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We present a scalar-tensor theory of gravity on a torsion-free and metric compatible Lyra manifold. This
is obtained by generalizing the concept of physical reference frame by considering a scale function defined
over the manifold. The choice of a specific frame induces a local base, naturally nonholonomic, whose
structure constants give rise to extra terms in the expression of the connection coefficients and in the
expression for the covariant derivative. In the Lyra manifold, transformations between reference frames
involving both coordinates and scale change the transformation law of tensor fields, when compared to
those of the Riemann manifold. From a direct generalization of the Einstein-Hilbert minimal action coupled
with a matter term, it was possible to build a Lyra invariant action, which gives rise to the associated Lyra
scalar-tensor theory of gravity (LyST), with field equations for gμν and ϕ. These equations have a well-
defined Newtonian limit, from which it can be seen that both metric and scale play a role in the description
gravitational interaction. We present a spherically symmetric solution for the LyST gravity field equations.
It dependent on two parameters m and rL, whose physical meaning is carefully investigated. We highlight
the properties of LyST spherically symmetric line element and compare it to Schwarzchild solution.
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I. INTRODUCTION

In the formulation of general relativity, Einstein pre-
sented a geometric structure resulting from a set of adopted
hypotheses, among which are the adoption of Riemannian
manifold for modeling space-time, the shape of space-time
infinitesimal interval, the integrability of vector lengths and
the absence of torsion [1]. This fact opens avenues for
formulating alternative theories of gravity through chang-
ing these considerations [2–5]. In this scenario, Hermann
Weyl’s unified theory, published in 1918, gains promi-
nence, since it raises the possibility of using the freedom to
adopt these geometric hypotheses to formulate a structure
that accommodates both gravitation and electromagnetism
[6]. In Weyl geometry, the change in the length of vectors
under parallel transport is nonzero and depends on a new
vector quantity Aμ that plays the role of electromagnetic
potential. An important finding is that the presented
structure exhibits a new type of symmetry, called gauge
symmetry, in addition to invariance by diffeomorphisms.

In spite of its simplicity, mathematical beauty and great
potential for unifying fundamental theories based on simple
geometric concepts, Weyl’s theory presents problems of a
physical nature. In the first place, as pointed out by
Einstein, the hypothesis of nonintegrability of length makes
the frequency of spectral lines emitted by atoms depend on
their past history and, as such, would not remain constant
[7]. Moreover, the Lagrangian density invariance under
diffeomorphisms and gauge transformations gives rise to
fourth order field equations, which is not desirable in a
physical theory [8]. Notwithstanding, Weyl’s work is
widely recognized, since he was the pioneer in the approach
to gauge theories, a concept on which much of the work in
modern physics is based. One way to reduce the problems
inherent in Weyl’s theory is to impose that the Weyl
displacement vector is irrotational, that is, Aμ ¼ ∂μσ [9].
Theories with this characteristic, called WIST (Weyl
integrable spacetime) have attracted the attention of
researchers in recent years [10]. In this approach, the
unification between gravity and electromagnetism is set
aside, and WIST is seen as a scalar-tensor theory of gravity.
Another way of maintaining the vector length integra-

bility was proposed by Lyra in 1951 through the adoption
of a gauge function ϕ as an intrinsic part of the manifold’s
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geometric structure [11]. This approach naturally alters the
definition of physical frames, since these, in Lyra’s geom-
etry, depend on both coordinates and the gauge function.
Lyra proposes that the affine connection describing parallel
transport be defined by the sum of two sectors; one of them
depending on the metric, and the second one depending
exclusively on a quantity ϕ, such that the curvature tensor,
the torsion tensor and their respective contracted forms will
be functions, not only of the metric, but also of ϕ.
Although he described the geometric structure, Lyra did

not formulate a field theory where geometric objects play
the role of gravitational field. The first proposal to address
the matter was made by D. K. Sen, in 1957, in the
formulation of a static cosmological model where the scale
function appears as responsible for the redshift of the
galactic spectral lines [12]. For that, Sen proposed to obtain
the field equations through the variational principle:

δ

�Z
d4xϕ4 ffiffiffiffiffiffi

−g
p

R
�

¼ 0; ð1Þ

where both the integration element d4xϕ4 and the scalar
curvature R are invariant under Lyra’s reference frame
transformation. The equations presented as a result were:

Rμν −
1

2
gμνRþ 3

2
AμAν −

3

4
gμνAλAλ ¼ ϰTμν ð2Þ

where Aμ is a vector field that, according to the author, is a
direct consequence of the gauge function ϕ parallel trans-
port, although he does not make it clear how Aμ is related to
ϕ. In this equation, Rμν and R are the Ricci tensor and the
scalar curvature calculated with Christoffel symbols,
as in general relativity. In order to derive (2), Sen used
the gauge fixing condition ϕ ¼ 1, keeping the components
of Aμ free and varying the action with respect to the metric
components. Subsequently, Sen showed that geodesics on
Lyra manifold are not, in general, autoparallel curves [13].
However, as a specific case, it is possible to guarantee the
autoparallelism of the geodesics by imposing the condition
Aμ ¼ ϕ−1∂μ lnϕ2. After the measuring of the cosmic back-
ground radiation and confirmation of the big bang model
[14], Eq. (2) waswidely used for modeling the cosmological
dynamics [15–20].
Later, in 1971, Sen and Dunn took a step further in an

attempt to formalize a gravity theory in Lyra manifold [21].
To this end, the authors, recognized the simultaneous
influence of gμν and Aμ on gravitational phenomena and
performed the variational procedure without fixing the
gauge. Instead, they varied the action with respect to the
metric components and the components of Aμ. The field
equation from metric variations recovers (2) in the limit
ϕ → 1. The second set of equations, given by

3Aμ þ
3

2
ϕ−1∂μ lnϕ2 ¼ 0; ð3Þ

directly relates Aμ to ϕ. This equation is problematic. First,
it is explicitly incompatible with the condition of geodesic
autoparallelism, and, as a consequence, metric geodesics
and affine geodesics do not coincide in the gravity theory
formulated by Sen and Dunn. Secondly, the gauge-fixing
condition used in the derivation of (2), namely ϕ ¼ 1, leads
to the vanishing of Aμ. In other words, by imposing the
gauge condition in the Sen and Dunn analogue of Einstein’s
equations, one recovers (2). However, the application of the
same condition on (3) causes Aμ ¼ 0. So ϕ ¼ 1 does not
act as a gauge-fixing condition, but most properly as a
general relativity limit condition for Sen and Dunn gravity.
In fact, disregarding the gauge-fixing condition in this
theory makes it possible to work with coupled differential
equations for the metric coefficients and the ϕ function. In
this case, Sen and Dunn set aside Eq. (2) and combined the
two sets of equations in a single expression:

Rμν −
1

2
gμνR −

3

2ϕ2
ϕ;μϕ;ν þ

3gμν
4ϕ2

ϕ;λϕ
;λ ¼ ϰϕ2Tμν: ð4Þ

This is an interesting expression, since it can be interpreted
as a specific case of Brans-Dicke’s theory [22]. The authors
proposed a spherically symmetric solution for (4) written in
terms of power series [21]. The following year, Halford
found a spherically symmetric analytical solution in iso-
tropic coordinates [23].
In 1975, Jeavons, McIntosh and Sen pointed out the

heuristic importance of Eq. (4) but showed that it cannot be
obtained from the principle of least action [24], unlike what
is proposed in [21]. This equation was obtained by neglect-
ing the contribution of the terms

R
d4xϕ2δð ffiffiffiffiffiffi−gp

RÞ andR
d4xϕ3δðð ffiffiffiffiffiffi−gp

AμgμνÞ;νÞ. The field equation that respects
the aforementioned principle, arises from the variation of the
action with respect to the components of the metric tensor,
while the condition of self-parallelism of geodesics Aμ ¼
ϕ−1∂μ lnϕ2 arises naturally from the variation of the action
with respect to Aμ.
Through the knowledge on theories of gravity in the Lyra

manifold, one can notice that the presence of a scale in the
vector transformation law naturally induces extra terms to
Christoffel symbols. However, the introduction of a vector
field Aμ as an entity uncorrelated to ϕ describing these
terms does not seem a strictly necessary procedure, since
the field equations themselves establish a direct relation
between Aμ and ϕ, both in the work of Sen and Dunn of
1971 and in the theory of Jeavons, McIntosh, and Sen of
1975. Thus, this work proposes a new interpretation on the
description of the Lyra manifold, assuming ϕ, and the
metric tensor as the fundamental fields of a scalar-tensor
theory of gravity, here called LyST, a shorthand notation for
Lyra scalar-tensor theory of gravity. In order to do so, in
Sec. II we build a manifold where the scale function ϕ and
the coordinates define a Lyra reference. The choice of a
specific reference frame induces a local basis, naturally
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nonholonomic, where the structure constants of the Lie
algebra depend exclusively on ϕ. This geometric structure
leads naturally to Lyra’s vector transformation law and
induces extra terms in the related affine connection.
Once this framework is established, the Lyra manifold is
adopted as a space-time model, in Sec. III, where we
impose suitable geometric conditions and calculate curva-
ture properties. In the Sec. IV, a variational principle is
proposed through which field equations can be obtained for
the metric coefficients and the scale function. Such equa-
tions have an appropriate Newtonian limit, as shown in
Sec. IVA. A symmetrically symmetrical solution for LyST
gravity is presented in Sec. V. The vacuum solution is built
up in Sec. VA. It is shown in Sec. V B that it reduces to the
ordinary Schwarzschild line element in the appropriate
limit. The long-distance regime of LyST spherically sym-
metric solution accommodates the tantalizing possibility of
reproducing a cosmological constantlike behavior, either in
the ways of a de Sitter solution or similar to a anti–de Sitter
space-time. We identify two different classes of LyST
spherically symmetric metrics in Sec. V C. Section VD
is dedicate to study the singularities of this metric and to
discuss its causal structure. Section VI contains our final
comments and future perspectives.

II. LYRA GEOMETRY

A Lyra differential manifold M is a second-countable
Hausdorff topological space of dimension n. A reference
frame in this geometry is represented by the triad
ðUi; χi;ΦiÞ, where Ui ⊂ M is a open subset of M,
fχi∶ Ui → Rnjn ∈ Zþg is a map parametrizing the
coordinates and Φ∶ Ui → R� a scale map. Thus, consid-
ering P ∈ M, then the coordinates of P are defined
as the map x ≔ χ ∘ P∶ M → Rn and the scale function
as ϕ ≔ Φ ∘ χ−1∶ Rn → R. Therefore, Φ ∘ P ¼ Φ ∘ χ−1 ∘
χ ∘ P can be written as ϕðxPÞ ≔ ϕ ∘ xP.
The reference frames fðUi; χi;ΦiÞg on M must

respect [25]:
(i) ∪i∈I Ui ¼ M, where i is an index that covers a total

account I of frames;
(ii) the maps χi ∘ χ−1j and χj ∘ χ−1i must be C∞ functions

in their domains whenever Ui ∩ Uj ≠ ∅1;
(iii) the maps Φi ∘ χi must be C∞ functions in Ui for

each i ∈ I; and
(iv) the family of reference frames is maximal with

respect to (i), (ii), and (iii).
Consider a curve αðtÞ over M through the differential

map α∶ R → M, where αð0Þ ≔ P ∈ M, and a C∞ func-
tion f∶ M → R. It is possible to define a tangent vector vðαÞ
in P, as a map vðαÞ∶ C∞ → R expressed by:

vðαÞf ¼ dðf ∘ αÞ
dt

����
P
: ð5Þ

By considering an specific reference frame ðU; χ;ΦÞ,
Eq. (5) can be represented by vðαÞf ¼ xμ0ð0Þ∂μf.
In Lyra’s geometry, the coordinates xμ and scale function

ϕ related to the choice of a specific reference frame can be
used to define a natural basis as:

eμ ¼
1

ϕðxÞ ∂μ: ð6Þ

Given the basis, any tangent vector vðαÞ can be represented
as vðαÞ ¼ v μ

ðαÞeμ, where v μ
ðαÞ, given by:

v μ
ðαÞ ≔ ϕðxÞxμ0ð0Þ ð7Þ

are the components of vðαÞ. The set fv1;…; vKg of all tangent
vectors in P forms a tangent vector space TPM¼ ∪k∈K vk.
A direct consequence of the expression (6) is the

noncommutativity of the basis elements induced by the
choice of a reference frame. Indeed, the Lie algebra can be
characterized by:

½eμ; eν� ¼ ϕ−2ðδαμ∂νϕ − δαν∂μϕÞeα: ð8Þ
The fact that the structure constants are non-null
leads to important consequences to the geometric properties
of the manifold. It is convenient to define the nota-
tion γαμν ¼ ϕ−2ðδαμ∂νϕ − δαν∂μϕÞ.
Let ðU; χ;ΦÞ e ðŪ; χ̄; Φ̄Þ two reference frames, such that

U ∩ Ū ≠ ∅ and P ∈ U ∩ Ū. The relation between eμ e ēμ,
according to (6), is

ēμ ¼
ϕðxÞ
ϕ̄ðx̄Þ

∂xν
∂x̄μ eν: ð9Þ

The components of the tangent vector vðαÞ ∈ TPM in
reference frame U relate to its components in reference Ū
via [11]:

v̄ μ
ðαÞ ¼

ϕ̄ðx̄Þ
ϕðxÞ

∂x̄μ
∂xν v

ν
ðαÞ: ð10Þ

A covectorω over the point P ∈ M is defined as a linear
map ω∶ TPM → R, which takes tangent vectors as argu-
ments. The set of all covectors in P form a vector space,
called a cotangent space T�

PM. A covector ω can be
represented in a specific basis, denoted by fθνg, as
ω ¼ ωνθν. Applying this in a given vector v ∈ TPM,
the result is given by:

ωP ∘ vP ¼ ðωνθνÞ ∘ ðvμeμÞ ¼ vμωμ ð11Þ
where ωμ ≔ ω ∘ eμ are the components of the covector ω
and it was assumed the orthonormality condition θν ∘ eμ ¼
δνμ to the basis.

1The set C∞ consists of all differentiable functions f∶ M →
U in P.
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Let a curve αðtÞ in M given by the differentiable
map α∶ R → M, with αð0Þ ≔ P ∈ M and a smooth
function f∶ M → R. Thus, one can check that the map
f ∘ α∶ R → R, where f ∘ α ¼ f ∘ χ−1 ∘ ðχ ∘ αÞ ¼ f̃ðxðtÞÞ
is an ordinary function of t that describes the behavior
of f along the curve. Taking the derivative of this
function in P, cf. (5), it turns out that the value of f at
t ¼ 0 depends only on the tangent vector vðαÞ to the α
curve. That is, the operation dðf ∘ αÞ=dtjP ¼ vðαÞf defines
a vector df∶ TPM → R. By choosing a reference frame,
df is represented by:

df ∘ v ¼ vλϕ−1∂λf̃; ð12Þ

whence, according to the Eq. (11), ϕ−1∂μf are the
components of df.
As mentioned above, a basis θμ to cotangent space T�

PM
is obtained by requiring the orthonormality condition. This
is done by defining n smooth functions xμ∶ M → R,
parametrized in a specific reference frame which receive
a point in M as argument and return the μth coordinate.
Let us take f̃ as xμ and v as eν in Eq. (12). It follows
that dxμ ∘ eν ¼ δλμϕ

−1∂λxν ¼ δνμϕ
−1. Consequently, an

adequate basis for T�
PM will be

θμ ¼ ϕdxμ: ð13Þ

So, a general covectorω can be written asω ¼ ωμϕdxμ in a
local frame. Under a change of frames, its components are
transformed as:

ω̄μ ¼
ϕðxÞ
ϕ̄ðx̄Þ

∂xν
∂x̄μ ων: ð14Þ

The tensors W of type ðp; qÞ are defined as applications
receiving p tangent covectors and q tangent vectors,
mapping them to a real number:

W∶ T�
PM × � � � × T�

PM|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p factors

× TPM × � � � × TPM|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q factors

→ R:

A tensor like this can be expanded on a basis

fθμ1 ⊗ � � � ⊗ θμp ⊗ eν1 ⊗ � � � ⊗ eνqg

and its components transform as:

W̄
α1���αq
β1���βp ¼

�
ϕ̄ðx̄Þ
ϕðxÞ

�q−p ∂x̄α1
∂xμ1 � � �

∂x̄αq
∂xμq

×
∂xν1
∂x̄β1 � � �

∂xνp
∂x̄βp W

μ1���μq
ν1���νp ð15Þ

under changes of Lyra frames.

A. The metric

The differentiable structure overM presented so far is not
capable of defining scalar products between tangent vectors,
a fact that makes it impossible to determine lengths and
angles. Since it is desired to use Lyra’s geometry as a space-
timemodel, it is necessary to consider an additional structure
onM so that the inner product of vectors fu; vg ∈ TPM is
defined. This can be accomplished by equipping the Lyra
manifold with a (0,2) metric tensor g∶ TPM × TPM → R,
characterized as a bilinear, symmetric, and nondegenerate
map. By introducing a reference frame, its components gμν
will be obtained through the relation gμν ¼ gðeμ; eνÞ, and
the dot product between the two above vectors will be
gðv;uÞ ¼ gμνuμvν. The components gμν form a nonsingular
matrix, whose inverse components gμν transform like the
components of a (2,0)—tensor.
The definition of an inner product naturally leads

to a canonical association between T�
PM and TPM.

Take a vector u ∈ TPM. A covector TPM → R is
defined through gðu; ·Þ. Choose a frame, such that
u ¼ uμeμ. Then, the covector components uν, can be
obtained by the referred application to the base vectors
of TPM: uν ¼ gðu; eνÞ ¼ gμνuν.
As in Riemannian geometry, the matrix of components

gμν has p positive eigenvalues, q negative eigenvalues and r
null eigenvalues, such that pþ qþ r ¼ n, where
n ¼ dimM. The proportion of each of these quantities
determines the signature ðp; q; rÞ for the metric that does
not depend on the choice of frames and is constant
throughout M, provided that the metric is nondegenerate
and smooth at all points of the manifold. In the case of
(3, 0, 0) and (0, 3, 0) the signature is said to be Riemannian
whereas (1, 3, 0) or (3, 1, 0) are said to be Lorentzian
signatures [26].
The introduction of a metric allows the definition of

essential physical elements in the construction of a gravity
theory. The first one is the concept of length. Let be a curve
λ∶ R → M, with tangent vectors v ¼ ϕðxÞxμ0eμ. The curve
segment s connecting a and b is defined as:

s ¼
Z

b

a
dtgðv; vÞ1=2 ¼

Z
b

a
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2gμν

dxμ

dt
dxν

dt

r
; ð16Þ

where ½a; b� ⊂ R. A metric geodesic is defined as the curve
through points a and b whose distance s is stationary under
fixed infinitesimal variations at the extremes. By perform-
ing the variations in (16) imposing δs ¼ 0, we obtain the
geodesic equation in Lyra manifold:

d2xμ

dt2
þ
�

μ

αβ

�
dxα

dt
dxβ

dt

þ 1

ϕ
ð∂αϕδ

μ
β þ ∂βϕδ

μ
α − ∂νϕgμνgαβÞ

dxα

dt
dxβ

dt
¼ 0 ð17Þ

where f μ
αβg are the Christoffel symbols.
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In Lyra geometry, the presence of the scale influences the
volume invariant element. Starting from the transformation
law for the metric tensor components—which is a (0, 2)
tensor—it can be shown that the determinant of the metric
transforms under a change of frames as:

g̃ ¼ ϕ2n

ϕ̄2n det

�∂xα
∂x̄μ

�
2

g;

where g ≔ det gμν and n is the dimension of the space.
Thus, the volume integration element will be dnxϕn

ffiffiffiffiffijgjp
and the volume of a given region R ⊂ M will be

volðRÞ ¼
Z
χðRÞ

dnxϕn
ffiffiffiffiffi
jgj

p
:

B. Linear connection

A linear connection over M is defined as a bilinear map
∇∶ TPM × TPM → TPM relating two tangent vectors u
e v to a ð1; 1Þ—tensor ∇uv [27]. Let u; v;w ∈ TPM and a
smooth function f ∈ C∞. The connection respects the
following properties:

(i) ∇uðv þ wÞ ¼ ∇uv þ∇uw;
(ii) ∇uþvðwÞ ¼ ∇uw þ∇vw;
(iii) ∇fuðvÞ ¼ f∇uv; and
(iv) ∇uðfvÞ ¼ ðufÞv þ f∇uv.
Let σ∶ R → M and λ∶ R → M be two smooth curves

over M which intersect at the point P¼ σð0Þ¼ λð0Þ∈M.
Through Eq. (5), one can define the tangent vectors vðσÞ

to σ and uðλÞ to λ, where f ∈ C∞∶ M → R. Taking a
specific frame ðU; χ;ϕÞ, such that P ∈ U, the vectors
can be represented as vðσÞ ¼ v μ

ðσÞeμ and uðλÞ ¼ u μ
ðλÞeμ,

where their respective components are given by v μ
ðσÞ ¼

ϕðxÞðdxμ=dtÞð0Þ and u μ
ðλÞ ¼ ϕðxÞðdxμ=dtÞð0Þ. The oper-

ation ∇uðλÞvðσÞ represents the change in the vector field vðσÞ
in the direction of uðλÞ. Therefore, the related connection
naturally brings with it the concept of parallel vector fields
along a curve. If ∇uðλÞvðσÞ ¼ 0, it is said that vðσÞ is
paralleled in the direction of λ.
In this frame, the tensor ∇uðλÞvðσÞ will be

∇uðλÞvðσÞ ¼ u ν
ðλÞð∇eνv

μ
ðσÞÞeμ þ u ν

ðλÞv
μ
ðσÞΓ

α
μνeα;

where the connection coefficients were defined as:

Γα
μνeα ≔ ∇eνeμ: ð18Þ

Using expression (6), one finds:

∇uðλÞvðσÞ ¼ u ν
ðλÞðϕ−1∂νvαðσÞ þ Γα

μνv
μ
ðσÞÞeα: ð19Þ

Therefore, the change in the components of vðσÞ under
parallel transport comes as a result of the differential
equation:

ϕ−1uνðλÞ∂νvαðσÞ þ Γα
μνv

μ
ðσÞu

ν
ðλÞ ¼ 0: ð20Þ

1. Covariant derivative

Consider the curves λðνÞ generating the base vectors eν in
a given frame. The covariant derivative of a vector v in the
direction of eν will be written as:

∇eνv ¼ ðϕ−1∂νvα þ Γα
μνvμÞeα: ð21Þ

Its components

∇νvα ¼
1

ϕ
∂νvα þ Γα

μνvμ; ð22Þ

differ from the Riemannian case, by the presence of the
factor ϕ−1 in the ordinary derivative.
The covariant derivative of a covector ω will be written

as ∇eμω ¼ ∇μωαθα. By using the fact that the covariant
derivative of a scalar f is ∇uf ¼ uf and that the appli-
cation of a ω vector to a tangent vector returns a scalar, we
find that:

∇μων ¼
1

ϕ
∂μων − Γλ

νμωλ: ð23Þ

The concept of covariant derivative can be extended to a
general ðp; qÞ—tensor T. In this case, its covariant deriva-
tive will be referred to by ∇eαT and can be expanded as:

∇eαT¼∇αT
ν1���νq
μ1���μpðeα ⊗ θμ1 ⊗ � � �⊗ θμp ⊗ eν1 ⊗ � � �⊗ eνqÞ

where the components ∇αT
ν1���νq
μ1���μp are given by:

∇αT
ν1���νq
μ1���μp ¼

1

ϕ
∂αT

ν1���νq
μ1���μp þ Γν1

λαT
λ���νq
μ1���μp

þ � � � þ Γνq
λαT

ν1���λ
μ1���μp − Γλ

μ1αT
ν1���νq
λ���μp

− � � � − Γλ
μpαT

ν1���νq
μ1���λ : ð24Þ

2. Autoparallel Curves

Let σ∶ R → M be a smooth curve overM, with tangent
vector vðσÞ ¼ vμðσÞeμ. This will be called an autoparallel

curve if vðσÞ is parallel transported in relation to its own
generating curve σ; that is, ∇vðσÞvðσÞ ¼ 0. With the Eq. (20)
and the expression for the components of the tangent vector
in terms of the coordinates vμðσÞ ¼ ϕðxÞðdxμ=dtÞ, we find

the differential equation for a autoparallel curve is

d2xν

dt2
þ ðϕΓν

ρμ þ∇μϕδ
ν
ρÞ
dxμ

dt
dxρ

dt
¼ 0; ð25Þ

where ∇μϕ ≔ ϕ−1∂μϕ.
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3. Curvature and torsion

The curvature tensor is defined by the linear map
R∶ TPM × TPM × TPM → TPM through [25]:

Rðu; vÞw ¼ ∇u∇vw −∇v∇uw −∇½v;u�w: ð26Þ

It is clear from this equation the antisymmetric property
Rðu; vÞw ¼ −Rðv;uÞw. The curvature components can be
obtained through the expression:

Rλ
μνα ¼

1

ϕ2
∂μðϕΓλ

ανÞ−
1

ϕ2
∂νðϕΓλ

αμÞþΓρ
ανΓλ

ρμ−Γρ
αμΓλ

ρν

ð27Þ

The torsion tensor is defined as a map:

τ∶ TPM × TPM → TPM

expressed as [25]:

τðu; vÞ ¼ ∇uv −∇vu − ½u; v�; ð28Þ

from where it can be directly checked that τðu; vÞ ¼
−τðv;uÞ. The torsion tensor components in a local
frame ταμν are obtained applying the expression (28) to the
vector basis:

ταμνeα ¼ τðeμ; eνÞ ¼ ðΓα
νμ − Γα

μν − γαμνÞeα;

where γαμν are the structure constants of the Lie algebra of
local basis vectors, given in (8). Furthermore, the compo-
nents of the torsion tensor will be:

ταμν ¼ Γα
νμ − Γα

μν þ ϕ−1ð∇μϕδ
α
ν −∇νϕδ

α
μÞ: ð29Þ

Starting from Eqs. (28) and (26), considering S as a
cyclic sum symbol, it can be shown that curvature and
torsion respect [25]:

(i) the first Bianchi identity:

S½Rðu;vÞw� ¼S½τðτðu;vÞ;wÞ�þð∇uτÞðv;wÞ;
ð30Þ

(ii) the second Bianchi identity:

S½ð∇uRÞðv;wÞ� þRðτðu; vÞ;wÞ ¼ 0: ð31Þ

III. ASSUMPTIONS ON LYRA SPACETIME

The geometric structure of the Lyra manifold
ðM;g;ϕ;∇Þ can be used as a model for relativistic space-
time. A four-dimensional manifold is adopted, equipped
with a Lorentzian metric of signature ðþ;−;−;−Þ. A line
element in this spacetime model will be

ds2 ¼ gμνϕdxμϕdxν;

where ds2 is invariant by general coordinate and scale
transformations.
Although the geometric structure of Lyra manifold is

very rich in terms of geometric conceptualization, it
depends on many degrees of freedom to describe the
properties of space-time. Looking for an analogue in the
case of pseudo-Riemannian manifolds, it can be concluded
that, although the theories of Einstein-Cartan and Weyl, for
example, present more daring proposals for geometrization
of physics, it is the theory of general relativity that best
provides a description, according to scientific method, of
the gravitational effects on the scales of the solar system.
The spacetime of general relativity is obtained from the
hypotheses of metric compatibility and torsion-free mani-
fold, which considerably simplifies the geometric structure
and field equations.
Likewise, it is desirable to impose a few hypotheses to

restrict the degrees of freedom of Lyra manifold. We would
like that Lyra gravitodynamics steams from Lyra manifold
in the same way general relativity is the theory of gravity
coming from the geometry in a pseudo-Riemannian
manifold. That is, we require Lyra spacetime to be a metric-
compatible

∇ugðv;wÞ ¼ 0 ð32Þ
and torsion-free spacetime:

∇uv −∇vu ¼ ½u; v�: ð33Þ

As a consequence, the connection will be dependent only
on the metric and the scale function. One verify this claim
by taking into account the possible permutations of (32)
and building a tensor W½∇ugðv;wÞ� defined by:

W½∇ugðv;wÞ� ≔ ∇ugðv;wÞ þ∇vgðu;wÞ −∇wgðu; vÞ;
which is symmetric with respect to u and v. Since the
connection respects Leibniz’s rule, the covariant directional
derivative applied to the metric can be rewritten as [25]:

∇ugðv;wÞ ¼ u½gðv;wÞ� − gð∇uv;wÞ − gðv;∇uwÞ:
This relation together with the metric-compatibility and
torsion-free conditions, defined on Eqs. (32) and (33), cast
W½∇ugðv;wÞ� in the form:

2gð∇vu;wÞ ¼ u½gðv;wÞ� þ v½gðw;uÞ�
− w½gðu; vÞ� þ gð½v;u�;wÞ
þ gð½w;u�; vÞ þ gð½w; v�;uÞ:

The components of this equation can be obtained by
taking a frame where u ¼ eμ, v ¼ eν and w ¼ eλ, along
with Eqs. (8) and (18):
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Γα
μν ¼

1

ϕ

�
α

μν

�
þ ϕ−1ð∇μϕδ

α
ν − gμν∇αϕÞ: ð34Þ

Another important property of the connection coeffi-
cients is the following. By replacing them (34) in the
Eq. (25), the autoparallel curve equation is reduced to:

d2xα

dt2
þ
�

α

μν

�
dxμ

dt
dxν

dt

þ 1

ϕ
ð∂μϕδ

α
ν þ ∂νϕδ

α
μ − gαλgμν∂λϕÞ

dxμ

dt
dxν

dt
¼ 0 ð35Þ

which is exactly the Eq. (17) of the geodesic curve.
Consequently, in a metric-compatible and torsion-free
Lyra manifold, metric and affine geodesics are equivalent.
Just like it happens for the connection coefficients,

the curvature tensor components (27) in a specific frame
depend on both the metric and the scale function. Plugging
Eq. (34) into Eq. (27), one finds:

Rα
μνβ ¼

1

ϕ2
Rα

μνβ −
2

ϕ
δα½ν∇β�∇μϕþ 2

ϕ
gμ½ν∇β�∇αϕ

þ 2

ϕ2
δα½νgβ�μ∇λϕ∇λϕ; ð36Þ

where ∇μϕ ≔ ϕ−1∂μϕ and Rα
μνβ is the curvature tensor

evaluated with the Christoffel symbols of general relativity
[28]. Lyra’s analogue for the Ricci tensor is obtained by
contracting the indexes α e β of (36):

Rμν ¼
1

ϕ2
Rμν þ

2

ϕ
∇ν∇μϕþ 1

ϕ
gμν∇α∇αϕ

−
3

ϕ2
gμν∇λϕ∇λϕ: ð37Þ

The curvature scalar for Lyra manifold is the trace of Rμν:

R ¼ 1

ϕ2
Rþ 6

ϕ
∇λ∇λϕ −

12

ϕ2
∇λϕ∇λϕ: ð38Þ

Lyra’s curvature tensor has the following antisymmetry
properties:

Rμναβ ¼ R½μν�αβ and Rμναβ ¼ Rμν½αβ�: ð39Þ

Moreover, it is symmetrical under the exchange between
the first two indexes and the last two indexes:

Rμναβ ¼ Rαβμν: ð40Þ

Once the torsion-free condition is assumed, the Bianchi
identities (30) and (31) projected in a specific frame are
expressed as:

Rα
μνβ þ Rα

νβμ þ Rα
βμν ¼ 0 ð41Þ

and

∇λRα
μνβ þ∇νRα

μβλ þ∇βRα
μλν ¼ 0: ð42Þ

From the contracted form for of Eq. (42), one finds that

∇μGμν ¼ 0 ð43Þ

where the Einstein’s tensor analogue for Lyra manifold Gμν

was defined as:

Gμν ≔ Rμν −
1

2
gμνR; ð44Þ

and, through Eqs. (37) and (38), it can be rewritten as:

Gμν ¼
1

ϕ2
Gμν þ

2

ϕ
∇ν∇μϕ −

2

ϕ
gμν∇λ∇λϕ

þ 3

ϕ2
gμν∇λϕ∇λϕ ð45Þ

where Gμν ≔ Rμν − 1
2
gμνR is the Einstein tensor in general

relativity.

IV. LYRA SCALAR-TENSOR THEORY OF
GRAVITY

The framework presented so far allows the construction
of a scalar-tensor theory of gravity where the basic fields
are the reference frame scalar function ϕ and the manifold
metric gμν. The action from which the field equations
emerge via the variational principle will be taken as direct
generalization of Einstein-Hilbert action. We take as
ingredients the Lyra’s invariant integration element for a
4-dimensional space-time of Lorentzian metric d4xϕ4 ffiffiffiffiffiffi−gp

,
the scalar curvature (38) plus a Lagrangian density
Lm ¼ Lmðψ i;∇ψ i;ϕ;∇ϕÞ, admittedly a Lyra scalar, which
describes the contribution of matter terms. Here, it is
assumed that Lm also depends on the scale function, in
addition to the ψ i matter fields and their first derivatives.
Thus, the action will be

S ¼
Z

d4xϕ4 ffiffiffiffiffiffi
−g

p 	
Lmðψ i;∇ψ i;ϕ;∇ϕÞ

−
1

16πG

�
1

ϕ2
Rþ 6

ϕ
∇λ∇λϕ −

12

ϕ2
∇λϕ∇λϕ

�

: ð46Þ

The variation of (46) with respect to the components of the
metric tensor and the scale function leads respectively to
the equations:
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Rμν −
1

2
gμνRþ 2ϕ∇ðμ∇νÞϕ − 2ϕgμν∇λ∇λϕ

þ 3gμν∇λϕ∇λϕ ¼ −8πGϕ2Tμν ð47Þ

and

6ϕ∇μ∇μϕ − 12∇αϕ∇αϕþR ¼ −8πGϕ2M ð48Þ

where the stress-energy tensor Tμν was defined as:

Tμν ¼ −2
δLm

δgμν
þ gμνLm ð49Þ

and the Lyra scalar M is

M ¼ −4Lm − ϕ

�∂Lm

∂ϕ −∇α
∂Lm

∂ð∇αϕÞ
�
: ð50Þ

In addition, variations with respect to the matter fields ψ i
give rise to the covariant form of the Euler-Lagrange
equations:

∂Lm

∂ψ i
−∇μ

∂Lm

∂ð∇μψ iÞ
¼ 0:

Through (45), the Eq. (47), which is the Lyra analogue
of Einstein’s equations, can be simply rewritten as
Gμν ¼ 8πGTμν. Therefore, LyST gravity can be interpreted
as the direct generalization of the theory of general
relativity to Lyra space-time, where the quantities Gμν

and Tμν are tensors, not only by general transformations of
coordinates, but also by scale transformations.

A. Newtonian limit

The field equations for the LyST theory of gravity
must be consistent with the gravitational phenomenology
accessible to experiments and observations. As is known,
the gravitational effects on celestial mechanics are, with the
exception of Mercury’s perihelion precession and light
deflection, perfectly described by Newtonian gravity at the
level of the solar system within observational uncertainties.
A successful gravitational theory must, therefore, recover
Newton’s equations on a given scale of validity, coined here
as Newtonian limit.
Under the phenomenological aspect, three basic require-

ments define the Newtonian limit to a gravity theory [29].
The first is to keep the focus on nonrelativistic movements,
in such a way that the spatial components of the 4-velocity
of the test particles can be neglected, within the required
approximation order. The second condition requires the
gravitational field to be static, which means that the time
derivatives of metric that appear in the Christoffel symbol,
as well as the time derivative of ϕ, can be neglected. Thus,
the equation for geodesics (35) is reduced to:

d2xμ

dt2
¼ 1

2
gαμ∂αg00 þ gμν

1

ϕ
∂νϕg00: ð51Þ

Finally, the third requirement establishes that the gravita-
tional field is weak and, as a consequence, must be
interpreted as a perturbation to Minkowski’s space-time.
In LyST, this limit is obtained based on the simultaneous
assumption of two conditions:

gμν ≈ ημν þ hμν and ϕ ≈ 1þ δϕðxÞ; ð52Þ

where hμν ≪ ημν and δϕðxÞ ≪ 1. The contravariant com-
ponents of hαβ are obtained by imposing the reciprocal
relation between covariant and contravariant metric coef-
ficients. Considering Eqs. (52) in (51), keeping only the
first order terms and focusing on the spatial components,
one finds ẍ ¼ −∇U, where U is the Newtonian potential
that depends on both the metric and the δϕ field:

U≡ 1

2
h00 þ δϕ: ð53Þ

Once this important finding has been obtained, attention
should be turned to the field equations. By evaluating the
trace of Eq. (47), one can cast it into the form:

Rμν þ 2ϕ∇μ∇νϕþ gμνϕ∇λ∇λϕ − 3gμν∇λϕ∇λϕ

¼ 8πGϕ2

�
Tμν −

1

2
gμνT

�
: ð54Þ

In the case of low velocities and weak fields, the gravi-
tational field is dominated by the time components of (54).
The stress-energy momentum tensor, in this case, is
dominated by the energy density T ≈ T00 ¼ ρ, such that
the sector 00 in (54) is reduced to:

R00 −∇2ðδϕÞ ¼ −4πGρ: ð55Þ

The expression for R00 can be obtained using the equation
for the Ricci tensor in terms of Christoffel’s symbols and
applying the conditions that define the Newtonian limit:

R00 ≈ −
1

2
∇2h00: ð56Þ

Replacing (56) in (55), one obtains:

∇2

�
1

2
h00 þ δϕ

�
¼ 4πGρ; ð57Þ

which shows that the Newtonian potential obtained in (53)
respects the Poisson equation.
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V. VACUUM SPHERICALLY SYMMETRIC
SOLUTIONS

A first case of interest is the one in which space-time is
stationary and spherically symmetric. In general relativity,
the solutions of Einstein’s equations around a stationary
black hole can be written with a metric of the form:

gμν ¼ diagðαðrÞ;−α−1ðrÞ;−r2;−r2 sin2 θÞ: ð58Þ

Even in the presence of the cosmological constant in the
field equations of general relativity, this shape for the line
element remains unchanged. Since the observations points
to a very significant correspondence between gravitational
phenomena and GR predictions, it must surely be assumed
that a gravitational theory in the Lyra manifold must
recover Einstein’s equations on scales of the observed
data. Following this point of view, a working approach
can be formulated for the Lyra manifold, assuming a
metric such as (58), called Schwarzschild-type solutions.
Furthermore, it is considered ϕ ¼ ϕðrÞ, in order to main-
tain the scale function the invariant of SO(3). This is not a
more general approach, but this consideration greatly
simplifies the work and, as will be shown later, gives rise
to solutions that tend to the Schwarzschild space within
specific limits.
The field equations in this framework are reduced to:

α0ϕ0

αϕ
−

1

αr2
þ 1

r2
þ α0

αr
þ 4ϕ0

rϕ
þ 2ϕ00

ϕ
−
ϕ02

ϕ2
¼ 0 ð59aÞ

−
α0ϕ0

αϕ
þ 1

αr2
−

1

r2
−
α0

αr
−
4ϕ0

rϕ
−
3ϕ02

ϕ2
¼ 0 ð59bÞ

−
α00

2α
− 2

α0ϕ0

αϕ
−
α0

αr
−
2ϕ0

rϕ
−
2ϕ00

ϕ
þ ϕ02

ϕ2
¼ 0: ð59cÞ

Adding the Eq. (59a) to (59b), one finds:

ϕ00

ϕ
− 2

ϕ02

ϕ2
¼ 0: ð60Þ

Solving this differential equation for ϕ, it results:

ϕðrÞ ¼ r0
rL − r

; ð61Þ

where rL ∈ R and r0 ∈ R are integration constants.
Parameter rL is a new constant appearing in the context
of LyST: it will be later identified as Lyra radius and will be
key to characterize the causal structure of Lyra-based
vacuum spherically symmetric solutions. With the solution
)61 ), it is possible to use one of the Eqs. (59) to find α.

Replacing (61) in (59b):

rLα0 þ α
rL
r
ð1þ 2r=rLÞ
ð1 − r=rLÞ

¼ −
�
1 −

rL
r

�
:

This is a first order linear differential equation, which
solution depends on a new integration constant rs:

αðrÞ ¼ ð1 − r=rLÞ2ð1 − rs=rÞ
ð1 − rs=rLÞ

: ð62aÞ

(Parameter rs will be later related to the familiar
Schwarzschild radius.)
The next step is to work with the Eq. (61) for ϕ. As

argued before, the theory must recover general relativity
when the scale function is constant. By writing (61) as
ϕ ¼ 1=ðrL=r0 − r=r0Þ we see that rL and r0 must go to ∞
while keeping the ratio rL=r0 constant in order to satisfy
this condition. Since the r0 appears only in the equation for
ϕ, its possible to factorize the ratio r0=rL in the line element

equation; this leads to ds2 ¼ r2
0

r2L
ϕ̃2gμνdxμdxν, where both

ϕ̃ ≔ 1=ð1 − r=rLÞ and gμν do not depend on r0. Because of
this, it is possible to work with Lyra frames where r0 ¼ rL,
in which case the scale function becomes

ϕ ¼ 1

1 − r=rL
: ð62bÞ

In this approach, it is evident that Schwarzschild solution
of GR arises by taking the limit rL → ∞ in Eqs. (62). Up to
this point, there are no additional constraints on rs and rL.
The only information about this constants is that they are
the roots of αðrÞ in R. For more insight into the physical
meaning of these parameters, let us study the weak field
limit of LyST gravity.

A. Corrections to Newtonian gravity

Under the requirement of spherical symmetry, the
Eq. (51) reduces to ̈r ¼ −∂rU. The spherically symmetric
solution for LyST gravity is entirely determined by the
functions αðrÞ and ϕðrÞ, cf. Eqs. (62). By expanding them
up to the second order in r, one finds ϕ ¼ 1þ δϕ and
α ¼ 1þ h00, where:

δϕ ≈
r
rL

þ r2

r2L
ð63Þ

and

h00 ≈ 3

�
rs
rL

þ r2s
r2L

�
−
�
1þ rs

rL

�
rs
r

þ −2
r
rL

�
1þ 3

2

rs
rL

�
þ r2

r2L
: ð64Þ

With these expressions, the radial sector of the equation of
motion will be
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̈r ¼ −
1

2

rs
ð1 − rs

rL
Þ
1

r2
þ 3

2

rs
r2L

−
3r
r2L

: ð65Þ

The coefficient of the term scaling as r−2 in Eq. (65) may
be defined as a new geometrical parameter m:

m ≔
1

2

rs
ð1 − rs

rL
Þ : ð66Þ

This quantity can be interpreted as the mass in the
Newtonian description of gravity. The mass parameter is
related not only to Schwarzschild radius rs (as is the case of
general relativity), but also to Lyra radius rL. According to
this interpretation, the first order effect of rL is simply to
change the waym relates to rs. Second order effects include
a constant repulsive acceleration 3rs=2r2L and an anti–de
Sitter type attractive term −3r=r2L.

B. Properties of the spherically symmetric solution

As explained in the previous section, the existence of a
Newtonian limit allows the recognition of a parameter m
that can be interpreted as the mass. Following this line of
reasoning, this parameter must be taken as a real and
positive quantity based on phenomenological principles.
Thus, one can rewrite the solution for α in Eq. (62) by
replacing the constant rs in terms of m and rL. The set of
solutions will be

ϕðrÞ¼ 1

1− r
rL

and αðrÞ¼
�
1−

r
rL

�
2
�
1−

2m
r
þ2m

rL

�
;

ð67Þ
which, according to Eq. (10), lead to the line element:

ds2 ¼
�
1 −

2m
r

þ 2m
rL

�
dt2

−
�
1 −

r
rL

�
−4
�
1 −

2m
r

þ 2m
rL

�
−1
dr2

−
�
1 −

r
rL

�
−2
r2dΩ2 ð68Þ

1. Schwarzschild limit

At this point, it should be checked whether Eqs (67) are
physically plausible. It is known that General Relativity
must be the emerging theory from LyST when scale
function ϕ is constant. The limit rL → �∞ in (67), leads
directly to:

αðrÞ ≃ 1 −
2m
r

ð69Þ

which is the conventional result from GR. This shows the
existence of a well-defined Schwarzschild limit steaming

from LyST spherically symmetric solution. This very
fact brings about the possibility of interpreting the param-
eter rs ¼ ð1=2mþ 1=rLÞ−1 as Lyra’s generalization of the
Schwarzschild radius.

2. Long-distance regime

The form of the metric coefficients in the infinitely
remote regions from the source can be obtained by
taking the limit r → ∞ in Eq. (67). This process depends
almost exclusively on a quadratic term in r, namely
αðrÞ ≃ ð1þ 2m=rLÞr2=r2L. If Lyra’s space-time were com-
pletely characterized by the metric, it could be understood
as an emerging “cosmological constant”:

Λ ≃ −
3

r2L

�
1þ 2m

rL

�
; ð70Þ

induced by the presence of the Lyra scale. Moreover,
the observed small absolute value of Λ would be explained
by a large value rL, something that is reassuringly
consistent with the Schwarzschild limit discussed above.
It is clear from Eq. (70) that the sign of rL determines
whether the constant Λ will be positive or negative. In the
case where 1þ 2m=rL < 0 the solution for the metric
would be asymptotically de Sitter; on the other hand, if
1þ 2m=rL > 0, it would be anti–de Sitter type solution.
This is all too compelling. However, one should recall

that in LyST gravitational theory, space-time is specified
not only by the metric tensor, as in the case of general
relativity, but also by the scale function. Considering the
line element (68), it turns out that, in fact, Lyra’s spherically
symmetric space-time does not recover the characteristics
of either de Sitter or anti–de Sitter space-times in the limits
of large distances from the source.

C. Classes of solutions

It is considered that r ∈ Rþ, the line element (68) is
singular at the points r ¼ rs ¼ ð1=2mþ 1=rLÞ−1 and
r ¼ rL. These values can be both negative or positive.
Accordingly, Lyra’s spherically symmetric space-time (68)
may have different properties in different regions of the
parameters’ range of values. These properties will be
explored later on.
The Newtonian limit offers the interpretation of param-

eter m as the mass of the source; therefore, it must be a real
and positive quantity. Consequently, it should be rs > 0 for
rL > 0 according to rs ¼ ð1=2mþ 1=rLÞ−1.
In the range rL < −2m, the Schwarzschild radius

remains positive and the region 0 < r < ∞ contains one
singular point.
The interval −2m < rL < 0 does not induce any singu-

larities in fr ∈ Rjr > 0g. However, the coefficients of dt2
and dr2 in the line element change their signs in this range.
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This type of mathematical solution has no physical interest
and will not be considered in the rest of the paper.
Assuming that neither rs nor rL diverge,2 LyST spheri-

cally symmetric solutions can be classified as:
(i) Class 1: rs > 0 and rL > 0, space-time with two

singularities;
(ii) Class 2: rs > 0 ans rL < −2m, space-time with one

singularity.
It is necessary to characterize the divergent points in the
line element to learn if they are essential singularities of
space-time, or if they are removable divergences arising
from particular choices of Lyra frames. This will be done in
the upcoming section.

D. Singularities and causal structure

LyST Class 1 solution exhibits two singularities, which
seems to indicate a line element with multiple horizons.
Thus, this section aims to study these concepts to determine
whether there are physical singularities and, if so, what
their nature is.
A first case of interest is the determination of light-cone

distortions, a task that is accomplished through the study of
null geodesics. A local light cone is defined by the
vanishing of the line element in Eq. (10); this corresponds
to the geodesics of nonmassive particles. The relation
between coordinates t and r for purely radial motion is
given by:

dt
dr

¼ �
�
1 −

r
rL

�
−2
�
1 −

2m
r

þ 2m
rL

�
−1
: ð71Þ

The solution to Eq. (71) is

t�ðrÞ ¼ c1 �
	

r
ð1 − r

rL
Þ þ 2m ln

�
r

1 − r
rL

− 2m

�

: ð72Þ

The curves with signal þ (−) are called the outgoing
(ingoing) null geodesics. Note that the limit rL → ∞
naturally leads to the result of general relativity [30].
LyST Class 1 solution does not tend to Minkowski
space-time for regions very distant from the source; in
fact, for r ≫ rL and r ≫ rs, it approaches an anti–de Sitter
space-time. This feature directly influences the radial
propagation of light beams, since dr=dt ≠ 1 away from
the source.
LyST Class 1 space-time diagrams are built from

Eq. (72) through the overlap of ingoing and outgoing null
geodesics. This procedure unveils local light cones in
strategic regions. Figure 1 displays some null-geodesic
curves from Eq. (72) and local light cones in multiple
space-time events for the casewhere rs<rL in LyST Class 1

solutions. We can see a significant distortion of the light
cones in the immediate vicinity of both rs and rL. This is a
direct consequence of the fact that dt=dr diverges at rs and
rL, the roots of αðrÞ.The space-time diagram for LySTClass
2 solutions is shown in Fig. 2. It seems that this class give rise
to a space-time diagram qualitatively indistinguishable from
that derived from Schwarzschild solution of general
relativity.
Through the diagrams in Figs. 1 and 2, it can be checked

that the light cones rotate at 90 degrees counterclockwise
to the left of rs; in the region r < rs coordinates r and t
switch roles.
The distortion of the light cones in the vicinity of r ¼ rs

and r ¼ rL suggests that it takes an infinite coordinated
time t for a test particle to reach the surfaces corresponding
to these radii. However, this does not automatically mean
that the horizons at rs and rL are essential singularities of
LyST spherically symmetric space-time. They might as
well be removable coordinate singularities (recall that
Kruskal-Szekeres coordinates [26] eliminate the divergence

FIG. 1. Null geodesics for the spherically symmetric solution of
Class 1 in LyST gravity, in Schwarzschild coordinates.

FIG. 2. Space-time diagram for null geodesics in the spherically
symmetric solution of Class 2 in LyST gravity with Schwarzs-
child coordinates.

2For if rL → ∞, the Schwarzschild solution of general
relativity is recovered, which is also a solution of LyST field
equations, for the constant scale.

LYRA SCALAR-TENSOR THEORY: A SCALAR-TENSOR THEORY … PHYS. REV. D 103, 124002 (2021)

124002-11



in GR’s Schwazschild line element at r ¼ rs). In order to
check this, it is necessary to look for divergences in the
gravitational field invariants at the radial values rs and rL.
The simplest invariant that can be thought of would be

the curvature scalar R. However, in the case of vacuum
solutions, the trace of Einstein’s equations shows that
R ¼ 0 in the entire space; therefore, R is useless to assess
the nature of the horizons at rs and rL. Alternatively,
Kretschmann scalar K ¼ RμναβRμναβ can be used for this
purpose [31]. Utilizing Eqs. (15), it follows that:

K ¼ 12r2s
r6

ð1 − r
rL
Þ6

ð1 − rs
rL
Þ2 : ð73Þ

Notice that this Kretschmann scalar tends dutifully to the
value K ¼ 48m2=r6 of the ordinary GR’s Schwarzschild
solution in the limit rL → �∞. The Kretschmann scalar
(73) remains finite at r ¼ rs, which leads to the conclusion
that the horizon at rs indicated by Eq. (71) is not an
essential singularity. Consequently, it can be removed
through an appropriate choice of Lyra reference frames.
On the other hand, Kretschmann invariant for LyST
Schwarzschild-type metric approaches zero as r → rL.
Let us investigate the meaning of this fact by considering
what happens to a particle in radially free-falling motion.
The equations for the geodesic motion (71) in a spheri-

cally symmetric Lyra space-time are given by:

ϕ2α_t ¼ k; ð74aÞ

̈rþ α2_t2
�
ϕ0

ϕ
þ α0

2α

�
þ _r2

�
ϕ0

ϕ
−

α0

2α

�

− αr2 _φ2

�
ϕ0

ϕ
þ 1

r

�
¼ 0; ð74bÞ

ϕ2r2 _φ ¼ h; ð74cÞ

where _ð Þ ≔ d
dλ e ð Þ0 ≔ d

dr, k and h are respectively the
specific energy and specific angular momentum of the test
particle, respectively; and, the functions α and ϕ are given
in (67). The components uμ of the four-velocity respect the
condition uμuμ ¼ 1 in natural units. By combining this
constraint and Eqs. (74a)–(74b), we obtain a differential
equation for the evolution of the radial coordinate:

k2

ϕ2α
−
ϕ2

α
_r2 −

h2

ϕ2r2
¼ 1: ð74dÞ

In a pure radial motion, the angular momentum vanishes,
and the equation of motion reduces to:

_rðτÞ ¼ �
�
1 −

r
rL

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r

−
2m
r0

s
: ð75Þ

Here r0 is the value of the radial coordinate where the test
particle is at rest.

E. Class 1 solutions

The allowed types of motion are those that keep the
argument of the square root in Eq. (75) positive. Thus, the
region accessible to time-like trajectories are those where
r ≤ r0. In order to study the neighboring regions of rL for
rs < r0 ≤ rL, we take r0 → rL and consider a free-fall
trajectory of a particle that leaves rL from rest. In this case,
Eq. (75) can reads _rðτÞ ¼ −

ffiffiffiffiffiffiffi
2m

p
r2ð1=r − 1=rLÞ5=2 and the

proper time for the particle to come out of rest at rL to reach
any point of radial coordinate rend < rL is

Δτ ¼ −
Z

rend

rL

drð2mÞ−1=2r−2
�
1

r
−

1

rL

�
−5=2

¼
ffiffiffiffiffiffiffi
2

9m

r �
1

r
−

1

rL

�
−3=2

����rL
rend

→ ∞:

In the instance where r0 > rL, the physically allowed
region is rL ≤ r ≤ r0. The proper time elapsed during a
free fall from rest at r0 will be see Eq. (75):

Δτ ¼
Z

r0

rL

dr

ð1 − r
rL
Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r − 2m

r0

q → ∞;

that is, a particle starting from rest off the radius r0 > rL
takes an infinite time to reach rL. Along with the fact that a
particle at rest in rL cannot move to values of r < rL, these
findings lead to the conclusion that the regions r < rL and
r > rL are not in causal contact.

F. Class 2 solutions

The solutions in this class are constrained to rs > 0 and
rL < −2m. Thus, parameter rL is negative and cannot be
interpreted as a radial distance since it lays outside
the validity domain of the radial coordinate. The singularity
at rs ¼ ð1=2mþ 1=rLÞ−1 can be removed with an appro-
priate choice of frame as indicated by the Kretschmann
scalar analysis, and the causal structure of this class of
solution is equivalent to the already known case of GR’s
Schwarzschid solution. The influence of rL with respect to
Schwarzschild’s event horizon is to induce changes in the
expression involving rs and m.

VI. FINAL COMMENTS

LyST gravity is a scalar-tensor theory whose fundamen-
tal fields are the metric gμν and the scale function ϕ. Unlike
established scalar-tensor theories, LyST is built on a non-
Riemannian Lyra manifold. In fact, the main change on the
geometric framework is regarding the definition of the basis
of the tangent and cotangent spaces. It makes the reference
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frames dependent on the choice of both the coordinates and
the scale function. In Lyra manifolds, the transformation
law of tensors is distinct from that on the Riemannian
manifold.
LyST theory of gravity was built under the geometric

hypotheses of metric-compatibility and torsion-free con-
nection. For this reason, LyST gravity can be interpreted as
the equivalent of general relativity in a Lyra manifold. Its
field equations were obtained via a Lyra invariant action
(i.e., through an action invariant both under scale and
coordinates transformations) given by the simple generali-
zation of the Einsten-Hilbert action. By writing the con-
tributions of ϕ in the action (46) explicitly, we note that
LyST is quite different from conventional theories like
Brans-Dicke and its generalizations [32]. In the first place,
this is true due to the presence of the higher order derivative
term. Furthermore, there is also the factor ϕ4 that appears to
guarantee the symmetry properties of the integration
element, which induces terms dependent on ϕ in the field
equations during the process of integration by parts.
It was found that the linearized and static approximations

of LyST theory tends to a well-defined Newtonian limit
for nonrelativistic motion. In fact, we have obtained
U ¼ ð1=2Þh00 þ δϕ, where δϕ is the perturbation on the
Lyra scale. Trajectories and field equations were charac-
terized by the single SO(3) scalar function U, which is
recognized as the Newtonian gravitational potential,
cf. ẍ ¼ −∇U and Eq. (57). A remarkable feature of this
potential is its dependence on both the linearized metric h00
and the scale function perturbation δϕ, which is a natural
consequence of the fact that the curvature depends on these
two quantities.
LyST gravity presents a spherically symmetric solution

dependent on two parameters m and rL. Parameter m is the
geometrical mass and rL is a distance related quantity
dubbed Lyra radius. LyST spherical metric tends naturally
to Schwarzschild solution of general relativity if rL → �∞,
as it can be seen from Eq. (67). The equations of motion
show a well-defined Newtonian limit: the non-relativistic
gravitational regime is equivalent to Newtonian gravity up
to orders 0 and 1 of r−1L . First order effects change the
customary relation between mass and Schwarzschild radius
to rs ¼ ð1=2mþ 1=rLÞ−1, while higher order effects
steaming from terms scaling as r−2L induce de-Sitter-type
correction terms to the line element.
LyST spherically symmetric solution splits into two

mains cases of physical interests. In Class 1, rL is a

positive parameter greater than rs, and LyST space-time
exhibits two singular points. The singularity at r ¼ rs is
non-essential just like it happens in General Relativity and
can be removed through an appropriate choice of frame. On
the other hand, there is nonremovable horizon at rL, where
the space-time is divided into two regions without mutual
causal contact. LyST spherical metric of Class 2 features
rL < −2m so that rL lays outside the domain of radial
coordinates. In this case, LyST space-time presents a single
Schwarzschild-type singularity and the only influence of
the Lyra scale ϕ is to change the expression for the event
horizon radius rs.
The fact that LyST gravity exhibits spherically symmet-

ric solutions with a well-defined limit to Schwarzschild
solution of general relativity is a very encouraging
finding. Since a significant part of the gravitational
phenomena can be described via general relativity, the
uncertainties in the measurements in solar-system-size
scales could impose lower limits to the absolute value of
LyST parameter rL. Future perspectives toward this goal
are to build the equations for PPN approximation in the
context of LyST.
On the one hand, local measurements of gravitational

physics constrain LyST free paramenters. On the other
hand, large-scale gravitational observations bring an oppor-
tunity to the new theoretical framework opened up by
LyST. Indeed, GR faces difficulties in cosmology while, for
instance, describing the current cosmic acceleration and the
σ8-tension [33]. These open problems could be addressed
via LyST analogous to FLRW metric plus an SO(3)-
invariant scale function ϕ.
In addition, studies on geodesic motion in spherically

symmetric LyST space-time and on gravitational waves in
LyST gravity are being carried out. The relaxation of
imposing a torsion-free connection and the metric compat-
ibility condition is also being investigated in order to
determine the Lyra equivalents to Einstein-Cartan [34–36]
and teleparallel [37] theories of gravity.
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