼ −κ is written as

H
L
ð_ρ2 þ _z2Þ þ U ¼ E2; ð8Þ

where U is the effective potential for massive particles with
unit mass (κ ¼ 1) and massless particles (κ ¼ 0) and is
simply written as

U ¼ κ

L2
þ L2

φ þ ðH2ρ2 þ ω2
φÞL2

ζ − 2ωφLφLζ

HL3ρ2
: ð9Þ

Thus, because we can consider the motion of the massive
particles in the two-dimensional potential Uðρ; zÞ, the
allowed motion regions of particles are restricted to
U ≤ E2. At a stationary point such that ∇iU ¼ 0 and
U ¼ E2, there exists a circular orbit of particles, whose
stability is determined from the positivity of the determi-
nant and trace of the Hesse matrix ð∇i∇jUÞði; j ¼ ρ; zÞ of
U, where ∇i is the covariant derivative associated with the
two-dimensional conformally flat metric

ds2 ¼ H
L
ðdρ2 þ dz2Þ: ð10Þ

Namely, if the conditions Trð∇i∇jUÞ>0 and
detð∇i∇jUÞ>0 hold at a stationary point ∇iU ¼ 0 and
U ¼ E2, the potential U has a local minimum at the point,
where particles move on a stable circular orbit. Because
∇i∇jU ¼ ∂i∂jU at the stationary points, the conditions
can be replaced with TrðHijÞ > 0 and detðHijÞ > 0

for ðHijÞ ≔ ð∂j∂iUÞ.
Throughout this paper, for simplicity we consider the

case of Lζ ¼ 0, where U can be written as

Uðρ; z;L2
φÞ ¼

κ

L2
þ L2

φ

HL3ρ2
: ð11Þ

The set of such stationary points of the potential U is
determined by

Uρ ¼ −2κ
Lρ

L3
−
ρðHρLþ 3HLρÞ þ 2HL

H2L4ρ3
L2
φ ¼ 0; ð12Þ

Uz ¼ −2κ
Lz

L3
−
HzLþ 3HLz

H2L4ρ2
L2
φ ¼ 0; ð13Þ

U ¼ E2: ð14Þ

From Eq. (12), the squared angular momentum L2
φ is

written as

L2
φ ¼ −κ

2ρ3H2LLρ

ðHρLþ 3HLρÞρþ 2HL
≕L2

φ0ðρ; zÞ; ð15Þ

and from this, Eqs. (13) and (14) are written, respectively,
as

Uzðρ; z;L2
φ0Þ ¼ −2κ

2HLz þHρLzρ −HzLρρ

L2ð2HLþHρLρþ 3HLρρÞ
; ð16Þ

E2 ¼Uðρ; z;L2
φ0Þ

¼ κ

L2
−

2κρHLρ

½ðHρLþ 3HLρÞρþ 2HL�L2
≕E2

0ðρ; zÞ: ð17Þ

We define the set γ0 of stationary points by

γ0 ¼ fðρ; zÞjUzðρ; z;L2
φ0Þ ¼ 0g; ð18Þ

which denotes certain curves on the two-dimensional
ðρ; zÞ-space. From the relation between E2

0 and L2
φ0,

E2
0 ¼

κ

L2

�
1þ L2

φ0

ρ2HL

�
; ð19Þ
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we find that E2
0 ≥ 0 is satisfied whenever L2

φ0 ≥ 0 is
satisfied. We define the two-dimensional region D on
the ðρ; zÞ-space by

D ¼ fðρ; zÞjh0 > 0; k0 > 0; L2
φ0 ≥ 0g; ð20Þ

where

h0ðρ; zÞ ≔ detðHijðρ; z;L2
φ0ÞÞ; ð21Þ

k0ðρ; zÞ ≔ TrðHijðρ; z;L2
φ0ÞÞ: ð22Þ

To summarize, showing the existence of stable circular
orbits can be reduced to finding the overlap of the curves γ0
and the region D on the two-dimensional ðρ; zÞ-space.
Let us note that our formalism cannot be applied to

massless particles (κ ¼ 0) because Eqs. (15)–(17) vanish.
However, within the framework of κ ¼ 1, we can obtain the
results of κ ¼ 0 by observing the limit in which E0 and L2

φ0

diverge, respectively, while keeping the ratio Lφ0=E0 finite.
This is why in the analysis below, we consider only the
motion of massive particles.

IV. STABLE CIRCULAR ORBITS

A. Single black hole

First, we show the existence of stable circular orbits for
the static charged black hole with a single spherical horizon
(n ¼ 1), which can be obtained by setting the parameters in
Eq. (1) as ðM1; N1; n1Þ ¼ ðM;N; 1Þ and r1 ¼ ð0; 0; 0Þ. The
set γ0 of the stationary points is restricted on z ¼ 0 because
Uzðρ; z;L2

φ0Þ ¼ 0 is equivalent with z ¼ 0. Therefore, let
us consider only the geodesic motion of particles on the
ρ-axis (z ¼ 0), where E2

0, L
2
φ0, k0 and h0 are reduced to,

respectively,

E2
0ðρ; 0Þ ¼

ρ3ð2ρþM þ NÞ
ðρþMÞ2f1ðρÞ

; ð23Þ

L2
φ0ðρ; 0Þ ¼

2MðρþMÞðρþ NÞ2
f1ðρÞ

; ð24Þ

k0ðρ; 0Þ ¼
2M½4ρ4 þ 2ðM þ 2NÞρ3 þ ðM2 −MN þ 2N2Þρ2 þ ðM þ NÞMNρþ 2M2N2�

ðρþMÞ4ðρþ NÞf1ðρÞ
; ð25Þ

h0ðρ; 0Þ ¼
8M2ρg1ðρÞ

ðρþMÞ6f1ðρÞ2
; ð26Þ

where

f1ðρÞ ≔ 2ρ2 − ðM − NÞρ − 2MN; ð27Þ

g1ðρÞ ≔ 2ρ3 − 2Mρ2 −MðM þ 9NÞρ − 3MNðM þ NÞ:
ð28Þ

The conditions E2
0ðρ;0Þ>0, L2

φ0ðρ; 0Þ > 0 and k0ðρ;0Þ>0
are equivalent with f1 > 0, which can be rewritten as the
range of ρ,

ρ > ρ1 ≔
M − N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 7MÞ2 − 48M2

p
4

: ð29Þ

On the other hand, the condition h0ðρ; 0Þ > 0 reduces to
g1 > 0, or equivalently,

ρ > ρ2ðM;NÞ; ð30Þ

where ρ2 is the unique positive root of the cubic equation
g1 ¼ 0. Furthermore, for any M > 0 and N > 0, the
following inequalities hold:

g1ðρ1Þ ¼ −4MNðM þ NÞ þ 1

2
ðN2 − 14MN − 3M2Þρ1

<
N2

2
ðρ1 − 8MÞ < 0; ð31Þ

where in the last inequality, we have used the upper bound
of ρ1,

ρ1 <
M − N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 7MÞ2

p
4

¼ 2M: ð32Þ

As a result, the conditions f1 > 0 and g1 > 0 are equivalent
to Eq. (30). This means that the region γ0 ∩ D is reduced to
a semi-infinite line ρ > ρ2 on z ¼ 0. Hence, it turns out
that ρ2 corresponds to the radius of the innermost stable
circular orbit.
As is shown in Fig. 1, ρ2 is a monotonically increasing

function of N=M. In particular, in the small limit of the
extra dimension size N=Mð¼ l=ð2MÞÞ → 0, ρ2 takes a
minimum as ρ2=M → ð1þ ffiffiffi

3
p Þ=2 ¼ 1.366…. In the large

limit of N=M → ∞, we have ρ2 → ∞, and stable circular
orbits vanish because the limiting solution is a five-dimen-
sional asymptotically flat black hole.

B. Two black holes

Next we consider the solution for n ¼ 2 in Eq. (1) with
two spherical horizons at z ¼ �z1 (z1 > 0) on the z-axis,
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which can be obtained by setting the parameters in Eq. (1)
as ðM1;N1;n1Þ¼ðM2;N2;n2Þ¼ðM;N;1Þ and r1 ¼ −r2 ¼
ð0; 0; z1Þ.
The set γ0 of the stationary points is determined by

Uzðρ; z;L2
φ0Þ ¼ 0 ⇔ ðr31 þ r32Þzþ ðr31 − r32Þz1 ¼ 0; ð33Þ

which describes curves in the ðρ; zÞ-plane. The roots
of Eq. (33) have two branches, fðρ; zÞjz ¼ 0g and
fðρ; zÞjðr31 þ r32Þzþ ðr31 − r32Þz1 ¼ 0; z ≠ 0g, which we
call “z ¼ 0 branch” and “z ≠ 0 branch”, respectively.
Next let us denote the graph corresponding to the

z ≠ 0 branch by a function ρ ¼ ρðzÞ. Equation (33) can
be written as

z
z1

¼ Fðρ; zÞ ≔ −
r31 − r32
r31 þ r32

; ð34Þ

and hence we find that the function ρ ¼ ρðzÞ exists
in the range 0 < jzj < z1. From Fð ffiffiffi

2
p

z1; 0Þ ¼ 0 and

Fð0;�z1Þ ¼ �1, the graph intersects with the ρ-axis at
ρ ¼ ffiffiffi

2
p

z1 and with the z-axis at z ¼ �z1. From the
derivative

dρ
dz

¼ −
z1Fz − 1

z1Fρ

8>><
>>:

<0 ð0 < z < z1Þ
¼ 0 ðz ¼ 0Þ
>0 ð−z1 < z < 0Þ

; ð35Þ

it turns out that ρðzÞ is monotonically decreasing for z > 0
and monotonically increasing for z < 0, which is illustrated
in Fig. 2.
We discuss whether the stationary orbit at a point on γ0

are circular or not. It is useful to clarify our definition of the
circular orbit in higher-dimensional spacetimes. If a particle
orbit projected onto a preferred time slice (e.g., a Killing
time slice) coincides with a closed orbit of an axial Killing
vector, we call the particle orbit the circular orbit. From our
assumption, we have Lζ ¼ gμνξ

μ
ζu

ν ¼ gζζð_ζ þ ωφ _φÞ ¼ 0.
A particle staying at a point on the z ¼ 0 branch satisfies
_ζ ¼ 0 because ωφ vanishes on z ¼ 0. Then, the particle
orbit projected onto the static time slice coincides with a
closed orbit of ∂=∂φ, and thus, the stationary orbit of such a
particle is circular. On the other hand, the stationary orbit of
a particle staying at a point ðρðz0Þ; z0Þ on the z ≠ 0 branch
is not always circular. It is circular if ωφðρðz0Þ; z0Þ is a
rational number, whereas it is noncircular if ωφðρðz0Þ; z0Þ is
an irrational number. Nevertheless, in what follows we call
the stationary orbits on the z ≠ 0 branch the circular orbits
because they are a dense set.
Figures 3–6 show the dependence of the existence

region of stable circular orbits on l for a large separation
under the parameter setting ðM; z1Þ ¼ ð1; 5Þ and l ¼ 0.05,
150, 200, 250, where the black solid curves and the blue
shaded regions denote γ0 and D, respectively. On the z ¼ 0
branch, the stable circular orbits extend from the point

0 1 2 3 4 5

–2

–1

0

1

2

z

FIG. 2. Curves denote the set γ0 of stationary points for z1 ¼ 1,
which has two branches, the z ¼ 0 branch and the z ≠ 0 branch.
Two black points at ðρ; zÞ ¼ ð0;�1Þ, which are endpoints of the
z ≠ 0 branch, correspond to two black holes.

0 10 20 30 40 50
–10

–5

0

5

10

z

FIG. 3. M ¼ 1, z1 ¼ 5, l ¼ 0.05.

0 5 10 15 20

2

4

6

8

10

12

N/M

2/
M

FIG. 1. The dependence of ρ2 on N=M.
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ðρ; zÞ ¼ ð ffiffiffi
2

p
z1; 0Þ to infinity ðρ; zÞ ¼ ð∞; 0Þ for small l,

whereas they are composed of two portions, a finite
portion

ffiffiffi
2

p
z1 < ρ < ρin and a semi-infinite portion ρout <

ρ < ∞ð0 <
ffiffiffi
2

p
z1 < ρin < ρoutÞ, for large l. Moreover, in

the limit l → ∞, only a finite portion exists because the
semi-infinite portion goes to infinity and vanishes, which is
similar to the case of the single horizon. On the z ≠ 0
branch, the stable circular orbits extend from the points
ðρ; zÞ ¼ ðρðzIÞ;�zIÞð0 < zI < z1Þ near the horizon to the
point ðρ; zÞ ¼ ð ffiffiffi

2
p

z1; 0Þ on the ρ-axis. Furthermore, it can
be seen from these figures that as l becomes small, ρðzIÞ
becomes smaller, namely, the radius of innermost stable
circular orbits becomes smaller.
Figures 7–10 show the typical shapes of the existence

region of stable circular orbits for a sufficiently small
separation z1 ≪ M in the choice of parameters ðM; z1Þ ¼
ð1; 0.1Þ and l ¼ 1, 4, 5, 10. The stable circular orbits exist
only on the z ¼ 0 branch but not on the z ≠ 0 branch,

0 10 20 30 40 50
–10

–5

0

5

10

z

FIG. 4. M ¼ 1, z1 ¼ 5, l ¼ 150.

0 10 20 30 40 50
-10

-5

0

5

10

z

FIG. 5. M ¼ 1, z1 ¼ 5, l ¼ 200.

0 10 20 30 40 50
-10

-5

0

5

10

z

FIG. 6. M ¼ 1, z1 ¼ 5, l ¼ 250.
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0

0.2

0.4

0 5 10

–0.4

–0.2

0

0.2

0.4

z

FIG. 7. M ¼ 1, z1 ¼ 0.1, l ¼ 1.
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-0.4

-0.2

0

0.2

0.4

0 5 10

-0.4

-0.2

0

0.2

0.4

z

FIG. 8. M ¼ 1, z1 ¼ 0.1, l ¼ 4.
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regardless of the size of the extra dimension. On the z ¼ 0
branch, the existence region of the stable circular orbits
has only a semi-infinite region ρout < ρ < ∞, where ρout
corresponds to the radius of an innermost stable circular
orbit. This implies that the inner portion seen in a large
separation case vanishes, while only the outer portion
exists. Furthermore, as is seen from these figures, as l
becomes large, ρout becomes large. In the limit of l → ∞,
the radius ρout goes to infinity, and hence, the stable circular
orbits vanish.
Finally, we explain the reason why there are stable

circular orbits at infinity. On the z ¼ 0 branch in the
asymptotic region, L2

φ0, h0, k0 behave as, respectively,

L2
φ0ðρ; 0Þ ≃ 2Mρ; ð36Þ

h0ðρ; 0Þ ≃
16M2

ρ6
; ð37Þ

k0ðρ; 0Þ ≃
8M
ρ3

: ð38Þ

The positivity of these quantities implies that on the z ¼ 0
branch in the asymptotic region, there always exists an
overlap region γ0 ∩ D, where we can always find stable
circular orbits. We can physically interpret that the space-
time effectively behaves as four-dimensional one in the
asymptotic region because of the compactification of an
extra dimension.

V. SUMMARY AND DISCUSSIONS

In this work, we have shown the existence of the stable
circular orbits for massive particles around the static
squashed Kaluza-Klein black holes with a single horizon
and two horizons in the five-dimensional Einstein-Maxwell
theory (five-dimensional minimal supergravity), reducing
the geodesic motion of particles to a two-dimensional
potential problem. For a single horizon, we have shown
analytically that there always exists an innermost stable
circular orbit, whose radius monotonically depends on the
size of the extra dimension. This result (for the charged,
extremal squashed Kaluza-Klein black hole in five-
dimensional Einstein-Maxwell theory) is the same as for
the neutral squashed Kaluza-Klein black hole in five-
dimensional Einstein theory in Ref. [18], which studied
the motion of neutral particles in the equatorial plane. In
addition, we have also shown that stable circular orbits exist
only in the equatorial plane z ¼ 0. In the large limit of the
extra dimension (to an asymptotically flat black hole), the
radius goes to infinity and the stable circular orbits vanish.
This is consistent with the result we have expected.
Moreover, for two horizons, the existence region of the
stable circular orbits depends on the size of an extra
dimension and the separation between two black holes.
For a sufficiently large separation, on two branches, the
z ¼ 0 branch and the z ≠ 0 branch, the stable circular orbits
exist regardless of the size of extra dimension, whereas for
a sufficiently small separation, only on the z ¼ 0 branch
they exist, and the radius of an innermost stable circular
orbit monotonically increases with the extra dimension
size. In particular, for a large separation, on both branches
stable circular orbits exist for the small extra dimension,
and as l becomes large, the set of the stable circular orbits
on the z ¼ 0 branch separates into two parts (an inner
portion and an outer portion), and the outer portion goes to
infinity as l → ∞.
It is interesting to compare this result of the stable

circular orbits in the Kaluza-Klein solution (with a single
horizon) with that of the caged black hole solution in
Ref. [19]. Similarly to the Kaluza-Klein black hole, for the
caged black hole, in the asymptotic region, stable circular
orbits always exist because of the small extra-dimensional
space, whereas in the vicinity of the black hole, they do not
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FIG. 9. M ¼ 1, z1 ¼ 0.1, l ¼ 5.
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exist because the effect of compactification is no longer
effective. However, when the size of an extra dimension
becomes smaller and smaller, the explicit difference
appears. As it becomes smaller, in the caged black hole
background, the radius of an innermost stable circular orbit
becomes larger, but in contrast, in the Kaluza-Klein black
hole background it becomes smaller.
Moreover, it is also interesting to compare the result

of the stable circular orbits in the Kaluza-Klein solution
(with two horizons) with that of the Majumdar-Papapetrou
solution (with two horizons) in Ref. [15]. In the Majumdar-
Papapetrou background, for a large separation, stable
circular orbits exist from the vicinity of the horizons to
infinity; for a median one, they appear only in a certain
finite region bounded by the innermost stable circular orbit
and the outermost stable circular orbit outside the horizons;
and for a small one, they do not appear at all. The most
significant difference appears in the asymptotic region. In
the asymptotic region of the Kaluza-Klein background,
stable circular orbits can exist for any parameters, whereas
in the asymptotic region of the Majumdar-Papapetrou
background, they can only exist for a large separation.
In this work, for simplicity we have considered only

the motion of particles with Lζ ¼ 0, which implies that
particles on the z ¼ 0 branch have no electric charges in a
dimensionally reduced four-dimensional spacetime. The
generalization of our analysis to particles with Lζ ≠ 0 may
be of physical interest because such particles have electric
charges from a four-dimensional point of view and hence
are subject to the Coulomb force from black holes. This
will significantly change the existence region of stable
circular orbits. This issue deserves further study.
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APPENDIX: STATIC MULTI–KALUZA-KLEIN
BLACK HOLES AS SUPERSYMMETRIC

SOLUTIONS

Let us begin with supersymmetric solutions in the five-
dimensional minimal ungauged supergravity [21], whose
bosonic Lagrangian consists of the Einstein-Maxwell
theory with a Chern-Simons term. In the theory, the metric
and the gauge potential of the supersymmetric solutions
take the form:

ds2 ¼ −f2ðdtþ ωÞ2 þ f−1ds2M; ðA1Þ

A ¼
ffiffiffi
3

p

2

�
fðdtþ ωÞ − K

H
ðdψ þ χÞ − ξ

�
; ðA2Þ

where ds2M is the Gibbons-Hawking metric,

ds2M ¼ H−1ðdψ þ χÞ2 þHðdx2 þ dy2 þ dz2Þ;

χ ¼
Xn
i¼1

hiω̃i; ðA3Þ

H ¼ h0 þ
Xn
i¼1

hi
ri
; ðA4Þ

where ri ≔ jr − rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ ðy − yiÞ2 þ ðz − ziÞ2

p
,

r ≔ ðx; y; zÞ and ri ≔ ðxi; yi; ziÞ. The vectors ∂=∂t and
∂=∂ψ are Killing vectors. The others are written as

f−1 ¼ H−1K2 þ L; ðA5Þ

ω ¼ ωψðdψ þ χÞ þ ω̂; ðA6Þ

ωψ ¼ H−2K3 þ 3

2
H−1KLþM; ðA7Þ

ω̂ ¼
Xn
i;j¼1

�
himj þ

3

2
kilj

�
ω̂ij −

Xn
i¼1

�
m0hi þ

3

2
l0ki

�
ω̃i;

ðA8Þ

ξ ¼ −
Xn
i¼1

kiω̃i; ðA9Þ

K ¼
Xn
i¼1

ki
ri
; L ¼ l0 þ

Xn
i¼1

li
ri
; M ¼ m0 þ

Xn
i¼1

mi

ri
;

ðA10Þ

and the one-forms ω̃i and ω̂ij on E3 are determined by
�dω̃i ¼ dð1=riÞ and �dω̃ij ¼ ð1=riÞdð1=rjÞ − ð1=rjÞ ×
dð1=riÞ. Under the choice of the parameters l0 ¼ 1,
ki ¼ m0 ¼ mi ¼ 0 ði ¼ 1;…; nÞ, the functions f−1, ω
and ξ can be simply written as

f−1 ¼ L; ðA11Þ

ω ¼ 0; ðA12Þ

ξ ¼ 0; ðA13Þ

and the metric is reduced to
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ds2 ¼ −L−2dt2 þL½H−1ðdψ þ χÞ2 þHðdx2 þ dy2 þ dz2Þ�
ðA14Þ

¼ −L−2dt2 þ L½ðH=h0Þ−1ðdψ=
ffiffiffiffiffi
h0

p
þ χ=

ffiffiffiffiffi
h0

p
Þ2

þ ðH=h0Þh0ðdx2 þ dy2 þ dz2Þ� ðA15Þ

¼ −H̄−2dt2 þ H̄½V̄ðdζ̄ þ ω̄Þ2
þ V̄−1ðdx̄2 þ dȳ2 þ dz̄2Þ�; ðA16Þ

where we have replaced as follows:

L ¼ 1þ
Xn
i¼1

li
ri
→ H̄ ¼ 1þ

Xn
i¼1

Mi

r̄i
; ðA17Þ

H=h0 ¼ 1þ
Xn
i¼1

hi=h0
ri

→ V̄−1 ¼ 1þ
Xn
i¼1

Ni

r̄i
; ðA18Þ

ψ=
ffiffiffiffiffi
h0

p
→ ζ; ðA19Þ

ffiffiffiffiffi
h0

p
xi → x̄i; ðA20Þ

ffiffiffiffiffi
h0

p
ri → r̄i ¼ jx − xij; ðA21Þ

ffiffiffiffiffi
h0

p
li → Mi; ðA22Þ

hi=
ffiffiffiffiffi
h0

p
→ Ni: ðA23Þ

This coincides with the solution in Ref. [20].
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