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We study the Jeans mass-radius relation of Bose-Einstein condensate dark matter in Newtonian gravity.
We show at a general level that it is similar to the core mass-radius relation of Bose-Einstein condensate
dark matter halos [P. H. Chavanis, Phys. Rev. D 84, 043531 (2011)]. Bosons with a repulsive self-
interaction generically evolve from the Thomas-Fermi regime to the noninteracting regime as the Universe
expands. In the Thomas-Fermi regime, the Jeans radius remains approximately constant while the Jeans
mass decreases. In the noninteracting regime, the Jeans radius increases while the Jeans mass decreases.
Bosons with an attractive self-interaction generically evolve from the nongravitational regime to the
noninteracting regime as the Universe expands. In the nongravitational regime, the Jeans radius and the
Jeans mass increase. In the noninteracting regime, the Jeans radius increases while the Jeans mass
decreases. The transition occurs at a maximum Jeans mass which is similar to the maximum core mass of
Bose-Einstein condensate dark matter halos with an attractive self-interaction. We use the core mass-radius
relation of dark matter halos and the observational evidence of a “minimum halo” (with typical radius
R ~ 1 kpc and typical mass M ~ 103 M) to constrain the mass m and the scattering length a, of the dark
matter particle. For noninteracting bosons, m is of the order of 2.92 x 10722 eV/c?. The mass of
bosons with an attractive self-interaction can be only slightly smaller (2.19 x 10722 eV/c? <
m<292x 1072 eV/c* and —1.11 x 107%% fm < a, < 0); otherwise, the minimum halo would be
unstable. Constraints from particle physics and cosmology imply m = 2.92 x 107> eV/c? and a, =
—3.18 x 107%® fm for ultralight axions, and it is then found that attractive self-interactions can be neglected
in both the linear and the nonlinear regimes of structure formation. The mass of bosons with a repulsive
self-interaction can be larger by 18 orders of magnitude (2.92 x 1072 eV/c? < m < 1.10 x 1073 eV/c?
and 0<a, <441 x107° fm). The (m=110x1073eV/c*> and
a, = 4.41 x 107° fm) is determined by the Bullet Cluster constraint while the transition between the
noninteracting limit and the Thomas-Fermi limit corresponds to m =2.92 x 10722 eV/c?> and
a, = 8.13 x 1072 fm. For each of these models, we calculate the Jeans length and the Jeans mass at
the epoch of radiation-matter equality and at the present epoch.

maximum allowed mass

DOI: 10.1103/PhysRevD.103.123551

I. INTRODUCTION

Even after 100 years of research, the nature of dark
matter (DM) is still elusive. The standard cold dark matter
(CDM) model, in which DM is represented by a classical
pressureless fluid at zero temperature (7 = 0) or by a
collisionless N-body system of classical particles, works
extremely well at large (cosmological) scales and can
account for precise measurements of the cosmic microwave
background (CMB) from WMAP [1] and Planck missions
[2,3]. However, in addition to the lack of evidence for any
CDM particle such as a weakly interacting massive particle
(WIMP) with a mass in the GeV-TeV range, the CDM
model faces serious problems at small (galactic) scales that
are known as the “core-cusp” problem [4], the “missing
satellites” problem [5—7], and the “too big to fail” problem
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[8]. This ‘“small-scale crisis of CDM” [9] is somehow
related to the assumption that DM is pressureless, implying
that gravitational collapse takes place at all scales. A
possibility to solve these problems is to consider self-
interacting dark matter (SIDM) [10], warm dark matter
(WDM) [11], or the feedback of baryons that can transform
cusps into cores [12—-14]. Another promising possibility to
solve the CDM crisis is to take into account the quantum (or
wave) nature of the DM particle. Indeed, in quantum
mechanics, an effective pressure is present even at
T =0. This quantum pressure may balance the
gravitational attraction at small scales and solve the
CDM crisis.

In this paper, we shall consider the possibility that
the DM particle is a boson, e.g., an ultralight axion
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(ULA) [15].I At T =0, bosons form Bose-Einstein con-
densates (BECs), and they are described by a single wave
function y (r, ) called the condensate wave function. They
can therefore be interpreted as a scalar field (SF). The
bosons may be noninteracting or may have a repulsive or an
attractive self-interaction (for example, the QCD axion has
an attractive self-interaction). On astrophysical scales, one
must generally take into account gravitational interactions
between the bosons. The evolution of the wave function of
self-gravitating BECs is then governed by the Schrédinger-
Poisson equations when the bosons are noninteracting or by
the Gross-Pitaevskii-Poisson (GPP) equations when the
bosons are self-interacting. BECDM halos can thus be
viewed as gigantic bosonic atoms where the bosonic
particles are condensed in a single macroscopic quantum
state. The wave properties of the SF are negligible at large
(cosmological) scales where the SF behaves as CDM, but
they become important at small (galactic) scales where they
can prevent gravitational collapse, providing halo cores and
suppressing small-scale structures. This model has been
given several names such as wave DM, fuzzy dark matter
(FDM), BECDM, DM, or SFDM [75-190] (see the
Introduction of [107] and Ref. [191] for an early history
of this model and Refs. [15,192—-196] for reviews). Here,
we shall use the name BECDM. In the BECDM model,
gravitational collapse is prevented by the quantum pressure
arising from the Heisenberg uncertainty principle or from
the scattering of the bosons (when the self-interaction is
repulsive).2 Therefore, quantum mechanics (or a repulsive
self-interaction) may solve the small-scale problems of the
CDM model mentioned above.

It is usually considered that large-scale structures such as
galaxies or dark matter halos form in a homogeneous
universe by Jeans instability [237]. For a cold classical gas,
the Jeans length vanishes or is extremely small (1; ~ 0),
implying that structures can form at all scales. This is not
what we observe and this leads to the CDM crisis. By
contrast, when quantum mechanics (or a repulsive self-
interaction) is taken into account, the Jeans length is
nonzero, implying the absence of structures below a
minimum scale in agreement with the observations. The
Jeans instability of a self-gravitating BEC with repulsive or
attractive self-interaction was first considered by Khlopov

'Some authors have considered the case where the DM particle
is a fermion such as a massive neutrino [16-74]. In this model,
gravitational collapse is prevented by the quantum pressure
arising from the Pauli exclusion principle.

’A repulsive self-interaction (a; > 0) stabilizes the quantum
core. By contrast, an attractive self-interaction (as for the axion)
destabilizes the quantum core above a maximum mass

Mo = 1.0127//Gmla,| first identified in [107] (see
Refs. [107,108,145,156,163,179,181,189,197-227] for recent
works on axion stars [228-230] and Ref. [231] for a review).
This maximum mass has a nonrelativistic origin. It is physically
different from the maximum mass of fermion stars [232] and
boson stars [233-236] that is due to general relativity.

et al. [76] and Bianchi ef al. [79] in a general relativistic
framework based on the Klein-Gordon-Einstein (KGE)
equations. The Jeans instability of a noninteracting self-
gravitating BEC in Newtonian gravity described by the
Schrodinger-Poisson equations was studied by Hu et al.
[87] and Sikivie and Yang [102]. Finally, the Jeans
instability of a Newtonian self-gravitating BEC with
repulsive or attractive self-interactions described by the
GPP equations was studied by Chavanis [107]. These
results were extended in general relativity by Sudrez and
Chavanis [153] going beyond some of the approximations
made by Khlopov et al. [76] (see footnote 7 of [153]). More
recently, Harko [180] considered the Jeans instability of
rotating Newtonian BECs in the Thomas-Fermi (TF) limit
(previous results are recovered when Q = 0). In these
different studies, the authors determined the Jeans length
and the Jeans mass of the BECs and used them to obtain an
estimate of the minimum size and minimum mass of
BECDM halos.> We refer to [190] for a review about
the Jeans instability of nonrelativistic self-gravitating
BECs.

The Jeans instability study is valid only in the linear
regime of structure formation. It describes the initiation of
the large-scale structures of the Universe. The Jeans
instability leads to a growth of the perturbations and the
formation of condensations (clumps). When the density
contrast reaches a sufficiently large value, the condensa-
tions experience a free fall, followed by a complicated
process of gravitational cooling [267] and violent relaxa-
tion [268]. They can also undergo merging and accretion.
This corresponds to the nonlinear regime of structure
formation leading to the DM halos that we observe today.
BECDM halos result from the balance between the
gravitational attraction and the quantum pressure due to
the Heisenberg principle and the self-interaction of the
bosons. Observations reveal that, contrary to the prediction
of the CDM model, there are no halos with a mass smaller
than M ~ 108 M, and with a size smaller than R ~ 1 kpc.
These ultracompact DM halos correspond typically to
dwarf spheroidal galaxies (dSphs) like Fornax. To be
specific, we shall assume that Fornax is the smallest halo
observed in the Universe. In the BECDM model, this
“minimum halo” is interpreted as the ground state of the
self-gravitating BEC at 7 = 0. Bigger halos have a core-
halo structure with a quantum core (ground state)

These studies were performed in a static Universe. The Jeans
instability of an infinite homogeneous self-gravitating BEC in an
expanding universe has been studied by Bianchi er al. [79],
Suarez and Matos [113], and Sudrez and Chavanis [133] in
general relativity and by Sikivie and Yang [102] and Chavanis
[114] in Newtonian gravity. These studies are valid for a complex
SF describing the wave function of a BEC. They rely on a
hydrodynamical representation of the wave equation. The Jeans
instability of a real SF has been studied by numerous authors in
Refs. [15,99,101,117,141,238-266].
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surrounded by an approximately isothermal atmosphere
which results from the quantum interferences of the excited
states. This core-halo structure is observed in numerical
simulations of BECDM [125,126,142,151,154,155,178,
185]. The quantum core may solve the small-scale prob-
lems of the CDM model such as the cusp problem and the
missing satellite problem. The approximately isothermal
atmosphere is consistent with the classical Navarro-Frenk-
White (NFW) profile and accounts for the flat rotation
curves of the galaxies at large distances. The mass-radius
relation of BECDM halos at T = 0 (ground state) repre-
senting the minimum halo or the quantum core of larger
halos has been determined in Refs. [107,108] for bosons
with vanishing, repulsive, or attractive self-interactions. It
can be obtained either numerically [108] by solving the
GPP equations or analytically [107] by using a Gaussian
ansatz for the wave function.” The quantum core mass—halo
mass relation M.(M,) was first obtained by Schive ef al.
[126] in the case of noninteracting bosons from direct
numerical simulations and heuristic arguments. This rela-
tion was later derived in Refs. [169,179,181] from an
effective thermodynamic approach by maximizing the
Lynden-Bell [268] entropy at fixed mass and energy. It
was also extended in these papers to the case of self-
interacting bosons (with a repulsive or an attractive self-
interaction) and to the case of fermions.

It was noticed in Ref. [107] that the Jeans mass-radius
relation obtained from the dispersion relation of self-
gravitating homogeneous BECs is similar to the core
mass—radius relation of BECDM halos obtained by solving
the equation of quantum hydrostatic equilibrium with a
Gaussian ansatz. This agreement is surprising because the
two relations apply to very different regimes of structure
formation: linear versus nonlinear. It results, however,
essentially from dimensional analysis. The aim of the
present paper is to further develop this analogy and study
its consequences. In Sec. II, we recall the basic equations
describing self-gravitating BECs. Using the Madelung
[269] transformation, we write the GPP equations in the
form of hydrodynamic equations. We then consider spa-
tially inhomogeneous solutions of these equations describ-
ing the core of BECDM halos. They correspond to
stationary solutions of the GPP equations or to stationary
solutions of the quantum Euler-Poisson equations satisfy-
ing the condition of hydrostatic equilibrium. Stable equi-
librium states follow a minimum energy principle. We also
consider the Jeans instability of an infinite homogeneous
self-gravitating BEC. We recall the general dispersion
relation and the general Jeans wave number obtained in
Ref. [107] from which we can obtain the Jeans length and
the Jeans mass. We briefly discuss the Jeans instability in

*A Gaussian density profile usually provides a fair approxi-
mation of the exact density profile up to a few halo radii (see, e.g.,
Fig. 2 of [169] in the case of noninteracting bosons).

an expanding universe. In Sec. III, we derive the analytical
core mass—radius relation of BECDM halos from a general
ansatz on the wave function (f-ansatz). We determine the
parameters of this relation by comparing its asymptotic
limits with the exact results obtained by solving the GPP
equations numerically [108]. In this manner, the analytical
mass-radius relation that we obtain provides a very good
agreement with the exact mass-radius relation obtained
numerically. In Sec. IV, we use the fact that this mass-radius
relation applies to the minimum halo (with R ~ 1 kpc and
M ~ 108 M) to obtain the dark matter particle mass-
scattering length relation. This is a constraint that the
parameters of the DM particle must satisfy in order to
reproduce the characteristics of the minimum halo
(assumed to correspond to the ground state of the
BECDM model). Using additional constraints such as
the Bullet Cluster constraint, or constraints from particle
physics and cosmology, we can put some bounds on the
possible values of m and a,. We consider specific models of
physical interest that we call BECNI, BECTF, BECt,
BECcrit and BECth. Once the values of m and a, have
been determined from the previous considerations, we
study in Sec. V the core mass—halo mass relation and
conclude (in line with our previous investigations
[179,181]) that the quantum cores of DM halos are stable
in all cases of astrophysical interest. In Sec. VI, we study
the evolution of the Jeans radius and Jeans mass as a
function of the cosmic density as the Universe expands. We
confirm that the Jeans mass-radius relation is similar to the
core mass—radius relation of DM halos, the density of the
universe playing in this analogy the role of the average core
density of DM halos. We characterize different regimes
(noninteracting, TF, nongravitational) for bosons with
repulsive or attractive self-interaction. Finally, we explain
how our results can be extended to more general forms of
self-interaction.

II. SELF-GRAVITATING BOSE-EINSTEIN
CONDENSATES

A. Gross-Pitaevskii-Poisson equations

We assume that DM is made of bosons (such as the
axion) in the form of BECs at T =0. We use a non-
relativistic approach based on Newtonian gravity. The
evolution of the wave function y (r, ) of a self-gravitating
BEC is governed by the GPP equations (see, e.g., [107])

oy n? av
Y — A s Dy, 1
ih— T w+md|l//|2w+m W (1)
A® = 4nGly ]2, (2)

where @(r,t) is the gravitational potential and m is the
mass of the bosons. The first term in Eq. (1) is the kinetic
term which accounts for the Heisenberg uncertainty
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principle. The second term takes into account the self-
interaction of the bosons via a potential V(|y|?). The third
term accounts for the self-gravity of the BEC. The mass
density of the BEC is p(r, ) = |y

For the standard BEC, we have

_ 2rna h?

‘4
m3

V(lwl) wi™ (3)

where a, is the scattering length of the bosons. The
interaction between the bosons is repulsive when a, > 0
and attractive when a; < 0. This potential is valid provided
that the gas is sufficiently dilute. It corresponds to a power-
law potential of the form

K
V(wl) = ——|w|> 4
(lyl*) y_1|w| (4)
with
2na,h?
y=2 and K="052 (5)
e

The GPP equations conserve the mass

M= [ wpar (6)

and the energy

h? 1
Eo == / Dy fdr + / V(w)dr + 2 / v 20dr.
2m 2
(7)

which is the sum of the kinetic energy ©, the internal energy
U, and the gravitational energy W (i.e., E,, =@+ U+ W).

Remark:—The GPP equations (1) and (2) may be
obtained in the nonrelativistic limit ¢ — +oco of the
KGE equations describing a SF interacting via a potential
V(@) (see, e.g., [134,146] for a complex SF and [156,189]
for a real SF).

B. The Madelung transformation

Writing the wave function as

y(r.1) = \/p(r.0)eseon, (8)

where p(r, 1) is the mass density and S(r, ¢) is the action,
and making the Madelung [269] transformation

\Y%
and u :—S, 9)
m

p(r.t) = ||
where u(r, ¢) is the velocity field, the GPP equations (1)
and (2) can be written under the form of hydrodynamic
equations

Op B
E—FV'(pu)—O, (10)
as  (VS)? , B
EJF . +m[®+V'(p)]+0=0, (11)
Ju 1 1
A® = 47Gp, (13)

where

p 2 p

_ WA R (A 1(Yp)
0= 2m \fp 4m{ 2] (14)

is the quantum potential taking into account the Heisenberg
uncertainty principle. The pressure P is a function P(r, t) =
Plp(r,1)] of the density (the fluid is barotropic) which is
determined by the potential V(p) through the relation

P'(p) = pV"(p) (15)

implying5

P(p) = pV'(p) = V(p) = 7 [@} (e

Equation (16) determines the equation of state P(p) for a
given potential V(p). Inversely, for a given equation of
state, the potential is given by

Vip) —p/%dp- (17)

We can add a term of the form Ap in the potential without
changing the pressure. The squared speed of sound c; is
given by

ci = P'(p) =pV"(p). (18)

For a power-law potential of the form of Eq. (4), we get a
polytropic equation of state

Vip) =

K
lpy :> P — pr
= 2 = Kyp'~\. (19)

In particular, for the standard BEC, we obtain

>This relation is consistent with the first principle of thermo-
dynamics for a barotropic gas at 7 = 0 (see Appendix H). It
shows that V(p) represents the density of internal energy (u=1V).
Then, the enthalpy is given by h=(P+V)/p=V'(p), and it
satisfies the identity /4'(p) = P'(p)/p. This allows us to replace
(1/p)VP by Vh in Eq. (12) [107].
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2ra, h? 2ra,h?
Vip) ==—5—p* = P=—7—p’
m
dra,h?
= d="Tp(20)
m

In that case, the equation of state is quadratic. The hydro-
dynamic equations (10)—(13) are called the quantum Euler-
Poisson equations [107]. Equation (10) is the continuity
equation, and Eq. (11) is the quantum Hamilton-Jacobi (or
Bernoulli) equation. In the TF limit where the quantum
potential can be neglected (formally A = 0),° they become
equivalent to the classical Euler-Poisson equations of a
barotropic gas (270
The quantum Euler equations conserve the mass

M= / pdr (21)
and the energy (see, e.g., [107])
Ep=0,+0,+U+W, (22)

which is the sum of the classical kinetic energy
2
0, — / /)u?dr, (23)

the quantum kinetic energy

n [ (Vp)?
=52/

dr = l/der, (24)
m

the internal energy

U:/V(p)dr:/p/ppp(g/) dpldr,  (25)

and the gravitational energy

1
W= / p®dr. (26)

At equilibrium, the classical (macroscopic) kinetic energy
vanishes and we get

®We note that 7 appears in the quantum potential Q and in the
self-interaction constant g = 4za,#*/m>. The TF limit (formally
h — 0 with 4za,#*/m? finite) amounts to neglecting Q but not g.
A precise criterion for the validity of the TF regime is given in
Sec. III B.

"In the classical limit # = 0 and for P = 0, the quantum Euler-
Poisson equations (10)—(13) reduce to the pressureless hydro-
dynamic equations of the CDM model.

Eq=0p+U+W. (27)

The quantum virial theorem writes (see, e.g., [107,149])
1.
51 =2(0, + G)Q) +3 / Pdr + W, (28)

where

- / pridr (29

is the moment of inertia. At equilibrium, it reduces to
2®Q+3/Pdr+W:0. (30)

For a polytropic equation of state P = Kp”, we have the
relation [ Pdr = (y — 1)U and the equilibrium virial theo-
rem may be written as 20, +3(y — 1)U+ W =0. In
particular, for the standard BEC for which y = 2, we get
f Pdr = U and the equilibrium virial theorem reduces
t0 20, +3U + W = 0.

By using the Madelung transformation, the GPP equa-
tions (1) and (2) have been written in the form of hydro-
dynamic equations involving a quantum potential taking
into account the Heisenberg uncertainty principle and a
pressure force arising from the self-interaction of the
bosons. This transformation allows us to treat the BEC
as a quantum fluid (superfluid) and to apply standard
methods developed in astrophysics as discussed below.

Remark:—The GPP equations (1) and (2) and the
quantum Euler-Poisson equations (10)—(13) can be written
in terms of the functional derivative of the total energy E,,
(see Sec. 3.6 of [149]). They can also be obtained from a
least action principle and a Lagrangian (see Appendix B of
[145] and Appendix F of [149]).

C. Spatially inhomogeneous equilibrium states in the
nonlinear regime: BECDM halos

We first apply the GPP equations (1) and (2), or
equivalently the quantum Euler-Poisson equations
(10)—(13), to BECDM halos that appear in the nonlinear
regime of structure formation in cosmology.

A stationary solution of GPP equations is of the form

y(r. 1) = p(r)e ", (31)
where ¢(r) = /p(r) and E are real. Substituting Eq. (31)
into Egs. (1) and (2), we obtain the eigenvalue problem
n? av
-—A — O¢p = E¢p, 32
o APzt mPP = Ed (32)

Agp = 47Ge?, (33)
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determining the eigenfunctions ¢(r) and the eigenvalues E.
For the fundamental mode (the one with the lowest energy)
the wave function ¢(r) is spherically symmetric and has no
node so that the density profile decreases monotonically
with the radial distance. Dividing Eq. (32) by ¢ and using
p = ¢*, we obtain the identity

Q+mV'(p)+md=E, (34)

which can also be obtained from the quantum Hamilton-
Jacobi (or Bernoulli) equation (11) with §= —Er.
Multiplying Eq. (34) by p/m and integrating over the
system we get

NE =0, + /pV’(p)dr +2W. (35)

For a polytropic equation of state P = Kp”, we have the
relation [ pV'(p)dr = yU and Eq. (35) may be written as
NE = ©¢ + yU + 2W. In particular, for the standard BEC
for which y =2, we get [pV/'(p)dr =2U and Eq. (35)
reduces to NE = O, +2U +2W.

Equivalent results can be obtained from the hydrody-
namic equations (10)—(13). Indeed, the condition of quan-
tum hydrostatic equilibrium, corresponding to a steady
state of the quantum Euler equation (12), writes

%VQ L VP 4 pVd = 0. (36)

Dividing Eq. (36) by p and integrating the resulting
expression with the help of Eq. (15), we recover
Eq. (34) where E appears as a constant of integration.
On the other hand, combining Eq. (36) with the Poisson
equation (13), we obtain the fundamental differential
equation of quantum hydrostatic equilibrium

2
h—zA <M> -V (E) = 4zGp. (37)
2m N/ P

This equation describes the balance between the quantum
potential taking into account the Heisenberg uncertainty
principle, the pressure due to the self-interaction of the
bosons, and the self-gravity. For the standard BEC, using
Eq. (20), it takes the form

(A dza i
A (ﬁ) - Ap = 4nGp. (38)
2m N/ m

These results can also be obtained from an energy
principle (see Appendix B). Indeed, one can show that
an equilibrium state of the GPP equations is an extremum
of energy E, at fixed mass M and that an equilibrium state
is stable if, and only if, it is a minimum of energy at fixed
mass. We are led therefore to considering the minimization
problem

min {E|M fixed}. (39)

Writing the variational problem for the first variations
(extremization problem) as

SEo — YoM =0, (40)
m

where u (global chemical potential) is a Lagrange multi-
plier taking into account the mass constraint, we obtain
u =0 and

Q+mV'(p) + m® = p. (41)

This relation is equivalent to Eq. (34) provided that we
make the identification £ = ,u.g Therefore, the eigenenergy
E coincides with the global chemical potential p.
Equation (41) is also equivalent to the condition of
quantum hydrostatic equilibrium (36). Therefore, an
extremum of energy at fixed mass is an equilibrium
state of the GPP equations. Furthermore, as shown in
Appendix B, among all possible equilibria, only minima of
energy at fixed mass are dynamically stable with respect to
the GPP equations (maxima or saddle points are linearly
unstable). The stability of an equilibrium state can be
settled by studying the sign of 8°E,, or, equivalently, by
linearizing the equations of motion about the equilibrium
state and investigating the sign of the squared pulsation ?
(see Appendix B). In each case, these methods require one
to solve a rather complicated eigenvalue equation.
Alternatively, the stability of an equilibrium state can be
settled more directly by plotting the series of equilibria and
using the Poincaré-Katz [271,272] turning point criterion
applied to the curve (M) or the Wheeler [273] theorem
applied to the curve M(R) (see [107,108,156] for a specific
application of these methods to the case of axion stars). It
may also be useful to plot the curve E (M) in order to
compare the energy of different equilibrium states with the
same mass M. Since 6M = 0 < SE,; = 0 according to
Eq. (40), the extrema of mass coincide with the extrema of
energy in the series of equilibria. As a result, the curve
E.(M) presents cusps at these critical points (see, e.g.,
Fig. 11 of [108] for illustration).

The fundamental equation of hydrostatic equilibrium of
BECDM halos, Eq. (38), has been solved analytically
(approximately) by using a Gaussian ansatz in [107],
and numerically (exactly) in [108], for an arbitrary self-
interaction (repulsive or attractive). It describes a compact
quantum object (soliton/BEC). Because of quantum effects,
the central density is finite instead of diverging as in the
CDM model. Therefore, quantum mechanics is able to
solve the cusp-core problem.

¥Using the results of Appendix H, Eq. (41) can be interpreted
as a quantum Gibbs condition Q + mh + m® = yp expressing the
fact that the quantum potential Q/m plus the enthalpy & = V'(p)
[equal to the local chemical potential fo.(p)/m] plus the
gravitational potential @ is a constant equal to the global chemical
potential y/m.
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For noninteracting bosons (a, = 0), Eq. (38) reduces to

Zh—n; A <A—\/\f> = 47Gp. (42)

The solution of this equation is usually called a soliton. The
density profile is plotted in Fig. 2 of [179] using the results
of [108]. The density has not a compact support: it
decreases to zero at infinity exponentially rapidly. The
mass-radius relation is given by [77,108]

hZ
M =995 ——-, 43
Gm2R99 ( )

where Rgy represents the radius containing 99% of the
mass. The mass decreases as the radius increases. The
equilibrium states are all stable.”

For bosons with a repulsive self-interaction (a; > 0),
some density profiles are plotted in [108]. The density does
not have a compact support except in the TF limit (see
below). The mass-radius relation is plotted in Fig. 4 of
[108] (see also Fig. 2 in Sec. III B). There is a minimum
radius, given by Eq. (48) below, reached for M — +o0 (TF
limit). The mass decreases as the radius increases. The
equilibrium states are all stable. In the TF limit, Eq. (38)
reduces to

dra,h?
HZ‘; Ap +4nGp = 0. (46)

This equation is equivalent to the Lane-Emden equation for
a polytroge of index n = 1 [274]. It has a simple analytical
solution'

°In Appendix E of [179] we showed that the soliton is similar
to a polytrope of index n = 2 with an effective equation of state

27Gh*\ /2
r= ( 9m? ) o (“4)

depending on the gravitational constant G. In that case, the
density profile is determined by the Lane-Emden equation of
index n = 2 which has to be solved numerically [274]. It has a
compact support (see Fig. 2 of [179]) and the mass-radius relation
is given by [179]

h2
M =525 R (45)
"“The Helmholtz-type equation (46) and its solution (47)
have a long history. As mentioned by Chandrasekhar [274],
the analytical solution (47) was first given by Ritter [275] in the
context of self-gravitating polytropic spheres. Actually, this
solution was already familiar to Laplace [276]. It corresponds
indeed to Laplace’s celebrated law of density for the earth interior
[sin(nr)/r] which he suggested as a consequence of supposing
the earth to be a liquid globe, having pressure increasing from the
surface inward in proportion to the augmentation of the square of
the density.

R
p= PO in <ﬂ> . (47)
nr RTF

The density profile is plotted in Fig. 3 of [179]. In the TF
limit, the density has a compact support: it vanishes at a

finite radius Rrg. The equilibrium states have a unique
radius given by [78,82,89,96,98,107,228]

ashz 1/2
RTF =T (W) , (48)

which is independent of their mass M. In the noninteracting
(ND) limit R > Rrg, we recover Eqs. (42) and (43).

For bosons with an attractive self-interaction (a,; < 0),
some density profiles are plotted in [108]. The density does
not have a compact support. The mass-radius relation is
plotted in Fig. 6 of [108] (see also Fig. 3 in Sec. III C).
There is a maximum mass [107,108]

h
My = 1.012 — (49)
v Gmlay|
at
Riy = 5.5( o) (50)

The density profile at the maximum mass is plotted in
Fig. 1 using the results of [108]. There is no equilibrium
state with M > M ... In that case, the BEC is expected to
collapse [145]. The outcome of the collapse (dense axion
star, black hole, bosenova, etc.) is discussed in
[145,156,201,204,207,210,211,214,215]. For M < M.«

m=2.19 102 ev/c*
a =-1.1110% fm

r (kpc)

FIG. 1. Density profile of a self-gravitating BEC with an
attractive self-interaction at the maximum mass M,,,. For
illustration, we have adopted the values m =2.19 x
10722 eV/c? and a, = —1.11 x 107%? fm (see Sec. III C) corre-
sponding to a DM halo of mass M = 108 My and radius
R =1 kpc (minimum halo) that would be marginally stable.

123551-7



PIERRE-HENRI CHAVANIS

PHYS. REV. D 103, 123551 (2021)

the equilibrium states with R > Rg, are stable and the
equilibrium states with R < R, are unstable."’ In the
nongravitational (NG) limit R < Ry, Eq. (38) can
be written as

2m \/p m?

It is equivalent to the standard stationary GP equation. The
mass-radius relation is given by (see, e.g., [108])

W AP Ama i
Vo | draht g (51)

M = 0.275 ™R

- (52)

These equilibrium states are unstable. In the NI limit
R > Ry, we recover Eqgs. (42) and (43). These equilibrium
states are stable.

Remark:—We have seen that self-gravitating BECs with
an attractive self-interaction (a; < 0) can be at equilibrium
only below a maximum mass given by Eq. (49).
Conversely, a self-gravitating BEC of mass M can be at
equilibrium only if the scattering length of the bosons is
above a minimum negative value [107,108]

h2
GmM?

~1.024 . (53)

(as)min =

D. Infinite homogeneous BEC in the linear regime:
Quantum Jeans problem

We now apply the GPP equations (1) and (2), or
equivalently the quantum Euler-Poisson equations
(10)—(13), to the universe as a whole in order to study
the initiation of structure formation. Specifically, following
[107], we study the linear dynamical stability of an infinite
homogeneous self-gravitating BEC with density p and
velocity u = 0 described by the quantum Euler-Poisson
equations (10)—(13). This is a generalization of the classical
Jeans problem [237] to a quantum fluid.

Considering a small perturbation about an infinite homo-
geneous equilibrium state, making the Jeans swindle
[270,277], and linearizing the hydrodynamic equations
(10)—(13), we obtain'?

95
5T Vou=o (54)
ou n
5 = Vo= Vsb + 5 V(Ad), (55)

""This can be shown by using the Poincaré criterion, by using
the Wheeler theorem, or by computing the squared pulsation
[107,108,156].

12See Refs. [107,153,190] for a more detailed discussion and
some comments about the Jeans swindle.

AS® = 47Gpé, (56)

where ¢2 = P'(p) is the squared speed of sound and
&(r, 1) = 8p(r, 1)/p is the density contrast. Taking the time
derivative of Eq. (54) and the divergence of Eq. (55), and
using the Poisson equation (56), we obtain a single equation
for the density contrast

o) n?
Expanding the solutions of this equation into plane waves of
the form &(r, 7) « exp|i(k - r — wt)], we obtain the general
dispersion relation [107]

h2k*

w? = T c2k? — 4zGp. (58)
This quantum dispersion relation may also be obtained from
the gravitational Bogoliubov equations (see Appendix D of
Ref. [190]). For A =0, we recover the classical Jeans
dispersion relation. The dispersion relation (58) is studied
in detail in [107,153,190]. The generalized Jeans wave
number k;, corresponding to @ = 0, is determined by the
quadratic equation

n2 K
MZ‘J + 2k — 4nGp = 0. (59)

It is given by [107]

2m? 4nGph?
kgzh_”;<—c§+\/c;‘+ ”mf > (60)

In the classical (or TF) limit # — O we recover the classical
Jeans wave number

4xGp

2

K= (61)

In the noninteracting limit ¢ = 0 we obtain the quantum
Jeans wave number

162Gpm*\ /2

The Jeans length is A; = 27 /k;. The Jeans radius and the
Jeans mass are defined by

4
M, =—napR3. 63
> k, J 37TP J ( )

They represent the minimum radius and the minimum mass
of a fluctuation that can collapse at a given epoch. They are
therefore expected to provide an order of magnitude of the
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minimum size and minimum mass of DM halos interpreted
as self-gravitating BECs."

We note that when ¢2 < 0, the system can be unstable
even in the absence of self-gravity (G = 0). This is a purely
hydrodynamic instability (also called tachyonic instability
for a SF). In that case, the dispersion relation (58)
reduces to

nk*
w* = a2 |c2|k>. (64)

The critical wave number of the instability is [107]

4m?|c2|\ /2
k,:( h!') . (65)

The maximum growth rate is equal to

Ymax = . (66)

It corresponds to a wave number

b = 2m?|c?| 1/27 k; 67
m — hz _ﬁ' ( )

These results and their generalization in the presence of
self-gravity are discussed in [107,153,190].

Extending the Jeans instability study for a self-
gravitating BEC in an expanding universe, using the
equations of Appendix I, we find that the evolution of the
density contrast 8 (¢) is determined by the equation [114]

. Q- S

This equation extends the classical Bonnor equation to a
quantum gas. A detailed study of this equation has been
performed in Refs. [114,153]. In a static universe (a = 1),
writing § o e~'®!, we recover the dispersion relation (58).
The comoving Jeans length is A5 =A;/a. The Jeans
instability criterion corresponds to 4 > AS. In a static uni-
verse, the density contrast increases exponentially rapidly
with time as e’ [237]. In an expanding universe, it usually
increases algebraically rapidly with time [278].

Remark:—In the CDM model for which # =0 and
¢y, ~0, we find that 1; ~0. This implies that structures
can form at all scales. This is not what is observed and this
is why the BECDM model has been introduced. In that
case, there is a nonzero (relatively large) Jeans length even
at T = 0 because of quantum effects.

P This is only an order of magnitude because the true mass and
the true size of the structures are determined by the complex
evolution of the system in the nonlinear regime.

III. MASS-RADIUS RELATION OF BECDM HALOS
FROM THE f-ANSATZ

In Ref. [107], using a Gaussian ansatz for the wave
function, we have obtained an approximate analytical
expression of the mass-radius relation of self-gravitating
BECs. In Appendix G2, we show that the form of this
relation is independent of the ansatz. Indeed, it is always
given by

a o
M= SGrR (69)
1-b Gm*R?

where only the value of the coefficients a and b depends on
the ansatz. Here, we shall determine the coefficients a and b
so as to recover the exact mass-radius relation in some
particular limits. Once the mass-radius relation is known,
we can compute the average density of the DM halo by

M

=R (70)

P

Remark:—With the Gaussian ansatz, we get ag, =
265/vg = 3.76 and b: = (61lg/vg)"/* = 1.73, where
we have used Eq. (F4) with 65 = 3/4, (g = 1/(27)%/>,
and vg =1/ 2z, However, below, we shall identify the
radius R with Rgg, not with the radius R of the f-ansatz
defined in Eq. (GY9). Since Ry = 2.38167R for the
Gaussian ansatz, we obtain as = 2.38167a(; = 8.96 and
bg = 2.38167b;; = 4.12 to be compared with the more
exact values of a and b found below.

A. Noninteracting bosons

For noninteracting bosons (a, = 0), the mass-radius
relation from Eq. (69) reduces to

hZ
Gm*R’

M=a

(71)

The mass decreases as the radius increases. If we identify R
with the radius Rgy containing 99% of the mass and
compare Eq. (71) with the exact mass-radius relation of
noninteracting self-gravitating BECs from Eq. (43), we
get a = 9.946.

The average density is given by

3a h? 3 GPmMm*

= = 72
47 Gm*R*  4ma® no (72)

P

The density decreases along the series of equilibria going
from small radii to large radii. The equilibrium states are all
stable.
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150 ‘ ‘
TF limit
a >0
S
100 —
=
50 -
R i NI limit
0 | | e | !
0 1 2 7 8 9 10

FIG. 2. Mass-radius relation of self-gravitating BECs with
a, > 0 (full line: exact [108]; dotted line: Gaussian ansatz
[107]; dashed line: fit from Eq. (69) with a =9.946 and
b = x). The mass is normalized by M,=#/\/Gma, and the
radius by R, = (a,h?/Gm>)'/2.

B. Repulsive self-interaction

For bosons with a repulsive self-interaction (a; > 0), the
exact mass-radius relation is represented in Fig. 2. The
mass decreases as the radius increases. In the TF limit
(h — 0 with fixed g = 47wa,#*/m?), the mass-radius rela-
tion from Eq. (69) reduces to

a,h?\ 12
eon(80)" o

The radius is independent of the mass. If we identify R with
the radius at which the density vanishes and compare
Eq. (73) with the exact radius of self-gravitating BECs in
the TF limit from Eq. (48), we get b = 7. On the other
hand, in the NI limit, we recover the result from Eq. (71)
leading to a = 9.946. We shall adopt these values of a and
b in the repulsive case (see Fig. 2 for a comparison with the
exact result).

The average density decreases along the series of
equilibria going from small radii to large radii, i.e., from
the TF regime to the NI regime. In the TF regime, the
average density is given by

3IM (Gm3\3/2
Sl (i 74
P = 4z <ash2> (74)

In the NI regime it is given by Eq. (72). The equilibrium
states are all stable.

The transition between the TF regime and the NI
regime [obtained by equating Eqs. (71) and (73)] typically
occurs at

4 h R—b ah?\ /2 ~ 3a Gm*
" b\/Gma,’ O\em?) pt_4ﬂb4a§h2'
(75)

The TF regime is valid when M > M, and R ~ R,. The NI
regime is valid when M << M, and R > R,. Note that R,
corresponds to the minimum radius R,;, (i.e., the radius in
the TF regime).

C. Attractive self-interaction

For bosons with an attractive self-interaction (a, < 0),
the exact mass-radius relation is represented in Fig. 3. The
mass increases as the radius increases, reaches a maximum

value
2\ 1/2
atR, = b(a-"h ) . (76)

a h

Mmax 2b | /Gm|as| Gm?

and decreases. If we identify R, with the radius (R,)yo
containing 99% of the mass and compare Eq. (76) with the
exact values of the maximum mass and of the correspond-
ing radius from Egs. (49) and (50), we get b = 5.5 and
a/2b = 1.012, leading to a = 11.1. We shall adopt these
values in the attractive case (see Fig. 3 for a comparison
with the exact result). We note that the value a = 11.1
obtained from the maximum mass is relatively close to the
value a = 9.946 obtained from the NI limit (see Sec. III A).
In the NG limit, the mass-radius relation from Eq. (69)
reduces to

a mR
M=——. 77
¥lal )

12 _

a <0
S
1HAM .
08 i
= i
0.6 f; i
04 .
0 \\ \\\\\ NI limit
0 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
99
FIG. 3. Mass-radius relation of self-gravitating BECs with

a, <0 [full line: exact [108]; dotted line: Gaussian ansatz
[107]; dashed line: fit from Eq. (69) with a =11.1 and

b =5.5]. The mass is normalized by M, = #/+/Gm|a,| and
the radius by R, = (|a,|h?/Gm?)"/2.
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The value a/b?> = 0.367 obtained from the maximum mass
is relatively close to the exact value 0.275 from Eq. (52).
This is a consistency check. The density decreases along
the series of equilibria going from small radii to large radii,
i.e., from the NG regime to the NI regime. In the NG
regime, the average density is given by

- 3a¢ m - 3 m?
 4xb®|aR*  4xbC |a,PM?*

In the NI regime it is given by Eq. (72). The average density
at the maximum mass is

p (78)

_ 3a Gm*
 8xb* a2h?’

Ps (79)

The equilibrium states are unstable before the turning point
of mass (R < R,) and stable after the turning point of
mass (R > R,).

The transition between the NG regime and the NI
regime [obtained by equating Eqgs. (71) and (77)] typically
occurs at

2\ 1/2 4

Mz:ELa Rl:b<%> » Pr= 3“4%'
b\/Gmla,| Gm 4rb*a’h

(80)

These scales are similar to those corresponding to the
maximum mass (we have p, =2p,., M, =2M,_,,, and
R, = R,). The NG regime is valid when M << M, and R <
R, but these equilibrium states are unstable. The NI regime
is valid when M << M, and R > R,. There is no equilib-
rium state of mass M > M.

Remark:—The scales (80) determining the transition
between the NG regime and the NI regime in the attractive
case are similar to the scales (75) determining the transition
between the TF regime and the NI regime in the repulsive
case provided that a; is replaced by |a,|.

IV. DARK MATTER PARTICLE MASS-
SCATTERING LENGTH RELATION

As explained previously, in the BECDM model, the
mass-radius relation (69) of a self-gravitating BEC at 7T = 0
(ground state) describes the smallest halos observed in the
Universe."* They correspond to dSphs like Fornax. From
the observations, these ultracompact DM halos have a
typical radius ~1 kpc and a typical mass ~10% M. To fix
the idlgas, we shall consider a minimum halo of radius and
mass

"It also describes the quantum core of larger DM halos [179].

If more accurate values of R and M are adopted, the

numerical applications of our paper would slightly change.

However, the main ideas and the main results would remain
substantially the same.

R =1 kpc, M =10 Mg, (Fornax). (81)

Its average density is

M

= W =1.62 x 10_18 g/m3
TR

P (Fornax). (82)
Since R and M are prescribed by Eq. (81), we find that
Eq. (69) provides a relation
amR (GMm*R
=——|———-1 83
T M ( ah? ) (83)

between the mass m and the scattering length a, of the
bosonic DM particle. Such a relation is necessary to obtain a
minimum halo consistent with the observations. The
DM particle mass-scattering length relation (83) may be

written as
3
“_(Z)-2. (34)
a, mg my
where we have introduced the scales
ah? \ /2
= 85
m = () (85)
and
32/ B2R\ 1/2
a =2 (25 (86)
b> \GM?

The relation m(ay) is plotted in Fig. 4. Taking a = 9.946
and b = 7 (see Secs. III A and III B) adapted to bosons with

2 ——

mC (aS)C
05 m, (as)min -

L)

-2 -1 0 1 2 3 4

FIG. 4. Mass m of the DM particle as a function of the
scattering length a, in order to match the characteristics of the
minimum halo. The mass is normalized by m and the scattering
length by a). The stable part of the curve starts at the critical
minimum halo point [(ay),., m.]. It differs from the minimum of
the curve ag(m).
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a repulsive self-interaction (or no interaction), we get
my=292x10"2eV/c?> and da. =8.13x 1079 fm.
Taking a = 11.1 and b =5.5 (see Sec. IIIC) adapted
to bosons with an attractive self-interaction, we get
my = 3.08 x 10722 eV/c? and a/. = 3.12 x 107%? fm.

A. Noninteracting bosons
For noninteracting bosons (a, = 0), we get
m=my=292x1072*eV/c* (BECNI). (87)
This is the typical mass considered in the literature when

the bosons are assumed to be noninteracting.
Remark:—In the NI regime, the mass from Eq. (87) can

be written as
ah2 1/2
= (GMR) , (88)

which is equivalent to Eq. (71).

B. Repulsive self-interaction

For bosons with a repulsive self-interaction (a; > 0), da’.
determines the transition between the NI regime (a, < a’,)
where m ~ mg and the TF regime (a, > a!,) where

m a,\'73
()" @
mg a,
When the self-interaction is repulsive, we have seen that all
the equilibrium states are stable. Therefore, in principle, all
the scattering lengths a, > 0 and the corresponding masses

m > my are possible. In the TF regime, the mass-scattering
length relation (89) can be written as

a, GR?
m3 " bR 0)
which is equivalent to Eq. (73). The minimum halo
[Eq. (81)] just determines the ratio

% =328 x 10° fm/(eV/c2)?. (o1)
Note that only the radius R of the minimum halo matters in
this determination. In order to determine m and a
individually, we need another equation. Observations of
the Bullet Cluster give the constraint ¢/m < 1.25 cm?/g
where ¢ = 4za? is the self-interaction cross section [279].
This can be written as

1\2
<125 em?/g e L) g g3 102 (92)
m/mg

dra?

60

107
Bullet Cluster
constraint
10°F
m
max
= a
10°°F  Constraint from the @)

minimum halo

10
10° 10%° 10° 10%° 1%

FIG. 5. The initially upper curve gives the DM particle mass
versus scattering length relation in order to match the character-
istics of the minimum halo [see Eq. (84)]. The mass is normalized
by m and the scattering length by «. The initially lower curve
gives the Bullet Cluster constraint from Eq. (92). Only the region
above this curve is allowed by the observations. The intersection
between these two curves determines the maximum DM particle
mass Myay /My = 3.79 x 10'8 and its maximum scattering length
(@) max/ @ = 545 x 107, leading to the results of Eq. (93). We
note that the intersection occurs in the TF regime where Eq. (84)
can be approximated by Eq. (89).

If we replace the inequality by an equality, and combine
Eq. (92) with Eq. (89), we find that the mass and scattering
length of the DM particle are given by16

Mpax = 1.10x 1073 eV/c?, () = 441 x 1076 fm

(BECTF).  (93)

More generally, because of the Bullet Cluster constraint,
the scattering length of the DM boson must lie in the range
0 < a,; < (ay)ax @nd its mass must lie in the range mg <
m < mpy,, (see Fig. 5). Therefore, when we account for a
repulsive self-interaction, the mass m of the boson required
to match the observations of the minimum halo can
increase by ~18 orders of magnitude as compared to its
value my in the NI case [see Egs. (87) and (93)].

Craciun and Harko [280] obtained a similar estimate.
However, they took a larger BECDM radius R = 10 kpc instead
of R =1 kpc because they modeled large DM halos by a pure
BEC at T = 0 in its ground state while we argue that the ground
state solution leading to Eq. (48) only applies to the minimum
halo with M = 108 M and R = 1 kpc and to the quantum core
of size R. = 1 kpc of larger DM halos (recall that the quantum
core of large DM halos is surrounded by an approximately
isothermal atmosphere due to the quantum interferences of
excited states) [169,179]. Since they applied Eq. (48) to the
whole DM halo instead of just its core as we do, they found a
smaller maximum mass i, = 0.1791 meV/c?> instead of
Myax = 1.10 meV/c?.
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The BECTF model discussed previously corresponds to
the case where the bound fixed by the Bullet Cluster is
reached. For comparison, we can consider a BECt model
which corresponds to the transition between the NI limit
and the TF limit. It is obtained by substituting Eq. (87) into
Eq. (89), or Eq. (88) into Eq. (90), giving

m=2.92x10"22eV/c?, (a,),=8.13x 107 fm

(BECY). (94)

This corresponds to the scales m, and a) defined by
Egs. (85) and (86).

C. Attractive self-interaction

For bosons with an attractive self-interaction (a; < 0),
the relation (84) reveals the existence of a minimum
scattering length

(as)min —

> at which ™ = !
a 3V3 my /3
We find (a,),;, = —1.20 x 107> fm and m, = 1.78 x
1072? eV/c?. The NI regime corresponds to |a,| < d,

and m ~ mg. The NG regime corresponds to |a,| < @/, and
m < my such that

(95)

(96)

In the NG regime, the mass-scattering length relation (96)
can be written as

R
|";;"| — ;—M = 1.01 x 10 fm/(eV/c?),  (97)

which is equivalent to Eq. (77). It is important to note that
the minimum scattering length (a;),.;,, does not correspond
to the critical point (associated with the maximum mass
M ,.x) separating stable from unstable equilibrium states.
This latter is located at

(ay), 1 m. 1
L= - —=—. 98
a, 2V/2 my 2 ©8)

The equilibrium states with m < m, are unstable (they
correspond to configurations with R < R,) so that only the
equilibrium states with m, < m < mg are stable (they
correspond to configurations with R > R,). Therefore, in
the attractive case, the scattering length of the DM boson
must lie in the range (a,), < a, < 0 and its mass must lie in
the range m,. < m < my, with

m. =219 x 10722 eV/c?, (ay), = —1.11 x 1072 fm

(BECerit).  (99)

There is no equilibrium state with a; < (ay),;,- On the
other hand, the equilibrium states with (ay),;, < a; <
(ay), are unstable. We note that, in the attractive case,
the mass m does not change substantially from its value m,,
in the NI limit. The BECcrit model from Eq. (99) corre-
sponds to the case where the minimum halo is critical (i.e.,
its mass M = 108 M, is equal to M,,,,).

D. Constraints from particle physics
and cosmology

For bosons with an attractive self-interaction, such as the
axion [15], it is more convenient to express the results in
terms of the decay constant f instead of the scattering
length a,. They are related by (see, e.g., [156])

hcdm \ 1/2
fe(mem )
327x|ay|

Particle physics and cosmology lead to the following
relation between f and m [147]:

(100)

Q o1(—L Y " g
axion ™ (1017 GeV) <10—22 eV/c2) - (101)

where Q. ., 1S the present fraction of axions in the
universe. Taking €200 ~ Qo = 0.3089 (assuming that
DM is exclusively made of axions), this relation can be
rewritten as

m3/2
= 1.57 x 10% (eV/c?)%/? /fm (102)
a.\'
or, in dimensionless form, as
3/2
("1'/%), =9.06 x 10°. (103)
ag|/ay

Considering the intersection between the curves defined by
Egs. (84) and (103), we find that m ~ m,. Then, taking
m=my=292x 10722 eV/c* [see Eq. (87)] and using
Eq. (102) we get a, = —3.18 x 107%® fm. Therefore, we
can determine a; and m individually. We find

my=292x10"2eV/c?,  (ay)y =-3.18x 107 fm

(BECth). (104)

We note that m has approximately the same value as in the
noninteracting model while a; has a nonzero value. It
corresponds to a decay constant fy, = 1.34 x 10!7 GeV.
Interestingly, f lies in the range 10'© GeV < f <10'® GeV
expected in particle physics (f is bounded above by the
reduced Planck mass and below by the grand unified scale
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of particle physics) [147]. We note that |a|y, < al so we
are essentially in the NI regime. This is confirmed by the
discussion of Sec. V C.

E. QCD axions

In the previous sections, we have determined some
constraints that the mass m and the scattering length a;
of the bosons possibly composing DM must satisfy so that
they are able to form giant BECs of mass M ~ 10% M and
radius R ~ 1 kpc comparable to dSphs like Fornax. This
leads to ULAs with a very small mass that are allowed by
particle physics (in connection to string theory) but that
have not been fully characterized yet [15]. On the other
hand, the characteristics of the QCD axion are precisely
known from cosmology and particle physics, and we can
see how they enter into the problem.

QCD axions have amass m = 10~ eV/c? and a negative
scattering length a;, = —5.8 x 1073 m [281], correspond-
ing to a dimensionless self-interaction constant A = —7.39 x
107% and a decay constant f =5.82x 10" eV (see
Appendix C). The maximum mass of QCD axion stars is
Mt — 6,46 x 10714 M and their minimum stable radius
is (R§y)™*t = 227 km (their average maximum density is
p =2.62x 10° g/m’ and the maximum number of axions
in an axion star is Ny, = My /m = 7.21 x 10%).

These values of M, and Rg, correspond to the typical
size of asteroids. Obviously, QCD axions cannot form giant
BECs with the dimension of DM halos like Fornax.
However, they can form mini boson stars (mini axion stars
or dark matter stars) of very low mass—axteroids—that
could be the constituents of DM halos under the form of
mini massive compact halo objects (mini MACHOSs)
[145,156]. These mini axion stars are Newtonian self-
gravitating BECs of QCD axions with an attractive self-
interaction stabilized by the quantum pressure (Heisenberg
uncertainty principle). They may cluster into structures
similar to standard CDM halos. They might play a role as
DM components (i.e., DM halos could be made of mini
axion stars interpreted as MACHOs instead of WIMPs) if
they exist in the Universe in abundance. However, mini
axion stars (MACHOs) behave essentially as CDM and do
not solve the small-scale crisis of CDM.

Remark:—The collapse of axion stars above the limiting
mass M.« [107] has been discussed by several authors
[145,156,201,204,207,210,211,214,215].  The collapse
may lead to the formation of a dense axion star or a black
hole. It may also be accompanied by an explosion with an
ejection of relativistic axions (bosenova).

V. CORE MASS-HALO MASS RELATION

The results of Secs. II-IV describe the ground state of a
self-gravitating BEC [107]. They apply to the minimum
halo [see Eq. (81)] which is a purely condensed object
without atmosphere. Larger DM halos have a core-halo

structure with a quantum core (soliton) in its ground state
and an approximately isothermal atmosphere due to quan-
tum interferences of excited states [149]. The results of
Secs. II-1V also apply to the quantum core of these objects.
The mass M. of the quantum core increases with the halo
mass M ,. For noninteracting bosons and for bosons with a
repulsive self-interaction we may wonder if the core mass
can reach the maximum mass MSR, set by general relativity
and collapse toward a supermassive black hole (SMBH).
For bosons with an attractive self-interaction we may
wonder if the core mass can reach the maximum mass
found in [107] and collapse. The outcome of the collapse in
that case would be a dense axion star (soliton), a black hole,
or a bosenova [145,156,201,204,207,210,211,214,215].
These questions have been addressed in [169,179,181],
and we recall below the main results of these studies.

In Refs. [169,179,181], we have derived the core mass—
halo mass relation of DM halos (without or with the
presence of a central black hole) from a thermodynamic
approach. We have obtained a general relation M.(M),)
valid for noninteracting bosons as well as for bosons with a
repulsive or an attractive self-interaction and for fermions.
To obtain this relation we have first shown [169,179] that
the maximization of the Lynden-Bell entropy at fixed mass
and energy leads to the “velocity dispersion tracing”
relation according to which the velocity dispersion in the
core v2~GM,_/R, is of the same order as the velocity
dispersion in the halo v%l ~ GM,/ry,. This relation can be
written as

M. M
vc~vh:>—c~r—h. (105)
c h

The core mass-radius relation M .(R..) can be obtained from
the Gaussian ansatz yielding [107]

3.76 15
M = (106)
-3 Gr;ﬂRz

or, equivalently,

Gma,M?

h2
G (1 + \/1 +0.849 7 S

On the other hand, assuming that the atmosphere is
isothermal, the halo mass-radius relation M (r,) is given
by [169]

R, =187

). (107)

Mh = 1.7620]’%, (108)
where ¥, = 141 M /pc? is the universal surface density of
DM halos inferred from the observations [282-284].
Combining Egs. (105)—(108), we obtain the core mass—
halo mass relation M,.(M,) under the form
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nzym

M, =223=2 !

172
<1+1.06aSZ(1)/2M;/2> . (109)
m

Writing M. = M, for the minimum halo, we obtain

32 _ 2z’ as (12 12
(My)e = 4.99W 1+ ].06EZO (M) |- (110)
This equation determines the mass (M},),,;, of the mini-

mum halo as a function of m and a,. Inversely, for given
(M},) min» it determines the relation between m and a;.
A universal relation can be obtained as follows [179,181].
For a given value of the minimum halo mass (M,,),., we
introduce the scales [see Eqgs. (204) and (207) of [179]]

A l/4
h)min
and
h
a, =211— (112)
G
For example, taking (M), = 108 My, we get my =

225 x 10722 eV/c? and @, = 4.95 x 1072 fm. With these
scales, the normalized DM particle mass—scattering length
relation (110) needed to reproduce the minimum halo
(ground state) can be written as [see Eq. (208) of [179] ]

a, (m\3 m

a,  \m my
and the normalized core mass—halo mass relation (109) can
be written as'’

(113)

MC - my ( Mh > 174
(Mh)min m (Mh)min

o 1_'_@(1_;( M, )1/2‘

m a, (M h)min
This leads to the universal curve plotted in Fig. 19 of [179].
The only input is the DM particle mass m or, equivalently,
its scattering length a, [they are related to each other by
Eq. (113)]. The minimum halo mass (M},),y,;, obtained from
the observations determines the scales m and a,. We have

also established the following relation [see Eq. (146) of
[179]]:

(114)

M, M, \*3
Zh— 601 x 1076 =2 11
17 = 60110 (M> (115)

© o

"This expression can be obtained from Eqgs. (205), (206), and
(223) of [179].

between the halo mass M, wused in our papers
[169,179,181] and the virial halo mass M, used in [126].

A. Noninteracting bosons

For noninteracting bosons, the core mass—halo mass
relation is [see Eq. (226) of [179] ]

nATM, )\ /4
M, :2.23( o ) :

(116)
For a, =0 the mass of the boson is given by
m=my =2.25x 10722 eV/c2."® For a DM halo of mass
M, =102 My similar to the one that surrounds our
Galaxy, we obtain a core mass M, = 10° M and a core
radius R, = 63.5 pc. The quantum core represents a bulge
or a nucleus. It cannot mimic a SMBH because it is too
much extended (Rc?/GM ~ 106 > 1)."°

The maximum mass and the minimum radius of a
noninteracting boson star at 7 = 0 set by general relativity
are [233,234]

M
MR —06337C RoR _ 953 M max
Gm

min C2 (l 17)
These scalings can be obtained as
Appendix B.2 of [107]. For a boson of mass
m=225x10"22eV/c?, we obtain MSR =3.76 x
10" My, and RSR =0.171 pc. The maximum mass is
much larger than the typical quantum core mass of a DM
halo. According to Eq. (116) the mass of the soliton would
be equal to the maximum mass (M, = MSR ) in a DM halo
of mass M), = 6.49 x 1073¢*/(G*%,) = 2.01 x 10?2 M,
(this expression is independent of the boson mass) [181].
Such a large halo mass is clearly unrealistic (the biggest
DM halos observed in the Universe have a mass
M, ~ 10" M). Therefore, the soliton present at the center
of a noninteracting BECDM halo can never collapse toward
a SMBH. This conclusion was first reached in Appendix C
of [181]. Since M, < MSR in all realistic DM halos, a
nonrelativistic approach is justified.

Remark:—A very massive object (Sagittarius A*) resides
at the center of our Galaxy. This object has a mass
M = 4.2 x 10% M, associated with a Schwarzschild radius
Rg = 4.02 x 1077 pc. Its radius is not known exactly but it
must be less than Rp = 6 x 107 pc, the S2 star pericenter
(Rp = 1492R;) [285]. This object is believed to be a
SMBH but it could also be a compact object such as a
boson star or a fermion ball. Let us assume that this object

explained in

"®In the numerical applications we assume that (M)
108 M.

"It can be shown that the mass of the soliton is of the order of
the de Broglie length. Indeed, from Egs. (105) and (43) we get
R, ~ Agg With Agg ~ A/ (mv) where v ~ v, ~ v, ~ (GM,/r,)"/%.

min
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is a noninteracting boson star (soliton). Using the non-
relativistic mass-radius relation from Eq. (43) with M =
4.2 x10% Mg and R = 6 x 10~ pc, we find that the mass
of the boson is m = 1.84 x 107'% eV/c? [using the expres-
sion of the maximum mass from Eq. (117) with M =
4.2 x10° My we get m =2.01 x 10717 eV/c? but this
situation is too extreme]. These values are forbidden by our
model which assumes that the ground state of the self-
gravitating Bose gas corresponds to a minimum halo of
mass M = 108 M, and radius R = 1 kpc. However, if we
relax this assumption, it may be possible to construct a
realistic model of the Milky Way (MW) in which a
noninteracting boson star mimics a SMBH.

B. Repulsive self-interaction in the TF limit

For bosons with a repulsive self-interaction in the TF
limit, the core mass—halo mass relation is [see Eq. (229) of
[179]]

n*Toa,M;\ 2
M, =230 (#) . (118)
Gm
In the TF limit, the ratio a,/m> is given by

a,/m? = d,/mj = 4.35 x 10> fm/(eV/c?)3. For a DM
halo of mass M;, = 10'2 M, similar to the one that surrounds
our Galaxy, we obtain a core mass M, = 10'° M and a core
radius R, = 635 pc. The quantum core represents a bulge or a
nucleus. It cannot mimic a SMBH because it is too much
extended (Rc?/GM ~ 10° > 1).

The maximum mass and the minimum radius of a self-
interacting boson star at 7 =0 in the TF limit set by
general relativity are [228,235,236]

hc?/a, GM
Ve ROR — .25 —mx
C

GR _
M = 0307 b GR

(119)

These scalings can be obtained as explained in Appendix
B. 3. of [107]. For aratio a,/m> =4.35x 103 fm/(eV/c?)3,
we obtain M, =2.35x 10" My and R, = 703 pc.
The maximum mass is much larger than the typical
quantum core mass of a DM halo. According to
Eq. (118) the mass of the soliton would be equal to the
maximum mass (M, = MSR ) in a DM halo of mass M, =
0.0178¢*/(G*%) = 5.51 x 10> M, (this expression is
independent of the ratio a,/m?) [181]. Such a large halo
mass is clearly unrealistic (the biggest DM halos observed
in the Universe have a mass M, ~ 10'* M ). Therefore, the
quantum core present at the center of a BECDM halo with
repulsive self-interactions can never collapse toward a
SMBH. This conclusion was first reached in
Appendix C of [181]. Since M, < MSR in all realistic
DM halos, a nonrelativistic approach is justified.
Remark:—Let us assume that the object at the center of
the MW is a self-interacting boson star. Using the

nonrelativistic mass-radius relation (48) with R = 6x
10~* pc we find that a;/m* = 1.18 x 10™° fm(eV/c?)?
[using the expression of the maximum mass from
Eq. (119) with M = 4.2 x 10° M, we get a,/m* = 1.39 x
10~ fm(eV/c?)3 but this situation is too extreme]. These
values are forbidden by our model which assumes that the
ground state of the self-gravitating Bose gas corresponds to
a minimum halo of mass M = 10% My and radius
R =1 kpc. However, if we relax this assumption, it may
be possible to construct a realistic model of the MW in
which a self-interacting boson star mimics a SMBH.

C. Attractive self-interaction

For bosons with an attractive self-interaction, the core
mass—halo mass relation (see Fig 19 in [179]) presents a
maximum when the core mass reaches the critical value
[see Egs. (181) and (235) of [179] ]

(M), = 1.085

max

A f2h 1/2
—= 109 =——= 120
N (c3m26> 120

at which it becomes unstable and collapses [107,145]. The
collapse of the core, leading to a dense axion star (soliton),
a black hole, or a bosenova [145,156,201,204,207,
210,211,214,215], occurs in a DM halo of mass [see
Egs. (233) and (234) of [179] ]

m2 f4
M) = 0223 55— = 2255 5——. 121
( h)de agzo h2C6ZO ( )
We note that the maximum halo mass (M},),,., depends
only on f while the maximum core mass (M..),,,, depends

on f and m.

The maximum mass of a self-gravitating BEC made of
bosons with mass mg, = 2.92 x 1072 eV /¢? and scattering
length (a,)y, = —3.18 x 107%% fm  (corresponding to
fun =134 x10"7 GeV) is M, =5.10x 10! M, and
the corresponding radius is Rgg = 1.09 pc. The minimum
halo (M = 108 Mg, R =1 kpc) has a mass much smaller
than the maximum mass (M < M,,,), so it is stable. The
halo mass at which the core mass would become unstable
(M, = M) and collapse is (M},),, = 1.01 x 102 M.
Since the largest DM halos observed in the Universe have a
much smaller mass, of the order of M;,~10"M o <<(M},) ;ux-
we conclude that the quantum cores of BECDM halos
with an attractive self-interaction are always stable
[M.<(M,),.]- Furthermore, since M), < (M}) . the
attractive self-interaction is negligible. This corroborates
our previous claims [179,181] that the attractive self-
interaction of the bosons can be neglected for what concerns
the structure of DM halos in the nonlinear regime: Everything
happens as if the bosons were not self-interacting.
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Remark:—We recall that the theoretical value fy, =
1.34 x 10'7 GeV comes from the constraints from particle
physics and cosmology [147] (see Sec. IV D). It may be
interesting to relax these constraints and consider arbitrary
values of f. In that case, we find that an attractive self-
interaction would be important in realistic DM halos of
mass M, < 10'* M, and lead to the collapse of their
quantum core when M, = (M}),.. [corresponding to
M. = (M), if f<4.22x 10" GeV [the bound cor-
responds to (M},),... = 10'* M in Eq. (121)]. If values of
f smaller than 4.22 x 10" GeV are allowed, then the
quantum core of a DM halo of mass (M},),.. [satisfying
(M) max. < 10'* M ] reaches the critical mass and collap-
ses. This is the case of the BECcrit model, corresponding to
m, =2.19x 10722 eV/c? and f, = 1.97 x 10'* GeV, for
which (M})0x = (M) max = 10 Mg and R’ =1 kpc.
On the other hand, for f = 1.34 x 10" GeV and m =
102 eV/c* we find that (M), ~ 102 M,
(M) imax ~ 10° Mg, and RY° ~300 pc. The collapse of
the quantum core leads to a dense axion star (soliton)
[156,201,204] or a bosenova [210].*° However, we recall
that values of f smaller than 4.22 x 10! GeV are outside
of the range 10'® GeV < f < 10'® GeV predicted by
particle physics and cosmology [147], so that, according
to these constraints, we do not expect the collapse of the
core to occur in realistic DM halos of mass M, < 10'* M,
(as discussed above).

D. Fermions

For fermions, the core mass—halo mass relation is (see
Sec. VI.C of [179])

3/2 3/8
M, = 3.83h—2 (Mh20> :
m

o (122)

The mass of the fermion required to account for the
characteristics of the minimum halo is given by m =
170 eV/c? (see Sec. ILA of [179]). For a DM halo of
mass M, = 10> M o similar to the one that surrounds our
Galaxy, we obtain a core mass M, = 4.47 x 10° Mg and a
core radius R, = 284 pc. The quantum core represents a
bulge or a nucleus. It cannot mimic a SMBH because it is
too much extended (Rc?/GM ~ 10° > 1).

The maximum mass and the minimum radius of a
fermion star at 7 = 0 set by general relativity are [232]

hc

321 GMGR
m

6‘2

. (123)

2Lt does not lead to a SMBH which would be obtained for
much larger values of f (> 10'® GeV) [211,215] for which our
previous assumptions do not apply.

These scalings can be obtained as explained in
Appendix B.1 of [107]. For a fermion of mass
m =170 eV/c?, we obtain M, = 2.17 x 10" M and
ROR = 8.85 pc. The maximum mass is much larger than
the typical quantum core mass of a DM halo. According to
Eq. (122) the mass of the fermion ball would be equal to the
maximum mass (M, = MSR ) in a DM halo of mass M,, =
2.17 x 1073¢*/(G*%,) = 6.71 x 10*! M, (this expression
is independent of the fermion mass m) [181]. Such a large
halo mass is clearly unrealistic (the biggest DM halos
observed in the Universe have a mass M, ~ 10" M).
Therefore, the fermion ball present at the center of a
fermionic DM halo can never collapse toward a SMBH.
This conclusion was first reached in Appendix C of [181].
Since M, < MSR, in all realistic DM halos, a nonrelativ-
istic approach is justified.

Remark:—Let us assume that the object at the center of
the MW is a fermion ball. Using the nonrelativistic mass-
radius relation [see Eq. (6) in [179]]

6

n
M=919G sre

(124)
with M = 4.2 x 10 Mg and R = 6 x 107 pc we get m =
54.6 keV/c? [using the expression of the maximum mass
from Eq. (123) with M =4.2x 10° My we get m =
386 keV/c? but this situation is too extreme]. These values
are forbidden by our model which assumes that the ground
state of the self-gravitating Fermi gas corresponds to a
minimum halo of mass M =108 My and radius
R =1 kpc. However, if we relax this assumption, it is
possible to construct a realistic model of the MW in which a
fermion ball mimics a SMBH. Such a model has been
developed in [66,74] (see also [47,51,69]).

E. Conclusion

Following our previous works (see in particular
Appendix C of [181]), we have shown that the quantum
cores of bosonic and fermionic DM halos have a mass M,
much smaller than the general relativistic maximum mass
MSR 5o they cannot collapse toward a SMBH. They are
essentially Newtonian objects (M, << MSR ). In the case of
bosons with attractive self-interactions, provided that f lies
in the range 10' GeV < f < 10'® GeV predicted by
particle physics and cosmology, the core mass M, of
realistic DM halos (M), < 10'* M) is always smaller than
the maximum mass M,,, found in [107] so they do not
collapse. Therefore, the quantum cores of bosonic and
fermionic DM halos are expected to be stable in all cases of
astrophysical interest. They represent large quantum
bulges. They may, however, evolve collisionally on a
secular timescale and ultimately collapse toward a
SMBH via the process of gravothermal catastrophe [286]
followed by a dynamical instability of general relativistic
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origin [287] if the halo mass M}, is sufficiently large (above
the microcanonical critical point), as advocated in [169].
We have also shown that bosons with an attractive self-
interaction behave essentially as noninteracting bosons in
situations of astrophysical interest while bosons with a
repulsive self-interaction can be very different from non-
interacting bosons (their mass m may be 18 orders of
magnitude larger). These conclusions were first reached in
[179,181].

VI. JEANS MASS-RADIUS RELATION

In this section, we study how the Jeans length 4; and the
Jeans mass M; of self-gravitating BECs depend on the
density p. We apply these results in a cosmological context,
during the matter era, where the density of BECDM
evolves with time as (see, e.g., [153] for more details)

L 225 10%a,

e (125)

where a is the scale factor. The beginning of the matter era,
which can be identified with the epoch of radiation-matter
equality (i.e., the transition between the radiation era and
the matter era), occurs at a4 = 2.95 x 1074, At that
moment, the DM density is pe, = 8.77 x 1074 g/m’. In
comparison, the present density of DM is py = 2.25 x
1072* g/m?® (corresponding to ay = 1). In the following,
we compute the Jeans scales 4; and M, for any value of the
density between the epoch of radiation-matter equality peq
and the present epoch py.

The Jeans instability analysis is valid during the linear
regime of structure formation (it describes their initiation)
which is expected to be close to the epoch of radiation-
matter equality which marks the beginning of the matter
era. By contrast, at the present epoch, nonlinear effects have
become important (the DM halos are already formed) and
the Jeans instability analysis is not valid anymore except at
very large scales. We stress that the Jeans scales can only
give an order of magnitude of the size and mass of the DM
halos since these objects result from a very nonlinear
process of free fall and violent relaxation which extends far
beyond the linear regime. It is therefore not straightforward
to relate quantitatively the characteristic sizes, masses, and
densities of DM halos to the Jeans scales. Nevertheless, the
Jeans approach provides a simple first step toward the
problem of structure formation.

Let us consider a standard BEC at 7 =0 with an
equation of state given by Eq. (20). Using the correspond-
ing expression of the speed of sound, the Jeans wave
number (60) can be written as [107]

Gm*
dra’h’p

- sgn(as)] . (126)

The Jeans radius and the Jeans mass defined by Eq. (63) are
then given by

(giflm )1/2
Rj — ‘ slp =5 (127)
|: 1 + 47m hZ Sgn(as)i|
4 (mn )’%/2
_ 37 Slas\
My =— = . (128)
p |: 1 + 47m2h2 Sgn(as):|

Eliminating the density between Eqgs. (127) and (128), we
obtain the Jeans mass-radius relation

Pl
1_Gm2Rj

2 aShZ
Gm3R§

M, = (129)

l—-rm

As noted in [107], this expression is similar to the
approximate mass-radius relation of BECDM halos given
by Eq. (69).%" Comparing Egs. (69) and (129), we get a; =
7*/12 ~8.12 and b, = & which are close to the values of a
and b obtained in Sec. III. This agreement is striking
because the Jeans mass-radius relation [Eq. (129)] is valid
in the linear regime of structure formation close to spatial
homogeneity while the mass-radius relation of BECDM
halos [Eq. (69)] is valid in the strongly nonlinear regime of
structure formation (after free fall and violent relaxation)
for very inhomogeneous objects. Before studying the
relations (127)—(129) in the general case, we consider
particular limits of these relations.

A. NI limit

In the NI limit (a; = 0), the Jeans length and the Jeans
mass are given by [76,79,87,102,107]

"2 1/4 1 352,1/3\ 3/4
Y (RS RV W (A R
162Gpm 6 Gm

(130)

They can be written as

A—J: 1.16

V/e2\ 1/2 3\ 1/4
x 10712 (e /¢ ) (g/m) . (131)
pc m p

M V/ 2\ 3/2 1/4
2120 % 1072 (e /C> ( p3> . (132)
Mg m g/m

*The similarity between the mass-radius relation obtained
from the f-ansatz and from the Jeans instability study is discussed
at a general level in Appendix G.
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Using Eq. (125), we find that the Jeans length increases as
a*/* while the Jeans mass decreases as a~>/# (the comoving
Jeans length decreases as a~'/#). Eliminating the density
between the relations of Eq. (130), we obtain

(133)

This relation is similar to the mass-radius relation (43) of
Newtonian BECDM halos made of noninteracting bosons
[77,107,108].

B. TF limit

Let us consider bosons with a repulsive self-interaction
(a; > 0). In the TF limit (4 = 0), the Jeans length and the
Jeans mass are given by [107]

ah?\ /2 1 Ag’a,h*\ 32
/1]:27T<Gm3> . MJ:gﬂp< Gm3 ) . (134)

They can be written as

N1/2 feV /2 3/2
Y349 ("—) (e /¢ ) : (135)
pc fm m
M N 3/2 2\ 9/2
2T 330 x 10 (a—> (ev/c ) P (136)
Mg fm m g/m

We note that the Jeans length is independent of the density
(the comoving Jeans length decreases as a=!) [107]. Using
Eq. (125), we find that the Jeans mass decreases as a~>. The
relation from Eq. (134) is similar to the relation (48)
determining the radius of a self-interacting BECDM halo in
the TF approximation [78,82,89,96,98,107,228].

C. NG limit

Let us consider bosons with an attractive self-interaction
(ag < 0). In the nongravitational limit (G = 0), the Jeans
length and the Jeans mass™* are given by [107]

m 1/2 T 1 am \3/2
=2 ——— , My=———|— . 137
’ ”<l6n|as|p> : 6pl/2<4|as|> (137)

They can be written as

We call them “Jeans length” and “Jeans mass” by an abuse of
language since there is no gravity in the present situation. The
instability is a purely “hydrodynamic instability” (also called
“tachyonic instability”) due to the attractive self-interaction
(a; < 0) which yields a negative squared speed of sound
(¢ < 0). The “Jeans” terminology will make sense, however,
in the general case (see Sec. VI E) where the instability is due to
the combined effect of self-gravity and self-interaction.

1/2 1/2 3\ 1/2
Y _ 38351026 (M m g/m7\ V*
pc |ag] eV/c? p

(138)

M fi 3/2 3/2 3\ 1/2
My _ 436 10700 (I)E(_m )\ (g/m)
My wl) \evia)

(139)

Using Eq. (125), we find that the Jeans length and the Jeans
mass both increase as a>/? (the comoving Jeans length
increases as a'/?). Eliminating the density between the
relations of Eq. (137), we obtain

ﬂzm

M, ==,
T 24]a

(140)

This relation is similar to the mass-radius relation of
nongravitational BECDM halos with an attractive self-
interaction given by Eq. (52) [108]. We recall, however,
that these equilibrium states (valid in the nonlinear regime
of structure formation) are unstable so they cannot arise in
practice (see [107] for detail). Therefore, only the relations
(137)—(140) obtained from the Jeans analysis in the linear
regime of structure formation are physically meaningful.
They determine the initiation of structures (clumps) in a
homogeneous BEC due to the attractive self-interaction of
the bosons. Their evolution in the nonlinear regime requires
a specific analysis. Since these clumps cannot evolve
toward stable DM halos with mass M ~ M; and radius
R ~R,, they are expected to collapse toward smaller
structures until repulsive terms in the self-interaction
potential (such as ¢® terms not considered here) come into
play [156].

Remark: In the NG limit, the maximum growth rate of
the instability is given by [see Eq. (60)]

4rx|ag|hp
=5 141
max m2 ( )
It corresponds to a wavelength [see Eq. (67)]
1/2
Ay =21 ) = V22, (142)
8laslp

D. Repulsive self-interaction

In order to determine the evolution of the Jeans scales
with the density, we need to specify the parameters of the
DM particle. For illustration, we use the parameters
obtained in Sec. IV (see also Appendix D of [148] and
Sec. Il of [179]). They have been obtained in order to match
the characteristics of a minimum halo of radius R ~ 1 kpc
and mass M ~ 108 M o> similar to Fornax, interpreted as the
ground state of a self-gravitating BEC. We shall use this
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FIG. 6. Evolution of the Jeans length and Jeans mass with the
inverse density of the universe for bosons with a repulsive self-
interaction (4, is in pc, M is in solar masses M, and p is in
g/m3) for the three models BECNI, BECTF, and BECt
considered in the text. Here and in the following figures we
have indicated the values 1;,/2 =1 kpc, M; = 108 My, and
p=162x10""% g/m> corresponding to the minimum halo
(Fornax) for reference (see Sec. VIF).

procedure to determine the parameters of the DM particle,
and then compute the Jeans scales at the epoch of radiation-
matter equality and at the present epoch, instead of trying to
determine the parameters of the DM particle directly from
the Jeans scales.” In the present section, we consider the
case of bosons with a repulsive self-interaction (or no self-
interaction). We consider different types of DM particles
denoted BECNI, BECTF, and BECt in Sec. IV. For each of
these particles, the evolution of the Jeans length 4, and
Jeans mass M; as a function of the inverse density 1/p
(which increases with time as the Universe expands) is
plotted in Fig. 6. The Jeans mass-radius relation (para-
metrized by the density) is plotted in Fig. 7. The curves start

We believe that this alternative procedure, often used in the
literature, is less accurate.

— P
TF
10 , s
10 BECNI
BECt
- Fornax
=
NI
10°F s
BECTF
| | | Lol | L
10° 10’ 10* 10°
Ay
FIG. 7. Jeans-mass radius relation for bosons with a repulsive

self-interaction for the three models BECNI, BECTF, and BECt
described in the text. We see that the Jeans mass-radius relation
(linear regime) is similar to the mass-radius relation of DM halos
(nonlinear regime) represented in Fig. 2. The bullet corresponds
to the typical mass and radius of dSphs like Fornax.

from the epoch of matter-radiation equality and end at the
present epoch.

Generically, as the density of the universe decreases, the
BEC is first in the TF regime and then in the NI regime. In
the TF regime, the Jeans length is constant while the Jeans
mass decreases as p (see Sec. VI B). In the NI regime, the
Jeans length increases as p~'/* while the Jeans mass
decreases as p'/* (see Sec. VI A). The transition between
the TF regime and the NI regime occurs at a typical density

Gm*

= 143
1677242 (143)

Ps

obtained by equating Eqs. (130) and (134). At that point

(M) —H—BL (144)
/s 712 /Gma,
and
ashZ 1/2

The BEC is always in the NI regime (during the period
going from the epoch of matter-radiation equality to the
present epoch) if 1/p; < 1/peg, i.e., if

fm

ST (146)

' G 1/2
L < (—2> =371 x 102!
m 16777 peg
Combining this inequality with the m(a,) relation of

Sec. IV, we find that the BEC is always in the NI regime
if 0<a,<3.16x107% fm (and m ~2.92 x 10722 eV/c?).
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This corresponds to 0 <1 < 1.17 x 1072, On the other
hand, the BEC is always in the TF regime (during the same
period) if 1/p, > 1/py, i.e., if

G '~ f
Lo () T =732x1070
m 16zh*py (eV/c?)

Combining this inequality with the m(a,) relation of
Sec. IV, we find that the BEC is always in the TF regime
if 3.65 x 1075 fm < a, < (@) = 441 x 107 fm (and
223 %1071 eV/c? <m < my, = 1.10 x 1073 eV/c?).

This corresponds to 1.04 x 10778 <1 < A0 = 6.18 x 10716,

BECNI: Let us consider noninteracting ULAs with a
mass m = 2.92 x 10722 eV /c? determined by the charac-
teristics of the minimum halo (see Sec. IV). At the epoch of
radiation-matter equality, we find A; =124 pc and
M; =131x10° My (the comoving Jeans length is
A5 = A;/a = 0.420 Mpc). At the present epoch, we find
A; =553 kpc and M; = 2.94 x 10° M,

BECTF: Let us consider self-interacting bosons with a
mass m = 1.10 x 103 eV/c? and a scattering length a, =
4.41 x 107 fm (this yields 1 = 6.18 x 107'®). This corre-
sponds to a ratio a,/m> = 3.28 x 10° fm/(eV/c?)? deter-
mined by the radius of the minimum halo and to a ratio
4ra?/m = 1.25 cm?/g determined by the constraint set by
the Bullet Cluster assuming that the bound is reached (see
Sec. IV). For the period considered, the BEC is always in the
TF regime. At the epoch of radiation-matter equality, we find
A; =2.01 kpc and M; = 5.51 x 10'> M (the comoving
Jeans length is A =/;/a = 6.81 Mpc). At the present
epoch we find 4; = 2.01 kpc and M ;=141 M.

BECt: Let us consider self-interacting bosons with a mass
m=292x10"2> eV/c* and a scattering length a, =
8.13 x 10702 fm (this yields 4 = 3.02 x 107°°). This corre-
sponds to a ratio a,/m>=3.28x10° fm/(eV/c?)* deter-
mined by the radius of the minimum halo and to a scattering
length chosen such that the minimum halo is just at the
transition between the TF regime and the NI regime (see
Sec. IV). For the period considered, the BEC is first in the TF
regime and then in the NI regime (the transition occurs at a
typical density p, = 1.33 x 107!8 g/m?). At the epoch of
radiation-matter equality, we find 1; = 2.00 kpc and
M; =539 x 10" My (the comoving Jeans length is
A5 = A;/a = 6.78 Mpc). At the present epoch we find 4; =
55.3 kpc and M; = 2.94 x 10° M. In the TF regime, the
BECt model behaves as the BECTF model (because they
have the same ratio a,/m?>) and in the NI regime, the BECt
model behaves as the BECNI model corresponding to
noninteracting ULAs (because they have the same mass
m). This is apparent in Figs. 6 and 7.

BECY: Let us consider self-interacting bosons with a
mass m = 3 x 107! eV/c? and a scattering length a, =
1.11 x 10738 fm (this yields A = 4.24 x 1073¢). This fidu-
cial model is motivated by cosmological considerations

(147)

[127]. Tt is similar to the BECt model. For the period
considered, the BEC is first in the TF regime and then in the
NI regime (the transition occurs at a typical density
ps = 7.93 x 10721 g/m?). At the epoch of radiation-matter
equality, we find 4; = 2.24 kpcand M; = 7.61 x 10> M,
(the comoving Jeans length is 4 = 4;/a = 7.59 Mpc). At
the present epoch we find 1; =173 kpc and M; =
9.05 x 10* M,

Remark:—ULA clumps formed in the linear regime by
Jeans instability may evolve, in the nonlinear regime, into
stable DM halos with mass M ~ M, and radius R ~ R;
since self-gravitating BECs with a repulsive self-interaction
are stable. They can then increase their mass by mergings
and accretion (or possibly lose mass) leading to the DM
halos observed in the universe. Large DM halos have a
core-halo structure resulting from violent relaxation and
gravitational cooling. The core mass—halo mass of self-
interacting BECs has been determined in [169,179,181].
We have seen in Sec. V that the quantum core is always
stable (it does not collapse toward a SMBH).

E. Attractive self-interaction

In this section, we consider the case of bosons with an
attractive self-interaction. We consider different types of
DM particles denoted BECcrit, BECth, and QCD axions in
Sec. IV. For each of these particles, the evolution of
the Jeans length 4; and Jeans mass M; as a function of
the inverse density 1/p (which increases with time as the
universe expands) is plotted in Fig. 8. The Jeans mass-
radius relation (parametrized by the density) is plotted in
Fig. 9. The curves start from the epoch of matter-radiation
equality and end at the present epoch.

Generically, as the density of the universe decreases, the
BEC is first in the NG regime and then in the NI regime. In
the NG regime the Jeans length and the Jeans mass both
increase as p~!/2 (see Sec. VI C). In the NI regime the Jeans
length increases as p~'/* while the Jeans mass decreases as
p'/* (see Sec. VI A). There is a maximum Jeans mass

P oh

o
M =, 148
( J)max 24 \/GT|(15| ( )
corresponding to a Jeans length
a,|A2\ 172
()
at the density
Gm*
P = Do (150)

The transition between the NG regime and the NI regime
occurs at a typical density
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FIG. 8. Evolution of the Jeans length and Jeans mass with the

inverse density of the universe for bosons with an attractive self-
interaction (4, is in pc, M is in solar masses My, and p is in
g/m?) for the BECcrit model described in the text.

Gm*

= 151
167h2a?’ (151)

Ps

obtained by equating Eqs. (130) and (137). At that point

Vs h
M) =——— 152
( J)S 12 Gm‘as| ( )
and
a, hZ 1/2
(), = 2;;('();213 ) . (153)

These scales are similar to those corresponding to the
maximum mass [we have p; = 2p,, (M), = 2(M)ux
and (4;), = (4y),]. The BEC is always in the NI regime
(during the period going from the epoch of matter-radiation
equality to the present epoch) if 1/p, < 1/peg, i.€., if

iR o o
BECcrit
108 e -
C Fornax 1
= | NG NI
107 C -
Lol Lol Lol L
10" 10° 10° 10" 10°
}\'J
FIG. 9. Jeans-mass radius relation for bosons with an attractive

self-interaction for the BECcrit model described in the text. We
note that the Jeans mass-radius relation (linear regime) is similar
to the mass-radius relation of DM halos (nonlinear regime)
represented in Fig. 3.

fm
(eV/e*)*

1/2
) =371 x 102! (154)

o] (S
m? 16nh2peq
Combining this inequality with the m(a,) relation of
Sec. IV, we find that the BEC is always in the NI regime
if =3.16 x 107%* fm < @, < 0 and m~2.92x 10722 eV/c>.
This corresponds to —1.18 x 107> <1<0 and f>
1.35x 105 GeV. On the other hand, the BEC is always
in the NG regime (during the same period) if 1/p, > 1/pg,
1e., if

fm
(eV/e?)?*

1/2
> =7.32x 10716 (155)

|a,| G
m <16ﬂh2p0
Combining this inequality with the m(a,) relation of
Sec. IV, we find that the BEC is always in the NG regime
if —1.39 x 107 fm < a, < 0and m<1.38x 1075 eV/c2.
This corresponds to —2.44 x 1077 <2< 0and f ~ foin =
1.39 x 10'* GeV (see Appendix E 4).

BECcrit: Let us consider self-interacting bosons with a
mass m = 2.19 x 10722 eV/c?> and a scattering length
a, =—1.11 x 1072 fm (this yields A= —3.10 x 107!
and f = 1.97 x 10'* GeV). These values are obtained by
requiring that the minimum halo is critical (see Sec. IV).
For the period considered, the BEC is first in the NG regime
and then in the NI regime (the transition occurs at a typical
density p, = 2.25 x 107! g/m?). The Jeans mass is maxi-
mal at the density p, = 1.13 x 10717 g/m?>. At that density
(M) ax = 1.27 x 108 My and (4;), = 1.13 kpc. At the
epoch of radiation-matter equality, we find 4; = 18.2 pc
and M; = 4.08 x 10° M (the comoving Jeans length is
A5 =2;/a = 0.0617 Mpc). At the present epoch, we find
A; = 63.8 kpc and M; = 4.53 x 10 M. When p > p, =
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2.25x 1077 g/m? the system is in the NG regime. It
undergoes a hydrodynamic or tachyonic instability whose
maximum growth rate is given by Eq. (141). At radiation-
matter equality, we find y,,, = 8.46 x 10712 s71. The
growth rate of the instability is about 100 times larger
than the Hubble rate H =a/a= (82Gp/3)'/? =
2.21 x 10713 71, Therefore, it is justified to assume in
the stability analysis that the background is static (see
Sec. IID). We thus find that the perturbation grows
exponentially rapidly** on a timescale 7 = 1/y = 3.75 x
103 yrs and forms clumps of size 4,, = V24, = 25.7 pc
[see Eq. (142)] and mass M,, = 23/°M, = 1.15 x 10" M
[153]. Writing the evolution of the density contrast as
5(t) = 5;e’" and taking 8; ~ 107 at the initial time of
radiation-matter equality, we find that 6~1 in a
time t ~ 11.57 ~ 4.32 x 10* yrs.

BECth: Let us consider self-interacting bosons with a
mass m = 2.92x 10722 eV/c? and a scattering length
a, = —3.18 x 107%% fm (this yields 1= —1.18 x 107°
and f = 1.34 x 10!7 GeV). These values are obtained by
using constraints from particle physics and cosmology (see
Sec. IV D). For the period considered, the BEC is always in
the NI regime (see the BECNI case studied above). At the
epoch of radiation-matter equality, we find A; = 124 pc
and M; = 1.31 x 10° M (the comoving Jeans length is
A5 =1A;/a = 0.420 Mpc). At the present epoch, we find
;=553 kpc and M; =294 x 10° My. The Jeans
mass is always much below the maximum Jeans mass
(M) = 6.52 x 1019 M reached at a density p,=
4.33x107%g/m>. These results show that the effect of
an attractive self-interaction is negligible for what concerns
the formation of structures (clumps) in the linear regime:
Everything happens as if the bosons were not self-
interacting.

QCD axions: Let us consider QCD axions with a
mass m=10"*eV/c> and a scattering length
a,=-5.8x1073m (this yields A=-7.39x10™* and
f=5.82x10'"GeV). For the period considered (matter
era), the axions are always in the NI regime. At the epoch of
radiation-matter equality, we find A, = 2.13 x 10~/ pc and
M; =652x 107" M, (the comoving Jeans length is
25 =2;/a="122x1071" Mpc). At the present epoch
we find A; =9.45x 107> pc and M;=147x107° M,
The Jeans mass is always much below the maximum Jeans
mass (M) = 8.25 x 107'% M reached at a density
p. = 1.79 x 10* g/m>. These results show that the effect
of an attractive self-interaction is negligible for what

*This is at variance with the situation where the instability is
of gravitational origin. In that case, y is of the order of the Hubble
rate H and it is compulsory to take into account the expansion of
the universe in the stability analysis [278]. It is then found that
5(r) increases algebraically rapidly with time instead of expo-
nentially rapidly.

concerns the formation of structures (clumps) in the linear
regime: Everything happens as if the QCD axions were not
self—interacting.25 Furthermore, the Jeans scales computed
above are much smaller than the galactic scales, indicating
that QCD axions essentially behave as CDM.

Remark: Noninteracting QCD axion clumps formed in
the linear regime by Jeans instability may evolve, in the
nonlinear regime, into stable dilute axion stars since non-
interacting self-gravitating BECs are stable. They can then
increase their mass by mergings and accretion (or possibly
lose mass). If their mass passes above the maximum mass
M e = 6.46 x 1071* M [107] they undergo gravitational
collapse, leading to a bosenova or a dense axion star (see
Sec. IV E). Nongravitational clumps of DM particles
corresponding to the BECcrit parameters formed in the
linear regime by Jeans instability cannot evolve, in the
nonlinear regime, into stable configurations since non-
gravitational BECs are unstable (see Sec. VI C). Therefore,
they are expected to directly collapse, leading to bosenovae
or dense solitons.” Noninteracting clumps of DM particles
corresponding to the BECth parameters formed in the linear
regime by Jeans instability may evolve, in the nonlinear
regime, into stable DM halos with a core-halo profile since
noninteracting self-gravitating BECs are stable. They can
then increase their mass by mergings and accretion. We
have seen in Sec. V C that, for realistic DM halos, the core
mass M, is always smaller than the critical mass M,
[107] so the quantum core (soliton) is always stable.

F. An optimal cosmological density

Except for QCD axions, all the models that we have
considered above are based on values of m and a, that are
consistent with the properties of the minimum halo (see
Sec. 1V). Therefore, by construction, we have M; ~
103 My, and R;~1kpc at a particular density p =
3M/47R? = 1.62 x 107'® g¢/m? during the evolution of
the universe. This “optimal” density corresponds to a scale
factora = 0.0111 and aredshift z = 1/a — 1 = 88.6. If the
structures formed at this epoch, they would have a Jeans
mass and a Jeans radius comparable to the mass and size of
the minimum halo (M ~ 108 M and R ~ 1 kpc). Actually,
structures may form at a different epoch and evolve by
accreting or losing mass during the nonlinear regime. The
relation between the Jeans scales (in the linear regime) and
the actual scales of DM halos (in the nonlinear regime) is
not straightforward and usually requires one to study the
nonlinear process of structure formation numerically.

“This result is valid in the matter era. In the very early
universe, QCD axions can form clumps of mass M ~ 10712 M
and radius R ~ 10° m called axitons [230,288,289]. This is due to
their attractive self-interaction (self-gravity is negligible in that
regzigne).

Another possibility is that they become effectively non-
interacting in the nonlinear regime and form stable dilute solitons.
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VII. CONCLUSION

In this paper, following previous works on the subject,
we have considered the possibility that DM is made of
bosons in the form of self-gravitating BECs. This model is
interesting because it may solve the small-scale problems
of the standard CDM model such as the core-cusp problem
and the missing satellite problem. Indeed, in the linear
regime of structure formation due to the Jeans instability,
quantum mechanics (Heisenberg uncertainty principle) or a
repulsive self-interaction (a; > 0) leads to a finite Jeans
length 4; even at T = 0. Therefore, gravitational collapse
can take place only above a sufficiently large size and a
sufficiently large mass (i.e., above A; and M;,). The
existence of a minimum size and a minimum mass is in
agreement with the observations. By contrast, in the
classical pressureless CDM model (2= P =0), the
Jeans length and the Jeans mass vanish (4; = M; = 0),
or are very small, implying the possibility of formation of
structures at all scales in contradiction with the observa-
tions. On the other hand, in the nonlinear regime of
structure formation (after the system has experienced free
fall, violent relaxation, gravitational cooling, and virializa-
tion), the BECDM model leads to DM halos with a core,
i.e., the central density is finite instead of diverging as r~!
for r - 0 as in the CDM model. The prediction of DM
halos with a core rather than a cusp is again in agreement
with the observations.

According to the above results, the BECDM model
predicts the existence of a “minimum DM halo” which
corresponds to the ground state of the self-gravitating BEC
at T = 0. We have identified this minimum (ultracompact)
halo with dSphs like Fornax with a typical radius R;, =
1 kpc and a typical mass M, = 103 M®.27 The ground
state of the self-gravitating BEC also describes the quantum
core of larger halos with M;, > M ;.. This quantum core is
surrounded by an approximately isothermal atmosphere
(mimicking the NFW profile) yielding flat rotation curves
at large distances as discussed in, e.g., [169].

We have first determined an accurate expression of the
core mass-radius relation M(R) of self-gravitating BECs by
combining approximate analytical results obtained from the
Gaussian ansatz [107] with exact asymptotic results
obtained by solving the GPP equations numerically
[108]. Assuming that this mass-radius relation describes
the minimum DM halo with R, = 1 kpc and M, =
108 Mg, (as well as the cores of larger DM halos) we have
obtained an accurate expression of the DM mass-scattering
length relation m(ay). This relation determines the mass m
that the DM particle with a scattering length a, should have
in order to yield results that are consistent with the mass

“"We have taken these values for convenience. The numerical
applications of our model could be refined by considering more
accurate values of M, and R, but the order of magnitude of
our results should be correct.

and size of the minimum halo typically representing
a dSph.
For noninteracting bosons, we found
m =292 x 1072? eV/c?, (156)
which is the typical mass of the DM particle considered in
FDM scenarios.

For bosons with an attractive self-interaction, we found
that the mass of the DM particle is restricted by the
inequality
219x 10722 eV/c? <m <292 x 10722 eV/c?;,  (157)
otherwise, dSphs like Fornax would be unstable (their mass
would be above the maximum mass M ,,, found in [107]).
Therefore, an attractive self-interaction almost does not
change the typical mass of the DM particle required to
match the characteristics of the minimum halo (the boson
mass is just a little smaller than the value from Eq. (156) in
the noninteracting model). In addition, in line with our
previous works [153,179,181], we have shown that, in
situations of astrophysical interest, the effect of an attrac-
tive self-interaction is negligible both in the linear (see
Sec. VI E) and nonlinear (see Sec. V C) regimes of structure
formation. Therefore, in practice, bosons with an attractive
self-interaction can be considered as noninteracting.”®

For bosons with a repulsive self-interaction, we found
that the mass of the DM particle is restricted by the
inequality
292x 10722 eV/c? <m < 1.10x 1072 eV/c?,  (158)
where the maximum bound arises from the Bullet Cluster
constraint. Therefore, a repulsive self-interaction can
increase the typical mass of the DM particle by 18 orders
of magnitude with respect to its value in the noninteracting
case. As noted in Appendix D.4 of [148], a mass larger
than 2.92 x 10722 eV/c? could alleviate some tensions
with the observations of the Lyman-a forest encountered
in the noninteracting model. Therefore, the self-interacting
BEC model (with a repulsive self-interaction) may provide
a solution to this problem. We have considered two typical
self-interacting BEC models corresponding to m = 1.10 x
1073 eV/c? and a;, = 4.41 x 1076 fm (BECTF) and m =
2.92 x 1072 eV/c? and a, = 8.13 x 1072 fm (BEC).

P These conclusions are valid for ULAs with my, = 2.92 x
10722 eV/c? and (a,)y, = —3.18 x 107%® fm (BECth) that may
form DM halos while fulfilling the constraints from particle
physics and cosmology (see Secs. IV D). By contrast, the
attractive self-interaction of QCD axions is crucial in the context
of QCD axion stars (see Sec. IV E) while being negligible in the
linear regime of structure formation (see Sec. VI E). This suggests
that the attractive self-interaction of QCD axions becomes
important in the nonlinear regime of structure formation.
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We have then shown that the Jeans mass-radius relation
M ;(R;), which is valid in the linear regime of structure
formation, is similar to the mass-radius relation M(R) of
the minimum BECDM halo (or to the core mass-radius
relation of larger halos), corresponding to the ground state
of the GPP equations, which is valid in the nonlinear
regime of structure formation. This analogy allows us to
directly apply some results obtained in the context of
(nonlinear) self-gravitating BECs to the Jeans (linear)
instability problem and vice versa.

The two curves M ;(R;) and M (R) are parametrized by a
typical density [the density of the universe for the M;(R;)
relation and the average—or central—density of the BEC
for the M(R) relation] going from high values to low
values.”” For noninteracting bosons, the mass decreases as
the radius increases. For bosons with a repulsive self-
interaction, there is a minimum radius at which M — +co
corresponding to the TF limit. The mass decreases as the
radius increases, going from the TF limit (high densities) to
the NI limit (low densities). For bosons with an attractive
self-interaction, the mass first increases as the radius
increases, reaches a maximum value M,,., and then
decreases, going from the NG limit (high densities) to
the NI limit (low densities).

Despite these analogies, the curves M;(R;) and M(R)
have a very different physical interpretation. The curve
M (R;) determines the Jeans mass and the Jeans radius at
different epochs in the history of the universe character-
ized by its density p [in that case it is more relevant to plot
M,(p) and R,(p) individually]. The Jeans scales deter-
mine the minimum mass and the minimum size of a
condensation that can become unstable and form a clump.
We must be careful, however, that the Jeans instability
study is valid only in the linear regime of structure
formation. As a result, the interpretation of the curve
M;(R;) and its domain of validity is not straightforward.
In principle, the results of the linear Jeans instability
study are valid only in a sufficiently young universe
(typically the beginning of the matter era) where
Peq = 8.77 x 1071 g/m?. It is not clear if we can apply
the results of the Jeans instability study at later epochs. On
the other hand, the curve M(R) determines the mass-
radius relation of DM halos that are formed in the
nonlinear regime of structure formation after having
experienced free fall, violent relaxation, gravitational
cooling, and virialization. It applies to the minimum halo

“In cosmology, it is natural to follow the series of equilibria
M;(R;) from high to low values of the density because this
corresponds to the temporal evolution of the universe (from early
to late epochs). In the context of DM halos, as in the case of
compact stars [273], it may be more relevant to follow the series
of equilibria M (R) from low to high values of the density because
this corresponds to their natural evolution.

or to the quantum core of larger halos.* We expect that
the mass and the size of the minimum halo is of the order
of the Jeans mass and Jeans radius (M ~ M; and R ~ R;)
calculated at the “relevant” epoch of structure formation.
There is, however, an uncertainty about what this epoch is
(see Sec. VIF). Furthermore, the relation between the
Jeans scales and the characteristics of DM halos is not
straightforward. In practice, the linear Jeans instability
occurs at a certain epoch, leading to weakly inhomo-
geneous clumps of mass M; and radius R;. Then, these
clumps evolve in the nonlinear regime ultimately leading
to DM halos of minimum mass M ~ M; and minimum
radius R~ R;. The DM halos may also merge (or
inversely lose mass) so that their actual mass M and
radius R may be different from M; and R;. On the other
hand, the M(R) relation may present regions of instability
such as the NG branch of Fig. 3. The solutions on these
branches cannot correspond to observable DM halos since
they are unstable. These branches are therefore forbidden
in the nonlinear problem of structure formation. However,
the corresponding branches in the Jeans mass-radius
relation M;(R;) have their usual interpretation. They
determine the mass and size triggering the gravitational
instability in the linear regime. The existence of stable and
unstable branches in the mass-radius relation M(R) of DM
halos leads to the different evolutions described at the end
of Secs. VID and VIE. Typically, we have two
possibilities:

(i) Consider first a branch of the M;(R;) relation such
that the corresponding branch of the M(R) relation
is stable (for example, the NI branch or the TF
branch). In that case, clumps of mass M; and R,
formed in the linear regime by Jeans instability
evolve, in the nonlinear regime, into stable DM
halos of mass M ~ M and radius R ~ R;. They can
then increase their mass by mergings and accretion
(or possibly lose mass) leading to the DM halos
observed in the universe.

(ii) Consider now a branch of the M;(R;) relation such
that the corresponding branch of the M(R) relation
is unstable (for example, the NG branch). In that
case, clumps of mass M; and R; formed in the linear
regime by Jeans instability cannot evolve, in the
nonlinear regime, into DM halos of mass M ~ M

*In principle, even if we know the parameters of the DM
particle (its mass m and scattering length a,), we cannot
determine the mass M and the radius R of the minimum halo
individually. We just know its mass-radius relation M(R).
However, if we assume a universal value ¥y = 141 Mg /pc® of
the surface density of DM halos compatible with the observa-
tions, then we can determine the mass (M,),,;, and the radius
(R},)min Of the minimum halo individually. This is done in [169]
and in Sec. II of [179] where the mass (M},),;, and the radius
(R},) min Of the minimum halo are expressed in terms of m, a,, and
%y. We can then see if they coincide with the Jeans scales (see
Appendix I of [179]).
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and radius R ~ R; since such halos are unstable.
They rather undergo an explosion [210] or a violent
(nonlinear) gravitational collapse leading presum-
ably to smaller and denser objects stabilized by
higher order repulsive terms (e.g., ¢°® terms) in the
self-interaction potential [156,201,204]. Another
possibility is that the clumps migrate from the
nongravitational branch to the noninteracting branch
during the nonlinear regime of structure formation
so that they can ultimately form stable structures.
In the present paper, we have illustrated our results for
bosons interacting via a ¢* potential. We have considered
the case of a vanishing (a; = 0), repulsive (a; > 0), or
attractive (a; < 0) self-interaction. The model of noninter-
acting bosons (FDM) leads to a boson mass m ~
10722 eV/c? that creates some tensions with the observa-
tions of the Lyman-a forest [147]. These observations
require a larger mass of at least 1 order of magnitude. We
have shown that the model of bosons with an attractive self-
interaction necessitates a mass even smaller than m ~
10722 eV/c? (according to Fig. 4 the mass m decreases
as |a,| increases when a; < 0). This model is therefore also
in tension with the observations. By contrast, the model of
bosons with a repulsive self-interaction allows a boson
mass which can be up to 18 orders of magnitude larger than
m ~ 1072? eV/c? (according to Fig. 4 the mass m increases
as a, increases when a, > 0). As noted in [148] this model
could alleviate some tensions with the observations of the
Lyman-a forest encountered in the noninteracting model.
As a result, a repulsive self-interaction (a, > 0) is privi-
leged over an attractive self-interaction (a, < 0) [169].
A repulsive self-interaction is also favored by cosmological
constraints [127,148] which yield a fiducial model with a
mass m = 3 x 107! eV/c? and a scattering length a, =
1.11 x 1078 fm (BECf). We recall that theoretical
models of particle physics usually lead to particles with
an attractive self-interaction (e.g., the QCD axion).
However, some authors [143,182] have pointed out the
possible existence of particles with a repulsive self-
interaction (e.g., the light majoron).

APPENDIX A: DERIVATION OF THE
SCHRODINGER EQUATION

In this appendix, we briefly recall the derivation of the
Schrodinger equation from the formalism of scale relativity
[290]. We follow the presentation given in Ref. [291].

Nottale [290] has shown that the equation that governs
the motion of a particle in a nondifferentiable (fractal)
spacetime can be written in the form of the fundamental
equation of dynamics,

DU

5 = Ve (A1)

where F = —V® is the force by unit of mass exerted on a
particle, provided that U(r, ) is interpreted as a complex
velocity field and D/Dt is a complex time derivative
operator (or covariant derivative) defined by

D
D_9. y.v_ipa

A2
Dt Ot (A2)

where D is the fractal fluctuation parameter in the theory of
scale relativity. Using the expression (A2) of the covariant
derivative, Eq. (A1) can be rewritten as a complex viscous
Burgers equation

a—U+(U-V)U:iDAU—V<I>

En (A3)

with an imaginary viscosity v = iD. It can be shown [290]
that the complex velocity field can be written as the
gradient of a complex action:

Vs

m

U (A4)
This defines a potential flow. As a consequence, the flow is
irrotational: V x U = 0. Using the well-known identities of
fluid mechanics (U-V)U=V(U?/2)-Ux (VxU)
and AU=V(V-U)-Vx (VxU) which reduce to
(U-V)U =V(U?/2) and AU = V(V-U) for an irrota-
tional flow, and using the identity V - U = AS/m resulting
from Eq. (A4), we find that Eq. (A3) is equivalent to the
complex quantum Hamilton-Jacobi (or Bernoulli) equation

6—5+L(VS)2 — iDAS + m® = 0.

A
ot 2m (A5)

We now define the wave function w(r,7) through the
complex Cole-Hopf transformation
S =-2imDlny. (A6)

Substituting Eq. (A6) into Eq. (AS5), and using the identity

Ay 1
Allny) = —=—— (Vy)?, (A7)
U
we obtain the equation
oy 1
D— = -D’A ~Oy. A8
D v+ Py (A8)

This equation coincides with the Schrédinger equation

provided that we set
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h

:%’

D (A10)

which is the expression of the Nelson [292] diffusion
coefficient of quantum mechanics. With this identification,
the Cole-Hopf transformation of fluid mechanics [Eq. (A6)]
is equivalent to the WKB formula

w = e/, (A11)

and the Schrodinger equation (A9) is equivalent to the
fundamental equation of dynamics (Al).

APPENDIX B: EQUIVALENCE BETWEEN THE
STABILITY CRITERIA BASED ON THE ENERGY
PRINCIPLE AND ON THE EQUATION OF
PULSATIONS

In this appendix, we discuss the equivalence between the
stability criterion based on the energy principle (see
Appendix B 1) and the stability criterion based on the
equation of pulsations (see Appendix B 2).

1. Energy principle

The GPP equations (1) and (2), or equivalently the
quantum Euler equations (10)-(13), conserve the mass M
and the energy E,, defined by Eqgs. (21) and (22) (see, e.g.,
Appendix E of [107]). Using very general arguments [293],
this implies the following:

(1) An equilibrium state of the GPP equations is an
extremum of energy at fixed mass. This result can be
proven as follows. Let us write the variational
problem for the first variations as

SEy — LM =0 (B1)
tot — Y
m

where p (global chemical potential) is a Lagrange

multiplier taking into account the mass constraint.

Using Eqs. (B31)—(B34), and treating the perturba-

tions ou and Jp independently, we obtain u = 0 (the

equilibrium state is static) and the quantum Gibbs

condition (see footnote 8)

O+ mh+m® =y, (B2)
which is equivalent to the condition of quantum
hydrostatic equilibrium (see Sec. II C and Appen-
dix B2).

(i) An equilibrium state of the GPP equations is stable
if, and only if, it is a minimum of energy at fixed
mass. We will establish this result in Appendix B 3
directly from the equation of pulsations. Since 5’0,
depends only on ou and is positive [see Eq. (B35)
with u = 0], and since the perturbations du and Jp
are treated independently, we can equivalently claim

that an equilibrium state of the GPP equations is
stable if, and only if, it is a minimum of the reduced
energy Ei, = Oy + U + W (excluding the classical
kinetic energy) at fixed mass. The condition of
dynamical stability based on the energy principle
is therefore

SEL >0 (B3)
for all perturbations Jp that conserve mass
(6M = 0). Using the identities of Appendix B 4,
we find that the second order variations of the energy
are given by

1 [ (5
FEin =5 / (ZQ + 8h+ 5(1)) Spdr  (B4)

or, equivalently, by

1 1
52E2‘m=5 / h’(p)(ép)2dr+5 / 5DdSpdr

L l{(V&p)zﬁ-(%_(vp@z) (5p)2} dr,

8m?) p

(BS)

where we recall that

Appendix H).

W'(p) =Pp)/p (see

Remark:—The minimization problem (39) expressing
the energy principle is a criterion of nonlinear dynamical
stability resulting from the fact that E,, and M are
conserved by the GPP equations [293]. It provides a
necessary and sufficient condition of dynamical stability
since it takes into account all the invariants of the GPP
equations.

2. Equation of pulsations

The quantum Euler-Poisson equations (10)—(13) may be
written as

B
P LV (pu) =0,

AT (B6)

Ou 1
— -Viu=-—VQ-Vh-Vo B
(@ Vju=--V0-Vi-Vo, (B7)

A® = 47Gp, (BS)

where we have introduced the enthalpy h(p) = V'(p)
through the relation (see Appendix H)

_vr

Vh==" (BY)
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A steady state of the quantum Euler equation (B7) satisfies
the condition of quantum hydrostatic equilibrium (see
Sec. I1C)

vQ

+Vh+ VO =0, (B10)

which is equivalent to Eq. (B2). Combined with the Poisson
equation (B8) we obtain the fundamental differential
equation determining the equilibrium structure of a self-
gravitating BEC under the form

AQ

ZX 4 Ah = —4xGp, (B11)
m

where the density can be viewed as a function p(h) of the
enthalpy. This equation is equivalent to Eq. (37).

Let us consider a stationary solution of the quantum
Euler-Poisson equations (B6)—(B8) satisfying u = 0 and
the condition of quantum hydrostatic equilibrium (B10).
The linearized quantum Euler-Poisson equations around
this equilibrium state are

a§p+v (psu) = 0, (B12)
odu 1
U _ " UsQ — Vsh— Vb BI
h— V60 -Voh-Vép,  (B13)
ASD = 4nGép. (B14)

It is convenient to introduce the Lagrangian displacement
¢ = or such that

o¢

== (B15)

The linearized continuity equation (B12) leads to the
relation

sp ==V (pf). (B16)

Writing the evolution of the perturbation as e~ Eq. (B15)

implies that Su = —icoZ . On the other hand, the linearized
quantum Euler equation (B13) becomes

- 1
w* = EVeSQ + Véh + V5o, (B17)

Using Eq. (B16) and Egs. (B39)-(B42), the first order

variations 6Q, 6h, and 6® can be expressed in terms of 5 .In
this manner, Eq. (B17) represents the quantum generali-
zation of the equation of pulsations in the form given by
Chandrasekhar [294]. This is an eigenvalue equation
determining the possible pulsations of the system. The
equilibrium state is stable if @*> > 0 for all modes (in that

case the perturbation oscillates) and unstable if w?> < 0 for
some modes (in that case the perturbation grows exponen-
tially rapidly). Using Eqgs. (B16), (B39), and (B48), we can
rewrite Eq. (B17) more explicitly as

w2Z:—V5Q V[P,f) ) (pg)} —47‘[sz. (B13)

Alternatively, combining Eqs. (B16) and (B17), we can
write the quantum equation of pulsations under the form

—a?dp =V - [ ( o0 + Véh + Véd))] (B19)

where 6Q, oh, and 6® are expressed in terms of dp through
Egs. (B39)-(B42).

If we consider a spherically symmetric distribution of
matter, and consider radial perturbations, it is convenient to
introduce the quantity ¢ from the relation [295]

1 dq
Axrtdr’

(B20)

Physically, g(r, 1) = 6M(r,t) = |5 6p(r', t)4nr"?dr repre-
sents the perturbed mass within the sphere of radius r. The
perturbed Newton equation takes the form

dod Ggq
) B21
dr r? (B21)
Since
1d
§p=———(r? B22
/0 r2 dl’ (r pC)? ( )
we obtain the relation
q
= - . B23
¢ 471'pr2 ( )

Starting from Eq. (B18) or from Eq. (B19), and using
Eq. (B23) or Eq. (B20), we obtain

d d G 1dé 2
( 1 q ;7 Q @
dr 4drpre dr

m dr

- T q. (B24)

This is the quantum generalization of the equation of
pulsations in the form given by Chavanis (see
Appendix A of [295]). Starting from Eq. (B18) or from
Eq. (B24), we obtain after some calculations

4dpP P

%{VP——(ZC)]———C—— ”dQ

00 - L% — —a?p,
(B25)

where we have defined
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_dlangP/

1) = = 5P, (B26)

Introducing the variable &= ({/r, we can transform
Eq. (B25) into

d( .\ . ,d .
o (yPr E) +r E[(?ﬁy 4)PJ¢
- ﬁAQr“f _P 50 _ —w*pr*é.  (B27)
m m dr

This is the quantum generalization of the equation of
pulsations in the form given by Eddington [296].

3. Equivalence between w? > 0 and 6E;,, > 0

Taking the scalar product of Eq. (B17) with pg: and
integrating over the whole domain we obtain

w? / pCdr = / pC - V<%+ Sh+ 5c1>> dr. (B28)

Integrating the second integral by parts and using
Eq. (B16), we can rewrite Eq. (B28) as

w? / pCldr = / Sp (% +6h + 6d>> dr. (B29)

Comparing the right-hand side of this expression with the
second variations of the energy functional from Eq. (B4),
we obtain the identity

1
5@’ / plldr = SEp,. (B30)

Since the integral is positive, this identity shows that an
equilibrium state of the GPP equations is dynamically
stable (@ > 0) if, and only if, it is a minimum of energy at
fixed mass (68°E}, > 0). Therefore, the stability criteria
based on the equation of pulsations and on the energy
principle are equivalent. This identity also provides the
basis for a quantum generalization of the Chandrasekhar
variational principle [294].

Remark:—Since the total energy is conserved, we have
’Ew =0 or, equivalently, §°0,+ 8*Ej;, = 0. Using
Eq. (B35) with u =0 and éu = —ia)E, we see that this
identity is equivalent to Eq. (B30). On the other hand, since
8’0, > 0, the identity 6’0, + §*Ef, = 0 implies the fol-
lowing results: (i) If >E,, > 0, we cannot have growing
modes so the system is stable. (i) If 6°E},, < 0, we can
have a growing mode so the system is unstable. This
directly establishes the stability result based on the energy
principle (see Appendix B 1).

4. Useful identities

The first order variations of the functionals defined by
Eqgs. (23)—(26) are

2
50, = /5pu7dr+/pu-6udr, (B31)

50, = / %6pdr, (B32)

SU = / Vi(p)Spdr — / h(p)opdr,  (B33)

SW — / Dopdr, (B34)

where we have used h(p) = V'(p) (see Appendix H). The
second order variations of these functionals are

5 2
50, — / p%dw / Spu - Sudr,  (B35)

50, = % / 6,0%(#, (B36)

U =5 [ Vio)erar =3 [ W) epyar
- % / Shopdr, (B37)
SW = % / SDSpdr. (B38)

We also note that 6h, 6@, and 6Q are related to dp by

/
sh= (=T s, (B39)
/
o= -G [P0 4 (B40)
r—r|
n 1 [ép op
-iltas(t) o
i r | 2avi-a(2)]. @
or
n [Ap Aop 1 5 1
50 E[p—zap—T—;Np) 5p+<vp-vap>;]

(B42)

where we have used 4'(p) = P'(p)/p (see Appendix H).
Equation (B41) has been obtained by starting from the first
equality of Eq. (14), and Eq. (B42) has been obtained by
starting from the second equality of Eq. (14). Other
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expressions of 6Q are provided in Appendix C of [149].
The identities (B31)-(B42) are straightforward except,
maybe, Eqgs. (B32) and (B36). Therefore, we give a short
derivation of these identities below.

Starting from the first equality of Eq. (24), we get at first
order

2
5®Q:h2/[ <Vpp> 8p +2vp Vép}dr (B43)

8m

Integrating the second term by parts, the foregoing equation
can be rewritten as

n? A \Y
5®Q:——2/{—p——< p)](s dr.  (B44)
4m p 2\p
Together with Eq. (14), it yields Eq. (B32).
At second order, we have
n? 1 op
50, =— [ —|(Vp)?> =2(Vp-Vép)—
0= [ 5|V 2055 - Vi)
5o\ 2
+ (vp)2(£> }dr. (B45)
p

Integrating the middle term by parts, we can rewrite
Eq. (B45) as

200 =g [ 4] wapr+ (22 - LE5) 5o ar.

(B46)

which is the result quoted in Appendix C of Ref. [149]. On
the other hand, multiplying Eq. (B42) by dp and integrating
over the whole domain, we get

50 R [[Ap, ., Adp
2/5p = 2/[/)2(5p) Sy X

= S (TP + (V- Vi) by ar. - (B47)

Integrating the second term by parts, and comparing the
resulting expression with Eq. (B46), we obtain Eq. (B36).
Finally, the identity

VoD = —4nGpl (B48)

needed to establish Eq. (B18) results from the following
steps:

1
= G/V’ <?r,|)5p(r')dr'
— G / vt
[r—r

ARRERS

o (e
= —42G / S(r—r)(pl)dr’

= —47GpC, (B49)

where we have made use of Egs. (B16) and (B40).

APPENDIX C: DIMENSIONLESS
SELF-INTERACTION CONSTANT A
AND DECAY CONSTANT f

In this appendix, we introduce the dimensionless self-
interaction constant 4 and decay constant f and regroup in a
compact manner the main formulas of the paper for a better
visualization. A detailed explanation of these formulas is
given in the main text and in Appendixes D and E.

The dimensionless self-interaction constant is defined by
(see, e.g., Appendix A of [145])

A a.mc
AR e Cl
8 ) (C1)

On the other hand, for bosons with an attractive self-
interaction (a, < 0), the decay constant is defined by (see,

e.g., [156])
Acdm \ 172
= . C2
7= (33ma0) 2
We have the relation
2
mc
1. Noninteracting bosons
For noninteracting bosons
) ah? \ 1/2
“Gmr " (GMR) (€4)
2. Repulsive self-interaction
In the NI regime,
) ah? \1/2
M=a——>— = . (O8]
“Gmr " (GMR) (€5)
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In the TF regime,

a*?\V2 q GR?
R=bp(% 4 _ox 6
(Gm3> = m?  b2h? (Co)
A3 1/2 A GR?c
R=b»b > —— = ——. C7
<8n’Gm4c> 8zm* bR €7

For given (m, a,) the transition between the NI regime
and the TF regime corresponds to

a h ah?\ /2
" b\/Gma,’ ! (Gm3> (C8)

a (8xhc\ /2 o’ 1/2
M —_— - R = - a1 .
! b( GA ) ' ! b(SﬂGm4c> (©9)

For given (M, R) the transition between the NI regime
and the TF regime corresponds to

ah2 1/2 . a3/2 hZR 1/2
- ~a1D ) x — 79 | ~a1.3 s Clo
o (GMR) T (GM3) (C10)

A, a’hc
= Cl11
87  b*GM? (C1)
3. Attractive self-interaction
In the NI regime,
72 ah? \1/2
=a——>= = . C12
“Gmr " (GMR) (C12)
In the NG regime,
amR |ay| aR
b? |ay| m  b’M (C13)
a 8zm*Rc 4] a Rc
=— =—=—; Cl4
> || 8xm>  b>Mh (C14)
a 32zRf? b> Mhc3
b> nc? =/ a 32zR ( )

For given (m, a,) the transition between the NI regime
and the NG regime corresponds to

2\ 1/2
P R-= b("“'f; ) . (C16)
v Gmlay| Gm

a (8xhc\ /2 |A|n3 \1/2
M, =— . R =0 ; (C17
! b<G|/1|> ! <8ﬂGm4c) (€17)

=

SR

327h 2\ /2 R\ 12
M,:ﬁ(Lf) , R,:b( ¢ ) e

b\ Gm*c? 32xGm? f?
For given (M, R) the transition between the NI regime
and the NG regime corresponds to

ah? \1/2 , a’’? [ R2R\ 1/2
— (£ = (22T (19
o (GMR) T (GM3> (€19)

A a’*he - <b2 hc3M> 1/2

- = U — N
87  b’GM?*’ ) a 32nR

(C20)

Remark:—We note that the transition scales between the
NI regime and the NG regime in the attractive case coincide
with the transition scales between the NI regime and the TF
regime in the repulsive case provided that a; is replaced by
|a,|. We also note that the formulas expressed in terms of 1
and f involve the speed of light c. This is purely artificial
since our results apply to nonrelativistic systems. The
occurrence of ¢ is due to the definitions of A and f in
Egs. (C1) and (C2).

APPENDIX D: REFORMULATION OF THE
RESULTS OF SEC. II C IN TERMS OF A AND f

In this appendix, we reformulate the results of Sec. II C
in terms of the dimensionless self-interaction constant 4 and
decay constant f (see Appendix C) instead of the scattering
length a.

Using Eqgs. (48) and (C1), the radius of self-gravitating
BECs with a repulsive self-interaction in the TF regime can
be written as

R 3
=7
T 8zGmc

1/2 M
) =0.627V2—L A, (DI1)
m

where Mp = (hc/G)'/? = 2.18 x 107 g is the Planck mass
and A = h/mec is the Compton wavelength of the particle.

Using Egs. (49), (50), and (C1), the maximum mass and
the corresponding radius of self-gravitating BECs with an
attractive self-interaction can be written as

8hc /2 M
”C> —5073 2L (D2)

Moy = 1.012( :
VA
Zia

Gli|
Riy =55 v 1.1/]A M”z D3
9 =33\ g~ T = 1.1y/] |7 ¢ (D3)

We note that M ,,, depends only on A. Using Eq. (C3), we
also have

oM
Mpc2 m

87rhc> 12 of (D4)

M ax = 1.012( —— —— = 10.15
max < G mC2
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n 12 mc? Mpc?
Ry =55 — — =0.55
% <8nGm4c> 2f f

Using Egs. (52), (C1), and (C2), the mass-radius relation
of nongravitational BECs with an attractive self-interaction
can be written as

de.  (D5)

m%c 2

f
M =691 ——Rgy = 27.6-—
nla % hc’

Ryg. (D6)
We note that it depends only on f.

Remark: According to Egs. (D2)—(D5) a self-gravitating
BEC of mass M can be in equilibrium only if 1 > A, or

f> [, with

hc Mp\?
i = —25.7 = -2574( — D7
i = =257 s = <2574 ) (o0

G\ /2
. =9.86 x 1072 mMc? (—)
hc

M
—0.86 x 107252 Mpc?.
My

(D8)

APPENDIX E: REFORMULATION OF THE
RESULTS OF SEC. IV IN TERMS OF A AND f

In this appendix, we reformulate the results of Sec. IV in
terms of the dimensionless self-interaction constant 4 and
decay constant f instead of the scattering length a;.

The dimensionless self-interaction constant is defined by
Eq. (C1). This relation may be rewritten as

A a;m

— = El

Aoodomy’ (1)
where we have introduced the scales from Egs. (85) and
(86), and the new scale

A a*he
8z bGM*’ (E2)
We note that this scale depends only on the mass M of the
minimum halo, not on its radius R.

Using Egs. (83) and (Cl), the relation between the
particle mass m and the dimensionless self-interaction
constant A required to match the characteristics of the
minimum halo [see Eq. (81)] is given by

B 8waRm?c (GMmzR B 1>. (E3)

1=
b*aM ah?

Alternatively, using Egs. (84) and (El), we obtain in
dimensionless form

rY_
TF
15 F ®) R
m()
A=0
1
a / NI
mC
05 |- A i
(4
I ) NG |
0 ! | ! ! | ! | ! | !
2 1 0 1 2 3 4
A

FIG. 10. Mass m of the DM particle as a function of the
dimensionless self-interaction constant A in order to match the
characteristics of the minimum halo. The mass is normalized by
mg and the dimensionless self-interaction constant by 1. The
stable part of the curve starts at the critical minimum halo point
(4, m.) which is also the minimum of the curve A(m).

G 1G) )

This is a second degree equation whose solutions are

(E4)

™ 1/2
m <1 + 1+4/1//1*> (ES)
my 2
with the sign + if 4 > 0 and the signs &+ if 4 < 0. The curve
m(A) is plotted in Fig. 10. Taking a = 9.946 and b = 7 (see
Secs. III A and III B) adapted to bosons with a repulsive self-
interaction (or no interaction), we get my = 2.92 X
1072 eV/c? and A, =3.02x 107, Taking a = 11.1
and b =5.5 (see Sec. llIC) adapted to bosons with an
attractive self-interaction, we get m, = 3.08 x 10722 eV/¢?
and A, = 1.23 x 1070,

Remark: We note that the characteristic scale A, ~ 10~
is extremely small. We will see below that the NI limit is
valid for |A| < A,. Therefore, the dimensionless self-inter-
action constant |4| must be small with respect to 107, not
with respect to 1. For example, an apparently small value of
|| such as |4] = 10730 actually corresponds to a strong self-
interaction. In other words, || = 1078 is very different
from A = 0. The extraordinarily small value of A, was first
noted in [108] (see also [145,148,153,156]).

1. Noninteracting bosons

For noninteracting bosons (4 = 0), we get

my =2.92x 10722 eV/c*> (BECNI). (E6)
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2. Repulsive self-interaction

For bosons with a repulsive self-interaction (4 > 0), A,
determines the transition between the NI regime (1 < 4,)
where m ~ mg and the TF regime (A > A,) where

m A\ 1/4
my” \&)

When the self-interaction is repulsive, all the equilibrium
states are stable. Therefore, in principle, all the values of
A > 0 and the corresponding masses m > my are possible.
In the TF regime, the m(1) relation (E7) can be written as

(E7)

y) GR?c

8em® DR

(E8)

which is equivalent to Eq. (90). The minimum halo just
determines the ratio

A

8xm*

=1.66 x 107> (eV/c?)™. (E9)

Only the radius R of the minimum halo matters in this
determination. In order to determine m and A individually,
we need another equation. Repeating the argument from
Sec. IV B, the Bullet Cluster constraint ¢/m < 1.25 cm?/g
implies that A must lie in the range 0 < A < A, and that the
particle mass must lie in the range mq < m < my,, where’'

Mpax = 1.10x 1073 eV/c?, Ay =6.18 x 10716

(BECTF). (E10)

Although the value of A, = 6.18 x 107% corresponding
to the BECTF model may seem small, it is much larger than
A =3.02 x 107, implying that we are deep into the TF
regime (see the Remark above).

On the other hand, the BECt model corresponding to the
transition between the NI limit and the TF limit is obtained
by substituting Eq. (E6) into Eq. (E7), or Eq. (88) into
Eq. (E8). This gives

m=292x10"2eV/c?, A =3.02x10""

(BECY). (E11)

This corresponds to the scales m, and A, defined by
Egs. (85) and (E2).

"More generally, if we introduce the parameter g = a2/m =
o/(4zm) which can be constrained by the observations, we
obtain /gy = (B7'h*/G2RY)', (a,)nex = (B7°H?/GR?)'V2,
and A,y /87 = (B*7°hc® /G3R)'/5.

3. Attractive self-interaction in terms of A

For bosons with an attractive self-interaction (4 < 0), the
relation (E4) reveals the existence of a minimum value of
the dimensionless self-interaction constant

e _ 1 at which ﬂ:L

Z o 4 ’ mg \/E ’
It turns out that this minimum value also corresponds to the
critical point (associated with the maximum mass M )
separating stable from unstable equilibrium states (see

Fig. 10). The NI regime corresponds to || < A, and
m ~ my. The NG regime corresponds to |4| < 2, and m <

my such that
m A1 /2
my A '

In the NG regime, the relation (E13) between m and 4 can
be written as

(E12)

(E13)

y R
8| | . %M_; =5.12x 107 (eV/c?)2,
Tm

(E14)

which is equivalent to Eq. (77). The equilibrium states with
m < m, are unstable (they correspond to configurations
with R < R,) so that only the equilibrium states with
m > m, are stable (they correspond to configurations with
R > R,). Therefore, in the attractive case, the scattering
length of the DM boson must lie in the range 1. <1 <0
and its mass must lie in the range m,. < m < mg, with

m, =2.19 x 10722 eV/c?, e = =3.07 x 107!

(BECcrit).  (E15)

There is no equilibrium state with 4 < .. Finally, using the

constraints from particle physics and cosmology (see
Sec. IV D) we find

my = 2.92 x 10722 eV/c?, A = —1.18 x 107

(BECth).  (EI6)

4. Attractive self-interaction in terms of f

The decay constant is defined by Eq. (C2). This relation
may be rewritten as

f <m>1/2<a;)]/2

fi B my |as| ’
where we have introduced the scales from Egs. (85) and
(86), and the new scale

(E17)
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FIG. 11. Mass m of the DM particle as a function of its decay

constant f in order to match the characteristics of the minimum
halo. The mass is normalized by m, and the decay constant by f..
The stable part of the curve starts at the critical minimum halo
point (f, m,). It differs from the absolute minimum value f;, of
the decay constant.

b2hc3M 1/2
fi_<;32nR> ‘ (E18)

Using Egs. (83) and (C2), the relation between the

particle mass and the decay constant is given by
1 32zaR GMm?R

= (==, E19

12 bzhc3M< ah? ) (E19)

Alternatively, using Egs. (84) and (E17), we obtain in
dimensionless form

/
2o - <&>2.
my f
The curve m(f) is plotted in Fig. 11. Taking @ = 11.1 and
b = 5.5 (see Sec. III C) adapted to bosons with an attractive
self-interaction, we get my = 3.08 x 10722 eV/c?> and
£l =139 x 10" GeV.

The relation from Eq. (E20) reveals the existence of a
minimum decag constant fy;, = f4 = 1.39 x 10'* GeV at
which m = 0.** However, this minimum scattering length
Sfmin does not correspond to the critical point (associated

(E20)

*This minimum value arises from the fact that both the mass-
radius relation in the NG regime from Eq. (77) and the decay
constant from Eq. (C2) present a scaling in m/|ay| [see Eq. (D6)].
It is interesting to note that our approach predicts a minimum
value of f for the existence of DM halos with mass M ~ 108 M,
and radius R ~ 1 kpc. Furthermore, this value turns out to
be of the order of the grand unified theory (GUT) scale
fGUT ~ 1015 GeV.

with the maximum mass M, ) separating stable from
unstable equilibrium states. This latter is located at

fe m. 1
— =12, — =
fi \/_ mg \/E

The NI regime corresponds to f > f ., and m ~ m. The
NG regime corresponds to f ~ f, and m < my,.

The equilibrium states with m < m, are unstable (they
correspond to configurations with R < R,) so that only the
equilibrium states with m > m,. are stable (they correspond
to configurations with R > R,). Therefore, the decay
constant of the DM boson must lie in the range f > f,.
and 33its mass must lie in the range m. < m < my,
with

(E21)

me =2.19 x 10722 eV/c?, fo =197 x 10" GeV

(BECerit).  (E22)

There is no equilibrium state with f < f ;.. On the other
hand, the equilibrium states with f;, < f < f,. are unsta-
ble. Using the constraints from particle physics and
cosmology (see Sec. IV D) we find

myg, = 2.92 x 10722 eV/c?, fu = 1.34 x 10" GeV

(BECth).  (E23)

The theoretical decay constant fyy, = 1.34 x 10'7 GeV lies
between the GUT scale fgyr ~ 10" GeV and the Planck
scale Mpc? = 1.22 x 10" GeV.

APPENDIX F: PULSATION OF A
SELF-GRAVITATING BEC

In this appendix, we determine the squared pulsation of
the standard self-gravitating BEC described by the equation
of state (20).

1. General case

In the general case, the squared pulsation of the standard
self-gravitating BEC is approximately given by (see
Appendix G 2)

60, + 12U +2W
- ; _

? (F1)

This equation can be written in different forms by using the
virial theorem 20, + 3U + W = 0 (see Sec. I B).

With the f-ansatz (see Appendix G2), the squared
pulsation is explicitly given by

3We note that when the self-interaction is attractive m almost
does not change (it is of the order of the mass of noninteracting
bosons) while f can change by several orders of magnitude.
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_e L )
@ aR3+ a mR> (F2)

On the other hand, the mass-radius relation of the standard
self-gravitating BEC writes

n”PM  GM? a,h* M?
—20 R tr - 6 ;n3R4 =0 (F3)
or, equivalently,
20 hé
M=t (F4)
T U GmR

If we use a Gaussian ansatz, the values of the coefficients
are og = 3/2, oG — 3/4, CG = 1/(277.')3/2, and Vg =
1/ /27 [107]. Furthermore, the relation between the radius
R and the radius Rgg containing 99% of the mass is Rgg =
2.38167R [107]. The squared pulsation is plotted as a
function of the BEC radius R in [107].

2. Noninteracting case

For noninteracting bosons (a; = 0), the squared pulsa-
tion from Eq. (F1) reduces to

60, +2W 20,
N I T

w2

-7

where we have used the virial theorem 20, + W = 0 to get
the last two equalities.
With the f-ansatz, the squared pulsation is given by

oS WM (F6)

On the other hand, the mass-radius relation writes

26 W
R = ~ GMa (F7)
Combining these two relations we obtain
M 2 fl2 4 G4M4 6
2=t CM _20h Y T (m)

a R amPR* Sac® h°

If we use a Gaussian ansatz, the prefactors in Egs. (F7)
and (F8) are 3.76, 0.266, 1, and 5.00 x 1073. The first
relation of Eq. (F8) shows that the pulsation period T =
27/ w is equal to about 12.2¢,, where t; = (R*/GM)'/? is
the dynamical time. For the minimum halo with M =
108 My and R = (1/2.38167) kpc, we get
12.8 Myrs and T = 156 Myrs.

td:

3. TF limit

For bosons with a repulsive self-interaction (a, > 0) in
the TF limit (2 = 0), the squared pulsation from Eq. (F1)
reduces to

2U+2W  6U  2W
@ i i I (F9)

where we have used the virial theorem 3U + W = 0 to get
the last two equalities.
With the f-ansatz, the squared pulsation is given by

., 2WGM  24x{a,®M
= —

R e we O
On the other hand, the radius of the BEC is
61\ /2 (a,h2\ /2
Combining these two relations we obtain
5/2 5/2 010,9/2
W — @G_]:I _ s G 3]/‘;1’" (F12)
a R a(6xf) a)/ h3

If we use a Gaussian ansatz, the prefactors in Eqs. (F11)
and (F12) are 1.73, 0.532, and 0.102. The pulsation period
T =2n/w is about 8.62¢,. For the minimum halo with
M =10 My and R = (1/2.38167) kpc, we get t; =
12.8 Myrs and 7 = 111 Myrs.

Remark:—In the TF approximation, the density profile
of the BECDM halo is known analytically. In that case, one
can obtain the exact expression of the pulsation (see [107]
and Appendixes H and I of [163]).

4. Maximum mass and maximum pulsation

For bosons with an attractive self-interaction (a, < 0),
the pulsation vanishes at the maximum mass [107]:
w=0 atM=M,_,,. (F13)

With the f-ansatz, the maximum mass and the correspond-
ing radius are given by

62 \ 12 A
Mmax = s F14
(6ﬂCV> v/ Gm|ag (F14)
620\ 12 (|a | h2\ /2
R, =(— . F15
&) (or 1

On the other hand, there is a maximum pulsation at some
mass M [107]. With the f-ansatz, we find that
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v 6 Gm?
o = 04246 — [~ —— F16
a)mdx 6ﬂC a |as|h ( )
at
M = 0.9717M,,,, R=1272R.. (F17)

If we use a Gaussian ansatz, the prefactors in Eqs. (F14)—
(F16) are 1.085, 1.73, and 0.100.

5. Nongravitational case

For bosons with an attractive self-interaction (a, < 0) in
the NG limit (G = 0), the squared pulsation from Eq. (F1)
reduces to

60, + 12U 20, 3U
=2 =-0_ (F18)

o’ ,
1 1 1

where we have used the virial theorem 20, +3U = 0 to
get the last two equalities.
With the f-ansatz, the squared pulsation is given by

)60 I

)~ =

24n a i*M

et (F19)

a m*R* a
On the other hand, the mass-radius relation writes

o mR

Combining these two relations we obtain

26 h? 26°  mPh?

= i . (F21)

2 _ _
a(3xl)* Ma}

)

If we use a Gaussian ansatz, the prefactors in Eqgs. (F20)
and (F21) are 1.25, 1, and 2.47. We note that these
configurations are unstable (@* < 0) so they should not
be observed in practice.

APPENDIX G: SIMILARITY BETWEEN THE
MASS-RADIUS RELATION OBTAINED FROM
THE f-ANSATZ AND FROM THE JEANS
INSTABILITY STUDY

In this appendix, we show at a general level that the
mass-radius relation M;(R;) obtained from the Jeans
instability study is similar to the mass-radius relation
M(R) of DM halos in their ground state obtained from
the minimization of the energy at fixed mass using an f-
ansatz. This similarity was first observed in Ref. [107] in a
special case (for a |y/|* potential of interaction and for a
Gaussian ansatz), and it is here generalized to an arbitrary
potential of interaction V(|y|?) and an arbitrary ansatz.

1. Mass-radius relation from the Jeans instability study

In this section, we consider the formation of structures in
the linear regime from the Jeans instability study (see
Sec. II D). The Jeans wave number is determined by the
equation [107]

Rk

a2+ c2k3 — 4zGp = 0,
m

(G1)
where ¢? is the squared speed of sound. For a barotropic
fluid, this is a function of the density given by Eq. (18).

Equation (G1) is a second degree equation for k2 whose
physical solution is

2 4xGph?
@———Lﬂm+ ¢4(p) + TGP

m

| @

If we define the Jeans radius and the Jeans mass by

A‘] T 4
R =—=— M, = —npR>
J 2 kj 5 J 3 p ’ (G3)
we obtain
zh
Ry(p) = Vo G4)

2 4 4ﬂGph2 172 (
_Cs(p) + Cs(p) + m2

M,(p) = gﬂpRJ(pP-

(G5)
These equations determine the Jeans scales R;(p) and
M ,(p) as a function of the density. They also determine the
Jeans mass-radius relation M (R;) in parametric form with
parameter p.

Remark:—In the nongravitational case, there is a hydro-
dynamic instability when ¢ < 0 [76,107].34 In that case,
the “Jeans” wave number is determined by the equation

n2k3

e T =0

(Go)

and the parametric equations (G4) and (G5) reduce to

&@—;;?@5, (G7)
M, () = 2 2ok, (). (G8)

3

*This hydrodynamic instability is also called a tachyonic
instability.
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2. Mass-radius relation from the f-ansatz

In this section, we consider BECDM halos that appear in
the nonlinear regime of structure formation (see Sec. I1 C).
Stable DM halos correspond to minima of energy E,, at
fixed mass M. We can obtain an approximate analytical
form of the mass-radius relation by making an ansatz for
the wave function. A Gaussian ansatz was considered in
[107]. To be as general as possible, we consider here an
ansatz of the form (that we call f-ansatz)

where f(x) is an arbitrary function. We impose
J f(x)dx =1 to satisfy the normalization condition (or
the conservation of mass). We also assume

(G9)

S(r,1) = %mH(t)rZ S ou(e) = Hi)r,  (G10)

so that the velocity field is proportional to the radial
distance. It can be shown (see Appendix J of [149]) that
Egs. (G9) and (G10) yield an exact solution of the
continuity equation (10) provided that

H=—. Gl1
- (G11)
This function is similar to the Hubble parameter in
cosmology. On the other hand, the gravitational potential
can be determined from the Poisson equation (13). Using
Eq. (G9) we obtain

O(r,1) = %g {ﬁ} , (G12)
where g(x) is the solution of
Ag = 4nf(x). (G13)

We can now use the ansatz (G9)—(G13) to determine the
different functionals that appear in the energy from
Eq. (22). We find

G)czl(JzM(dR)2 with a:/f(x)xzdx, (G14)

2 dt
M 1 [ (Vf)
®Q = UW with o= g/TdX, (GlS)
L KM

and

M2
W=-v

with y:—%/f(x)g(x)dx. (G17)

The expression (G16) of the internal energy U is valid for a
power-law potential associated with a polytropic equation
of state (we will see later how to generalize the formalism to
an arbitrary potential of interaction or an arbitrary equation
of state). The moment of inertia is

[ = aMR?. (G18)

. —x2
If we use a Gaussian ansatz f(x) = 5, e, the values of

the coefficients are ag =3/2, 66=3/4, (g =1/(ya'~")3/2,

and vg = 1/v2x [107].
With the ansatz from Egs. (G9) and (G10) the total
energy can be written as

1 dR\?
Etot = E(XM <E> + V(R) (G19)
with
wM  GM?> ¢ KM
VR) =0 s =0 4 g (G20)

We have separated the classical kinetic energy ®, from the
potential energy V = ©, + U + W. From the conservation

of energy, E,, = 0, we obtain

d’R

(G21)
This is similar to the equation of motion of a fictive particle
of mass aM and position R moving in a potential V(R). At
equilibrium, the condition V/(R) = 0 (extremum of energy)
gives the mass-radius relation

M GM?

KM?
20yt v =3

R3G-D+1

0. (G22)

For the standard BEC, we get Eq. (F3). The foregoing
equations may also be obtained from the virial theorem
[107,149] or from the Lagrange equations [145,149].

The pulsation of the self-gravitating BEC is given by
[107,149]

—_V'(R). (G23)

The BEC is stable provided that @® > 0 which is equivalent
by Eq. (G23) to the requirement that the equilibrium state is
a minimum of energy. Using Eq. (G20) we obtain
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2vGM
a R?

3¢ KMt
;R3(y—l)+2 '
(G24)

_60 1

2
=2 " _
a m*R*

+By-1)+1]

Using Egs. (G15)—(G18), the pulsation can also be written
in terms of the BEC functionals as

W 60, + B(y—1)+13(y - 1)U +2W
i .

(G25)

For the usual BEC, we obtain Egs. (F1) and (F2).

In order to compute the internal energy U for a general
self-interaction potential we consider an ansatz based on a
uniform (top-hat) density

p(r,1) = O(Jr| = R(1)), (G26)

47R(1)?

where 0 is the Heaviside function [#(x) = 1 if x < 0 and
0(x) =0 if x > 0]. In that case, the internal energy is

given by
3IM N\ 4
= —R3. 27
v V<471'R3>3ﬂ (627)
We then find that
d [V(p) d [V(p)] dp
UR)=— |—M| =M— | 2| =2
()dR[p } dp[p dR
OM? d [V(p)
=- — |—]. (G28
4ﬂR4dp{ p ] (G28)

Using Eq. (16), which corresponds to the first principle of
thermodynamics (see Appendix H)

) )
we obtain
U'(R) = —P (4‘1 %)4;;132 & dU =-PdV, (G30)

where V = (4/3)zR? denotes the volume of the BEC. For a
power-law self-interaction potential, we recover the expres-
sion of U from Eq. (G16) with a coefficient
{c = (3/4r)"~". On the other hand, the coefficients enter-
ing in the expressions of ®, and W from Egs. (G14) and
(G17) are ac =3/5 and vc = 3/5. Unfortunately, we
cannot use the constant density ansatz to determine the
quantum kinetic energy ®, since it is produced by the
gradient of the density which is infinite at » = R for the top-
hat profile.

For an arbitrary self-interaction potential, we can write
the total energy as in Eq. (G19) with an approximate
potential energy given by

M GM? 3M \ 4
—1/—+)(V< >—7zR3,

V(R) = o222 27
(R) =0 2 R 47R3) 3

(G31)

where y is a tunable coefficient. For a power-law self-
interaction potential, we exactly recover Eq. (G20) with
x = ¢(4x/3)"~1. For an arbitrary self-interaction potential,
using Egs. (G30) and (G31), we get

hem + P
VR X 47R3

GM? M
VI(R) = 20— vy <

>4ﬂR2. (G32)

The condition of equilibrium V'(R) = 0 then yields the
mass-radius relation under the form

-2

RM  GM? (3
60— +V—5—
mR TR T 4

>4zzR2 =0. (G33)
If we work with the variables M and R, it is usually difficult
to solve this equation explicitly in the general case.
However, if we make the change of variables

b2 4
R=-— M = —7pR>, G34
i 3P (G34)
inspired by Eq. (G3), we get
20 Wk P(p) 4
;?+3)(7k2 —§H3I/Gp =0. (G35)
Remarkably, this equation is similar to the Jeans

equation (G1). Therefore, it can be solved easily (this is
just a second degree equation for k%), and the mass-radius
relation M(R) can be obtained in parametric form as in
Appendix G 1. We get

2\/ch
R(p) = 2 . (G36)
72
{—31@ + /92 L+ e Gl
4 3
M(p) =z 7pR(p)°. (G37)

3

This shows in full generality that the Jeans mass-radius
relation M;(R;) valid in the linear regime of structure
formation is formally similar to the mass-radius relation
M(R) of DM halos valid in the nonlinear regime of
structure formation. Apart from the precise value of the
prefactors, we see that the difference with the Jeans study is
that the pressure derivative P'(p) (equal to ¢?) is replaced
by the ratio P(p)/p. For a polytropic equation of state, the
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dependence in the density is the same, i.e., p’~!, but the
prefactor is different.

APPENDIX H: THERMODYNAMICAL
IDENTITIES FOR COLD BAROTROPIC GASES

In this appendix, we regroup useful thermodynamical
identities valid for cold barotropic gases.

The first principle of thermodynamics can be written
under a local form as

(5) =) 1)

where u is the density of internal energy, p is the mass
density, P is the pressure, T is the temperature, and s is
the entropy density. For cold gases (7' =0), Eq. (H1)

(H1)

reduces to
1 P
d<”> - —Pd<) = dp. (H2)
p p) P
If we introduce the enthalpy density
P
[y (H3)
P
we obtain the relations
dP
du=hdp and dh=—. (H4)
p

Comparing Eq. (H3) with the Gibbs-Duhem relation for a
cold gas (T = 0),

P
u:—P+Ts+ﬁp:>'u: +u,
m P

— H5
£ (H3)
we see that the enthalpy A(r) coincides with the local
chemical potential x(r) by unit of mass [i(r) = u(r)/m].

1. General barotropic equation of state

For a general barotropic equation of state of the form
P = P(p), the foregoing relations lead to the identities

<g)’ _ Pl) hp) = Plp) +ulp) (He)

p p p
b =) w) =22 )
mmzmw—wm:w@%wmzﬁ@) (H8)
P'(p) = pu" (p). (H9)

The first principle of thermodynamics for a barotropic
gas at T =0 [see Eq. (H2)] provides a general relation
between the density of internal energy u(p) and the
pressure P(p). If we know the energy density u = u(p),
we can obtain the pressure by

dwu/p) _ du_ (H10)

~ a1 TapT

Inversely, if we know the equation of state P = P(p), we
can obtain the energy density by

rP(p'
u(p) = p/ %dp’, (HI1)
which is the solution of the differential equation
du
—_—— =P H12
P (p) = P(p) (H12)

Remark: Comparing Eqgs. (15) and (16) with Egs. (HS8)
and (H9), we see that the potential V(p) that occurs in the
GP equation (1) represents the density of internal energy:

(H13)

This justifies the expression of the internal energy in
Egs. (7) and (25).

2. Polytropic equation of state

For a polytropic equation of state of the form P = Kp”’
with y =1+ 1/n, the density of internal energy [see
Eq. (H11)] is explicitly given by

= ! = ——=nP = nKp't\/", H14
w=Tp = = nP=nKp (H14)
where we have set the constant of integration to zero. For
the standard BEC corresponding to y = 2 [see Eq. (3)], we
have

2rma h? 5 2rma h?

u=~P = m3 P = U = m3 /pzdl'. (H]S)

APPENDIX I: DERIVATION OF THE GPP
EQUATIONS IN AN EXPANDING UNIVERSE

In this Appendix, proceeding as in Ref. [114], we derive
the GPP equations in an expanding universe starting from
their expression in the inertial frame. Alternative deriva-
tions starting directly from the KGE equations written with
the conformal Newtonian gauge, which is a perturbed form
of the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric accounting for the expansion of the Universe, and
taking the nonrelativistic limit ¢ — +o0, can be found in
Refs. [133,134,146,156].
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1. Homogeneous solution

In the inertial frame, the GPP equations are given by Egs. (1)
and (2). The corresponding hydrodynamic equations,
obtained from the Madelung [269] transformation, are given
by Egs. (10)—(13). Let us first show that these equations admit
a time-dependent spatially homogeneous solution describing
an expanding universe in a Newtonian cosmology.

We consider a spatially homogeneous solution of
Egs. (10)—(13) of the form

po(e) = p(0). Sy(r.0) = SH(OmR £ 5500, (1)

uy (r, 1) = H(0)r, ®b(r,t):§ﬂpr(t)r2, ()

where H = a/a is the Hubble constant (actually a function
of time) and a(7) is the scale factor. The velocity is assumed
to be proportional to the distance (Hubble’s law), and the
gravitational potential has been determined from the
Poisson equation A®, = 4xGp,,. The corresponding wave
function is

wy(r.1) = \/py (1) elHOmr S0/, (13)

The hydrodynamic equations (10)—(13) then reduce to

d

% 4 3Hp, = 0= py a3, (14)
as
Bo_ (), (15

. 4 4
H+ H? = —gﬂpr = d= —gﬂpra. (16)

The first equation can be interpreted as the conservation of
mass

4 3M
M =z rpya® = p, =

3 Ina® 17

and the third equation as the Newtonian equation of
dynamics

. GM 4 2Gp,a’

d=— g =" 1 (18)
for a particle submitted to a gravitational field —GM /a?
created by a mass M. These equations can be justified in a
Newtonian cosmology if we view the Universe as a
homogeneous sphere of mass M, radius a(r), and density
pp(1) evolving under its own gravitation. Equation (I8) is
then obtained by considering the force experienced by a
particle of arbitrary mass m on the surface of this sphere
and using Newton’s law. The first integral of motion is

1 (da\?> GM
—|—] ——=E, I9
2 <dt> a 19)

implying

2GM

da\? 8
— | =="——+42E=—-1Gpya* +2E. 110
(dt) P 3 7Gppa’ + (110)

We can check that the foregoing equations coincide with
the Friedmann equations in the nonrelativistic limit (or for
pressureless matter). In the context of general relativity, the
term —2F represents the curvature of space k, where k =
—1,0, +1 depending whether the Universe is open, critical,
or closed. The theory of inflation and the observations of
the CMB favor a flat universe (x = 0) so we shall take
E = 0. In that case, Eq. (I10) reduces to

da\? 8 8
( a) = _n_pra2 = H2 = gﬂ'pr. (Ill)

dr) 3
Combining Eq. (I11) with Eq. (I4) we obtain the solution

a 2 1

ax 1?3, H=—=— =—
P = 612G

(112)

corresponding to the classical pressureless Einstein—de
Sitter (EdS) universe (we have assumed a vanishing
cosmological constant A = 0). We note that pressure and
quantum effects do not change the evolution of the
homogeneous background in a nonrelativistic cosmology
since they just occur in the form of gradients in
Eq. (12) [114].

2. Comoving frame

We now write the GPP equations in the comoving frame.
To that purpose, we make the change of variables
r=a()x, (. =Y, e/ (113)
where r is the proper distance. Equation (I13) is a change of
variables from proper locally Minkowski coordinates r to
expanding coordinates X comoving in the background
model [297]. The density is given by p = |¥|%. Defining
the gravitational potential ¢(x,7) by

D(r, 1) = ©y(r, 1) + p(x,1), (114)
we find that the Poisson equation (13) becomes
A¢ = 4nGa*(p - py), (I15)

where the derivatives are with respect to x (the same is true
for the following equations unless explicitly stated). We see
that, in the comoving frame, a sort of neutralizing back-
ground appears as in the jellium model of plasma physics.
Therefore, the consideration of an expanding Universe
allows for spatially homogeneous solutions and avoids the
Jeans swindle.
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In order to transform the GPP equations (1) and (2) to the
comoving frame we first compute

(2)- ()i

oY )
= (——Hx V‘I‘—f—ﬁmHa X ‘P)e’%mmz/h,

ot
(116)
and
| . .
Ay = —ZA‘P+3imH‘P+21mHX - V¥
a n n
2H2 B
_ ’nhzaZXZlP> e’ierz/h, (117)

Substituting the foregoing relations into Eq. (1) we find
after simplification [using Eq. (16)] that

v 3 7 dv
h SR == A
o ma™ M wp

On the other hand, using Eq. (I11),
equation (I15) can be written as

Ag , 3H?
5= P ——.

4nGa 872G

We can similarly transform the hydrodynamic equa-

tions (10)—(13) to the comoving frame. The wave function
can be written as

Y+ mp¥. (118)

the Poisson

(119)

Y(x,1) = \/p(x,1)eSx0/A, (120)
where p(Xx, t) is the mass density and S(x, ¢) is the action in
the comoving frame. Making the Madelung [269] trans-
formation

)

) =|P? and v=—, 121
plx.1) =[PP and v=-C°.  (121)
where v(x, ) is the velocity field in the comoving frame,
and comparing Egs. (8), (I13), and (120), we get

1
S(r,t)=8(x,t) —|—§er2 =u(r,?)=v(x,t)+Hr, (122)
where u is the velocity field in the inertial frame and Hr is

the Hubble flow. Then, we compute

(@)= @) ) =airmw

and

(123)

*This result can also be obtained as follows. Taking the
derivative with respect to time of the relation r = a(#)x, we get
dr/dt = ax + adx/dt. This can be written as u = Hr + v, with
u = dr/dt and v = adx/dt, where u is the proper velocity and v
is the peculiar velocity.

1
=—V.(pv)+ Hx-Vp+3Hp.
a

V,(pu) (124)

With these relations,
becomes

the continuity equation (10)

% +3Hp + év - (pv) = 0. (I25)
Similarly, using
Ou 0 r .
(5).~ @) )+
= % —H(x-V)v+ Hax, (126)
and
(u-V)u=[(Hr+v)-V.](Hr+v)
=H?ax+H(x- V)v+HV+ (v-V)v, (127)
the quantum Euler equation (12) becomes
Bv 1
8 (V V)V+Hv——p—aVP—;V¢——VQ (128)
with the quantum potential
Q== 2:;2 Af; - _4:;2 [% N % (vppz)? (129)

where we have used Eq. (I6) to simplify some terms. These
transformations can also be made at the level of the action.

Using
oS 0 r 1 .
) — (= - —mHr?
(). ()5 (et 1) +amir
oS 1
_E_H VS+2er (130)
and
1
VrSZEVS—l-er, (I31)

the Hamilton-Jacobi equation (11) becomes after simplifi-
cation

05 (V)
ot 2ma?

=—-0—m¢p—mV'(p). (132)

We can check that the above results return the equations of
Refs. [114,133,134,146,156] up to an obvious change of
notations.
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