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We study the Jeans mass-radius relation of Bose-Einstein condensate dark matter in Newtonian gravity.
We show at a general level that it is similar to the core mass-radius relation of Bose-Einstein condensate
dark matter halos [P. H. Chavanis, Phys. Rev. D 84, 043531 (2011)]. Bosons with a repulsive self-
interaction generically evolve from the Thomas-Fermi regime to the noninteracting regime as the Universe
expands. In the Thomas-Fermi regime, the Jeans radius remains approximately constant while the Jeans
mass decreases. In the noninteracting regime, the Jeans radius increases while the Jeans mass decreases.
Bosons with an attractive self-interaction generically evolve from the nongravitational regime to the
noninteracting regime as the Universe expands. In the nongravitational regime, the Jeans radius and the
Jeans mass increase. In the noninteracting regime, the Jeans radius increases while the Jeans mass
decreases. The transition occurs at a maximum Jeans mass which is similar to the maximum core mass of
Bose-Einstein condensate dark matter halos with an attractive self-interaction. We use the core mass-radius
relation of dark matter halos and the observational evidence of a “minimum halo” (with typical radius
R ∼ 1 kpc and typical mass M ∼ 108 M⊙) to constrain the mass m and the scattering length as of the dark
matter particle. For noninteracting bosons, m is of the order of 2.92 × 10−22 eV=c2. The mass of
bosons with an attractive self-interaction can be only slightly smaller (2.19 × 10−22 eV=c2 <
m < 2.92 × 10−22 eV=c2 and −1.11 × 10−62 fm ≤ as ≤ 0); otherwise, the minimum halo would be
unstable. Constraints from particle physics and cosmology imply m ¼ 2.92 × 10−22 eV=c2 and as ¼
−3.18 × 10−68 fm for ultralight axions, and it is then found that attractive self-interactions can be neglected
in both the linear and the nonlinear regimes of structure formation. The mass of bosons with a repulsive
self-interaction can be larger by 18 orders of magnitude (2.92 × 10−22 eV=c2 < m < 1.10 × 10−3 eV=c2

and 0 ≤ as ≤ 4.41 × 10−6 fm). The maximum allowed mass (m ¼ 1.10 × 10−3 eV=c2 and
as ¼ 4.41 × 10−6 fm) is determined by the Bullet Cluster constraint while the transition between the
noninteracting limit and the Thomas-Fermi limit corresponds to m ¼ 2.92 × 10−22 eV=c2 and
as ¼ 8.13 × 10−62 fm. For each of these models, we calculate the Jeans length and the Jeans mass at
the epoch of radiation-matter equality and at the present epoch.
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I. INTRODUCTION

Even after 100 years of research, the nature of dark
matter (DM) is still elusive. The standard cold dark matter
(CDM) model, in which DM is represented by a classical
pressureless fluid at zero temperature (T ¼ 0) or by a
collisionless N-body system of classical particles, works
extremely well at large (cosmological) scales and can
account for precise measurements of the cosmic microwave
background (CMB) from WMAP [1] and Planck missions
[2,3]. However, in addition to the lack of evidence for any
CDM particle such as a weakly interacting massive particle
(WIMP) with a mass in the GeV–TeV range, the CDM
model faces serious problems at small (galactic) scales that
are known as the “core-cusp” problem [4], the “missing
satellites” problem [5–7], and the “too big to fail” problem

[8]. This “small-scale crisis of CDM” [9] is somehow
related to the assumption that DM is pressureless, implying
that gravitational collapse takes place at all scales. A
possibility to solve these problems is to consider self-
interacting dark matter (SIDM) [10], warm dark matter
(WDM) [11], or the feedback of baryons that can transform
cusps into cores [12–14]. Another promising possibility to
solve the CDM crisis is to take into account the quantum (or
wave) nature of the DM particle. Indeed, in quantum
mechanics, an effective pressure is present even at
T ¼ 0. This quantum pressure may balance the
gravitational attraction at small scales and solve the
CDM crisis.
In this paper, we shall consider the possibility that

the DM particle is a boson, e.g., an ultralight axion
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(ULA) [15].1 At T ¼ 0, bosons form Bose-Einstein con-
densates (BECs), and they are described by a single wave
function ψðr; tÞ called the condensate wave function. They
can therefore be interpreted as a scalar field (SF). The
bosons may be noninteracting or may have a repulsive or an
attractive self-interaction (for example, the QCD axion has
an attractive self-interaction). On astrophysical scales, one
must generally take into account gravitational interactions
between the bosons. The evolution of the wave function of
self-gravitating BECs is then governed by the Schrödinger-
Poisson equations when the bosons are noninteracting or by
the Gross-Pitaevskii-Poisson (GPP) equations when the
bosons are self-interacting. BECDM halos can thus be
viewed as gigantic bosonic atoms where the bosonic
particles are condensed in a single macroscopic quantum
state. The wave properties of the SF are negligible at large
(cosmological) scales where the SF behaves as CDM, but
they become important at small (galactic) scales where they
can prevent gravitational collapse, providing halo cores and
suppressing small-scale structures. This model has been
given several names such as wave DM, fuzzy dark matter
(FDM), BECDM, ψDM, or SFDM [75–190] (see the
Introduction of [107] and Ref. [191] for an early history
of this model and Refs. [15,192–196] for reviews). Here,
we shall use the name BECDM. In the BECDM model,
gravitational collapse is prevented by the quantum pressure
arising from the Heisenberg uncertainty principle or from
the scattering of the bosons (when the self-interaction is
repulsive).2 Therefore, quantum mechanics (or a repulsive
self-interaction) may solve the small-scale problems of the
CDM model mentioned above.
It is usually considered that large-scale structures such as

galaxies or dark matter halos form in a homogeneous
universe by Jeans instability [237]. For a cold classical gas,
the Jeans length vanishes or is extremely small (λJ ≃ 0),
implying that structures can form at all scales. This is not
what we observe and this leads to the CDM crisis. By
contrast, when quantum mechanics (or a repulsive self-
interaction) is taken into account, the Jeans length is
nonzero, implying the absence of structures below a
minimum scale in agreement with the observations. The
Jeans instability of a self-gravitating BEC with repulsive or
attractive self-interaction was first considered by Khlopov

et al. [76] and Bianchi et al. [79] in a general relativistic
framework based on the Klein-Gordon-Einstein (KGE)
equations. The Jeans instability of a noninteracting self-
gravitating BEC in Newtonian gravity described by the
Schrödinger-Poisson equations was studied by Hu et al.
[87] and Sikivie and Yang [102]. Finally, the Jeans
instability of a Newtonian self-gravitating BEC with
repulsive or attractive self-interactions described by the
GPP equations was studied by Chavanis [107]. These
results were extended in general relativity by Suárez and
Chavanis [153] going beyond some of the approximations
made by Khlopov et al. [76] (see footnote 7 of [153]). More
recently, Harko [180] considered the Jeans instability of
rotating Newtonian BECs in the Thomas-Fermi (TF) limit
(previous results are recovered when Ω ¼ 0). In these
different studies, the authors determined the Jeans length
and the Jeans mass of the BECs and used them to obtain an
estimate of the minimum size and minimum mass of
BECDM halos.3 We refer to [190] for a review about
the Jeans instability of nonrelativistic self-gravitating
BECs.
The Jeans instability study is valid only in the linear

regime of structure formation. It describes the initiation of
the large-scale structures of the Universe. The Jeans
instability leads to a growth of the perturbations and the
formation of condensations (clumps). When the density
contrast reaches a sufficiently large value, the condensa-
tions experience a free fall, followed by a complicated
process of gravitational cooling [267] and violent relaxa-
tion [268]. They can also undergo merging and accretion.
This corresponds to the nonlinear regime of structure
formation leading to the DM halos that we observe today.
BECDM halos result from the balance between the
gravitational attraction and the quantum pressure due to
the Heisenberg principle and the self-interaction of the
bosons. Observations reveal that, contrary to the prediction
of the CDM model, there are no halos with a mass smaller
than M ∼ 108 M⊙ and with a size smaller than R ∼ 1 kpc.
These ultracompact DM halos correspond typically to
dwarf spheroidal galaxies (dSphs) like Fornax. To be
specific, we shall assume that Fornax is the smallest halo
observed in the Universe. In the BECDM model, this
“minimum halo” is interpreted as the ground state of the
self-gravitating BEC at T ¼ 0. Bigger halos have a core-
halo structure with a quantum core (ground state)1Some authors have considered the case where the DM particle

is a fermion such as a massive neutrino [16–74]. In this model,
gravitational collapse is prevented by the quantum pressure
arising from the Pauli exclusion principle.

2A repulsive self-interaction (as > 0) stabilizes the quantum
core. By contrast, an attractive self-interaction (as for the axion)
destabilizes the quantum core above a maximum mass
Mmax ¼ 1.012ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p
first identified in [107] (see

Refs. [107,108,145,156,163,179,181,189,197–227] for recent
works on axion stars [228–230] and Ref. [231] for a review).
This maximum mass has a nonrelativistic origin. It is physically
different from the maximum mass of fermion stars [232] and
boson stars [233–236] that is due to general relativity.

3These studies were performed in a static Universe. The Jeans
instability of an infinite homogeneous self-gravitating BEC in an
expanding universe has been studied by Bianchi et al. [79],
Suárez and Matos [113], and Suárez and Chavanis [133] in
general relativity and by Sikivie and Yang [102] and Chavanis
[114] in Newtonian gravity. These studies are valid for a complex
SF describing the wave function of a BEC. They rely on a
hydrodynamical representation of the wave equation. The Jeans
instability of a real SF has been studied by numerous authors in
Refs. [15,99,101,117,141,238–266].
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surrounded by an approximately isothermal atmosphere
which results from the quantum interferences of the excited
states. This core-halo structure is observed in numerical
simulations of BECDM [125,126,142,151,154,155,178,
185]. The quantum core may solve the small-scale prob-
lems of the CDM model such as the cusp problem and the
missing satellite problem. The approximately isothermal
atmosphere is consistent with the classical Navarro-Frenk-
White (NFW) profile and accounts for the flat rotation
curves of the galaxies at large distances. The mass-radius
relation of BECDM halos at T ¼ 0 (ground state) repre-
senting the minimum halo or the quantum core of larger
halos has been determined in Refs. [107,108] for bosons
with vanishing, repulsive, or attractive self-interactions. It
can be obtained either numerically [108] by solving the
GPP equations or analytically [107] by using a Gaussian
ansatz for the wave function.4 The quantum core mass–halo
mass relation McðMhÞ was first obtained by Schive et al.
[126] in the case of noninteracting bosons from direct
numerical simulations and heuristic arguments. This rela-
tion was later derived in Refs. [169,179,181] from an
effective thermodynamic approach by maximizing the
Lynden-Bell [268] entropy at fixed mass and energy. It
was also extended in these papers to the case of self-
interacting bosons (with a repulsive or an attractive self-
interaction) and to the case of fermions.
It was noticed in Ref. [107] that the Jeans mass-radius

relation obtained from the dispersion relation of self-
gravitating homogeneous BECs is similar to the core
mass–radius relation of BECDM halos obtained by solving
the equation of quantum hydrostatic equilibrium with a
Gaussian ansatz. This agreement is surprising because the
two relations apply to very different regimes of structure
formation: linear versus nonlinear. It results, however,
essentially from dimensional analysis. The aim of the
present paper is to further develop this analogy and study
its consequences. In Sec. II, we recall the basic equations
describing self-gravitating BECs. Using the Madelung
[269] transformation, we write the GPP equations in the
form of hydrodynamic equations. We then consider spa-
tially inhomogeneous solutions of these equations describ-
ing the core of BECDM halos. They correspond to
stationary solutions of the GPP equations or to stationary
solutions of the quantum Euler-Poisson equations satisfy-
ing the condition of hydrostatic equilibrium. Stable equi-
librium states follow a minimum energy principle. We also
consider the Jeans instability of an infinite homogeneous
self-gravitating BEC. We recall the general dispersion
relation and the general Jeans wave number obtained in
Ref. [107] from which we can obtain the Jeans length and
the Jeans mass. We briefly discuss the Jeans instability in

an expanding universe. In Sec. III, we derive the analytical
core mass–radius relation of BECDM halos from a general
ansatz on the wave function (f-ansatz). We determine the
parameters of this relation by comparing its asymptotic
limits with the exact results obtained by solving the GPP
equations numerically [108]. In this manner, the analytical
mass-radius relation that we obtain provides a very good
agreement with the exact mass-radius relation obtained
numerically. In Sec. IV, we use the fact that this mass-radius
relation applies to the minimum halo (with R ∼ 1 kpc and
M ∼ 108 M⊙) to obtain the dark matter particle mass-
scattering length relation. This is a constraint that the
parameters of the DM particle must satisfy in order to
reproduce the characteristics of the minimum halo
(assumed to correspond to the ground state of the
BECDM model). Using additional constraints such as
the Bullet Cluster constraint, or constraints from particle
physics and cosmology, we can put some bounds on the
possible values ofm and as. We consider specific models of
physical interest that we call BECNI, BECTF, BECt,
BECcrit and BECth. Once the values of m and as have
been determined from the previous considerations, we
study in Sec. V the core mass–halo mass relation and
conclude (in line with our previous investigations
[179,181]) that the quantum cores of DM halos are stable
in all cases of astrophysical interest. In Sec. VI, we study
the evolution of the Jeans radius and Jeans mass as a
function of the cosmic density as the Universe expands. We
confirm that the Jeans mass-radius relation is similar to the
core mass–radius relation of DM halos, the density of the
universe playing in this analogy the role of the average core
density of DM halos. We characterize different regimes
(noninteracting, TF, nongravitational) for bosons with
repulsive or attractive self-interaction. Finally, we explain
how our results can be extended to more general forms of
self-interaction.

II. SELF-GRAVITATING BOSE-EINSTEIN
CONDENSATES

A. Gross-Pitaevskii-Poisson equations

We assume that DM is made of bosons (such as the
axion) in the form of BECs at T ¼ 0. We use a non-
relativistic approach based on Newtonian gravity. The
evolution of the wave function ψðr; tÞ of a self-gravitating
BEC is governed by the GPP equations (see, e.g., [107])

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þm

dV
djψ j2 ψ þmΦψ ; ð1Þ

ΔΦ ¼ 4πGjψ j2; ð2Þ

where Φðr; tÞ is the gravitational potential and m is the
mass of the bosons. The first term in Eq. (1) is the kinetic
term which accounts for the Heisenberg uncertainty

4A Gaussian density profile usually provides a fair approxi-
mation of the exact density profile up to a few halo radii (see, e.g.,
Fig. 2 of [169] in the case of noninteracting bosons).
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principle. The second term takes into account the self-
interaction of the bosons via a potential Vðjψ j2Þ. The third
term accounts for the self-gravity of the BEC. The mass
density of the BEC is ρðr; tÞ ¼ jψ j2.
For the standard BEC, we have

Vðjψ j2Þ ¼ 2πasℏ2

m3
jψ j4; ð3Þ

where as is the scattering length of the bosons. The
interaction between the bosons is repulsive when as > 0
and attractive when as < 0. This potential is valid provided
that the gas is sufficiently dilute. It corresponds to a power-
law potential of the form

Vðjψ j2Þ ¼ K
γ − 1

jψ j2γ ð4Þ

with

γ ¼ 2 and K ¼ 2πasℏ2

m3
: ð5Þ

The GPP equations conserve the mass

M ¼
Z

jψ j2dr ð6Þ

and the energy

Etot ¼
ℏ2

2m2

Z
j∇ψ j2drþ

Z
Vðjψ j2Þdrþ 1

2

Z
jψ j2Φdr;

ð7Þ

which is the sum of the kinetic energyΘ, the internal energy
U, and the gravitational energy W (i.e., Etot¼ΘþUþW).
Remark:—The GPP equations (1) and (2) may be

obtained in the nonrelativistic limit c → þ∞ of the
KGE equations describing a SF interacting via a potential
VRðφÞ (see, e.g., [134,146] for a complex SF and [156,189]
for a real SF).

B. The Madelung transformation

Writing the wave function as

ψðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðr; tÞ

p
eiSðr;tÞ=ℏ; ð8Þ

where ρðr; tÞ is the mass density and Sðr; tÞ is the action,
and making the Madelung [269] transformation

ρðr; tÞ ¼ jψ j2 and u ¼ ∇S
m

; ð9Þ

where uðr; tÞ is the velocity field, the GPP equations (1)
and (2) can be written under the form of hydrodynamic
equations

∂ρ
∂t þ∇ · ðρuÞ ¼ 0; ð10Þ

∂S
∂t þ

ð∇SÞ2
2m

þm½Φþ V 0ðρÞ� þQ ¼ 0; ð11Þ

∂u
∂t þ ðu ·∇Þu ¼ −

1

m
∇Q −

1

ρ
∇P −∇Φ; ð12Þ

ΔΦ ¼ 4πGρ; ð13Þ

where

Q ¼ −
ℏ2

2m

Δ ffiffiffi
ρ

pffiffiffi
ρ

p ¼ −
ℏ2

4m

�
Δρ
ρ

−
1

2

ð∇ρÞ2
ρ2

�
ð14Þ

is the quantum potential taking into account the Heisenberg
uncertainty principle. The pressureP is a functionPðr; tÞ ¼
P½ρðr; tÞ� of the density (the fluid is barotropic) which is
determined by the potential VðρÞ through the relation

P0ðρÞ ¼ ρV 00ðρÞ ð15Þ

implying5

PðρÞ ¼ ρV 0ðρÞ − VðρÞ ¼ ρ2
�
VðρÞ
ρ

�0
: ð16Þ

Equation (16) determines the equation of state PðρÞ for a
given potential VðρÞ. Inversely, for a given equation of
state, the potential is given by

VðρÞ ¼ ρ

Z
PðρÞ
ρ2

dρ: ð17Þ

We can add a term of the form Aρ in the potential without
changing the pressure. The squared speed of sound cs is
given by

c2s ¼ P0ðρÞ ¼ ρV 00ðρÞ: ð18Þ

For a power-law potential of the form of Eq. (4), we get a
polytropic equation of state

VðρÞ ¼ K
γ − 1

ργ ⇒ P ¼ Kργ

⇒ c2s ¼ Kγργ−1: ð19Þ

In particular, for the standard BEC, we obtain

5This relation is consistent with the first principle of thermo-
dynamics for a barotropic gas at T ¼ 0 (see Appendix H). It
shows that VðρÞ represents the density of internal energy (u¼V).
Then, the enthalpy is given by h¼ðPþVÞ=ρ¼V 0ðρÞ, and it
satisfies the identity h0ðρÞ ¼ P0ðρÞ=ρ. This allows us to replace
ð1=ρÞ∇P by ∇h in Eq. (12) [107].
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VðρÞ ¼ 2πasℏ2

m3
ρ2 ⇒ P ¼ 2πasℏ2

m3
ρ2

⇒ c2s ¼
4πasℏ2

m3
ρ: ð20Þ

In that case, the equation of state is quadratic. The hydro-
dynamic equations (10)–(13) are called the quantum Euler-
Poisson equations [107]. Equation (10) is the continuity
equation, and Eq. (11) is the quantum Hamilton-Jacobi (or
Bernoulli) equation. In the TF limit where the quantum
potential can be neglected (formally ℏ ¼ 0),6 they become
equivalent to the classical Euler-Poisson equations of a
barotropic gas [270].7

The quantum Euler equations conserve the mass

M ¼
Z

ρdr ð21Þ

and the energy (see, e.g., [107])

Etot ¼ Θc þ ΘQ þU þW; ð22Þ

which is the sum of the classical kinetic energy

Θc ¼
Z

ρ
u2

2
dr; ð23Þ

the quantum kinetic energy

ΘQ ¼ ℏ2

8m2

Z ð∇ρÞ2
ρ

dr ¼ 1

m

Z
ρQdr; ð24Þ

the internal energy

U ¼
Z

VðρÞdr ¼
Z

ρ

Z
ρ Pðρ0Þ

ρ02
dρ0dr; ð25Þ

and the gravitational energy

W ¼ 1

2

Z
ρΦdr: ð26Þ

At equilibrium, the classical (macroscopic) kinetic energy
vanishes and we get

Etot ¼ ΘQ þU þW: ð27Þ

The quantum virial theorem writes (see, e.g., [107,149])

1

2
̈I ¼ 2ðΘc þ ΘQÞ þ 3

Z
PdrþW; ð28Þ

where

I ¼
Z

ρr2dr ð29Þ

is the moment of inertia. At equilibrium, it reduces to

2ΘQ þ 3

Z
PdrþW ¼ 0: ð30Þ

For a polytropic equation of state P ¼ Kργ , we have the
relation

R
Pdr ¼ ðγ − 1ÞU and the equilibrium virial theo-

rem may be written as 2ΘQ þ 3ðγ − 1ÞU þW ¼ 0. In
particular, for the standard BEC for which γ ¼ 2, we getR
Pdr ¼ U and the equilibrium virial theorem reduces

to 2ΘQ þ 3U þW ¼ 0.
By using the Madelung transformation, the GPP equa-

tions (1) and (2) have been written in the form of hydro-
dynamic equations involving a quantum potential taking
into account the Heisenberg uncertainty principle and a
pressure force arising from the self-interaction of the
bosons. This transformation allows us to treat the BEC
as a quantum fluid (superfluid) and to apply standard
methods developed in astrophysics as discussed below.
Remark:—The GPP equations (1) and (2) and the

quantum Euler-Poisson equations (10)–(13) can be written
in terms of the functional derivative of the total energy Etot
(see Sec. 3.6 of [149]). They can also be obtained from a
least action principle and a Lagrangian (see Appendix B of
[145] and Appendix F of [149]).

C. Spatially inhomogeneous equilibrium states in the
nonlinear regime: BECDM halos

We first apply the GPP equations (1) and (2), or
equivalently the quantum Euler-Poisson equations
(10)–(13), to BECDM halos that appear in the nonlinear
regime of structure formation in cosmology.
A stationary solution of GPP equations is of the form

ψðr; tÞ ¼ ϕðrÞe−iEt=ℏ; ð31Þ

where ϕðrÞ ¼ ffiffiffiffiffiffiffiffiffi
ρðrÞp

and E are real. Substituting Eq. (31)
into Eqs. (1) and (2), we obtain the eigenvalue problem

−
ℏ2

2m
Δϕþm

dV
dϕ2

ϕþmΦϕ ¼ Eϕ; ð32Þ

Δϕ ¼ 4πGϕ2; ð33Þ

6We note that ℏ appears in the quantum potential Q and in the
self-interaction constant g ¼ 4πasℏ2=m3. The TF limit (formally
ℏ → 0 with 4πasℏ2=m3 finite) amounts to neglectingQ but not g.
A precise criterion for the validity of the TF regime is given in
Sec. III B.

7In the classical limit ℏ ¼ 0 and for P ¼ 0, the quantum Euler-
Poisson equations (10)–(13) reduce to the pressureless hydro-
dynamic equations of the CDM model.
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determining the eigenfunctions ϕðrÞ and the eigenvalues E.
For the fundamental mode (the one with the lowest energy)
the wave function ϕðrÞ is spherically symmetric and has no
node so that the density profile decreases monotonically
with the radial distance. Dividing Eq. (32) by ϕ and using
ρ ¼ ϕ2, we obtain the identity

QþmV 0ðρÞ þmΦ ¼ E; ð34Þ

which can also be obtained from the quantum Hamilton-
Jacobi (or Bernoulli) equation (11) with S ¼ −Et.
Multiplying Eq. (34) by ρ=m and integrating over the
system we get

NE ¼ ΘQ þ
Z

ρV 0ðρÞdrþ 2W: ð35Þ

For a polytropic equation of state P ¼ Kργ , we have the
relation

R
ρV 0ðρÞdr ¼ γU and Eq. (35) may be written as

NE ¼ ΘQ þ γU þ 2W. In particular, for the standard BEC
for which γ ¼ 2, we get

R
ρV 0ðρÞdr ¼ 2U and Eq. (35)

reduces to NE ¼ ΘQ þ 2U þ 2W.
Equivalent results can be obtained from the hydrody-

namic equations (10)–(13). Indeed, the condition of quan-
tum hydrostatic equilibrium, corresponding to a steady
state of the quantum Euler equation (12), writes

ρ

m
∇Qþ∇Pþ ρ∇Φ ¼ 0: ð36Þ

Dividing Eq. (36) by ρ and integrating the resulting
expression with the help of Eq. (15), we recover
Eq. (34) where E appears as a constant of integration.
On the other hand, combining Eq. (36) with the Poisson
equation (13), we obtain the fundamental differential
equation of quantum hydrostatic equilibrium

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−∇ ·

�∇P
ρ

�
¼ 4πGρ: ð37Þ

This equation describes the balance between the quantum
potential taking into account the Heisenberg uncertainty
principle, the pressure due to the self-interaction of the
bosons, and the self-gravity. For the standard BEC, using
Eq. (20), it takes the form

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−
4πasℏ2

m3
Δρ ¼ 4πGρ: ð38Þ

These results can also be obtained from an energy
principle (see Appendix B). Indeed, one can show that
an equilibrium state of the GPP equations is an extremum
of energy Etot at fixed massM and that an equilibrium state
is stable if, and only if, it is a minimum of energy at fixed
mass. We are led therefore to considering the minimization
problem

min fEtotjM fixedg: ð39Þ

Writing the variational problem for the first variations
(extremization problem) as

δEtot −
μ

m
δM ¼ 0; ð40Þ

where μ (global chemical potential) is a Lagrange multi-
plier taking into account the mass constraint, we obtain
u ¼ 0 and

QþmV 0ðρÞ þmΦ ¼ μ: ð41Þ
This relation is equivalent to Eq. (34) provided that we
make the identification E ¼ μ.8 Therefore, the eigenenergy
E coincides with the global chemical potential μ.
Equation (41) is also equivalent to the condition of
quantum hydrostatic equilibrium (36). Therefore, an
extremum of energy at fixed mass is an equilibrium
state of the GPP equations. Furthermore, as shown in
Appendix B, among all possible equilibria, only minima of
energy at fixed mass are dynamically stable with respect to
the GPP equations (maxima or saddle points are linearly
unstable). The stability of an equilibrium state can be
settled by studying the sign of δ2Etot or, equivalently, by
linearizing the equations of motion about the equilibrium
state and investigating the sign of the squared pulsation ω2

(see Appendix B). In each case, these methods require one
to solve a rather complicated eigenvalue equation.
Alternatively, the stability of an equilibrium state can be
settled more directly by plotting the series of equilibria and
using the Poincaré-Katz [271,272] turning point criterion
applied to the curve μðMÞ or the Wheeler [273] theorem
applied to the curveMðRÞ (see [107,108,156] for a specific
application of these methods to the case of axion stars). It
may also be useful to plot the curve EtotðMÞ in order to
compare the energy of different equilibrium states with the
same mass M. Since δM ¼ 0 ⇔ δEtot ¼ 0 according to
Eq. (40), the extrema of mass coincide with the extrema of
energy in the series of equilibria. As a result, the curve
EtotðMÞ presents cusps at these critical points (see, e.g.,
Fig. 11 of [108] for illustration).
The fundamental equation of hydrostatic equilibrium of

BECDM halos, Eq. (38), has been solved analytically
(approximately) by using a Gaussian ansatz in [107],
and numerically (exactly) in [108], for an arbitrary self-
interaction (repulsive or attractive). It describes a compact
quantum object (soliton/BEC). Because of quantum effects,
the central density is finite instead of diverging as in the
CDM model. Therefore, quantum mechanics is able to
solve the cusp-core problem.

8Using the results of Appendix H, Eq. (41) can be interpreted
as a quantum Gibbs conditionQþmhþmΦ ¼ μ expressing the
fact that the quantum potential Q=m plus the enthalpy h ¼ V 0ðρÞ
[equal to the local chemical potential μlocðρÞ=m] plus the
gravitational potentialΦ is a constant equal to the global chemical
potential μ=m.
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For noninteracting bosons (as ¼ 0), Eq. (38) reduces to

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�

¼ 4πGρ: ð42Þ

The solution of this equation is usually called a soliton. The
density profile is plotted in Fig. 2 of [179] using the results
of [108]. The density has not a compact support: it
decreases to zero at infinity exponentially rapidly. The
mass-radius relation is given by [77,108]

M ¼ 9.95
ℏ2

Gm2R99

; ð43Þ

where R99 represents the radius containing 99% of the
mass. The mass decreases as the radius increases. The
equilibrium states are all stable.9

For bosons with a repulsive self-interaction (as > 0),
some density profiles are plotted in [108]. The density does
not have a compact support except in the TF limit (see
below). The mass-radius relation is plotted in Fig. 4 of
[108] (see also Fig. 2 in Sec. III B). There is a minimum
radius, given by Eq. (48) below, reached forM → þ∞ (TF
limit). The mass decreases as the radius increases. The
equilibrium states are all stable. In the TF limit, Eq. (38)
reduces to

4πasℏ2

m3
Δρþ 4πGρ ¼ 0: ð46Þ

This equation is equivalent to the Lane-Emden equation for
a polytrope of index n ¼ 1 [274]. It has a simple analytical
solution10

ρ ¼ ρ0R
πr

sin

�
πr
RTF

�
: ð47Þ

The density profile is plotted in Fig. 3 of [179]. In the TF
limit, the density has a compact support: it vanishes at a
finite radius RTF. The equilibrium states have a unique
radius given by [78,82,89,96,98,107,228]

RTF ¼ π

�
asℏ2

Gm3

�
1=2

; ð48Þ

which is independent of their massM. In the noninteracting
(NI) limit R ≫ RTF, we recover Eqs. (42) and (43).
For bosons with an attractive self-interaction (as < 0),

some density profiles are plotted in [108]. The density does
not have a compact support. The mass-radius relation is
plotted in Fig. 6 of [108] (see also Fig. 3 in Sec. III C).
There is a maximum mass [107,108]

Mmax ¼ 1.012
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p ð49Þ

at

R�
99 ¼ 5.5

�jasjℏ2

Gm3

�
1=2

: ð50Þ

The density profile at the maximum mass is plotted in
Fig. 1 using the results of [108]. There is no equilibrium
state with M > Mmax. In that case, the BEC is expected to
collapse [145]. The outcome of the collapse (dense axion
star, black hole, bosenova, etc.) is discussed in
[145,156,201,204,207,210,211,214,215]. For M < Mmax

0 0.5 1 1.5
r (kpc)

0

0.1

0.2

0.3

0.4

0.5

0.6

 (
M

s/p
c3 )

a
s
 = -1.11 10

-62
 fm

m = 2.19 10
-22

 eV/c
2

FIG. 1. Density profile of a self-gravitating BEC with an
attractive self-interaction at the maximum mass Mmax. For
illustration, we have adopted the values m ¼ 2.19 ×
10−22 eV=c2 and as ¼ −1.11 × 10−62 fm (see Sec. III C) corre-
sponding to a DM halo of mass M ¼ 108 M⊙ and radius
R ¼ 1 kpc (minimum halo) that would be marginally stable.

9In Appendix E of [179] we showed that the soliton is similar
to a polytrope of index n ¼ 2 with an effective equation of state

P ¼
�
2πGℏ2

9m2

�
1=2

ρ3=2 ð44Þ

depending on the gravitational constant G. In that case, the
density profile is determined by the Lane-Emden equation of
index n ¼ 2 which has to be solved numerically [274]. It has a
compact support (see Fig. 2 of [179]) and the mass-radius relation
is given by [179]

M ¼ 5.25
ℏ2

Gm2R
: ð45Þ

10The Helmholtz-type equation (46) and its solution (47)
have a long history. As mentioned by Chandrasekhar [274],
the analytical solution (47) was first given by Ritter [275] in the
context of self-gravitating polytropic spheres. Actually, this
solution was already familiar to Laplace [276]. It corresponds
indeed to Laplace’s celebrated law of density for the earth interior
[sinðnrÞ=r] which he suggested as a consequence of supposing
the earth to be a liquid globe, having pressure increasing from the
surface inward in proportion to the augmentation of the square of
the density.
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the equilibrium states with R > R�
99 are stable and the

equilibrium states with R < R�
99 are unstable.11 In the

nongravitational (NG) limit R ≪ R�
99, Eq. (38) can

be written as

−
ℏ2

2m

Δ ffiffiffi
ρ

pffiffiffi
ρ

p þ 4πasℏ2

m2
ρ ¼ E: ð51Þ

It is equivalent to the standard stationary GP equation. The
mass-radius relation is given by (see, e.g., [108])

M ¼ 0.275
mR99

jasj
: ð52Þ

These equilibrium states are unstable. In the NI limit
R ≫ R�

99, we recover Eqs. (42) and (43). These equilibrium
states are stable.
Remark:—We have seen that self-gravitating BECs with

an attractive self-interaction (as < 0) can be at equilibrium
only below a maximum mass given by Eq. (49).
Conversely, a self-gravitating BEC of mass M can be at
equilibrium only if the scattering length of the bosons is
above a minimum negative value [107,108]

ðasÞmin ¼ −1.024
ℏ2

GmM2
: ð53Þ

D. Infinite homogeneous BEC in the linear regime:
Quantum Jeans problem

We now apply the GPP equations (1) and (2), or
equivalently the quantum Euler-Poisson equations
(10)–(13), to the universe as a whole in order to study
the initiation of structure formation. Specifically, following
[107], we study the linear dynamical stability of an infinite
homogeneous self-gravitating BEC with density ρ and
velocity u ¼ 0 described by the quantum Euler-Poisson
equations (10)–(13). This is a generalization of the classical
Jeans problem [237] to a quantum fluid.
Considering a small perturbation about an infinite homo-

geneous equilibrium state, making the Jeans swindle
[270,277], and linearizing the hydrodynamic equations
(10)–(13), we obtain12

∂δ
∂t þ∇ · u ¼ 0; ð54Þ

∂u
∂t ¼ −c2s∇δ −∇δΦþ ℏ2

4m2
∇ðΔδÞ; ð55Þ

ΔδΦ ¼ 4πGρδ; ð56Þ

where c2s ¼ P0ðρÞ is the squared speed of sound and
δðr; tÞ ¼ δρðr; tÞ=ρ is the density contrast. Taking the time
derivative of Eq. (54) and the divergence of Eq. (55), and
using the Poisson equation (56), we obtain a single equation
for the density contrast

∂2δ

∂t2 ¼ −
ℏ2

4m2
Δ2δþ c2sΔδþ 4πGρδ: ð57Þ

Expanding the solutions of this equation into plane waves of
the form δðr; tÞ ∝ exp½iðk · r − ωtÞ�, we obtain the general
dispersion relation [107]

ω2 ¼ ℏ2k4

4m2
þ c2sk2 − 4πGρ: ð58Þ

This quantum dispersion relation may also be obtained from
the gravitational Bogoliubov equations (see Appendix D of
Ref. [190]). For ℏ ¼ 0, we recover the classical Jeans
dispersion relation. The dispersion relation (58) is studied
in detail in [107,153,190]. The generalized Jeans wave
number kJ, corresponding to ω ¼ 0, is determined by the
quadratic equation

ℏ2k4J
4m2

þ c2sk2J − 4πGρ ¼ 0: ð59Þ

It is given by [107]

k2J ¼
2m2

ℏ2

�
−c2s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4s þ

4πGρℏ2

m2

r �
: ð60Þ

In the classical (or TF) limit ℏ → 0 we recover the classical
Jeans wave number

k2J ¼
4πGρ
c2s

: ð61Þ

In the noninteracting limit c2s ¼ 0 we obtain the quantum
Jeans wave number

k2J ¼
�
16πGρm2

ℏ2

�
1=2

: ð62Þ

The Jeans length is λJ ¼ 2π=kJ. The Jeans radius and the
Jeans mass are defined by

RJ ¼
λJ
2
¼ π

kJ
; MJ ¼

4

3
πρR3

J: ð63Þ

They represent the minimum radius and the minimum mass
of a fluctuation that can collapse at a given epoch. They are
therefore expected to provide an order of magnitude of the

11This can be shown by using the Poincaré criterion, by using
the Wheeler theorem, or by computing the squared pulsation
[107,108,156].

12See Refs. [107,153,190] for a more detailed discussion and
some comments about the Jeans swindle.
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minimum size and minimum mass of DM halos interpreted
as self-gravitating BECs.13

We note that when c2s < 0, the system can be unstable
even in the absence of self-gravity (G ¼ 0). This is a purely
hydrodynamic instability (also called tachyonic instability
for a SF). In that case, the dispersion relation (58)
reduces to

ω2 ¼ ℏ2k4

4m2
− jc2s jk2: ð64Þ

The critical wave number of the instability is [107]

kJ ¼
�
4m2jc2s j

ℏ2

�
1=2

: ð65Þ

The maximum growth rate is equal to

γmax ¼
mjc2s j
ℏ

: ð66Þ

It corresponds to a wave number

km ¼
�
2m2jc2s j

ℏ2

�
1=2

¼ kJffiffiffi
2

p : ð67Þ

These results and their generalization in the presence of
self-gravity are discussed in [107,153,190].
Extending the Jeans instability study for a self-

gravitating BEC in an expanding universe, using the
equations of Appendix I, we find that the evolution of the
density contrast δkðtÞ is determined by the equation [114]

δ̈þ 2
_a
a
_δþ

�
ℏ2k4

4m2a4
þ c2sk2

a2
− 4πGρb

�
δ ¼ 0: ð68Þ

This equation extends the classical Bonnor equation to a
quantum gas. A detailed study of this equation has been
performed in Refs. [114,153]. In a static universe (a ¼ 1),
writing δ ∝ e−iωt, we recover the dispersion relation (58).
The comoving Jeans length is λcJ ¼ λJ=a. The Jeans
instability criterion corresponds to λ > λcJ. In a static uni-
verse, the density contrast increases exponentially rapidly
with time as eγt [237]. In an expanding universe, it usually
increases algebraically rapidly with time [278].
Remark:—In the CDM model for which ℏ ¼ 0 and

cs ≃ 0, we find that λJ ≃ 0. This implies that structures
can form at all scales. This is not what is observed and this
is why the BECDM model has been introduced. In that
case, there is a nonzero (relatively large) Jeans length even
at T ¼ 0 because of quantum effects.

III. MASS-RADIUS RELATION OF BECDMHALOS
FROM THE f -ANSATZ

In Ref. [107], using a Gaussian ansatz for the wave
function, we have obtained an approximate analytical
expression of the mass-radius relation of self-gravitating
BECs. In Appendix G 2, we show that the form of this
relation is independent of the ansatz. Indeed, it is always
given by

M ¼ a ℏ2

Gm2R

1 − b2 asℏ2

Gm3R2

; ð69Þ

where only the value of the coefficients a and b depends on
the ansatz. Here, we shall determine the coefficients a and b
so as to recover the exact mass-radius relation in some
particular limits. Once the mass-radius relation is known,
we can compute the average density of the DM halo by

ρ ¼ 3M
4πR3

: ð70Þ

Remark:—With the Gaussian ansatz, we get a�G ¼
2σG=νG ¼ 3.76 and b�G ¼ ð6πζG=νGÞ1=2 ¼ 1.73, where
we have used Eq. (F4) with σG ¼ 3=4, ζG ¼ 1=ð2πÞ3=2,
and νG ¼ 1=

ffiffiffiffiffiffi
2π

p
. However, below, we shall identify the

radius R with R99, not with the radius R of the f-ansatz
defined in Eq. (G9). Since R99 ¼ 2.38167R for the
Gaussian ansatz, we obtain aG ¼ 2.38167a�G ¼ 8.96 and
bG ¼ 2.38167b�G ¼ 4.12 to be compared with the more
exact values of a and b found below.

A. Noninteracting bosons

For noninteracting bosons (as ¼ 0), the mass-radius
relation from Eq. (69) reduces to

M ¼ a
ℏ2

Gm2R
: ð71Þ

The mass decreases as the radius increases. If we identify R
with the radius R99 containing 99% of the mass and
compare Eq. (71) with the exact mass-radius relation of
noninteracting self-gravitating BECs from Eq. (43), we
get a ¼ 9.946.
The average density is given by

ρ ¼ 3a
4π

ℏ2

Gm2R4
¼ 3

4πa3
G3m6M4

ℏ6
: ð72Þ

The density decreases along the series of equilibria going
from small radii to large radii. The equilibrium states are all
stable.

13This is only an order of magnitude because the true mass and
the true size of the structures are determined by the complex
evolution of the system in the nonlinear regime.
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B. Repulsive self-interaction

For bosons with a repulsive self-interaction (as > 0), the
exact mass-radius relation is represented in Fig. 2. The
mass decreases as the radius increases. In the TF limit
(ℏ → 0 with fixed g ¼ 4πasℏ2=m3), the mass-radius rela-
tion from Eq. (69) reduces to

R ¼ b

�
asℏ2

Gm3

�
1=2

: ð73Þ

The radius is independent of the mass. If we identify Rwith
the radius at which the density vanishes and compare
Eq. (73) with the exact radius of self-gravitating BECs in
the TF limit from Eq. (48), we get b ¼ π. On the other
hand, in the NI limit, we recover the result from Eq. (71)
leading to a ¼ 9.946. We shall adopt these values of a and
b in the repulsive case (see Fig. 2 for a comparison with the
exact result).
The average density decreases along the series of

equilibria going from small radii to large radii, i.e., from
the TF regime to the NI regime. In the TF regime, the
average density is given by

ρ ¼ 3M
4πb3

�
Gm3

asℏ2

�
3=2

: ð74Þ

In the NI regime it is given by Eq. (72). The equilibrium
states are all stable.
The transition between the TF regime and the NI

regime [obtained by equating Eqs. (71) and (73)] typically
occurs at

Mt ¼
a
b

ℏffiffiffiffiffiffiffiffiffiffiffiffi
Gmas

p ; Rt¼ b

�
asℏ2

Gm3

�
1=2

; ρt¼
3a
4πb4

Gm4

a2sℏ2
:

ð75Þ

The TF regime is valid when M ≫ Mt and R ∼ Rt. The NI
regime is valid when M ≪ Mt and R ≫ Rt. Note that Rt
corresponds to the minimum radius Rmin (i.e., the radius in
the TF regime).

C. Attractive self-interaction

For bosons with an attractive self-interaction (as < 0),
the exact mass-radius relation is represented in Fig. 3. The
mass increases as the radius increases, reaches a maximum
value

Mmax ¼
a
2b

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p at R� ¼ b

�jasjℏ2

Gm3

�
1=2

; ð76Þ

and decreases. If we identify R� with the radius ðR�Þ99
containing 99% of the mass and compare Eq. (76) with the
exact values of the maximum mass and of the correspond-
ing radius from Eqs. (49) and (50), we get b ¼ 5.5 and
a=2b ¼ 1.012, leading to a ¼ 11.1. We shall adopt these
values in the attractive case (see Fig. 3 for a comparison
with the exact result). We note that the value a ¼ 11.1
obtained from the maximum mass is relatively close to the
value a ¼ 9.946 obtained from the NI limit (see Sec. III A).
In the NG limit, the mass-radius relation from Eq. (69)
reduces to

M ¼ a
b2

mR
jasj

: ð77Þ
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FIG. 2. Mass-radius relation of self-gravitating BECs with
as > 0 (full line: exact [108]; dotted line: Gaussian ansatz
[107]; dashed line: fit from Eq. (69) with a ¼ 9.946 and
b ¼ π). The mass is normalized by Ma¼ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Gmas

p
and the

radius by Ra ¼ ðasℏ2=Gm3Þ1=2.
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FIG. 3. Mass-radius relation of self-gravitating BECs with
as < 0 [full line: exact [108]; dotted line: Gaussian ansatz
[107]; dashed line: fit from Eq. (69) with a ¼ 11.1 and
b ¼ 5.5]. The mass is normalized by Ma ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and

the radius by Ra ¼ ðjasjℏ2=Gm3Þ1=2.
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The value a=b2 ¼ 0.367 obtained from the maximum mass
is relatively close to the exact value 0.275 from Eq. (52).
This is a consistency check. The density decreases along
the series of equilibria going from small radii to large radii,
i.e., from the NG regime to the NI regime. In the NG
regime, the average density is given by

ρ ¼ 3a
4πb2

m
jasjR2

¼ 3a3

4πb6
m3

jasj3M2
: ð78Þ

In the NI regime it is given by Eq. (72). The average density
at the maximum mass is

ρ� ¼
3a
8πb4

Gm4

a2sℏ2
: ð79Þ

The equilibrium states are unstable before the turning point
of mass (R < R�) and stable after the turning point of
mass (R > R�).
The transition between the NG regime and the NI

regime [obtained by equating Eqs. (71) and (77)] typically
occurs at

Mt¼
a
b

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p ; Rt¼b
�jasjℏ2

Gm3

�
1=2

; ρt¼
3a
4πb4

Gm4

a2sℏ2
:

ð80Þ

These scales are similar to those corresponding to the
maximum mass (we have ρt ¼ 2ρ�, Mt ¼ 2Mmax, and
Rt ¼ R�). The NG regime is valid whenM ≪ Mt and R ≪
Rt but these equilibrium states are unstable. The NI regime
is valid when M ≪ Mt and R ≫ Rt. There is no equilib-
rium state of mass M > Mmax.
Remark:—The scales (80) determining the transition

between the NG regime and the NI regime in the attractive
case are similar to the scales (75) determining the transition
between the TF regime and the NI regime in the repulsive
case provided that as is replaced by jasj.

IV. DARK MATTER PARTICLE MASS–
SCATTERING LENGTH RELATION

As explained previously, in the BECDM model, the
mass-radius relation (69) of a self-gravitating BEC at T ¼ 0
(ground state) describes the smallest halos observed in the
Universe.14 They correspond to dSphs like Fornax. From
the observations, these ultracompact DM halos have a
typical radius ∼1 kpc and a typical mass ∼108 M⊙. To fix
the ideas, we shall consider a minimum halo of radius and
mass15

R ¼ 1 kpc; M ¼ 108 M⊙ ðFornaxÞ: ð81Þ

Its average density is

ρ ¼ 3M
4πR3

¼ 1.62 × 10−18 g=m3 ðFornaxÞ: ð82Þ

Since R and M are prescribed by Eq. (81), we find that
Eq. (69) provides a relation

as ¼
amR
b2M

�
GMm2R
aℏ2

− 1

�
ð83Þ

between the mass m and the scattering length as of the
bosonic DM particle. Such a relation is necessary to obtain a
minimum halo consistent with the observations. The
DM particle mass-scattering length relation (83) may be
written as

as
a0�

¼
�
m
m0

�
3

−
m
m0

; ð84Þ

where we have introduced the scales

m0 ¼
�

aℏ2

GMR

�
1=2

ð85Þ

and

a0� ¼
a3=2

b2

�
ℏ2R
GM3

�
1=2

: ð86Þ

The relation mðasÞ is plotted in Fig. 4. Taking a ¼ 9.946
and b ¼ π (see Secs. III A and III B) adapted to bosons with
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FIG. 4. Mass m of the DM particle as a function of the
scattering length as in order to match the characteristics of the
minimum halo. The mass is normalized by m0 and the scattering
length by a0�. The stable part of the curve starts at the critical
minimum halo point [ðasÞc; mc]. It differs from the minimum of
the curve asðmÞ.

14It also describes the quantum core of larger DM halos [179].
15If more accurate values of R and M are adopted, the

numerical applications of our paper would slightly change.
However, the main ideas and the main results would remain
substantially the same.
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a repulsive self-interaction (or no interaction), we get
m0 ¼ 2.92 × 10−22 eV=c2 and a0� ¼ 8.13 × 10−62 fm.
Taking a ¼ 11.1 and b ¼ 5.5 (see Sec. III C) adapted
to bosons with an attractive self-interaction, we get
m0 ¼ 3.08 × 10−22 eV=c2 and a0� ¼ 3.12 × 10−62 fm.

A. Noninteracting bosons

For noninteracting bosons (as ¼ 0), we get

m ¼ m0 ¼ 2.92 × 10−22 eV=c2 ðBECNIÞ: ð87Þ

This is the typical mass considered in the literature when
the bosons are assumed to be noninteracting.
Remark:—In the NI regime, the mass from Eq. (87) can

be written as

m ¼
�

aℏ2

GMR

�
1=2

; ð88Þ

which is equivalent to Eq. (71).

B. Repulsive self-interaction

For bosons with a repulsive self-interaction (as > 0), a0�
determines the transition between the NI regime (as ≪ a0�)
where m ∼m0 and the TF regime (as ≫ a0�) where

m
m0

∼
�
as
a0�

�
1=3

: ð89Þ

When the self-interaction is repulsive, we have seen that all
the equilibrium states are stable. Therefore, in principle, all
the scattering lengths as > 0 and the corresponding masses
m > m0 are possible. In the TF regime, the mass-scattering
length relation (89) can be written as

as
m3

∼
GR2

b2ℏ2
; ð90Þ

which is equivalent to Eq. (73). The minimum halo
[Eq. (81)] just determines the ratio

as
m3

¼ 3.28 × 103 fm=ðeV=c2Þ3: ð91Þ

Note that only the radius R of the minimum halo matters in
this determination. In order to determine m and as
individually, we need another equation. Observations of
the Bullet Cluster give the constraint σ=m ≤ 1.25 cm2=g
where σ ¼ 4πa2s is the self-interaction cross section [279].
This can be written as

4πa2s
m

≤ 1.25 cm2=g ⇔
ðas=a0�Þ2
m=m0

≤ 7.83 × 1092: ð92Þ

If we replace the inequality by an equality, and combine
Eq. (92) with Eq. (89), we find that the mass and scattering
length of the DM particle are given by16

mmax ¼ 1.10× 10−3 eV=c2; ðasÞmax ¼ 4.41× 10−6 fm

ðBECTFÞ: ð93Þ

More generally, because of the Bullet Cluster constraint,
the scattering length of the DM boson must lie in the range
0 ≤ as ≤ ðasÞmax and its mass must lie in the range m0 ≤
m ≤ mmax (see Fig. 5). Therefore, when we account for a
repulsive self-interaction, the mass m of the boson required
to match the observations of the minimum halo can
increase by ∼18 orders of magnitude as compared to its
value m0 in the NI case [see Eqs. (87) and (93)].
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FIG. 5. The initially upper curve gives the DM particle mass
versus scattering length relation in order to match the character-
istics of the minimum halo [see Eq. (84)]. The mass is normalized
by m0 and the scattering length by a0�. The initially lower curve
gives the Bullet Cluster constraint from Eq. (92). Only the region
above this curve is allowed by the observations. The intersection
between these two curves determines the maximum DM particle
mass mmax=m0 ¼ 3.79 × 1018 and its maximum scattering length
ðasÞmax=a

0� ¼ 5.45 × 1055, leading to the results of Eq. (93). We
note that the intersection occurs in the TF regime where Eq. (84)
can be approximated by Eq. (89).

16Craciun and Harko [280] obtained a similar estimate.
However, they took a larger BECDM radius R ¼ 10 kpc instead
of R ¼ 1 kpc because they modeled large DM halos by a pure
BEC at T ¼ 0 in its ground state while we argue that the ground
state solution leading to Eq. (48) only applies to the minimum
halo with M ¼ 108 M⊙ and R ¼ 1 kpc and to the quantum core
of size Rc ¼ 1 kpc of larger DM halos (recall that the quantum
core of large DM halos is surrounded by an approximately
isothermal atmosphere due to the quantum interferences of
excited states) [169,179]. Since they applied Eq. (48) to the
whole DM halo instead of just its core as we do, they found a
smaller maximum mass mmax ¼ 0.1791 meV=c2 instead of
mmax ¼ 1.10 meV=c2.
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The BECTF model discussed previously corresponds to
the case where the bound fixed by the Bullet Cluster is
reached. For comparison, we can consider a BECt model
which corresponds to the transition between the NI limit
and the TF limit. It is obtained by substituting Eq. (87) into
Eq. (89), or Eq. (88) into Eq. (90), giving

mt¼2.92×10−22 eV=c2; ðasÞt¼8.13×10−62 fm

ðBECtÞ: ð94Þ

This corresponds to the scales m0 and a0� defined by
Eqs. (85) and (86).

C. Attractive self-interaction

For bosons with an attractive self-interaction (as < 0),
the relation (84) reveals the existence of a minimum
scattering length

ðasÞmin

a0�
¼ −

2

3
ffiffiffi
3

p at which
m�
m0

¼ 1ffiffiffi
3

p : ð95Þ

We find ðasÞmin ¼ −1.20 × 10−62 fm and m� ¼ 1.78×
10−22 eV=c2. The NI regime corresponds to jasj ≪ a0�
and m ∼m0. The NG regime corresponds to jasj ≪ a0� and
m ≪ m0 such that

m
m0

∼
jasj
a0�

: ð96Þ

In the NG regime, the mass-scattering length relation (96)
can be written as

jasj
m

¼ aR
b2M

¼ 1.01 × 10−40 fm=ðeV=c2Þ; ð97Þ

which is equivalent to Eq. (77). It is important to note that
the minimum scattering length ðasÞmin does not correspond
to the critical point (associated with the maximum mass
Mmax) separating stable from unstable equilibrium states.
This latter is located at

ðasÞc
a0�

¼ −
1

2
ffiffiffi
2

p ;
mc

m0

¼ 1ffiffiffi
2

p : ð98Þ

The equilibrium states with m < mc are unstable (they
correspond to configurations with R < R�) so that only the
equilibrium states with mc < m < m0 are stable (they
correspond to configurations with R > R�). Therefore, in
the attractive case, the scattering length of the DM boson
must lie in the range ðasÞc < as < 0 and its mass must lie in
the range mc < m < m0, with

mc ¼ 2.19 × 10−22 eV=c2; ðasÞc ¼ −1.11 × 10−62 fm

ðBECcritÞ: ð99Þ

There is no equilibrium state with as < ðasÞmin. On the
other hand, the equilibrium states with ðasÞmin < as <
ðasÞc are unstable. We note that, in the attractive case,
the mass m does not change substantially from its value m0

in the NI limit. The BECcrit model from Eq. (99) corre-
sponds to the case where the minimum halo is critical (i.e.,
its mass M ¼ 108 M⊙ is equal to Mmax).

D. Constraints from particle physics
and cosmology

For bosons with an attractive self-interaction, such as the
axion [15], it is more convenient to express the results in
terms of the decay constant f instead of the scattering
length as. They are related by (see, e.g., [156])

f ¼
�

ℏc3m
32πjasj

�
1=2

: ð100Þ

Particle physics and cosmology lead to the following
relation between f and m [147]:

Ωaxion ∼ 0.1

�
f

1017 GeV

�
2
�

m
10−22 eV=c2

�
1=2

; ð101Þ

where Ωaxion is the present fraction of axions in the
universe. Taking Ωaxion ∼Ωm;0 ¼ 0.3089 (assuming that
DM is exclusively made of axions), this relation can be
rewritten as

m3=2

jasj
¼ 1.57 × 1035 ðeV=c2Þ3=2=fm ð102Þ

or, in dimensionless form, as

ðm=m0Þ3=2
jasj=a0�

¼ 9.06 × 105: ð103Þ

Considering the intersection between the curves defined by
Eqs. (84) and (103), we find that m ≃m0. Then, taking
m ¼ m0 ¼ 2.92 × 10−22 eV=c2 [see Eq. (87)] and using
Eq. (102) we get as ¼ −3.18 × 10−68 fm. Therefore, we
can determine as and m individually. We find

mth ¼ 2.92× 10−22 eV=c2; ðasÞth ¼−3.18× 10−68 fm

ðBECthÞ: ð104Þ

We note that m has approximately the same value as in the
noninteracting model while as has a nonzero value. It
corresponds to a decay constant fth ¼ 1.34 × 1017 GeV.
Interestingly, f lies in the range 1016GeV≤f≤1018GeV
expected in particle physics (f is bounded above by the
reduced Planck mass and below by the grand unified scale
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of particle physics) [147]. We note that jasjth ≪ a0� so we
are essentially in the NI regime. This is confirmed by the
discussion of Sec. V C.

E. QCD axions

In the previous sections, we have determined some
constraints that the mass m and the scattering length as
of the bosons possibly composing DM must satisfy so that
they are able to form giant BECs of massM ∼ 108 M⊙ and
radius R ∼ 1 kpc comparable to dSphs like Fornax. This
leads to ULAs with a very small mass that are allowed by
particle physics (in connection to string theory) but that
have not been fully characterized yet [15]. On the other
hand, the characteristics of the QCD axion are precisely
known from cosmology and particle physics, and we can
see how they enter into the problem.
QCD axions have a massm ¼ 10−4 eV=c2 and a negative

scattering length as ¼ −5.8 × 10−53 m [281], correspond-
ing to a dimensionless self-interaction constant λ ¼ −7.39 ×
10−49 and a decay constant f ¼ 5.82 × 1019 eV (see
Appendix C). The maximum mass of QCD axion stars is
Mexact

max ¼ 6.46 × 10−14 M⊙ and their minimum stable radius
is ðR�

99Þexact ¼ 227 km (their average maximum density is
ρ̄ ¼ 2.62 × 103 g=m3 and the maximum number of axions
in an axion star is Nmax ¼ Mmax=m ¼ 7.21 × 1056).
These values of Mmax and R�

99 correspond to the typical
size of asteroids. Obviously, QCD axions cannot form giant
BECs with the dimension of DM halos like Fornax.
However, they can form mini boson stars (mini axion stars
or dark matter stars) of very low mass—axteroids—that
could be the constituents of DM halos under the form of
mini massive compact halo objects (mini MACHOs)
[145,156]. These mini axion stars are Newtonian self-
gravitating BECs of QCD axions with an attractive self-
interaction stabilized by the quantum pressure (Heisenberg
uncertainty principle). They may cluster into structures
similar to standard CDM halos. They might play a role as
DM components (i.e., DM halos could be made of mini
axion stars interpreted as MACHOs instead of WIMPs) if
they exist in the Universe in abundance. However, mini
axion stars (MACHOs) behave essentially as CDM and do
not solve the small-scale crisis of CDM.
Remark:—The collapse of axion stars above the limiting

mass Mmax [107] has been discussed by several authors
[145,156,201,204,207,210,211,214,215]. The collapse
may lead to the formation of a dense axion star or a black
hole. It may also be accompanied by an explosion with an
ejection of relativistic axions (bosenova).

V. CORE MASS–HALO MASS RELATION

The results of Secs. II–IV describe the ground state of a
self-gravitating BEC [107]. They apply to the minimum
halo [see Eq. (81)] which is a purely condensed object
without atmosphere. Larger DM halos have a core-halo

structure with a quantum core (soliton) in its ground state
and an approximately isothermal atmosphere due to quan-
tum interferences of excited states [149]. The results of
Secs. II–IValso apply to the quantum core of these objects.
The mass Mc of the quantum core increases with the halo
mass Mh. For noninteracting bosons and for bosons with a
repulsive self-interaction we may wonder if the core mass
can reach the maximum massMGR

max set by general relativity
and collapse toward a supermassive black hole (SMBH).
For bosons with an attractive self-interaction we may
wonder if the core mass can reach the maximum mass
found in [107] and collapse. The outcome of the collapse in
that case would be a dense axion star (soliton), a black hole,
or a bosenova [145,156,201,204,207,210,211,214,215].
These questions have been addressed in [169,179,181],
and we recall below the main results of these studies.
In Refs. [169,179,181], we have derived the core mass–

halo mass relation of DM halos (without or with the
presence of a central black hole) from a thermodynamic
approach. We have obtained a general relation McðMhÞ
valid for noninteracting bosons as well as for bosons with a
repulsive or an attractive self-interaction and for fermions.
To obtain this relation we have first shown [169,179] that
the maximization of the Lynden-Bell entropy at fixed mass
and energy leads to the “velocity dispersion tracing”
relation according to which the velocity dispersion in the
core v2c ∼GMc=Rc is of the same order as the velocity
dispersion in the halo v2h ∼ GMh=rh. This relation can be
written as

vc ∼ vh ⇒
Mc

Rc
∼
Mh

rh
: ð105Þ

The core mass-radius relationMcðRcÞ can be obtained from
the Gaussian ansatz yielding [107]

Mc ¼
3.76 ℏ2

Gm2Rc

1 − 3 asℏ2

Gm3R2
c

ð106Þ

or, equivalently,

Rc ¼ 1.87
ℏ2

Gm2Mc

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.849

GmasM2
c

ℏ2

r �
: ð107Þ

On the other hand, assuming that the atmosphere is
isothermal, the halo mass-radius relation MhðrhÞ is given
by [169]

Mh ¼ 1.76Σ0r2h; ð108Þ

where Σ0 ¼ 141 M⊙=pc2 is the universal surface density of
DM halos inferred from the observations [282–284].
Combining Eqs. (105)–(108), we obtain the core mass–
halo mass relation McðMhÞ under the form
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Mc ¼ 2.23
ℏΣ1=4

0 M1=4
h

G1=2m

�
1þ 1.06

as
m
Σ1=2
0 M1=2

h

�
1=2

: ð109Þ

Writing Mc ¼ Mh for the minimum halo, we obtain

ðMhÞ3=2min ¼ 4.99
ℏ2Σ1=2

0

Gm2

�
1þ 1.06

as
m
Σ1=2
0 ðMhÞ1=2min

�
: ð110Þ

This equation determines the mass ðMhÞmin of the mini-
mum halo as a function of m and as. Inversely, for given
ðMhÞmin, it determines the relation between m and as.
A universal relation can be obtained as follows [179,181].
For a given value of the minimum halo mass ðMhÞmin we
introduce the scales [see Eqs. (204) and (207) of [179] ]

m0 ¼ 2.23
ℏΣ1=4

0

G1=2ðMhÞ3=4min

ð111Þ

and

a0� ¼ 2.11
ℏ

G1=2Σ1=4
0 ðMhÞ5=4min

: ð112Þ

For example, taking ðMhÞmin ¼ 108 M⊙, we get m0 ¼
2.25 × 10−22 eV=c2 and a0� ¼ 4.95 × 10−62 fm. With these
scales, the normalized DM particle mass–scattering length
relation (110) needed to reproduce the minimum halo
(ground state) can be written as [see Eq. (208) of [179] ]

as
a0�

¼
�
m
m0

�
3

−
m
m0

ð113Þ

and the normalized core mass–halo mass relation (109) can
be written as17

Mc

ðMhÞmin
¼ m0

m

�
Mh

ðMhÞmin

�
1=4

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm0

m
as
a0�

�
Mh

ðMhÞmin

�
1=2

s
: ð114Þ

This leads to the universal curve plotted in Fig. 19 of [179].
The only input is the DM particle mass m or, equivalently,
its scattering length as [they are related to each other by
Eq. (113)]. The minimum halo mass ðMhÞmin obtained from
the observations determines the scales m0 and a0�. We have
also established the following relation [see Eq. (146) of
[179] ]:

Mh

M⊙
¼ 6.01 × 10−6

�
Mv

M⊙

�
4=3

ð115Þ

between the halo mass Mh used in our papers
[169,179,181] and the virial halo mass Mv used in [126].

A. Noninteracting bosons

For noninteracting bosons, the core mass–halo mass
relation is [see Eq. (226) of [179] ]

Mc ¼ 2.23

�
ℏ4Σ0Mh

G2m4

�
1=4

: ð116Þ

For as ¼ 0 the mass of the boson is given by
m ¼ m0 ¼ 2.25 × 10−22 eV=c2.18 For a DM halo of mass
Mh ¼ 1012 M⊙ similar to the one that surrounds our
Galaxy, we obtain a core mass Mc ¼ 109 M⊙ and a core
radius Rc ¼ 63.5 pc. The quantum core represents a bulge
or a nucleus. It cannot mimic a SMBH because it is too
much extended (Rc2=GM ∼ 106 ≫ 1).19

The maximum mass and the minimum radius of a
noninteracting boson star at T ¼ 0 set by general relativity
are [233,234]

MGR
max ¼ 0.633

ℏc
Gm

; RGR
min ¼ 9.53

GMmax

c2
: ð117Þ

These scalings can be obtained as explained in
Appendix B. 2 of [107]. For a boson of mass
m ¼ 2.25 × 10−22 eV=c2, we obtain MGR

max ¼ 3.76 ×
1011 M⊙ and RGR

min ¼ 0.171 pc. The maximum mass is
much larger than the typical quantum core mass of a DM
halo. According to Eq. (116) the mass of the soliton would
be equal to the maximum mass (Mc ¼ MGR

max) in a DM halo
of mass Mh ¼ 6.49 × 10−3c4=ðG2Σ0Þ ¼ 2.01 × 1022 M⊙
(this expression is independent of the boson mass) [181].
Such a large halo mass is clearly unrealistic (the biggest
DM halos observed in the Universe have a mass
Mh ∼ 1014 M⊙). Therefore, the soliton present at the center
of a noninteracting BECDM halo can never collapse toward
a SMBH. This conclusion was first reached in Appendix C
of [181]. Since Mc ≪ MGR

max in all realistic DM halos, a
nonrelativistic approach is justified.
Remark:—Avery massive object (Sagittarius A*) resides

at the center of our Galaxy. This object has a mass
M ¼ 4.2 × 106 M⊙ associated with a Schwarzschild radius
RS ¼ 4.02 × 10−7 pc. Its radius is not known exactly but it
must be less than RP ¼ 6 × 10−4 pc, the S2 star pericenter
(RP ¼ 1492RS) [285]. This object is believed to be a
SMBH but it could also be a compact object such as a
boson star or a fermion ball. Let us assume that this object

17This expression can be obtained from Eqs. (205), (206), and
(223) of [179].

18In the numerical applications we assume that ðMhÞmin ¼
108 M⊙.

19It can be shown that the mass of the soliton is of the order of
the de Broglie length. Indeed, from Eqs. (105) and (43) we get
Rc ∼ λdB with λdB ∼ ℏ=ðmvÞ where v ∼ vc ∼ vh ∼ ðGMh=rhÞ1=2.
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is a noninteracting boson star (soliton). Using the non-
relativistic mass-radius relation from Eq. (43) with M ¼
4.2 × 106 M⊙ and R ¼ 6 × 10−4 pc, we find that the mass
of the boson ism ¼ 1.84 × 10−18 eV=c2 [using the expres-
sion of the maximum mass from Eq. (117) with M ¼
4.2 × 106 M⊙ we get m ¼ 2.01 × 10−17 eV=c2 but this
situation is too extreme]. These values are forbidden by our
model which assumes that the ground state of the self-
gravitating Bose gas corresponds to a minimum halo of
mass M ¼ 108 M⊙ and radius R ¼ 1 kpc. However, if we
relax this assumption, it may be possible to construct a
realistic model of the Milky Way (MW) in which a
noninteracting boson star mimics a SMBH.

B. Repulsive self-interaction in the TF limit

For bosons with a repulsive self-interaction in the TF
limit, the core mass–halo mass relation is [see Eq. (229) of
[179] ]

Mc ¼ 2.30

�
ℏ2Σ0asMh

Gm3

�
1=2

: ð118Þ

In the TF limit, the ratio as=m3 is given by
as=m3 ¼ a0�=m3

0 ¼ 4.35 × 103 fm=ðeV=c2Þ3. For a DM
halo ofmassMh ¼ 1012 M⊙ similar to the one that surrounds
ourGalaxy, we obtain a coremassMc ¼ 1010 M⊙ and a core
radiusRc ¼ 635 pc. Thequantumcore represents a bulge or a
nucleus. It cannot mimic a SMBH because it is too much
extended (Rc2=GM ∼ 106 ≫ 1).
The maximum mass and the minimum radius of a self-

interacting boson star at T ¼ 0 in the TF limit set by
general relativity are [228,235,236]

MGR
max ¼ 0.307

ℏc2
ffiffiffiffiffi
as

p
ðGmÞ3=2 ; RGR

min ¼ 6.25
GMmax

c2
: ð119Þ

These scalings can be obtained as explained in Appendix
B. 3. of [107]. For a ratio as=m3¼4.35×103 fm=ðeV=c2Þ3,
we obtain Mmax ¼ 2.35 × 1015 M⊙ and Rmin ¼ 703 pc.
The maximum mass is much larger than the typical
quantum core mass of a DM halo. According to
Eq. (118) the mass of the soliton would be equal to the
maximum mass (Mc ¼ MGR

max) in a DM halo of massMh ¼
0.0178c4=ðG2Σ0Þ ¼ 5.51 × 1022 M⊙ (this expression is
independent of the ratio as=m3) [181]. Such a large halo
mass is clearly unrealistic (the biggest DM halos observed
in the Universe have a massMh ∼ 1014 M⊙). Therefore, the
quantum core present at the center of a BECDM halo with
repulsive self-interactions can never collapse toward a
SMBH. This conclusion was first reached in
Appendix C of [181]. Since Mc ≪ MGR

max in all realistic
DM halos, a nonrelativistic approach is justified.
Remark:—Let us assume that the object at the center of

the MW is a self-interacting boson star. Using the

nonrelativistic mass-radius relation (48) with R ¼ 6×
10−4 pc we find that as=m3 ¼ 1.18 × 10−9 fmðeV=c2Þ3
[using the expression of the maximum mass from
Eq. (119) withM ¼ 4.2 × 106 M⊙ we get as=m3 ¼ 1.39 ×
10−14 fmðeV=c2Þ3 but this situation is too extreme]. These
values are forbidden by our model which assumes that the
ground state of the self-gravitating Bose gas corresponds to
a minimum halo of mass M ¼ 108 M⊙ and radius
R ¼ 1 kpc. However, if we relax this assumption, it may
be possible to construct a realistic model of the MW in
which a self-interacting boson star mimics a SMBH.

C. Attractive self-interaction

For bosons with an attractive self-interaction, the core
mass–halo mass relation (see Fig 19 in [179]) presents a
maximum when the core mass reaches the critical value
[see Eqs. (181) and (235) of [179] ]

ðMcÞmax ¼ 1.085
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p ¼ 10.9

�
f2ℏ

c3m2G

�
1=2

ð120Þ

at which it becomes unstable and collapses [107,145]. The
collapse of the core, leading to a dense axion star (soliton),
a black hole, or a bosenova [145,156,201,204,207,
210,211,214,215], occurs in a DM halo of mass [see
Eqs. (233) and (234) of [179] ]

ðMhÞmax ¼ 0.223
m2

a2sΣ0

¼ 2255
f4

ℏ2c6Σ0

: ð121Þ

We note that the maximum halo mass ðMhÞmax depends
only on f while the maximum core mass ðMcÞmax depends
on f and m.
The maximum mass of a self-gravitating BEC made of

bosons with massmth ¼ 2.92 × 10−22 eV=c2 and scattering
length ðasÞth ¼ −3.18 × 10−68 fm (corresponding to
fth ¼ 1.34 × 1017 GeV) is Mmax ¼ 5.10 × 1010 M⊙ and
the corresponding radius is R�

99 ¼ 1.09 pc. The minimum
halo (M ¼ 108 M⊙, R ¼ 1 kpc) has a mass much smaller
than the maximum mass (M < Mmax), so it is stable. The
halo mass at which the core mass would become unstable
(Mc ¼ Mmax) and collapse is ðMhÞmax ¼ 1.01 × 1020 M⊙.
Since the largest DM halos observed in the Universe have a
much smaller mass, of the order ofMh∼1014M⊙≪ðMhÞmax,
we conclude that the quantum cores of BECDM halos
with an attractive self-interaction are always stable
[Mc<ðMcÞmax]. Furthermore, since Mh ≪ ðMhÞmax, the
attractive self-interaction is negligible. This corroborates
our previous claims [179,181] that the attractive self-
interaction of the bosons can be neglected for what concerns
the structure of DMhalos in the nonlinear regime: Everything
happens as if the bosons were not self-interacting.
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Remark:—We recall that the theoretical value fth ¼
1.34 × 1017 GeV comes from the constraints from particle
physics and cosmology [147] (see Sec. IV D). It may be
interesting to relax these constraints and consider arbitrary
values of f. In that case, we find that an attractive self-
interaction would be important in realistic DM halos of
mass Mh < 1014 M⊙, and lead to the collapse of their
quantum core when Mh ¼ ðMhÞmax [corresponding to
Mc ¼ ðMcÞmax], if f < 4.22 × 1015 GeV [the bound cor-
responds to ðMhÞmax ¼ 1014 M⊙ in Eq. (121)]. If values of
f smaller than 4.22 × 1015 GeV are allowed, then the
quantum core of a DM halo of mass ðMhÞmax [satisfying
ðMhÞmax < 1014 M⊙] reaches the critical mass and collap-
ses. This is the case of the BECcrit model, corresponding to
mc ¼ 2.19 × 10−22 eV=c2 and fc ¼ 1.97 × 1014 GeV, for
which ðMhÞmax ¼ ðMcÞmax ¼ 108 M⊙ and R99� ¼ 1 kpc.
On the other hand, for f ¼ 1.34 × 1015 GeV and m ¼
10−22 eV=c2 we find that ðMhÞmax ∼ 1012 M⊙,
ðMcÞmax ∼ 109 M⊙, and R99� ∼ 300 pc. The collapse of
the quantum core leads to a dense axion star (soliton)
[156,201,204] or a bosenova [210].20 However, we recall
that values of f smaller than 4.22 × 1015 GeV are outside
of the range 1016 GeV ≤ f ≤ 1018 GeV predicted by
particle physics and cosmology [147], so that, according
to these constraints, we do not expect the collapse of the
core to occur in realistic DM halos of massMh < 1014 M⊙
(as discussed above).

D. Fermions

For fermions, the core mass–halo mass relation is (see
Sec. VI.C of [179])

Mc ¼ 3.83
ℏ3=2

m2

�
MhΣ0

G2

�
3=8

: ð122Þ

The mass of the fermion required to account for the
characteristics of the minimum halo is given by m ¼
170 eV=c2 (see Sec. II.A of [179]). For a DM halo of
mass Mh ¼ 1012 M⊙ similar to the one that surrounds our
Galaxy, we obtain a core massMc ¼ 4.47 × 109 M⊙ and a
core radius Rc ¼ 284 pc. The quantum core represents a
bulge or a nucleus. It cannot mimic a SMBH because it is
too much extended (Rc2=GM ∼ 106 ≫ 1).
The maximum mass and the minimum radius of a

fermion star at T ¼ 0 set by general relativity are [232]

MGR
max¼0.384

�
ℏc
G

�
3=2 1

m2
; RGR

min¼8.73
GMGR

max

c2
: ð123Þ

These scalings can be obtained as explained in
Appendix B. 1 of [107]. For a fermion of mass
m ¼ 170 eV=c2, we obtain Mmax ¼ 2.17 × 1013 M⊙ and
RGR
min ¼ 8.85 pc. The maximum mass is much larger than

the typical quantum core mass of a DM halo. According to
Eq. (122) the mass of the fermion ball would be equal to the
maximum mass (Mc ¼ MGR

max) in a DM halo of massMh ¼
2.17 × 10−3c4=ðG2Σ0Þ ¼ 6.71 × 1021 M⊙ (this expression
is independent of the fermion mass m) [181]. Such a large
halo mass is clearly unrealistic (the biggest DM halos
observed in the Universe have a mass Mh ∼ 1014 M⊙).
Therefore, the fermion ball present at the center of a
fermionic DM halo can never collapse toward a SMBH.
This conclusion was first reached in Appendix C of [181].
Since Mc ≪ MGR

max in all realistic DM halos, a nonrelativ-
istic approach is justified.
Remark:—Let us assume that the object at the center of

the MW is a fermion ball. Using the nonrelativistic mass-
radius relation [see Eq. (6) in [179] ]

M ¼ 91.9
ℏ6

G3m8R3
ð124Þ

withM ¼ 4.2 × 106 M⊙ and R ¼ 6 × 10−4 pc we get m ¼
54.6 keV=c2 [using the expression of the maximum mass
from Eq. (123) with M ¼ 4.2 × 106 M⊙ we get m ¼
386 keV=c2 but this situation is too extreme]. These values
are forbidden by our model which assumes that the ground
state of the self-gravitating Fermi gas corresponds to a
minimum halo of mass M ¼ 108 M⊙ and radius
R ¼ 1 kpc. However, if we relax this assumption, it is
possible to construct a realistic model of the MW in which a
fermion ball mimics a SMBH. Such a model has been
developed in [66,74] (see also [47,51,69]).

E. Conclusion

Following our previous works (see in particular
Appendix C of [181]), we have shown that the quantum
cores of bosonic and fermionic DM halos have a mass Mc
much smaller than the general relativistic maximum mass
MGR

max so they cannot collapse toward a SMBH. They are
essentially Newtonian objects (Mc ≪ MGR

max). In the case of
bosons with attractive self-interactions, provided that f lies
in the range 1016 GeV ≤ f ≤ 1018 GeV predicted by
particle physics and cosmology, the core mass Mc of
realistic DM halos (Mh < 1014 M⊙) is always smaller than
the maximum mass Mmax found in [107] so they do not
collapse. Therefore, the quantum cores of bosonic and
fermionic DM halos are expected to be stable in all cases of
astrophysical interest. They represent large quantum
bulges. They may, however, evolve collisionally on a
secular timescale and ultimately collapse toward a
SMBH via the process of gravothermal catastrophe [286]
followed by a dynamical instability of general relativistic

20It does not lead to a SMBH which would be obtained for
much larger values of f (> 1018 GeV) [211,215] for which our
previous assumptions do not apply.
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origin [287] if the halo massMh is sufficiently large (above
the microcanonical critical point), as advocated in [169].
We have also shown that bosons with an attractive self-
interaction behave essentially as noninteracting bosons in
situations of astrophysical interest while bosons with a
repulsive self-interaction can be very different from non-
interacting bosons (their mass m may be 18 orders of
magnitude larger). These conclusions were first reached in
[179,181].

VI. JEANS MASS-RADIUS RELATION

In this section, we study how the Jeans length λJ and the
Jeans mass MJ of self-gravitating BECs depend on the
density ρ. We apply these results in a cosmological context,
during the matter era, where the density of BECDM
evolves with time as (see, e.g., [153] for more details)

ρ

g=m3
¼ 2.25 × 10−24a−3; ð125Þ

where a is the scale factor. The beginning of the matter era,
which can be identified with the epoch of radiation-matter
equality (i.e., the transition between the radiation era and
the matter era), occurs at aeq ¼ 2.95 × 10−4. At that
moment, the DM density is ρeq ¼ 8.77 × 10−14 g=m3. In
comparison, the present density of DM is ρ0 ¼ 2.25 ×
10−24 g=m3 (corresponding to a0 ¼ 1). In the following,
we compute the Jeans scales λJ andMJ for any value of the
density between the epoch of radiation-matter equality ρeq
and the present epoch ρ0.
The Jeans instability analysis is valid during the linear

regime of structure formation (it describes their initiation)
which is expected to be close to the epoch of radiation-
matter equality which marks the beginning of the matter
era. By contrast, at the present epoch, nonlinear effects have
become important (the DM halos are already formed) and
the Jeans instability analysis is not valid anymore except at
very large scales. We stress that the Jeans scales can only
give an order of magnitude of the size and mass of the DM
halos since these objects result from a very nonlinear
process of free fall and violent relaxation which extends far
beyond the linear regime. It is therefore not straightforward
to relate quantitatively the characteristic sizes, masses, and
densities of DM halos to the Jeans scales. Nevertheless, the
Jeans approach provides a simple first step toward the
problem of structure formation.
Let us consider a standard BEC at T ¼ 0 with an

equation of state given by Eq. (20). Using the correspond-
ing expression of the speed of sound, the Jeans wave
number (60) can be written as [107]

k2J ¼
8πjasjρ

m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Gm4

4πa2sℏ2ρ

s
− sgnðasÞ

�
: ð126Þ

The Jeans radius and the Jeans mass defined by Eq. (63) are
then given by

RJ ¼
ð πm
8jasjρÞ1=2h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Gm4

4πa2sℏ2ρ

q
− sgnðasÞ

i
1=2 ; ð127Þ

MJ ¼
4
3
πð πm

8jasjÞ3=2

ρ1=2
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Gm4

4πa2sℏ2ρ

q
− sgnðasÞ

i
3=2 : ð128Þ

Eliminating the density between Eqs. (127) and (128), we
obtain the Jeans mass-radius relation

MJ ¼
π4

12
ℏ2

Gm2RJ

1 − π2 asℏ2

Gm3R2
J

: ð129Þ

As noted in [107], this expression is similar to the
approximate mass-radius relation of BECDM halos given
by Eq. (69).21 Comparing Eqs. (69) and (129), we get aJ ¼
π4=12 ≃ 8.12 and bJ ¼ π which are close to the values of a
and b obtained in Sec. III. This agreement is striking
because the Jeans mass-radius relation [Eq. (129)] is valid
in the linear regime of structure formation close to spatial
homogeneity while the mass-radius relation of BECDM
halos [Eq. (69)] is valid in the strongly nonlinear regime of
structure formation (after free fall and violent relaxation)
for very inhomogeneous objects. Before studying the
relations (127)–(129) in the general case, we consider
particular limits of these relations.

A. NI limit

In the NI limit (as ¼ 0), the Jeans length and the Jeans
mass are given by [76,79,87,102,107]

λJ ¼ 2π

�
ℏ2

16πGρm2

�
1=4

; MJ ¼
1

6
π

�
π3ℏ2ρ1=3

Gm2

�
3=4

:

ð130Þ

They can be written as

λJ
pc

¼ 1.16 × 10−12
�
eV=c2

m

�
1=2

�
g=m3

ρ

�
1=4

; ð131Þ

MJ

M⊙
¼ 1.20 × 10−20

�
eV=c2

m

�
3=2

�
ρ

g=m3

�
1=4

: ð132Þ

21The similarity between the mass-radius relation obtained
from the f-ansatz and from the Jeans instability study is discussed
at a general level in Appendix G.
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Using Eq. (125), we find that the Jeans length increases as
a3=4 while the Jeans mass decreases as a−3=4 (the comoving
Jeans length decreases as a−1=4). Eliminating the density
between the relations of Eq. (130), we obtain

MJλJ ¼
π4

6

ℏ2

Gm2
: ð133Þ

This relation is similar to the mass-radius relation (43) of
Newtonian BECDM halos made of noninteracting bosons
[77,107,108].

B. TF limit

Let us consider bosons with a repulsive self-interaction
(as > 0). In the TF limit (ℏ ¼ 0), the Jeans length and the
Jeans mass are given by [107]

λJ ¼ 2π

�
asℏ2

Gm3

�
1=2

; MJ ¼
1

6
πρ

�
4π2asℏ2

Gm3

�
3=2

: ð134Þ

They can be written as

λJ
pc

¼ 34.9

�
as
fm

�
1=2

�
eV=c2

m

�
3=2

; ð135Þ

MJ

M⊙
¼ 3.30 × 1020

�
as
fm

�
3=2

�
eV=c2

m

�
9=2 ρ

g=m3
: ð136Þ

We note that the Jeans length is independent of the density
(the comoving Jeans length decreases as a−1) [107]. Using
Eq. (125), we find that the Jeans mass decreases as a−3. The
relation from Eq. (134) is similar to the relation (48)
determining the radius of a self-interacting BECDM halo in
the TF approximation [78,82,89,96,98,107,228].

C. NG limit

Let us consider bosons with an attractive self-interaction
(as < 0). In the nongravitational limit (G ¼ 0), the Jeans
length and the Jeans mass22 are given by [107]

λJ¼2π

�
m

16πjasjρ
�

1=2
; MJ¼

π

6

1

ρ1=2

�
πm
4jasj

�
3=2

: ð137Þ

They can be written as

λJ
pc

¼ 3.83 × 10−26
�
fm
jasj

�
1=2

�
m

eV=c2

�
1=2

�
g=m3

ρ

�
1=2

;

ð138Þ

MJ

M⊙
¼ 4.36 × 10−61

�
fm
jasj

�
3=2

�
m

eV=c2

�
3=2

�
g=m3

ρ

�
1=2

:

ð139Þ

Using Eq. (125), we find that the Jeans length and the Jeans
mass both increase as a3=2 (the comoving Jeans length
increases as a1=2). Eliminating the density between the
relations of Eq. (137), we obtain

MJ ¼
π2

24

m
jasj

λJ: ð140Þ

This relation is similar to the mass-radius relation of
nongravitational BECDM halos with an attractive self-
interaction given by Eq. (52) [108]. We recall, however,
that these equilibrium states (valid in the nonlinear regime
of structure formation) are unstable so they cannot arise in
practice (see [107] for detail). Therefore, only the relations
(137)–(140) obtained from the Jeans analysis in the linear
regime of structure formation are physically meaningful.
They determine the initiation of structures (clumps) in a
homogeneous BEC due to the attractive self-interaction of
the bosons. Their evolution in the nonlinear regime requires
a specific analysis. Since these clumps cannot evolve
toward stable DM halos with mass M ∼MJ and radius
R ∼ RJ, they are expected to collapse toward smaller
structures until repulsive terms in the self-interaction
potential (such as φ6 terms not considered here) come into
play [156].
Remark: In the NG limit, the maximum growth rate of

the instability is given by [see Eq. (66)]

γmax ¼
4πjasjℏρ

m2
: ð141Þ

It corresponds to a wavelength [see Eq. (67)]

λm ¼ 2π

�
m

8πjasjρ
�

1=2
¼

ffiffiffi
2

p
λJ: ð142Þ

D. Repulsive self-interaction

In order to determine the evolution of the Jeans scales
with the density, we need to specify the parameters of the
DM particle. For illustration, we use the parameters
obtained in Sec. IV (see also Appendix D of [148] and
Sec. II of [179]). They have been obtained in order to match
the characteristics of a minimum halo of radius R ∼ 1 kpc
and massM ∼ 108 M⊙, similar to Fornax, interpreted as the
ground state of a self-gravitating BEC. We shall use this

22We call them “Jeans length” and “Jeans mass” by an abuse of
language since there is no gravity in the present situation. The
instability is a purely “hydrodynamic instability” (also called
“tachyonic instability”) due to the attractive self-interaction
(as < 0) which yields a negative squared speed of sound
(c2s < 0). The “Jeans” terminology will make sense, however,
in the general case (see Sec. VI E) where the instability is due to
the combined effect of self-gravity and self-interaction.
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procedure to determine the parameters of the DM particle,
and then compute the Jeans scales at the epoch of radiation-
matter equality and at the present epoch, instead of trying to
determine the parameters of the DM particle directly from
the Jeans scales.23 In the present section, we consider the
case of bosons with a repulsive self-interaction (or no self-
interaction). We consider different types of DM particles
denoted BECNI, BECTF, and BECt in Sec. IV. For each of
these particles, the evolution of the Jeans length λJ and
Jeans mass MJ as a function of the inverse density 1=ρ
(which increases with time as the Universe expands) is
plotted in Fig. 6. The Jeans mass-radius relation (para-
metrized by the density) is plotted in Fig. 7. The curves start

from the epoch of matter-radiation equality and end at the
present epoch.
Generically, as the density of the universe decreases, the

BEC is first in the TF regime and then in the NI regime. In
the TF regime, the Jeans length is constant while the Jeans
mass decreases as ρ (see Sec. VI B). In the NI regime, the
Jeans length increases as ρ−1=4 while the Jeans mass
decreases as ρ1=4 (see Sec. VI A). The transition between
the TF regime and the NI regime occurs at a typical density

ρs ¼
Gm4

16πℏ2a2s
ð143Þ

obtained by equating Eqs. (130) and (134). At that point

ðMJÞs ¼
π3

12

ℏffiffiffiffiffiffiffiffiffiffiffiffi
Gmas

p ð144Þ

and

ðλJÞs ¼ 2π

�
asℏ2

Gm3

�
1=2

: ð145Þ

The BEC is always in the NI regime (during the period
going from the epoch of matter-radiation equality to the
present epoch) if 1=ρs < 1=ρeq, i.e., if

as
m2

<

�
G

16πℏ2ρeq

�
1=2

¼ 3.71 × 10−21
fm

ðeV=c2Þ2 : ð146Þ

Combining this inequality with the mðasÞ relation of
Sec. IV, we find that the BEC is always in the NI regime
if 0≤as≤3.16×10−64 fm (and m ∼ 2.92 × 10−22 eV=c2).
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FIG. 6. Evolution of the Jeans length and Jeans mass with the
inverse density of the universe for bosons with a repulsive self-
interaction (λJ is in pc, MJ is in solar masses M⊙, and ρ is in
g=m3) for the three models BECNI, BECTF, and BECt
considered in the text. Here and in the following figures we
have indicated the values λJ=2 ¼ 1 kpc, MJ ¼ 108 M⊙, and
ρ ¼ 1.62 × 10−18 g=m3 corresponding to the minimum halo
(Fornax) for reference (see Sec. VI F).
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FIG. 7. Jeans-mass radius relation for bosons with a repulsive
self-interaction for the three models BECNI, BECTF, and BECt
described in the text. We see that the Jeans mass-radius relation
(linear regime) is similar to the mass-radius relation of DM halos
(nonlinear regime) represented in Fig. 2. The bullet corresponds
to the typical mass and radius of dSphs like Fornax.

23We believe that this alternative procedure, often used in the
literature, is less accurate.
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This corresponds to 0 ≤ λ ≤ 1.17 × 10−92. On the other
hand, the BEC is always in the TF regime (during the same
period) if 1=ρs > 1=ρ0, i.e., if

as
m2

>

�
G

16πℏ2ρ0

�
1=2

¼ 7.32 × 10−16
fm

ðeV=c2Þ2 : ð147Þ

Combining this inequality with the mðasÞ relation of
Sec. IV, we find that the BEC is always in the TF regime
if 3.65 × 10−53 fm ≤ as ≤ ðasÞmax ¼ 4.41 × 10−6 fm (and
2.23 × 10−19 eV=c2 ≤ m ≤ mmax ¼ 1.10 × 10−3 eV=c2).
This corresponds to 1.04×10−78 ≤ λ≤ λmax¼ 6.18×10−16.
BECNI: Let us consider noninteracting ULAs with a

mass m ¼ 2.92 × 10−22 eV=c2 determined by the charac-
teristics of the minimum halo (see Sec. IV). At the epoch of
radiation-matter equality, we find λJ ¼ 124 pc and
MJ ¼ 1.31 × 109 M⊙ (the comoving Jeans length is
λcJ ¼ λJ=a ¼ 0.420 Mpc). At the present epoch, we find
λJ ¼ 55.3 kpc and MJ ¼ 2.94 × 106 M⊙.
BECTF: Let us consider self-interacting bosons with a

mass m ¼ 1.10 × 10−3 eV=c2 and a scattering length as ¼
4.41 × 10−6 fm (this yields λ ¼ 6.18 × 10−16). This corre-
sponds to a ratio as=m3 ¼ 3.28 × 103 fm=ðeV=c2Þ3 deter-
mined by the radius of the minimum halo and to a ratio
4πa2s=m ¼ 1.25 cm2=g determined by the constraint set by
the Bullet Cluster assuming that the bound is reached (see
Sec. IV). For the period considered, the BEC is always in the
TF regime. At the epoch of radiation-matter equality, we find
λJ ¼ 2.01 kpc and MJ ¼ 5.51 × 1012 M⊙ (the comoving
Jeans length is λcJ ¼ λJ=a ¼ 6.81 Mpc). At the present
epoch we find λJ ¼ 2.01 kpc and MJ¼141M⊙.
BECt: Let us consider self-interacting bosons with a mass

m ¼ 2.92 × 10−22 eV=c2 and a scattering length as ¼
8.13 × 10−62 fm (this yields λ ¼ 3.02 × 10−90). This corre-
sponds to a ratio as=m3¼3.28×103 fm=ðeV=c2Þ3 deter-
mined by the radius of the minimum halo and to a scattering
length chosen such that the minimum halo is just at the
transition between the TF regime and the NI regime (see
Sec. IV). For the period considered, the BEC is first in the TF
regime and then in the NI regime (the transition occurs at a
typical density ρs ¼ 1.33 × 10−18 g=m3). At the epoch of
radiation-matter equality, we find λJ ¼ 2.00 kpc and
MJ ¼ 5.39 × 1012 M⊙ (the comoving Jeans length is
λcJ ¼ λJ=a ¼ 6.78 Mpc). At the present epoch we find λJ ¼
55.3 kpc and MJ ¼ 2.94 × 106 M⊙. In the TF regime, the
BECt model behaves as the BECTF model (because they
have the same ratio as=m3) and in the NI regime, the BECt
model behaves as the BECNI model corresponding to
noninteracting ULAs (because they have the same mass
m). This is apparent in Figs. 6 and 7.
BECf: Let us consider self-interacting bosons with a

mass m ¼ 3 × 10−21 eV=c2 and a scattering length as ¼
1.11 × 10−58 fm (this yields λ ¼ 4.24 × 10−86). This fidu-
cial model is motivated by cosmological considerations

[127]. It is similar to the BECt model. For the period
considered, the BEC is first in the TF regime and then in the
NI regime (the transition occurs at a typical density
ρs ¼ 7.93 × 10−21 g=m3). At the epoch of radiation-matter
equality, we find λJ ¼ 2.24 kpc andMJ ¼ 7.61 × 1012 M⊙
(the comoving Jeans length is λcJ ¼ λJ=a ¼ 7.59 Mpc). At
the present epoch we find λJ ¼ 17.3 kpc and MJ ¼
9.05 × 104 M⊙.
Remark:—ULA clumps formed in the linear regime by

Jeans instability may evolve, in the nonlinear regime, into
stable DM halos with mass M ∼MJ and radius R ∼ RJ
since self-gravitating BECs with a repulsive self-interaction
are stable. They can then increase their mass by mergings
and accretion (or possibly lose mass) leading to the DM
halos observed in the universe. Large DM halos have a
core-halo structure resulting from violent relaxation and
gravitational cooling. The core mass–halo mass of self-
interacting BECs has been determined in [169,179,181].
We have seen in Sec. V that the quantum core is always
stable (it does not collapse toward a SMBH).

E. Attractive self-interaction

In this section, we consider the case of bosons with an
attractive self-interaction. We consider different types of
DM particles denoted BECcrit, BECth, and QCD axions in
Sec. IV. For each of these particles, the evolution of
the Jeans length λJ and Jeans mass MJ as a function of
the inverse density 1=ρ (which increases with time as the
universe expands) is plotted in Fig. 8. The Jeans mass-
radius relation (parametrized by the density) is plotted in
Fig. 9. The curves start from the epoch of matter-radiation
equality and end at the present epoch.
Generically, as the density of the universe decreases, the

BEC is first in the NG regime and then in the NI regime. In
the NG regime the Jeans length and the Jeans mass both
increase as ρ−1=2 (see Sec. VI C). In the NI regime the Jeans
length increases as ρ−1=4 while the Jeans mass decreases as
ρ1=4 (see Sec. VI A). There is a maximum Jeans mass

ðMJÞmax ¼
π3

24

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p ; ð148Þ

corresponding to a Jeans length

ðλJÞ� ¼ 2π

�jasjℏ2

Gm3

�
1=2

; ð149Þ

at the density

ρ� ¼
Gm4

32πℏ2a2s
: ð150Þ

The transition between the NG regime and the NI regime
occurs at a typical density
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ρs ¼
Gm4

16πℏ2a2s
; ð151Þ

obtained by equating Eqs. (130) and (137). At that point

ðMJÞs ¼
π3

12

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p ð152Þ

and

ðλJÞs ¼ 2π

�jasjℏ2

Gm3

�
1=2

: ð153Þ

These scales are similar to those corresponding to the
maximum mass [we have ρs ¼ 2ρ�, ðMJÞs ¼ 2ðMJÞmax
and ðλJÞs ¼ ðλJÞ�]. The BEC is always in the NI regime
(during the period going from the epoch of matter-radiation
equality to the present epoch) if 1=ρs < 1=ρeq, i.e., if

jasj
m2

<

�
G

16πℏ2ρeq

�
1=2

¼ 3.71 × 10−21
fm

ðeV=c2Þ2 : ð154Þ

Combining this inequality with the mðasÞ relation of
Sec. IV, we find that the BEC is always in the NI regime
if −3.16 × 10−64 fm ≤ as ≤ 0 and m∼2.92×10−22 eV=c2.
This corresponds to −1.18 × 10−92 ≤ λ ≤ 0 and f≥
1.35×1015GeV. On the other hand, the BEC is always
in the NG regime (during the same period) if 1=ρs > 1=ρ0,
i.e., if

jasj
m2

>

�
G

16πℏ2ρ0

�
1=2

¼ 7.32 × 10−16
fm

ðeV=c2Þ2 : ð155Þ

Combining this inequality with the mðasÞ relation of
Sec. IV, we find that the BEC is always in the NG regime
if −1.39 × 10−65 fm ≤ as ≤ 0 and m≤1.38×10−25 eV=c2.
This corresponds to −2.44 × 10−97 ≤ λ ≤ 0 and f ∼ fmin ¼
1.39 × 1014 GeV (see Appendix E 4).
BECcrit: Let us consider self-interacting bosons with a

mass m ¼ 2.19 × 10−22 eV=c2 and a scattering length
as ¼ −1.11 × 10−62 fm (this yields λ ¼ −3.10 × 10−91

and f ¼ 1.97 × 1014 GeV). These values are obtained by
requiring that the minimum halo is critical (see Sec. IV).
For the period considered, the BEC is first in the NG regime
and then in the NI regime (the transition occurs at a typical
density ρs ¼ 2.25 × 10−17 g=m3). The Jeans mass is maxi-
mal at the density ρ� ¼ 1.13 × 10−17 g=m3. At that density
ðMJÞmax ¼ 1.27 × 108 M⊙ and ðλJÞ� ¼ 1.13 kpc. At the
epoch of radiation-matter equality, we find λJ ¼ 18.2 pc
and MJ ¼ 4.08 × 106 M⊙ (the comoving Jeans length is
λcJ ¼ λJ=a ¼ 0.0617 Mpc). At the present epoch, we find
λJ ¼ 63.8 kpc and MJ ¼ 4.53 × 106 M⊙. When ρ > ρs ¼
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FIG. 8. Evolution of the Jeans length and Jeans mass with the
inverse density of the universe for bosons with an attractive self-
interaction (λJ is in pc, MJ is in solar masses M⊙, and ρ is in
g=m3) for the BECcrit model described in the text.
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FIG. 9. Jeans-mass radius relation for bosons with an attractive
self-interaction for the BECcrit model described in the text. We
note that the Jeans mass-radius relation (linear regime) is similar
to the mass-radius relation of DM halos (nonlinear regime)
represented in Fig. 3.
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2.25 × 10−17 g=m3 the system is in the NG regime. It
undergoes a hydrodynamic or tachyonic instability whose
maximum growth rate is given by Eq. (141). At radiation-
matter equality, we find γmax ¼ 8.46 × 10−12 s−1. The
growth rate of the instability is about 100 times larger
than the Hubble rate H ¼ _a=a ¼ ð8πGρ=3Þ1=2 ¼
2.21 × 10−13 s−1. Therefore, it is justified to assume in
the stability analysis that the background is static (see
Sec. II D). We thus find that the perturbation grows
exponentially rapidly24 on a timescale τ ¼ 1=γ ¼ 3.75 ×
103 yrs and forms clumps of size λm ¼ ffiffiffi

2
p

λJ ¼ 25.7 pc
[see Eq. (142)] and mass Mm ¼ 23=2MJ ¼ 1.15 × 107 M⊙
[153]. Writing the evolution of the density contrast as
δðtÞ ¼ δieγt and taking δi ∼ 10−5 at the initial time of
radiation-matter equality, we find that δ ∼ 1 in a
time t ∼ 11.5τ ∼ 4.32 × 104 yrs.
BECth: Let us consider self-interacting bosons with a

mass m ¼ 2.92 × 10−22 eV=c2 and a scattering length
as ¼ −3.18 × 10−68 fm (this yields λ ¼ −1.18 × 10−96

and f ¼ 1.34 × 1017 GeV). These values are obtained by
using constraints from particle physics and cosmology (see
Sec. IV D). For the period considered, the BEC is always in
the NI regime (see the BECNI case studied above). At the
epoch of radiation-matter equality, we find λJ ¼ 124 pc
and MJ ¼ 1.31 × 109 M⊙ (the comoving Jeans length is
λcJ ¼ λJ=a ¼ 0.420 Mpc). At the present epoch, we find
λJ ¼ 55.3 kpc and MJ ¼ 2.94 × 106 M⊙. The Jeans
mass is always much below the maximum Jeans mass
ðMJÞmax ¼ 6.52 × 1010 M⊙ reached at a density ρ� ¼
4.33×10−6 g=m3. These results show that the effect of
an attractive self-interaction is negligible for what concerns
the formation of structures (clumps) in the linear regime:
Everything happens as if the bosons were not self-
interacting.
QCD axions: Let us consider QCD axions with a

mass m ¼ 10−4 eV=c2 and a scattering length
as¼−5.8×10−53m (this yields λ¼−7.39×10−49 and
f¼5.82×1010GeV). For the period considered (matter
era), the axions are always in the NI regime. At the epoch of
radiation-matter equality, we find λJ ¼ 2.13 × 10−7 pc and
MJ ¼ 6.52 × 10−18 M⊙ (the comoving Jeans length is
λcJ ¼ λJ=a ¼ 7.22 × 10−10 Mpc). At the present epoch
we find λJ ¼ 9.45 × 10−5 pc and MJ¼1.47×10−20M⊙.
The Jeans mass is always much below the maximum Jeans
mass ðMJÞmax ¼ 8.25 × 10−14 M⊙ reached at a density
ρ� ¼ 1.79 × 104 g=m3. These results show that the effect
of an attractive self-interaction is negligible for what

concerns the formation of structures (clumps) in the linear
regime: Everything happens as if the QCD axions were not
self-interacting.25 Furthermore, the Jeans scales computed
above are much smaller than the galactic scales, indicating
that QCD axions essentially behave as CDM.
Remark: Noninteracting QCD axion clumps formed in

the linear regime by Jeans instability may evolve, in the
nonlinear regime, into stable dilute axion stars since non-
interacting self-gravitating BECs are stable. They can then
increase their mass by mergings and accretion (or possibly
lose mass). If their mass passes above the maximum mass
Mmax ¼ 6.46 × 10−14 M⊙ [107] they undergo gravitational
collapse, leading to a bosenova or a dense axion star (see
Sec. IV E). Nongravitational clumps of DM particles
corresponding to the BECcrit parameters formed in the
linear regime by Jeans instability cannot evolve, in the
nonlinear regime, into stable configurations since non-
gravitational BECs are unstable (see Sec. VI C). Therefore,
they are expected to directly collapse, leading to bosenovae
or dense solitons.26 Noninteracting clumps of DM particles
corresponding to the BECth parameters formed in the linear
regime by Jeans instability may evolve, in the nonlinear
regime, into stable DM halos with a core-halo profile since
noninteracting self-gravitating BECs are stable. They can
then increase their mass by mergings and accretion. We
have seen in Sec. V C that, for realistic DM halos, the core
mass Mc is always smaller than the critical mass Mmax
[107] so the quantum core (soliton) is always stable.

F. An optimal cosmological density

Except for QCD axions, all the models that we have
considered above are based on values of m and as that are
consistent with the properties of the minimum halo (see
Sec. IV). Therefore, by construction, we have MJ ∼
108 M⊙ and RJ ∼ 1 kpc at a particular density ρ ¼
3M=4πR3 ¼ 1.62 × 10−18 g=m3 during the evolution of
the universe. This “optimal” density corresponds to a scale
factor a ¼ 0.0111 and a redshift z ¼ 1=a − 1 ¼ 88.6. If the
structures formed at this epoch, they would have a Jeans
mass and a Jeans radius comparable to the mass and size of
the minimum halo (M ∼ 108 M⊙ and R ∼ 1 kpc). Actually,
structures may form at a different epoch and evolve by
accreting or losing mass during the nonlinear regime. The
relation between the Jeans scales (in the linear regime) and
the actual scales of DM halos (in the nonlinear regime) is
not straightforward and usually requires one to study the
nonlinear process of structure formation numerically.

24This is at variance with the situation where the instability is
of gravitational origin. In that case, γ is of the order of the Hubble
rate H and it is compulsory to take into account the expansion of
the universe in the stability analysis [278]. It is then found that
δðtÞ increases algebraically rapidly with time instead of expo-
nentially rapidly.

25This result is valid in the matter era. In the very early
universe, QCD axions can form clumps of mass M ∼ 10−12 M⊙
and radius R ∼ 109 m called axitons [230,288,289]. This is due to
their attractive self-interaction (self-gravity is negligible in that
regime).

26Another possibility is that they become effectively non-
interacting in the nonlinear regime and form stable dilute solitons.
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VII. CONCLUSION

In this paper, following previous works on the subject,
we have considered the possibility that DM is made of
bosons in the form of self-gravitating BECs. This model is
interesting because it may solve the small-scale problems
of the standard CDM model such as the core-cusp problem
and the missing satellite problem. Indeed, in the linear
regime of structure formation due to the Jeans instability,
quantum mechanics (Heisenberg uncertainty principle) or a
repulsive self-interaction (as > 0) leads to a finite Jeans
length λJ even at T ¼ 0. Therefore, gravitational collapse
can take place only above a sufficiently large size and a
sufficiently large mass (i.e., above λJ and MJ). The
existence of a minimum size and a minimum mass is in
agreement with the observations. By contrast, in the
classical pressureless CDM model (ℏ ¼ P ¼ 0), the
Jeans length and the Jeans mass vanish (λJ ¼ MJ ¼ 0),
or are very small, implying the possibility of formation of
structures at all scales in contradiction with the observa-
tions. On the other hand, in the nonlinear regime of
structure formation (after the system has experienced free
fall, violent relaxation, gravitational cooling, and virializa-
tion), the BECDM model leads to DM halos with a core,
i.e., the central density is finite instead of diverging as r−1

for r → 0 as in the CDM model. The prediction of DM
halos with a core rather than a cusp is again in agreement
with the observations.
According to the above results, the BECDM model

predicts the existence of a “minimum DM halo” which
corresponds to the ground state of the self-gravitating BEC
at T ¼ 0. We have identified this minimum (ultracompact)
halo with dSphs like Fornax with a typical radius Rmin ¼
1 kpc and a typical mass Mmin ¼ 108 M⊙.

27 The ground
state of the self-gravitating BEC also describes the quantum
core of larger halos withMh > Mmin. This quantum core is
surrounded by an approximately isothermal atmosphere
(mimicking the NFW profile) yielding flat rotation curves
at large distances as discussed in, e.g., [169].
We have first determined an accurate expression of the

core mass-radius relationMðRÞ of self-gravitating BECs by
combining approximate analytical results obtained from the
Gaussian ansatz [107] with exact asymptotic results
obtained by solving the GPP equations numerically
[108]. Assuming that this mass-radius relation describes
the minimum DM halo with Rmin ¼ 1 kpc and Mmin ¼
108 M⊙ (as well as the cores of larger DM halos) we have
obtained an accurate expression of the DM mass-scattering
length relation mðasÞ. This relation determines the mass m
that the DM particle with a scattering length as should have
in order to yield results that are consistent with the mass

and size of the minimum halo typically representing
a dSph.
For noninteracting bosons, we found

m ¼ 2.92 × 10−22 eV=c2; ð156Þ

which is the typical mass of the DM particle considered in
FDM scenarios.
For bosons with an attractive self-interaction, we found

that the mass of the DM particle is restricted by the
inequality

2.19 × 10−22 eV=c2 < m < 2.92 × 10−22 eV=c2; ð157Þ

otherwise, dSphs like Fornax would be unstable (their mass
would be above the maximum mass Mmax found in [107]).
Therefore, an attractive self-interaction almost does not
change the typical mass of the DM particle required to
match the characteristics of the minimum halo (the boson
mass is just a little smaller than the value from Eq. (156) in
the noninteracting model). In addition, in line with our
previous works [153,179,181], we have shown that, in
situations of astrophysical interest, the effect of an attrac-
tive self-interaction is negligible both in the linear (see
Sec. VI E) and nonlinear (see Sec. V C) regimes of structure
formation. Therefore, in practice, bosons with an attractive
self-interaction can be considered as noninteracting.28

For bosons with a repulsive self-interaction, we found
that the mass of the DM particle is restricted by the
inequality

2.92 × 10−22 eV=c2 < m < 1.10 × 10−3 eV=c2; ð158Þ

where the maximum bound arises from the Bullet Cluster
constraint. Therefore, a repulsive self-interaction can
increase the typical mass of the DM particle by 18 orders
of magnitude with respect to its value in the noninteracting
case. As noted in Appendix D. 4 of [148], a mass larger
than 2.92 × 10−22 eV=c2 could alleviate some tensions
with the observations of the Lyman-α forest encountered
in the noninteracting model. Therefore, the self-interacting
BEC model (with a repulsive self-interaction) may provide
a solution to this problem. We have considered two typical
self-interacting BEC models corresponding to m ¼ 1.10 ×
10−3 eV=c2 and as ¼ 4.41 × 10−6 fm (BECTF) and m ¼
2.92 × 10−22 eV=c2 and as ¼ 8.13 × 10−62 fm (BECt).

27We have taken these values for convenience. The numerical
applications of our model could be refined by considering more
accurate values of Mmin and Rmin but the order of magnitude of
our results should be correct.

28These conclusions are valid for ULAs with mth ¼ 2.92 ×
10−22 eV=c2 and ðasÞth ¼ −3.18 × 10−68 fm (BECth) that may
form DM halos while fulfilling the constraints from particle
physics and cosmology (see Secs. IV D). By contrast, the
attractive self-interaction of QCD axions is crucial in the context
of QCD axion stars (see Sec. IV E) while being negligible in the
linear regime of structure formation (see Sec. VI E). This suggests
that the attractive self-interaction of QCD axions becomes
important in the nonlinear regime of structure formation.
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We have then shown that the Jeans mass-radius relation
MJðRJÞ, which is valid in the linear regime of structure
formation, is similar to the mass-radius relation MðRÞ of
the minimum BECDM halo (or to the core mass-radius
relation of larger halos), corresponding to the ground state
of the GPP equations, which is valid in the nonlinear
regime of structure formation. This analogy allows us to
directly apply some results obtained in the context of
(nonlinear) self-gravitating BECs to the Jeans (linear)
instability problem and vice versa.
The two curvesMJðRJÞ andMðRÞ are parametrized by a

typical density [the density of the universe for the MJðRJÞ
relation and the average—or central—density of the BEC
for the MðRÞ relation] going from high values to low
values.29 For noninteracting bosons, the mass decreases as
the radius increases. For bosons with a repulsive self-
interaction, there is a minimum radius at which M → þ∞
corresponding to the TF limit. The mass decreases as the
radius increases, going from the TF limit (high densities) to
the NI limit (low densities). For bosons with an attractive
self-interaction, the mass first increases as the radius
increases, reaches a maximum value Mmax, and then
decreases, going from the NG limit (high densities) to
the NI limit (low densities).
Despite these analogies, the curves MJðRJÞ and MðRÞ

have a very different physical interpretation. The curve
MJðRJÞ determines the Jeans mass and the Jeans radius at
different epochs in the history of the universe character-
ized by its density ρ [in that case it is more relevant to plot
MJðρÞ and RJðρÞ individually]. The Jeans scales deter-
mine the minimum mass and the minimum size of a
condensation that can become unstable and form a clump.
We must be careful, however, that the Jeans instability
study is valid only in the linear regime of structure
formation. As a result, the interpretation of the curve
MJðRJÞ and its domain of validity is not straightforward.
In principle, the results of the linear Jeans instability
study are valid only in a sufficiently young universe
(typically the beginning of the matter era) where
ρeq ¼ 8.77 × 10−14 g=m3. It is not clear if we can apply
the results of the Jeans instability study at later epochs. On
the other hand, the curve MðRÞ determines the mass-
radius relation of DM halos that are formed in the
nonlinear regime of structure formation after having
experienced free fall, violent relaxation, gravitational
cooling, and virialization. It applies to the minimum halo

or to the quantum core of larger halos.30 We expect that
the mass and the size of the minimum halo is of the order
of the Jeans mass and Jeans radius (M ∼MJ and R ∼ RJ)
calculated at the “relevant” epoch of structure formation.
There is, however, an uncertainty about what this epoch is
(see Sec. VI F). Furthermore, the relation between the
Jeans scales and the characteristics of DM halos is not
straightforward. In practice, the linear Jeans instability
occurs at a certain epoch, leading to weakly inhomo-
geneous clumps of mass MJ and radius RJ. Then, these
clumps evolve in the nonlinear regime ultimately leading
to DM halos of minimum mass M ∼MJ and minimum
radius R ∼ RJ. The DM halos may also merge (or
inversely lose mass) so that their actual mass M and
radius R may be different from MJ and RJ. On the other
hand, the MðRÞ relation may present regions of instability
such as the NG branch of Fig. 3. The solutions on these
branches cannot correspond to observable DM halos since
they are unstable. These branches are therefore forbidden
in the nonlinear problem of structure formation. However,
the corresponding branches in the Jeans mass-radius
relation MJðRJÞ have their usual interpretation. They
determine the mass and size triggering the gravitational
instability in the linear regime. The existence of stable and
unstable branches in the mass-radius relation MðRÞ of DM
halos leads to the different evolutions described at the end
of Secs. VI D and VI E. Typically, we have two
possibilities:

(i) Consider first a branch of the MJðRJÞ relation such
that the corresponding branch of the MðRÞ relation
is stable (for example, the NI branch or the TF
branch). In that case, clumps of mass MJ and RJ
formed in the linear regime by Jeans instability
evolve, in the nonlinear regime, into stable DM
halos of mass M ∼MJ and radius R ∼ RJ. They can
then increase their mass by mergings and accretion
(or possibly lose mass) leading to the DM halos
observed in the universe.

(ii) Consider now a branch of the MJðRJÞ relation such
that the corresponding branch of the MðRÞ relation
is unstable (for example, the NG branch). In that
case, clumps of massMJ and RJ formed in the linear
regime by Jeans instability cannot evolve, in the
nonlinear regime, into DM halos of mass M ∼MJ

29In cosmology, it is natural to follow the series of equilibria
MJðRJÞ from high to low values of the density because this
corresponds to the temporal evolution of the universe (from early
to late epochs). In the context of DM halos, as in the case of
compact stars [273], it may be more relevant to follow the series
of equilibriaMðRÞ from low to high values of the density because
this corresponds to their natural evolution.

30In principle, even if we know the parameters of the DM
particle (its mass m and scattering length as), we cannot
determine the mass M and the radius R of the minimum halo
individually. We just know its mass-radius relation MðRÞ.
However, if we assume a universal value Σ0 ¼ 141 M⊙=pc2 of
the surface density of DM halos compatible with the observa-
tions, then we can determine the mass ðMhÞmin and the radius
ðRhÞmin of the minimum halo individually. This is done in [169]
and in Sec. II of [179] where the mass ðMhÞmin and the radius
ðRhÞmin of the minimum halo are expressed in terms ofm, as, and
Σ0. We can then see if they coincide with the Jeans scales (see
Appendix I of [179]).
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and radius R ∼ RJ since such halos are unstable.
They rather undergo an explosion [210] or a violent
(nonlinear) gravitational collapse leading presum-
ably to smaller and denser objects stabilized by
higher order repulsive terms (e.g., φ6 terms) in the
self-interaction potential [156,201,204]. Another
possibility is that the clumps migrate from the
nongravitational branch to the noninteracting branch
during the nonlinear regime of structure formation
so that they can ultimately form stable structures.

In the present paper, we have illustrated our results for
bosons interacting via a φ4 potential. We have considered
the case of a vanishing (as ¼ 0), repulsive (as > 0), or
attractive (as < 0) self-interaction. The model of noninter-
acting bosons (FDM) leads to a boson mass m ∼
10−22 eV=c2 that creates some tensions with the observa-
tions of the Lyman-α forest [147]. These observations
require a larger mass of at least 1 order of magnitude. We
have shown that the model of bosons with an attractive self-
interaction necessitates a mass even smaller than m ∼
10−22 eV=c2 (according to Fig. 4 the mass m decreases
as jasj increases when as < 0). This model is therefore also
in tension with the observations. By contrast, the model of
bosons with a repulsive self-interaction allows a boson
mass which can be up to 18 orders of magnitude larger than
m ∼ 10−22 eV=c2 (according to Fig. 4 the massm increases
as as increases when as > 0). As noted in [148] this model
could alleviate some tensions with the observations of the
Lyman-α forest encountered in the noninteracting model.
As a result, a repulsive self-interaction (as > 0) is privi-
leged over an attractive self-interaction (as < 0) [169].
A repulsive self-interaction is also favored by cosmological
constraints [127,148] which yield a fiducial model with a
mass m ¼ 3 × 10−21 eV=c2 and a scattering length as ¼
1.11 × 10−58 fm (BECf). We recall that theoretical
models of particle physics usually lead to particles with
an attractive self-interaction (e.g., the QCD axion).
However, some authors [143,182] have pointed out the
possible existence of particles with a repulsive self-
interaction (e.g., the light majoron).

APPENDIX A: DERIVATION OF THE
SCHRÖDINGER EQUATION

In this appendix, we briefly recall the derivation of the
Schrödinger equation from the formalism of scale relativity
[290]. We follow the presentation given in Ref. [291].
Nottale [290] has shown that the equation that governs

the motion of a particle in a nondifferentiable (fractal)
spacetime can be written in the form of the fundamental
equation of dynamics,

DU
Dt

¼ −∇Φ; ðA1Þ

where F ¼ −∇Φ is the force by unit of mass exerted on a
particle, provided that Uðr; tÞ is interpreted as a complex
velocity field and D=Dt is a complex time derivative
operator (or covariant derivative) defined by

D
Dt

¼ ∂
∂tþ U · ∇ − iDΔ; ðA2Þ

whereD is the fractal fluctuation parameter in the theory of
scale relativity. Using the expression (A2) of the covariant
derivative, Eq. (A1) can be rewritten as a complex viscous
Burgers equation

∂U
∂t þ ðU ·∇ÞU ¼ iDΔU −∇Φ ðA3Þ

with an imaginary viscosity ν ¼ iD. It can be shown [290]
that the complex velocity field can be written as the
gradient of a complex action:

U ¼ ∇S
m

: ðA4Þ

This defines a potential flow. As a consequence, the flow is
irrotational: ∇ × U ¼ 0. Using the well-known identities of
fluid mechanics ðU ·∇ÞU ¼ ∇ðU2=2Þ − U × ð∇ × UÞ
and ΔU ¼ ∇ð∇ · UÞ −∇ × ð∇ × UÞ which reduce to
ðU ·∇ÞU ¼ ∇ðU2=2Þ and ΔU ¼ ∇ð∇ · UÞ for an irrota-
tional flow, and using the identity ∇ · U ¼ ΔS=m resulting
from Eq. (A4), we find that Eq. (A3) is equivalent to the
complex quantum Hamilton-Jacobi (or Bernoulli) equation

∂S
∂t þ

1

2m
ð∇SÞ2 − iDΔS þmΦ ¼ 0: ðA5Þ

We now define the wave function ψðr; tÞ through the
complex Cole-Hopf transformation

S ¼ −2imD lnψ : ðA6Þ

Substituting Eq. (A6) into Eq. (A5), and using the identity

ΔðlnψÞ ¼ Δψ
ψ

−
1

ψ2
ð∇ψÞ2; ðA7Þ

we obtain the equation

iD
∂ψ
∂t ¼ −D2Δψ þ 1

2
Φψ : ðA8Þ

This equation coincides with the Schrödinger equation

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þmΦψ ðA9Þ

provided that we set
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D ¼ ℏ
2m

; ðA10Þ

which is the expression of the Nelson [292] diffusion
coefficient of quantum mechanics. With this identification,
the Cole-Hopf transformation of fluid mechanics [Eq. (A6)]
is equivalent to the WKB formula

ψ ¼ eiS=ℏ; ðA11Þ

and the Schrödinger equation (A9) is equivalent to the
fundamental equation of dynamics (A1).

APPENDIX B: EQUIVALENCE BETWEEN THE
STABILITY CRITERIA BASED ON THE ENERGY

PRINCIPLE AND ON THE EQUATION OF
PULSATIONS

In this appendix, we discuss the equivalence between the
stability criterion based on the energy principle (see
Appendix B 1) and the stability criterion based on the
equation of pulsations (see Appendix B 2).

1. Energy principle

The GPP equations (1) and (2), or equivalently the
quantum Euler equations (10)–(13), conserve the mass M
and the energy Etot defined by Eqs. (21) and (22) (see, e.g.,
Appendix E of [107]). Using very general arguments [293],
this implies the following:

(i) An equilibrium state of the GPP equations is an
extremum of energy at fixed mass. This result can be
proven as follows. Let us write the variational
problem for the first variations as

δEtot −
μ

m
δM ¼ 0; ðB1Þ

where μ (global chemical potential) is a Lagrange
multiplier taking into account the mass constraint.
Using Eqs. (B31)–(B34), and treating the perturba-
tions δu and δρ independently, we obtain u ¼ 0 (the
equilibrium state is static) and the quantum Gibbs
condition (see footnote 8)

QþmhþmΦ ¼ μ; ðB2Þ

which is equivalent to the condition of quantum
hydrostatic equilibrium (see Sec. II C and Appen-
dix B 2).

(ii) An equilibrium state of the GPP equations is stable
if, and only if, it is a minimum of energy at fixed
mass. We will establish this result in Appendix B 3
directly from the equation of pulsations. Since δ2Θc
depends only on δu and is positive [see Eq. (B35)
with u ¼ 0], and since the perturbations δu and δρ
are treated independently, we can equivalently claim

that an equilibrium state of the GPP equations is
stable if, and only if, it is a minimum of the reduced
energy E�

tot ¼ ΘQ þU þW (excluding the classical
kinetic energy) at fixed mass. The condition of
dynamical stability based on the energy principle
is therefore

δ2E�
tot > 0 ðB3Þ

for all perturbations δρ that conserve mass
(δM ¼ 0). Using the identities of Appendix B 4,
we find that the second order variations of the energy
are given by

δ2E�
tot ¼

1

2

Z �
δQ
m

þ δhþ δΦ
�
δρdr ðB4Þ

or, equivalently, by

δ2E�
tot¼

1

2

Z
h0ðρÞðδρÞ2drþ1

2

Z
δΦδρdr

þ ℏ2

8m2

Z
1

ρ

��
∇δρÞ2þ

�
Δρ
ρ
−
ð∇ρÞ2
ρ2

�
ðδρÞ2

�
dr;

ðB5Þ

where we recall that h0ðρÞ ¼ P0ðρÞ=ρ (see
Appendix H).

Remark:—The minimization problem (39) expressing
the energy principle is a criterion of nonlinear dynamical
stability resulting from the fact that Etot and M are
conserved by the GPP equations [293]. It provides a
necessary and sufficient condition of dynamical stability
since it takes into account all the invariants of the GPP
equations.

2. Equation of pulsations

The quantum Euler-Poisson equations (10)–(13) may be
written as

∂ρ
∂t þ∇ · ðρuÞ ¼ 0; ðB6Þ

∂u
∂t þ ðu ·∇Þu ¼ −

1

m
∇Q −∇h −∇Φ; ðB7Þ

ΔΦ ¼ 4πGρ; ðB8Þ

where we have introduced the enthalpy hðρÞ ¼ V 0ðρÞ
through the relation (see Appendix H)

∇h ¼ ∇P
ρ

: ðB9Þ
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A steady state of the quantum Euler equation (B7) satisfies
the condition of quantum hydrostatic equilibrium (see
Sec. II C)

∇Q
m

þ∇hþ∇Φ ¼ 0; ðB10Þ

which is equivalent to Eq. (B2). Combined with the Poisson
equation (B8) we obtain the fundamental differential
equation determining the equilibrium structure of a self-
gravitating BEC under the form

ΔQ
m

þ Δh ¼ −4πGρ; ðB11Þ

where the density can be viewed as a function ρðhÞ of the
enthalpy. This equation is equivalent to Eq. (37).
Let us consider a stationary solution of the quantum

Euler-Poisson equations (B6)–(B8) satisfying u ¼ 0 and
the condition of quantum hydrostatic equilibrium (B10).
The linearized quantum Euler-Poisson equations around
this equilibrium state are

∂δρ
∂t þ∇ · ðρδuÞ ¼ 0; ðB12Þ

∂δu
∂t ¼ −

1

m
∇δQ −∇δh −∇δΦ; ðB13Þ

ΔδΦ ¼ 4πGδρ: ðB14Þ

It is convenient to introduce the Lagrangian displacement
ζ⃗ ¼ δr such that

δu ¼ ∂ζ⃗
∂t : ðB15Þ

The linearized continuity equation (B12) leads to the
relation

δρ ¼ −∇ · ðρζ⃗Þ: ðB16Þ

Writing the evolution of the perturbation as e−iωt, Eq. (B15)
implies that δu ¼ −iωζ⃗. On the other hand, the linearized
quantum Euler equation (B13) becomes

ω2ζ⃗ ¼ 1

m
∇δQþ∇δhþ∇δΦ: ðB17Þ

Using Eq. (B16) and Eqs. (B39)–(B42), the first order
variations δQ, δh, and δΦ can be expressed in terms of ζ⃗. In
this manner, Eq. (B17) represents the quantum generali-
zation of the equation of pulsations in the form given by
Chandrasekhar [294]. This is an eigenvalue equation
determining the possible pulsations of the system. The
equilibrium state is stable if ω2 > 0 for all modes (in that

case the perturbation oscillates) and unstable if ω2 < 0 for
some modes (in that case the perturbation grows exponen-
tially rapidly). Using Eqs. (B16), (B39), and (B48), we can
rewrite Eq. (B17) more explicitly as

ω2ζ⃗ ¼ 1

m
∇δQ −∇

�
P0ðρÞ
ρ

∇ · ðρζ⃗Þ
�
− 4πGρζ⃗: ðB18Þ

Alternatively, combining Eqs. (B16) and (B17), we can
write the quantum equation of pulsations under the form

−ω2δρ ¼ ∇ ·

�
ρ

�∇δQ
m

þ∇δhþ∇δΦ
��

; ðB19Þ

where δQ, δh, and δΦ are expressed in terms of δρ through
Eqs. (B39)–(B42).
If we consider a spherically symmetric distribution of

matter, and consider radial perturbations, it is convenient to
introduce the quantity q from the relation [295]

δρ ¼ 1

4πr2
dq
dr

: ðB20Þ

Physically, qðr; tÞ ¼ δMðr; tÞ ¼ R
r
0 δρðr0; tÞ4πr02dr0 repre-

sents the perturbed mass within the sphere of radius r. The
perturbed Newton equation takes the form

dδΦ
dr

¼ Gq
r2

: ðB21Þ

Since

δρ ¼ −
1

r2
d
dr

ðr2ρζÞ; ðB22Þ

we obtain the relation

ζ ¼ −
q

4πρr2
: ðB23Þ

Starting from Eq. (B18) or from Eq. (B19), and using
Eq. (B23) or Eq. (B20), we obtain

d
dr

�
P0ðρÞ
4πρr2

dq
dr

�
þ Gq

r2
þ 1

m
dδQ
dr

¼ −
ω2

4πρr2
q: ðB24Þ

This is the quantum generalization of the equation of
pulsations in the form given by Chavanis (see
Appendix A of [295]). Starting from Eq. (B18) or from
Eq. (B24), we obtain after some calculations

d
dr

�
γP

1

r2
d
dr

ðr2ζÞ
�
−
4

r
dP
dr

ζ −
ρ

m
ΔQζ −

ρ

m
dδQ
dr

¼ −ω2ρζ;

ðB25Þ

where we have defined
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γðrÞ ¼ d lnP
d ln ρ

¼ ρ

P
P0ðρÞ: ðB26Þ

Introducing the variable ξ ¼ ζ=r, we can transform
Eq. (B25) into

d
dr

�
γPr4

dξ
dr

�
þ r3

d
dr

½ð3γ − 4ÞP�ξ

−
ρ

m
ΔQr4ξ −

ρ

m
r3
dδQ
dr

¼ −ω2ρr4ξ: ðB27Þ

This is the quantum generalization of the equation of
pulsations in the form given by Eddington [296].

3. Equivalence between ω2 > 0 and δ2E�
tot > 0

Taking the scalar product of Eq. (B17) with ρζ⃗ and
integrating over the whole domain we obtain

ω2

Z
ρζ2dr ¼

Z
ρζ⃗ · ∇

�
δQ
m

þ δhþ δΦ
�
dr: ðB28Þ

Integrating the second integral by parts and using
Eq. (B16), we can rewrite Eq. (B28) as

ω2

Z
ρζ2dr ¼

Z
δρ

�
δQ
m

þ δhþ δΦ
�
dr: ðB29Þ

Comparing the right-hand side of this expression with the
second variations of the energy functional from Eq. (B4),
we obtain the identity

1

2
ω2

Z
ρζ2dr ¼ δ2E�

tot: ðB30Þ

Since the integral is positive, this identity shows that an
equilibrium state of the GPP equations is dynamically
stable (ω2 > 0) if, and only if, it is a minimum of energy at
fixed mass (δ2E�

tot > 0). Therefore, the stability criteria
based on the equation of pulsations and on the energy
principle are equivalent. This identity also provides the
basis for a quantum generalization of the Chandrasekhar
variational principle [294].
Remark:—Since the total energy is conserved, we have

δ2Etot ¼ 0 or, equivalently, δ2Θc þ δ2E�
tot ¼ 0. Using

Eq. (B35) with u ¼ 0 and δu ¼ −iωζ⃗, we see that this
identity is equivalent to Eq. (B30). On the other hand, since
δ2Θc ≥ 0, the identity δ2Θc þ δ2E�

tot ¼ 0 implies the fol-
lowing results: (i) If δ2E�

tot > 0, we cannot have growing
modes so the system is stable. (ii) If δ2E�

tot < 0, we can
have a growing mode so the system is unstable. This
directly establishes the stability result based on the energy
principle (see Appendix B 1).

4. Useful identities

The first order variations of the functionals defined by
Eqs. (23)–(26) are

δΘc ¼
Z

δρ
u2

2
drþ

Z
ρu · δudr; ðB31Þ

δΘQ ¼
Z

Q
m
δρdr; ðB32Þ

δU ¼
Z

V 0ðρÞδρdr ¼
Z

hðρÞδρdr; ðB33Þ

δW ¼
Z

Φδρdr; ðB34Þ

where we have used hðρÞ ¼ V 0ðρÞ (see Appendix H). The
second order variations of these functionals are

δ2Θc ¼
Z

ρ
ðδuÞ2
2

drþ
Z

δρu · δudr; ðB35Þ

δ2ΘQ ¼ 1

2

Z
δρ

δQ
m

dr; ðB36Þ

δ2U ¼ 1

2

Z
V 00ðρÞðδρÞ2dr ¼ 1

2

Z
h0ðρÞðδρÞ2dr

¼ 1

2

Z
δhδρdr; ðB37Þ

δ2W ¼ 1

2

Z
δΦδρdr: ðB38Þ

We also note that δh, δΦ, and δQ are related to δρ by

δh ¼ h0ðρÞδρ ¼ P0ðρÞ
ρ

δρ; ðB39Þ

δΦ ¼ −G
Z

δρðr0Þ
jr − r0j dr

0; ðB40Þ

δQ ¼ ℏ2

4m
1ffiffiffi
ρ

p
�
δρ

ρ
Δ

ffiffiffi
ρ

p
− Δ

�
δρffiffiffi
ρ

p
��

; ðB41Þ

or

δQ ¼ ℏ2

4m

�
Δρ
ρ2

δρ −
Δδρ
ρ

−
1

ρ3
ð∇ρÞ2δρþ ð∇ρ · ∇δρÞ 1

ρ2

�
;

ðB42Þ

where we have used h0ðρÞ ¼ P0ðρÞ=ρ (see Appendix H).
Equation (B41) has been obtained by starting from the first
equality of Eq. (14), and Eq. (B42) has been obtained by
starting from the second equality of Eq. (14). Other

JEANS MASS-RADIUS RELATION OF SELF-GRAVITATING … PHYS. REV. D 103, 123551 (2021)

123551-29



expressions of δQ are provided in Appendix C of [149].
The identities (B31)–(B42) are straightforward except,
maybe, Eqs. (B32) and (B36). Therefore, we give a short
derivation of these identities below.
Starting from the first equality of Eq. (24), we get at first

order

δΘQ ¼ ℏ2

8m2

Z �
−
�∇ρ

ρ

�
2

δρþ 2
∇ρ

ρ
· ∇δρ

�
dr: ðB43Þ

Integrating the second term by parts, the foregoing equation
can be rewritten as

δΘQ ¼ −
ℏ2

4m2

Z �
Δρ
ρ

−
1

2

�∇ρ

ρ

�
2
�
δρdr: ðB44Þ

Together with Eq. (14), it yields Eq. (B32).
At second order, we have

δ2ΘQ ¼ ℏ2

8m2

Z
1

ρ

�
ð∇δρÞ2 − 2ð∇ρ · ∇δρÞ δρ

ρ

þ ð∇ρÞ2
�
δρ

ρ

�
2
�
dr: ðB45Þ

Integrating the middle term by parts, we can rewrite
Eq. (B45) as

δ2ΘQ ¼ ℏ2

8m2

Z
1

ρ

�
ð∇δρÞ2 þ

�
Δρ
ρ

−
ð∇ρÞ2
ρ2

�
ðδρÞ2

�
dr;

ðB46Þ

which is the result quoted in Appendix C of Ref. [149]. On
the other hand, multiplying Eq. (B42) by δρ and integrating
over the whole domain, we get

1

2

Z
δρ

δQ
m

dr ¼ ℏ2

8m2

Z �
Δρ
ρ2

ðδρÞ2 − Δδρ
ρ

δρ

−
1

ρ3
ð∇ρÞ2ðδρÞ2 þ ð∇ρ · ∇δρÞ 1

ρ2
δρ

�
dr: ðB47Þ

Integrating the second term by parts, and comparing the
resulting expression with Eq. (B46), we obtain Eq. (B36).
Finally, the identity

∇δΦ ¼ −4πGρζ⃗ ðB48Þ

needed to establish Eq. (B18) results from the following
steps:

∇δΦ ¼ −G
Z

∇
�

1

jr − r0j
�
δρðr0Þdr0

¼ G
Z

∇0
�

1

jr − r0j
�
δρðr0Þdr0

¼ −G
Z

∇0
�

1

jr − r0j
�
∇0 · ðρζ⃗Þdr0

¼ G
Z

Δ0
�

1

jr − r0j
�
ðρζ⃗Þ0dr0

¼ −4πG
Z

δðr − r0Þðρζ⃗Þ0dr0

¼ −4πGρζ⃗; ðB49Þ

where we have made use of Eqs. (B16) and (B40).

APPENDIX C: DIMENSIONLESS
SELF-INTERACTION CONSTANT λ

AND DECAY CONSTANT f

In this appendix, we introduce the dimensionless self-
interaction constant λ and decay constant f and regroup in a
compact manner the main formulas of the paper for a better
visualization. A detailed explanation of these formulas is
given in the main text and in Appendixes D and E.
The dimensionless self-interaction constant is defined by

(see, e.g., Appendix A of [145])

λ

8π
¼ asmc

ℏ
: ðC1Þ

On the other hand, for bosons with an attractive self-
interaction (as < 0), the decay constant is defined by (see,
e.g., [156])

f ¼
�

ℏc3m
32πjasj

�
1=2

: ðC2Þ

We have the relation

f ¼ mc2

2jλj1=2 : ðC3Þ

1. Noninteracting bosons

For noninteracting bosons

M ¼ a
ℏ2

Gm2R
⇒ m ¼

�
aℏ2

GMR

�
1=2

: ðC4Þ

2. Repulsive self-interaction

In the NI regime,

M ¼ a
ℏ2

Gm2R
⇒ m ¼

�
aℏ2

GMR

�
1=2

: ðC5Þ
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In the TF regime,

R ¼ b

�
asℏ2

Gm3

�
1=2

⇒
as
m3

¼ GR2

b2ℏ2
; ðC6Þ

R ¼ b

�
λℏ3

8πGm4c

�
1=2

⇒
λ

8πm4
¼ GR2c

b2ℏ3
: ðC7Þ

For given ðm; asÞ the transition between the NI regime
and the TF regime corresponds to

Mt ¼
a
b

ℏffiffiffiffiffiffiffiffiffiffiffiffi
Gmas

p ; Rt ¼ b

�
asℏ2

Gm3

�
1=2

; ðC8Þ

Mt ¼
a
b

�
8πℏc
Gλ

�
1=2

; Rt ¼ b

�
λℏ3

8πGm4c

�
1=2

: ðC9Þ

For given ðM;RÞ the transition between the NI regime
and the TF regime corresponds to

m0 ¼
�

aℏ2

GMR

�
1=2

; a0� ¼
a3=2

b2

�
ℏ2R
GM3

�
1=2

; ðC10Þ

λ0�
8π

¼ a2ℏc
b2GM2

: ðC11Þ

3. Attractive self-interaction

In the NI regime,

M ¼ a
ℏ2

Gm2R
⇒ m ¼

�
aℏ2

GMR

�
1=2

: ðC12Þ

In the NG regime,

M ¼ a
b2

mR
jasj

⇒
jasj
m

¼ aR
b2M

; ðC13Þ

M ¼ a
b2

8πm2Rc
jλjℏ ⇒

jλj
8πm2

¼ a
b2

Rc
Mℏ

; ðC14Þ

M ¼ a
b2

32πRf2

ℏc3
⇒ f2 ¼ b2

a
Mℏc3

32πR
: ðC15Þ

For given ðm; asÞ the transition between the NI regime
and the NG regime corresponds to

Mt ¼
a
b

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p ; Rt ¼ b

�jasjℏ2

Gm3

�
1=2

; ðC16Þ

Mt ¼
a
b

�
8πℏc
Gjλj

�
1=2

; Rt ¼ b

� jλjℏ3

8πGm4c

�
1=2

; ðC17Þ

Mt¼
a
b

�
32πℏf2

Gm2c3

�
1=2

; Rt¼b

�
ℏ3c3

32πGm2f2

�
1=2

: ðC18Þ

For given ðM;RÞ the transition between the NI regime
and the NG regime corresponds to

m0 ¼
�

aℏ2

GMR

�
1=2

; a0� ¼
a3=2

b2

�
ℏ2R
GM3

�
1=2

; ðC19Þ

λ0�
8π

¼ a2ℏc
b2GM2

; f0� ¼
�
b2

a
ℏc3M
32πR

�
1=2

: ðC20Þ

Remark:—We note that the transition scales between the
NI regime and the NG regime in the attractive case coincide
with the transition scales between the NI regime and the TF
regime in the repulsive case provided that as is replaced by
jasj. We also note that the formulas expressed in terms of λ
and f involve the speed of light c. This is purely artificial
since our results apply to nonrelativistic systems. The
occurrence of c is due to the definitions of λ and f in
Eqs. (C1) and (C2).

APPENDIX D: REFORMULATION OF THE
RESULTS OF SEC. II C IN TERMS OF λ AND f

In this appendix, we reformulate the results of Sec. II C
in terms of the dimensionless self-interaction constant λ and
decay constant f (see Appendix C) instead of the scattering
length as.
Using Eqs. (48) and (C1), the radius of self-gravitating

BECs with a repulsive self-interaction in the TF regime can
be written as

RTF ¼ π

�
λℏ3

8πGm4c

�
1=2

¼ 0.627
ffiffiffi
λ

p MP

m
λC; ðD1Þ

whereMP ¼ ðℏc=GÞ1=2 ¼ 2.18 × 10−5g is the Planck mass
and λC ¼ ℏ=mc is the Compton wavelength of the particle.
Using Eqs. (49), (50), and (C1), the maximum mass and

the corresponding radius of self-gravitating BECs with an
attractive self-interaction can be written as

Mmax ¼ 1.012

�
8πℏc
Gjλj

�
1=2

¼ 5.073
MPffiffiffiffiffijλjp ; ðD2Þ

R�
99 ¼ 5.5

� jλjℏ3

8πGm4c

�
1=2

¼ 1.1
ffiffiffiffiffi
jλj

p MP

m
λC: ðD3Þ

We note that Mmax depends only on λ. Using Eq. (C3), we
also have

Mmax ¼ 1.012

�
8πℏc
G

�
1=2 2f

mc2
¼ 10.15

f
MPc2

M2
P

m
; ðD4Þ
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R�
99 ¼ 5.5

�
ℏ3

8πGm4c

�
1=2 mc2

2f
¼ 0.55

MPc2

f
λC: ðD5Þ

Using Eqs. (52), (C1), and (C2), the mass-radius relation
of nongravitational BECs with an attractive self-interaction
can be written as

M ¼ 6.91
m2c
ℏjλj R99 ¼ 27.6

f2

ℏc3
R99: ðD6Þ

We note that it depends only on f.
Remark: According to Eqs. (D2)–(D5) a self-gravitating

BEC of mass M can be in equilibrium only if λ > λmin or
f > f�min with

λmin ¼ −25.7
ℏc
GM2

¼ −25.74
�
MP

M

�
2

; ðD7Þ

f�min ¼ 9.86 × 10−2mMc2
�
G
ℏc

�
1=2

¼ 9.86 × 10−2
mM
M2

P
MPc2: ðD8Þ

APPENDIX E: REFORMULATION OF THE
RESULTS OF SEC. IV IN TERMS OF λ AND f

In this appendix, we reformulate the results of Sec. IV in
terms of the dimensionless self-interaction constant λ and
decay constant f instead of the scattering length as.
The dimensionless self-interaction constant is defined by

Eq. (C1). This relation may be rewritten as

λ

λ0�
¼ as

a0�

m
m0

; ðE1Þ

where we have introduced the scales from Eqs. (85) and
(86), and the new scale

λ0�
8π

¼ a2ℏc
b2GM2

: ðE2Þ

We note that this scale depends only on the mass M of the
minimum halo, not on its radius R.
Using Eqs. (83) and (C1), the relation between the

particle mass m and the dimensionless self-interaction
constant λ required to match the characteristics of the
minimum halo [see Eq. (81)] is given by

λ ¼ 8πaRm2c
b2ℏM

�
GMm2R
aℏ2

− 1

�
: ðE3Þ

Alternatively, using Eqs. (84) and (E1), we obtain in
dimensionless form

λ

λ0�
¼

�
m
m0

�
2
��

m
m0

�
2

− 1

�
: ðE4Þ

This is a second degree equation whose solutions are

m
m0

¼
�
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4λ=λ0�
p

2

�1=2

ðE5Þ

with the sign þ if λ > 0 and the signs � if λ < 0. The curve
mðλÞ is plotted in Fig. 10. Taking a ¼ 9.946 and b ¼ π (see
Secs. III A and III B) adapted to bosons with a repulsive self-
interaction (or no interaction), we get m0 ¼ 2.92 ×
10−22 eV=c2 and λ0� ¼ 3.02 × 10−90. Taking a ¼ 11.1
and b ¼ 5.5 (see Sec. III C) adapted to bosons with an
attractive self-interaction, we get m0 ¼ 3.08 × 10−22 eV=c2

and λ0� ¼ 1.23 × 10−90.
Remark: We note that the characteristic scale λ0� ∼ 10−90

is extremely small. We will see below that the NI limit is
valid for jλj ≪ λ0�. Therefore, the dimensionless self-inter-
action constant jλj must be small with respect to 10−90, not
with respect to 1. For example, an apparently small value of
jλj such as jλj ¼ 10−80 actually corresponds to a strong self-
interaction. In other words, jλj ¼ 10−80 is very different
from λ ¼ 0. The extraordinarily small value of λ0� was first
noted in [108] (see also [145,148,153,156]).

1. Noninteracting bosons

For noninteracting bosons (λ ¼ 0), we get

m0 ¼ 2.92 × 10−22 eV=c2 ðBECNIÞ: ðE6Þ

-2 -1 0 1 2 3 4
0

0.5

1

1.5

2

m

(S)

(U)

c

m
c

m
0

NG

NI

TF

FIG. 10. Mass m of the DM particle as a function of the
dimensionless self-interaction constant λ in order to match the
characteristics of the minimum halo. The mass is normalized by
m0 and the dimensionless self-interaction constant by λ0�. The
stable part of the curve starts at the critical minimum halo point
(λc, mc) which is also the minimum of the curve λðmÞ.
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2. Repulsive self-interaction

For bosons with a repulsive self-interaction (λ > 0), λ0�
determines the transition between the NI regime (λ ≪ λ0�)
where m ∼m0 and the TF regime (λ ≫ λ0�) where

m
m0

∼
�
λ

λ0�

�
1=4

: ðE7Þ

When the self-interaction is repulsive, all the equilibrium
states are stable. Therefore, in principle, all the values of
λ ≥ 0 and the corresponding masses m ≥ m0 are possible.
In the TF regime, the mðλÞ relation (E7) can be written as

λ

8πm4
∼
GR2c
b2ℏ3

; ðE8Þ

which is equivalent to Eq. (90). The minimum halo just
determines the ratio

λ

8πm4
¼ 1.66 × 10−5 ðeV=c2Þ−4: ðE9Þ

Only the radius R of the minimum halo matters in this
determination. In order to determine m and λ individually,
we need another equation. Repeating the argument from
Sec. IV B, the Bullet Cluster constraint σ=m ≤ 1.25 cm2=g
implies that λmust lie in the range 0 ≤ λ ≤ λmax and that the
particle mass must lie in the rangem0 ≤ m ≤ mmax where

31

mmax¼1.10×10−3 eV=c2; λmax¼6.18×10−16

ðBECTFÞ: ðE10Þ

Although the value of λmax ¼ 6.18 × 10−16 corresponding
to the BECTF model may seem small, it is much larger than
λ0� ¼ 3.02 × 10−90, implying that we are deep into the TF
regime (see the Remark above).
On the other hand, the BECt model corresponding to the

transition between the NI limit and the TF limit is obtained
by substituting Eq. (E6) into Eq. (E7), or Eq. (88) into
Eq. (E8). This gives

mt¼2.92×10−22 eV=c2; λ0� ¼3.02×10−90

ðBECtÞ: ðE11Þ

This corresponds to the scales m0 and λ0� defined by
Eqs. (85) and (E2).

3. Attractive self-interaction in terms of λ

For bosons with an attractive self-interaction (λ < 0), the
relation (E4) reveals the existence of a minimum value of
the dimensionless self-interaction constant

λc
λ0�

¼ −
1

4
; at which

mc

m0

¼ 1ffiffiffi
2

p : ðE12Þ

It turns out that this minimum value also corresponds to the
critical point (associated with the maximum mass Mmax)
separating stable from unstable equilibrium states (see
Fig. 10). The NI regime corresponds to jλj ≪ λ0� and
m ∼m0. The NG regime corresponds to jλj ≪ λ0� and m ≪
m0 such that

m
m0

∼
�jλj
λ0�

�
1=2

: ðE13Þ

In the NG regime, the relation (E13) between m and λ can
be written as

jλj
8πm2

¼ a
b2

Rc
Mℏ

¼ 5.12 × 10−49 ðeV=c2Þ−2; ðE14Þ

which is equivalent to Eq. (77). The equilibrium states with
m < mc are unstable (they correspond to configurations
with R < R�) so that only the equilibrium states with
m > mc are stable (they correspond to configurations with
R > R�). Therefore, in the attractive case, the scattering
length of the DM boson must lie in the range λc < λ < 0
and its mass must lie in the range mc < m < m0, with

mc ¼ 2.19 × 10−22 eV=c2; λc ¼ −3.07 × 10−91

ðBECcritÞ: ðE15Þ

There is no equilibrium state with λ < λc. Finally, using the
constraints from particle physics and cosmology (see
Sec. IV D) we find

mth ¼ 2.92 × 10−22 eV=c2; λth ¼ −1.18 × 10−96

ðBECthÞ: ðE16Þ

4. Attractive self-interaction in terms of f

The decay constant is defined by Eq. (C2). This relation
may be rewritten as

f
f0�

¼
�
m
m0

�
1=2

�
a0�
jasj

�
1=2

; ðE17Þ

where we have introduced the scales from Eqs. (85) and
(86), and the new scale

31More generally, if we introduce the parameter β ¼ a2s=m ¼
σ=ð4πmÞ which can be constrained by the observations, we
obtain mmax ¼ ðβπ4ℏ4=G2R4Þ1=5, ðasÞmax ¼ ðβ3π2ℏ2=GR2Þ1=5,
and λmax=8π ¼ ðβ4π6ℏc5=G3R6Þ1=5.
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f0� ¼
�
b2

a
ℏc3M
32πR

�
1=2

: ðE18Þ

Using Eqs. (83) and (C2), the relation between the
particle mass and the decay constant is given by

1

f2
¼ 32πaR

b2ℏc3M

�
1 −

GMm2R
aℏ2

�
: ðE19Þ

Alternatively, using Eqs. (84) and (E17), we obtain in
dimensionless form

m
m0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
f0�
f

�
2

s
: ðE20Þ

The curve mðfÞ is plotted in Fig. 11. Taking a ¼ 11.1 and
b ¼ 5.5 (see Sec. III C) adapted to bosons with an attractive
self-interaction, we get m0 ¼ 3.08 × 10−22 eV=c2 and
f0� ¼ 1.39 × 1014 GeV.
The relation from Eq. (E20) reveals the existence of a

minimum decay constant fmin ¼ f0� ¼ 1.39 × 1014 GeV at
which m ¼ 0.32 However, this minimum scattering length
fmin does not correspond to the critical point (associated

with the maximum mass Mmax) separating stable from
unstable equilibrium states. This latter is located at

fc
f0�

¼
ffiffiffi
2

p
;

mc

m0

¼ 1ffiffiffi
2

p : ðE21Þ

The NI regime corresponds to f ≫ fmin and m ∼m0. The
NG regime corresponds to f ∼ fmin and m ≪ m0.
The equilibrium states with m < mc are unstable (they

correspond to configurations with R < R�) so that only the
equilibrium states with m > mc are stable (they correspond
to configurations with R > R�). Therefore, the decay
constant of the DM boson must lie in the range f > fc
and its mass must lie in the range mc < m < m0,
with33

mc ¼ 2.19 × 10−22 eV=c2; fc ¼ 1.97 × 1014 GeV

ðBECcritÞ: ðE22Þ

There is no equilibrium state with f < fmin. On the other
hand, the equilibrium states with fmin ≤ f < fc are unsta-
ble. Using the constraints from particle physics and
cosmology (see Sec. IV D) we find

mth ¼ 2.92 × 10−22 eV=c2; fth ¼ 1.34 × 1017 GeV

ðBECthÞ: ðE23Þ

The theoretical decay constant fth ¼ 1.34 × 1017 GeV lies
between the GUT scale fGUT ∼ 1015 GeV and the Planck
scale MPc2 ¼ 1.22 × 1019 GeV.

APPENDIX F: PULSATION OF A
SELF-GRAVITATING BEC

In this appendix, we determine the squared pulsation of
the standard self-gravitating BEC described by the equation
of state (20).

1. General case

In the general case, the squared pulsation of the standard
self-gravitating BEC is approximately given by (see
Appendix G 2)

ω2 ¼ 6ΘQ þ 12U þ 2W
I

: ðF1Þ

This equation can be written in different forms by using the
virial theorem 2ΘQ þ 3U þW ¼ 0 (see Sec. II B).
With the f-ansatz (see Appendix G 2), the squared

pulsation is explicitly given by

0 2 4 6 8 10
f

0

0.2

0.4

0.6

0.8

1

1.2
m

(S)

(U)

f
c

m
c

m
0

f
min

NI

NG

FIG. 11. Mass m of the DM particle as a function of its decay
constant f in order to match the characteristics of the minimum
halo. The mass is normalized bym0 and the decay constant by f0�.
The stable part of the curve starts at the critical minimum halo
point (fc,mc). It differs from the absolute minimum value fmin of
the decay constant.

32This minimum value arises from the fact that both the mass-
radius relation in the NG regime from Eq. (77) and the decay
constant from Eq. (C2) present a scaling inm=jasj [see Eq. (D6)].
It is interesting to note that our approach predicts a minimum
value of f for the existence of DM halos with mass M ∼ 108 M⊙
and radius R ∼ 1 kpc. Furthermore, this value turns out to
be of the order of the grand unified theory (GUT) scale
fGUT ∼ 1015 GeV.

33We note that when the self-interaction is attractive m almost
does not change (it is of the order of the mass of noninteracting
bosons) while f can change by several orders of magnitude.
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ω2 ¼ 6σ

α

ℏ2

m2R4
−
2ν

α

GM
R3

þ 24πζ

α

asℏ2M
m3R5

: ðF2Þ

On the other hand, the mass-radius relation of the standard
self-gravitating BEC writes

−2σ
ℏ2M
m2R3

þ ν
GM2

R2
− 6πζ

asℏ2M2

m3R4
¼ 0 ðF3Þ

or, equivalently,

M ¼
2σ
ν

ℏ2

Gm2R

1 − 6πζ
ν

asℏ2

Gm3R2

: ðF4Þ

If we use a Gaussian ansatz, the values of the coefficients
are αG ¼ 3=2, σG ¼ 3=4, ζG ¼ 1=ð2πÞ3=2, and νG ¼
1=

ffiffiffiffiffiffi
2π

p
[107]. Furthermore, the relation between the radius

R and the radius R99 containing 99% of the mass is R99 ¼
2.38167R [107]. The squared pulsation is plotted as a
function of the BEC radius R in [107].

2. Noninteracting case

For noninteracting bosons (as ¼ 0), the squared pulsa-
tion from Eq. (F1) reduces to

ω2 ¼ 6ΘQ þ 2W
I

¼ 2ΘQ

I
¼ −

W
I
; ðF5Þ

where we have used the virial theorem 2ΘQ þW ¼ 0 to get
the last two equalities.
With the f-ansatz, the squared pulsation is given by

ω2 ¼ 6σ

α

ℏ2

m2R4
−
2ν

α

GM
R3

: ðF6Þ

On the other hand, the mass-radius relation writes

R ¼ 2σ

ν

ℏ2

GMm2
: ðF7Þ

Combining these two relations we obtain

ω2 ¼ ν

α

GM
R3

¼ 2σ

α

ℏ2

m2R4
¼ ν4

8ασ3
G4M4m6

ℏ6
: ðF8Þ

If we use a Gaussian ansatz, the prefactors in Eqs. (F7)
and (F8) are 3.76, 0.266, 1, and 5.00 × 10−3. The first
relation of Eq. (F8) shows that the pulsation period T ¼
2π=ω is equal to about 12.2td, where td ¼ ðR3=GMÞ1=2 is
the dynamical time. For the minimum halo with M ¼
108 M⊙ and R ¼ ð1=2.38167Þ kpc, we get td ¼
12.8 Myrs and T ¼ 156 Myrs.

3. TF limit

For bosons with a repulsive self-interaction (as > 0) in
the TF limit (ℏ ¼ 0), the squared pulsation from Eq. (F1)
reduces to

ω2 ¼ 12U þ 2W
I

¼ 6U
I

¼ −
2W
I

; ðF9Þ

where we have used the virial theorem 3U þW ¼ 0 to get
the last two equalities.
With the f-ansatz, the squared pulsation is given by

ω2 ¼ −
2ν

α

GM
R3

þ 24πζ

α

asℏ2M
m3R5

: ðF10Þ

On the other hand, the radius of the BEC is

R ¼
�
6πζ

ν

�
1=2

�
asℏ2

Gm3

�
1=2

: ðF11Þ

Combining these two relations we obtain

ω2 ¼ 2ν

α

GM
R3

¼ 2ν5=2

αð6πζÞ3=2
G5=2Mm9=2

a3=2s ℏ3
: ðF12Þ

If we use a Gaussian ansatz, the prefactors in Eqs. (F11)
and (F12) are 1.73, 0.532, and 0.102. The pulsation period
T ¼ 2π=ω is about 8.62td. For the minimum halo with
M ¼ 108 M⊙ and R ¼ ð1=2.38167Þ kpc, we get td ¼
12.8 Myrs and T ¼ 111 Myrs.
Remark:—In the TF approximation, the density profile

of the BECDM halo is known analytically. In that case, one
can obtain the exact expression of the pulsation (see [107]
and Appendixes H and I of [163]).

4. Maximum mass and maximum pulsation

For bosons with an attractive self-interaction (as < 0),
the pulsation vanishes at the maximum mass [107]:

ω ¼ 0 at M ¼ Mmax: ðF13Þ

With the f-ansatz, the maximum mass and the correspond-
ing radius are given by

Mmax ¼
�

σ2

6πζν

�
1=2 ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p ; ðF14Þ

R� ¼
�
6πζ

ν

�
1=2

�jasjℏ2

Gm3

�
1=2

: ðF15Þ

On the other hand, there is a maximum pulsation at some
mass M̃ [107]. With the f-ansatz, we find that
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ωmax ¼ 0.4246
ν

6πζ

ffiffiffi
σ

α

r
Gm2

jasjℏ
ðF16Þ

at

M̃ ¼ 0.9717Mmax; R̃ ¼ 1.272R�: ðF17Þ

If we use a Gaussian ansatz, the prefactors in Eqs. (F14)–
(F16) are 1.085, 1.73, and 0.100.

5. Nongravitational case

For bosons with an attractive self-interaction (as < 0) in
the NG limit (G ¼ 0), the squared pulsation from Eq. (F1)
reduces to

ω2 ¼ 6ΘQ þ 12U
I

¼ −
2ΘQ

I
¼ 3U

I
; ðF18Þ

where we have used the virial theorem 2ΘQ þ 3U ¼ 0 to
get the last two equalities.
With the f-ansatz, the squared pulsation is given by

ω2 ¼ 6σ

α

ℏ2

m2R4
þ 24πζ

α

asℏ2M
m3R5

: ðF19Þ

On the other hand, the mass-radius relation writes

M ¼ σ

3πζ

mR
jasj

: ðF20Þ

Combining these two relations we obtain

ω2 ¼ −
2σ

α

ℏ2

m2R4
¼ −

2σ5

αð3πζÞ4
m2ℏ2

M4a4s
: ðF21Þ

If we use a Gaussian ansatz, the prefactors in Eqs. (F20)
and (F21) are 1.25, 1, and 2.47. We note that these
configurations are unstable (ω2 < 0) so they should not
be observed in practice.

APPENDIX G: SIMILARITY BETWEEN THE
MASS-RADIUS RELATION OBTAINED FROM

THE f -ANSATZ AND FROM THE JEANS
INSTABILITY STUDY

In this appendix, we show at a general level that the
mass-radius relation MJðRJÞ obtained from the Jeans
instability study is similar to the mass-radius relation
MðRÞ of DM halos in their ground state obtained from
the minimization of the energy at fixed mass using an f-
ansatz. This similarity was first observed in Ref. [107] in a
special case (for a jψ j4 potential of interaction and for a
Gaussian ansatz), and it is here generalized to an arbitrary
potential of interaction Vðjψ j2Þ and an arbitrary ansatz.

1. Mass-radius relation from the Jeans instability study

In this section, we consider the formation of structures in
the linear regime from the Jeans instability study (see
Sec. II D). The Jeans wave number is determined by the
equation [107]

ℏ2k4J
4m2

þ c2sk2J − 4πGρ ¼ 0; ðG1Þ

where c2s is the squared speed of sound. For a barotropic
fluid, this is a function of the density given by Eq. (18).
Equation (G1) is a second degree equation for k2J whose
physical solution is

k2J ¼
2m2

ℏ2

�
−c2sðρÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4sðρÞ þ

4πGρℏ2

m2

r �
: ðG2Þ

If we define the Jeans radius and the Jeans mass by

RJ ¼
λJ
2
¼ π

kJ
; MJ ¼

4

3
πρR3

J; ðG3Þ

we obtain

RJðρÞ ¼
πℏffiffi
2

p
m�

−c2sðρÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4sðρÞ þ 4πGρℏ2

m2

q �
1=2 ; ðG4Þ

MJðρÞ ¼
4

3
πρRJðρÞ3: ðG5Þ

These equations determine the Jeans scales RJðρÞ and
MJðρÞ as a function of the density. They also determine the
Jeans mass-radius relationMJðRJÞ in parametric form with
parameter ρ.
Remark:—In the nongravitational case, there is a hydro-

dynamic instability when c2s < 0 [76,107].34 In that case,
the “Jeans” wave number is determined by the equation

ℏ2k2J
4m2

þ c2s ¼ 0; ðG6Þ

and the parametric equations (G4) and (G5) reduce to

RJðρÞ ¼
πℏ

2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2sðρÞ

p ; ðG7Þ

MJðρÞ ¼
4

3
πρRJðρÞ3: ðG8Þ

34This hydrodynamic instability is also called a tachyonic
instability.
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2. Mass-radius relation from the f -ansatz

In this section, we consider BECDM halos that appear in
the nonlinear regime of structure formation (see Sec. II C).
Stable DM halos correspond to minima of energy Etot at
fixed mass M. We can obtain an approximate analytical
form of the mass-radius relation by making an ansatz for
the wave function. A Gaussian ansatz was considered in
[107]. To be as general as possible, we consider here an
ansatz of the form (that we call f-ansatz)

ρðr; tÞ ¼ M
RðtÞ3 f

�
r

RðtÞ
�
; ðG9Þ

where fðxÞ is an arbitrary function. We imposeR
fðxÞdx ¼ 1 to satisfy the normalization condition (or

the conservation of mass). We also assume

Sðr; tÞ ¼ 1

2
mHðtÞr2 ⇒ uðr; tÞ ¼ HðtÞr; ðG10Þ

so that the velocity field is proportional to the radial
distance. It can be shown (see Appendix J of [149]) that
Eqs. (G9) and (G10) yield an exact solution of the
continuity equation (10) provided that

H ¼
_R
R
: ðG11Þ

This function is similar to the Hubble parameter in
cosmology. On the other hand, the gravitational potential
can be determined from the Poisson equation (13). Using
Eq. (G9) we obtain

Φðr; tÞ ¼ GM
RðtÞ g

�
r

RðtÞ
�
; ðG12Þ

where gðxÞ is the solution of

Δg ¼ 4πfðxÞ: ðG13Þ

We can now use the ansatz (G9)–(G13) to determine the
different functionals that appear in the energy from
Eq. (22). We find

Θc ¼
1

2
αM

�
dR
dt

�
2

with α ¼
Z

fðxÞx2dx; ðG14Þ

ΘQ ¼ σ
ℏ2M
m2R2

with σ ¼ 1

8

Z ð∇fÞ2
f

dx; ðG15Þ

U ¼ ζ

γ − 1

KMγ

R3ðγ−1Þ with ζ ¼
Z

fγðxÞdx; ðG16Þ

and

W ¼ −ν
GM2

R
with ν ¼ −

1

2

Z
fðxÞgðxÞdx: ðG17Þ

The expression (G16) of the internal energy U is valid for a
power-law potential associated with a polytropic equation
of state (we will see later how to generalize the formalism to
an arbitrary potential of interaction or an arbitrary equation
of state). The moment of inertia is

I ¼ αMR2: ðG18Þ

If we use a Gaussian ansatz fðxÞ ¼ 1
π3=2

e−x
2

, the values of

the coefficients are αG¼3=2, σG¼3=4, ζG¼1=ðγπγ−1Þ3=2,
and νG ¼ 1=

ffiffiffiffiffiffi
2π

p
[107].

With the ansatz from Eqs. (G9) and (G10) the total
energy can be written as

Etot ¼
1

2
αM

�
dR
dt

�
2

þ VðRÞ ðG19Þ

with

VðRÞ ¼ σ
ℏ2M
m2R2

− ν
GM2

R
þ ζ

γ − 1

KMγ

R3ðγ−1Þ : ðG20Þ

We have separated the classical kinetic energy Θc from the
potential energy V ¼ ΘQ þ U þW. From the conservation
of energy, _Etot ¼ 0, we obtain

αM
d2R
dt2

¼ −V 0ðRÞ: ðG21Þ

This is similar to the equation of motion of a fictive particle
of mass αM and position R moving in a potential VðRÞ. At
equilibrium, the condition V 0ðRÞ ¼ 0 (extremum of energy)
gives the mass-radius relation

−2σ
ℏ2M
m2R3

þ ν
GM2

R2
− 3ζ

KMγ

R3ðγ−1Þþ1
¼ 0: ðG22Þ

For the standard BEC, we get Eq. (F3). The foregoing
equations may also be obtained from the virial theorem
[107,149] or from the Lagrange equations [145,149].
The pulsation of the self-gravitating BEC is given by

[107,149]

ω2 ¼ 1

αM
V 00ðRÞ: ðG23Þ

The BEC is stable provided that ω2 > 0which is equivalent
by Eq. (G23) to the requirement that the equilibrium state is
a minimum of energy. Using Eq. (G20) we obtain
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ω2 ¼ 6σ

α

ℏ2

m2R4
−
2ν

α

GM
R3

þ ½3ðγ − 1Þ þ 1� 3ζ
α

KMγ−1

R3ðγ−1Þþ2
:

ðG24Þ

Using Eqs. (G15)–(G18), the pulsation can also be written
in terms of the BEC functionals as

ω2 ¼ 6ΘQ þ ½3ðγ − 1Þ þ 1�3ðγ − 1ÞU þ 2W
I

: ðG25Þ

For the usual BEC, we obtain Eqs. (F1) and (F2).
In order to compute the internal energy U for a general

self-interaction potential we consider an ansatz based on a
uniform (top-hat) density

ρðr; tÞ ¼ 3M
4πRðtÞ3 θðjrj − RðtÞÞ; ðG26Þ

where θ is the Heaviside function [θðxÞ ¼ 1 if x < 0 and
θðxÞ ¼ 0 if x > 0]. In that case, the internal energy is
given by

U ¼ V
�

3M
4πR3

�
4

3
πR3: ðG27Þ

We then find that

U0ðRÞ ¼ d
dR

�
VðρÞ
ρ

M

�
¼ M

d
dρ

�
VðρÞ
ρ

�
dρ
dR

¼ −
9M2

4πR4

d
dρ

�
VðρÞ
ρ

�
: ðG28Þ

Using Eq. (16), which corresponds to the first principle of
thermodynamics (see Appendix H)

�
VðρÞ
ρ

�0
¼ PðρÞ

ρ2
⇔ d

�
V
ρ

�
¼ −Pd

�
1

ρ

�
; ðG29Þ

we obtain

U0ðRÞ ¼ −P
�

3M
4πR3

�
4πR2 ⇔ dU ¼ −PdV; ðG30Þ

where V ¼ ð4=3ÞπR3 denotes the volume of the BEC. For a
power-law self-interaction potential, we recover the expres-
sion of U from Eq. (G16) with a coefficient
ζC ¼ ð3=4πÞγ−1. On the other hand, the coefficients enter-
ing in the expressions of Θc and W from Eqs. (G14) and
(G17) are αC ¼ 3=5 and νC ¼ 3=5. Unfortunately, we
cannot use the constant density ansatz to determine the
quantum kinetic energy Θc since it is produced by the
gradient of the density which is infinite at r ¼ R for the top-
hat profile.

For an arbitrary self-interaction potential, we can write
the total energy as in Eq. (G19) with an approximate
potential energy given by

VðRÞ ¼ σ
ℏ2M
m2R2

− ν
GM2

R
þ χV

�
3M
4πR3

�
4

3
πR3; ðG31Þ

where χ is a tunable coefficient. For a power-law self-
interaction potential, we exactly recover Eq. (G20) with
χ ¼ ζð4π=3Þγ−1. For an arbitrary self-interaction potential,
using Eqs. (G30) and (G31), we get

V 0ðRÞ ¼ −2σ
ℏ2M
m2R3

þ ν
GM2

R2
− χP

�
3M
4πR3

�
4πR2: ðG32Þ

The condition of equilibrium V 0ðRÞ ¼ 0 then yields the
mass-radius relation under the form

−2σ
ℏ2M
m2R3

þ ν
GM2

R2
− χP

�
3M
4πR3

�
4πR2 ¼ 0: ðG33Þ

If we work with the variablesM and R, it is usually difficult
to solve this equation explicitly in the general case.
However, if we make the change of variables

R ¼ π

k
; M ¼ 4

3
πρR3; ðG34Þ

inspired by Eq. (G3), we get

2σ

π2
ℏ2k4

m2
þ 3χ

PðρÞ
ρ

k2 −
4

3
π3νGρ ¼ 0: ðG35Þ

Remarkably, this equation is similar to the Jeans
equation (G1). Therefore, it can be solved easily (this is
just a second degree equation for k2), and the mass-radius
relation MðRÞ can be obtained in parametric form as in
Appendix G 1. We get

RðρÞ ¼
2
ffiffi
σ

p
ℏ

m�
−3χ PðρÞ

ρ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9χ2 PðρÞ2

ρ2
þ 32π

3
σν Gρℏ2

m2

q �
1=2 ; ðG36Þ

MðρÞ ¼ 4

3
πρRðρÞ3: ðG37Þ

This shows in full generality that the Jeans mass-radius
relation MJðRJÞ valid in the linear regime of structure
formation is formally similar to the mass-radius relation
MðRÞ of DM halos valid in the nonlinear regime of
structure formation. Apart from the precise value of the
prefactors, we see that the difference with the Jeans study is
that the pressure derivative P0ðρÞ (equal to c2s) is replaced
by the ratio PðρÞ=ρ. For a polytropic equation of state, the
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dependence in the density is the same, i.e., ργ−1, but the
prefactor is different.

APPENDIX H: THERMODYNAMICAL
IDENTITIES FOR COLD BAROTROPIC GASES

In this appendix, we regroup useful thermodynamical
identities valid for cold barotropic gases.
The first principle of thermodynamics can be written

under a local form as

d

�
u
ρ

�
¼ −Pd

�
1

ρ

�
þ Td

�
s
ρ

�
; ðH1Þ

where u is the density of internal energy, ρ is the mass
density, P is the pressure, T is the temperature, and s is
the entropy density. For cold gases (T ¼ 0), Eq. (H1)
reduces to

d

�
u
ρ

�
¼ −Pd

�
1

ρ

�
¼ P

ρ2
dρ: ðH2Þ

If we introduce the enthalpy density

h ¼ Pþ u
ρ

; ðH3Þ

we obtain the relations

du ¼ hdρ and dh ¼ dP
ρ

: ðH4Þ

Comparing Eq. (H3) with the Gibbs-Duhem relation for a
cold gas (T ¼ 0),

u ¼ −Pþ Tsþ μ

m
ρ ⇒

μ

m
¼ Pþ u

ρ
; ðH5Þ

we see that the enthalpy hðrÞ coincides with the local
chemical potential μðrÞ by unit of mass [hðrÞ ¼ μðrÞ=m].

1. General barotropic equation of state

For a general barotropic equation of state of the form
P ¼ PðρÞ, the foregoing relations lead to the identities�

u
ρ

�0
¼ PðρÞ

ρ2
; hðρÞ ¼ PðρÞ þ uðρÞ

ρ
; ðH6Þ

hðρÞ ¼ u0ðρÞ; h0ðρÞ ¼ P0ðρÞ
ρ

; ðH7Þ

PðρÞ ¼ ρhðρÞ − uðρÞ ¼ ρu0ðρÞ − uðρÞ ¼ ρ2
�
u
ρ

�0
; ðH8Þ

P0ðρÞ ¼ ρu00ðρÞ: ðH9Þ

The first principle of thermodynamics for a barotropic
gas at T ¼ 0 [see Eq. (H2)] provides a general relation
between the density of internal energy uðρÞ and the
pressure PðρÞ. If we know the energy density u ¼ uðρÞ,
we can obtain the pressure by

P ¼ −
dðu=ρÞ
dð1=ρÞ ¼ ρ

du
dρ

− u: ðH10Þ

Inversely, if we know the equation of state P ¼ PðρÞ, we
can obtain the energy density by

uðρÞ ¼ ρ

Z
ρ Pðρ0Þ

ρ02
dρ0; ðH11Þ

which is the solution of the differential equation

ρ
du
dρ

− uðρÞ ¼ PðρÞ: ðH12Þ

Remark: Comparing Eqs. (15) and (16) with Eqs. (H8)
and (H9), we see that the potential VðρÞ that occurs in the
GP equation (1) represents the density of internal energy:

uðρÞ ¼ VðρÞ: ðH13Þ

This justifies the expression of the internal energy in
Eqs. (7) and (25).

2. Polytropic equation of state

For a polytropic equation of state of the form P ¼ Kργ

with γ ¼ 1þ 1=n, the density of internal energy [see
Eq. (H11)] is explicitly given by

u ¼ K
γ − 1

ργ ¼ P
γ − 1

¼ nP ¼ nKρ1þ1=n; ðH14Þ

where we have set the constant of integration to zero. For
the standard BEC corresponding to γ ¼ 2 [see Eq. (3)], we
have

u ¼ P ¼ 2πasℏ2

m3
ρ2 ⇒ U ¼ 2πasℏ2

m3

Z
ρ2dr: ðH15Þ

APPENDIX I: DERIVATION OF THE GPP
EQUATIONS IN AN EXPANDING UNIVERSE

In this Appendix, proceeding as in Ref. [114], we derive
the GPP equations in an expanding universe starting from
their expression in the inertial frame. Alternative deriva-
tions starting directly from the KGE equations written with
the conformal Newtonian gauge, which is a perturbed form
of the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric accounting for the expansion of the Universe, and
taking the nonrelativistic limit c → þ∞, can be found in
Refs. [133,134,146,156].
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1. Homogeneous solution

In the inertial frame, theGPPequationsaregivenbyEqs. (1)
and (2). The corresponding hydrodynamic equations,
obtained from the Madelung [269] transformation, are given
byEqs. (10)–(13). Let us first show that these equations admit
a time-dependent spatially homogeneous solution describing
an expanding universe in a Newtonian cosmology.
We consider a spatially homogeneous solution of

Eqs. (10)–(13) of the form

ρbðr; tÞ ¼ ρbðtÞ; Sbðr; tÞ ¼
1

2
HðtÞmr2 þ S0ðtÞ; ðI1Þ

ubðr; tÞ ¼ HðtÞr; Φbðr; tÞ ¼
2

3
πGρbðtÞr2; ðI2Þ

where H ¼ _a=a is the Hubble constant (actually a function
of time) and aðtÞ is the scale factor. The velocity is assumed
to be proportional to the distance (Hubble’s law), and the
gravitational potential has been determined from the
Poisson equation ΔΦb ¼ 4πGρb. The corresponding wave
function is

ψbðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ρbðtÞ

p
ei½12HðtÞmr2þS0ðtÞ�=ℏ: ðI3Þ

The hydrodynamic equations (10)–(13) then reduce to

dρb
dt

þ 3Hρb ¼ 0 ⇒ ρb ∝ a−3; ðI4Þ
dS0
dt

¼ −mV 0ðρbÞ; ðI5Þ

_H þH2 ¼ −
4

3
πGρb ⇒ ä ¼ −

4

3
πGρba: ðI6Þ

The first equation can be interpreted as the conservation of
mass

M ¼ 4

3
πρba3 ⇒ ρb ¼

3M
4πa3

; ðI7Þ

and the third equation as the Newtonian equation of
dynamics

ä ¼ −
GM
a2

¼ −
4
3
πGρba3

a2
ðI8Þ

for a particle submitted to a gravitational field −GM=a2

created by a mass M. These equations can be justified in a
Newtonian cosmology if we view the Universe as a
homogeneous sphere of mass M, radius aðtÞ, and density
ρbðtÞ evolving under its own gravitation. Equation (I8) is
then obtained by considering the force experienced by a
particle of arbitrary mass m on the surface of this sphere
and using Newton’s law. The first integral of motion is

1

2

�
da
dt

�
2

−
GM
a

¼ E; ðI9Þ

implying�
da
dt

�
2

¼ 2GM
a

þ 2E ¼ 8

3
πGρba2 þ 2E: ðI10Þ

We can check that the foregoing equations coincide with
the Friedmann equations in the nonrelativistic limit (or for
pressureless matter). In the context of general relativity, the
term −2E represents the curvature of space κ, where κ ¼
−1; 0;þ1 depending whether the Universe is open, critical,
or closed. The theory of inflation and the observations of
the CMB favor a flat universe (κ ¼ 0) so we shall take
E ¼ 0. In that case, Eq. (I10) reduces to�

da
dt

�
2

¼ 8

3
πGρba2 ⇒ H2 ¼ 8

3
πGρb: ðI11Þ

Combining Eq. (I11) with Eq. (I4) we obtain the solution

a ∝ t2=3; H ¼ _a
a
¼ 2

3t
; ρb ¼

1

6πGt2
; ðI12Þ

corresponding to the classical pressureless Einstein–de
Sitter (EdS) universe (we have assumed a vanishing
cosmological constant Λ ¼ 0). We note that pressure and
quantum effects do not change the evolution of the
homogeneous background in a nonrelativistic cosmology
since they just occur in the form of gradients in
Eq. (12) [114].

2. Comoving frame

We now write the GPP equations in the comoving frame.
To that purpose, we make the change of variables

r ¼ aðtÞx; ψðr; tÞ ¼ Ψðx; tÞei12mHr2=ℏ; ðI13Þ

where r is the proper distance. Equation (I13) is a change of
variables from proper locally Minkowski coordinates r to
expanding coordinates x comoving in the background
model [297]. The density is given by ρ ¼ jΨj2. Defining
the gravitational potential ϕðx; tÞ by

Φðr; tÞ ¼ Φbðr; tÞ þ ϕðx; tÞ; ðI14Þ

we find that the Poisson equation (13) becomes

Δϕ ¼ 4πGa2ðρ − ρbÞ; ðI15Þ

where the derivatives are with respect to x (the same is true
for the following equations unless explicitly stated). We see
that, in the comoving frame, a sort of neutralizing back-
ground appears as in the jellium model of plasma physics.
Therefore, the consideration of an expanding Universe
allows for spatially homogeneous solutions and avoids the
Jeans swindle.
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In order to transform the GPP equations (1) and (2) to the
comoving frame we first compute�∂ψ
∂t

�
r
¼

� ∂
∂t
�

r
Ψ
�

r
aðtÞ ; t

�
ei

1
2
mHr2=ℏ

¼
�∂Ψ
∂t −Hx ·∇Ψþ i

2ℏ
m _Ha2x2Ψ

�
ei

1
2
mHr2=ℏ;

ðI16Þ
and

Δrψ ¼
�
1

a2
ΔΨþ 3

i
ℏ
mHΨþ 2

i
ℏ
mHx · ∇Ψ

−
m2H2

ℏ2
a2x2Ψ

�
ei

1
2
mHr2=ℏ: ðI17Þ

Substituting the foregoing relations into Eq. (1) we find
after simplification [using Eq. (I6)] that

iℏ
∂Ψ
∂t þ

3

2
iℏHΨ¼−

ℏ2

2ma2
ΔΨþm

dV
djΨj2ΨþmϕΨ: ðI18Þ

On the other hand, using Eq. (I11), the Poisson
equation (I15) can be written as

Δϕ
4πGa2

¼ jΨj2 − 3H2

8πG
: ðI19Þ

We can similarly transform the hydrodynamic equa-
tions (10)–(13) to the comoving frame. The wave function
can be written as

Ψðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞ

p
eiSðx;tÞ=ℏ; ðI20Þ

where ρðx; tÞ is the mass density and Sðx; tÞ is the action in
the comoving frame. Making the Madelung [269] trans-
formation

ρðx; tÞ ¼ jΨj2 and v ¼ ∇S
ma

; ðI21Þ
where vðx; tÞ is the velocity field in the comoving frame,
and comparing Eqs. (8), (I13), and (I20), we get

Sðr;tÞ¼Sðx;tÞþ1

2
mHr2⇒uðr;tÞ¼vðx;tÞþHr; ðI22Þ

where u is the velocity field in the inertial frame and Hr is
the Hubble flow.35 Then, we compute

�∂ρ
∂t
�

r
¼

� ∂
∂t
�

r
ρ

�
r

aðtÞ ; t
�

¼ ∂ρ
∂t −Hx · ∇ρ ðI23Þ

and

∇rðρuÞ ¼
1

a
∇ · ðρvÞ þHx ·∇ρþ 3Hρ: ðI24Þ

With these relations, the continuity equation (10)
becomes

∂ρ
∂t þ 3Hρþ 1

a
∇ · ðρvÞ ¼ 0: ðI25Þ

Similarly, using�∂u
∂t

�
r
¼

� ∂
∂t
�

r
v

�
r

aðtÞ ; t
�
þ _Hr

¼ ∂v
∂t −Hðx ·∇Þv þ _Hax; ðI26Þ

and

ðu ·∇rÞu¼½ðHrþvÞ ·∇r�ðHrþvÞ

¼H2axþHðx ·∇ÞvþHvþ1

a
ðv ·∇Þv; ðI27Þ

the quantum Euler equation (12) becomes

∂v
∂t þ

1

a
ðv ·∇ÞvþHv ¼ −

1

ρa
∇P−

1

a
∇ϕ−

1

ma
∇Q ðI28Þ

with the quantum potential

Q ¼ −
ℏ2

2ma2
Δ ffiffiffi

ρ
pffiffiffi
ρ

p ¼ −
ℏ2

4ma2

�
Δρ
ρ

−
1

2

ð∇ρÞ2
ρ2

�
; ðI29Þ

where we have used Eq. (I6) to simplify some terms. These
transformations can also be made at the level of the action.
Using �∂S

∂t
�

r
¼

� ∂
∂t
�

r
S
�

r
aðtÞ ; t

�
þ 1

2
m _Hr2

¼ ∂S
∂t −Hx ·∇S þ 1

2
m _Hr2 ðI30Þ

and

∇rS ¼ 1

a
∇S þmHr; ðI31Þ

the Hamilton-Jacobi equation (11) becomes after simplifi-
cation

∂S
∂t þ

ð∇SÞ2
2ma2

¼ −Q −mϕ −mV 0ðρÞ: ðI32Þ

We can check that the above results return the equations of
Refs. [114,133,134,146,156] up to an obvious change of
notations.

35This result can also be obtained as follows. Taking the
derivative with respect to time of the relation r ¼ aðtÞx, we get
dr=dt ¼ _axþ adx=dt. This can be written as u ¼ Hrþ v, with
u ¼ dr=dt and v ¼ adx=dt, where u is the proper velocity and v
is the peculiar velocity.
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