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The swampland de Sitter conjecture in combination with upper limits on the tensor-to-scalar ratio r
derived from observations of the cosmic microwave background endangers the paradigm of slow-roll
single-field inflation. This conjecture constrains the first and the second derivatives of the inflationary
potential in terms of two Oð1Þ constants c and c0. In view of these restrictions, we reexamine single-field
inflationary potentials with S-duality symmetry, which ameliorate the unlikeliness problem of the initial
condition. We compute r at next-to-leading order in slow-roll parameters for the most general form of
S-dual potentials and confront model predictions to constraints imposed by the de Sitter conjecture. We find
that c ∼Oð10−1Þ and c0 ∼Oð10−2Þ can accommodate the 95% C.L. upper limit on r. By imposing at least
50e-folds of inflation with the effective field theory description valid only over a field displacement Oð1Þ
when measured as a distance in the target space geometry, we further restrict c ∼Oð10−2Þ, while the
constraint on c0 remains unchanged. We comment on how to accommodate the required small values of c
and c0.
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I. INTRODUCTION

Inflation is the leading paradigm for explaining the
behavior of the quasi–de Sitter expansion in the very early
Universe. Single-field inflationary models provide prom-
ising explanations to the cosmological horizon problem, the
lack of topological defects, and the observed large-scale
isotropy [1–3]. In addition, inflation provides a mechanism
for generating small fluctuations in energy density, which
could have seeded galactic structure formation [4–8] and
are observed in the temperature anisotropies of the cosmic
microwave background (CMB) [9,10].
One of the main goals of modern CMB missions is

to measure the tensor-to-scalar ratio r accurately to con-
strain inflationary models. The combination of BICEP2/
Keck Array data with observations by Planck (TT,TE,
EEþlowEþ lensing) and baryon acoustic oscillation

(BAO) significantly shrink the space of allowed infla-
tionary cosmologies: r < 0.068 at 95% C.L. [11,12].
Moreover, CMB data favor standard slow-roll single-field
inflationary models with plateaulike potentials V, for which
Vϕϕ < 0, over power-law potentials; here, ϕ is the dilaton
or inflaton and Vϕ ≡ dV=dϕ [13]. In this paper, we
investigate slow-roll inflationary models within the context
of the swampland program [14] and confront model
predictions with experiment. We particularize the inves-
tigation to inflationary potentials satisfying Vϕϕ < 0 while
being invariant under the S-duality constraint, ϕ → −ϕ
[15], which is reminiscent of string theory [16,17].
The swampland program has been established to lay out a

connection between quantum gravity and very-large-scale–
ultralow-energy astronomical observations. The string
swampland comprises the set of (apparently) consistent
effective field theories (EFTs) that cannot be completed into
quantum gravity in the ultraviolet [18,19]. This rather
abstract concept implies that if gravity were to be added
into an EFT which is self-consistent up to a scale Eself ,
then the combined theory would exhibit a new limiting
energy scale Eswamp, above which the theory must be
modified if it is to become compatible with quantum gravity
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in the ultraviolet.When the energy relationEswamp < Eself <
EPl holds andEswamp is below any characteristic energy scale
involved in the theory, we say that the entire EFT belongs to
the string swampland; EPl denotes the Planck energy scale.
Guidance for a model building approach is provided by an
ensemble of swampland conjectures [20–44]. There are two
consequential conjectures which gathered immediate inter-
est in the context of inflationary cosmology.

(i) Distance swampland conjecture.—This conjecture
limits the field space of validity of anyEFTby limiting
the field excursion Δϕ to be small when expressed
in Planck units, namely, Δϕ=MPl ≡ δ≲ α ∼Oð1Þ,
where MPl ¼ ð8πGÞ−1=2 is the reduced Planck mass
[21–25].

(ii) de Sitter conjecture.—The gradient of the scalar
potential V must satisfy the lower bound,

MPl
jVϕj
V

≡ C ≥ c; ð1Þ

or else its Hessian must satisfy

M2
Pl

Vϕϕ

V
≡ C0 ≤ −c0; ð2Þ

where c and c0 are positive order-one numbers in
Planck units [23,28].

It has been noted that, while the distance conjecture by itself
does not pose a significant challenge for single-field infla-
tionary models (and corresponds observationally to a sup-
pressed r through the well-known Lyth bound [45]), the de
Sitter conjecture is in direct tension with slow-roll infla-
tionary potentials favored by CMB data [46–54]. The
objective of our investigation is to analyze the status of
single-field inflationary potentials with S-duality symmetry
in the context of the swampland conjectures.
The remainder of the paper is structured as follows. In

Sec. II, we first provide an overview of the equations of
motion in single-field slow-roll inflation and introduce the
definition of the slow-roll parameters. After that, to make
the connection with experiment, we compute the scalar
spectral index ns and the tensor-to-scalar ratio r at next-to-
leading order (NLO) in slow-roll parameters. In Sec. III, we
examine the subtleties of model building while imposing
constraints which depend on multiple slow-roll parameters
focusing attention on S-dual symmetric inflationary poten-
tials. We summarize the generalities of these potentials and
confront model predictions to the CMB observables ns and
r. In Sec. IV, we investigate the ambiguity on the definition
of the slow-roll parameters and explore whether this
uncertainty can help ameliorate the tension between sin-
gle-field inflationary models and the de Sitter swampland
conjecture. The paper wraps up with some conclusions
presented in Sec. V.

II. CONSTRAINTS ON r AT NLO
IN SLOW-ROLL PARAMETERS

The essential property of nearly all crowned inflationary
models is a period of slow-roll evolution of ϕ during which
its kinetic energy remains always much smaller than its
potential energy. The equation of motion for the canonical
homogeneous inflaton field is

ϕ̈þ 3H _ϕþ Vϕ ¼ 0; ð3Þ

where H ¼ _a=a is the Hubble parameter and the dot
denotes derivative with respect to the cosmic time. The
slow-roll conditions

1

2
_ϕ2 ≪ jVj ð4Þ

and ���� ϕ̈

3H _ϕ

����≪ 1 ð5Þ

imply

ϵ≡M2
Pl

2

�
Vϕ

V

�
2

≪ 1 ð6Þ

and

η≡M2
Pl

�
Vϕϕ

V
−
1

2

�
Vϕ

V

�
2
�
≪ 1; ð7Þ

respectively [55,56].1 The Friedmann relation incorporat-
ing slow roll is given by

HðϕÞ ≃
ffiffiffiffiffiffiffiffiffiffi
V

3M2
Pl

s
: ð8Þ

At the end of slow roll, ϕ falls into the core of the potential
and oscillates rapidly around the minimum, ultimately
leading to the reheating period. The amount of inflationary
expansion within a given timescale is generally parame-
trized in terms of the number of e-foldings that occur as the
scalar field rolls from a particular value ϕ to its value ϕe
when inflation ends:

Nðϕ → ϕeÞ ¼ −
1

M2
Pl

Z
ϕe

ϕ

V
Vϕ

dϕ; ð9Þ

with ϵðϕeÞ ¼ 1 [58]. The de Sitter conjecture bounds the
integrand above. Around a minimum of the potential
without changes in the curvature

1The definitions of the slow-roll parameters vary; we follow
the conventions of Ref. [57].
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Nðϕ → ϕeÞ ¼
1

M2
Pl

Z
maxðϕ;ϕeÞ

minðϕ;ϕeÞ

���� VVϕ

����dϕ ≤
jϕe − ϕj
M2

Pl

max
½ϕ;ϕe�

���� VVϕ

����
¼ jϕe − ϕj

M2
Pl

���� VVϕ

����
ϕ

; ð10Þ

as V=Vϕ ∼ 1=
ffiffiffi
ϵ

p
grows as the field moves away from the

minimum. Using the de Sitter conjecture bound, this can be
written more compactly as [51]

Δϕ
MPl

> cN: ð11Þ

To make contact with experiment, we calculate r at NLO
in slow-roll parameters. We begin by parametrizing the
scalar

Ps ¼ As

�
k
k�

�
ns−1þ1

2
αs lnð k

k�Þþ���
ð12Þ

and tensor

Pt ¼ At

�
k
k�

�
ntþ1

2
αt lnð k

k�Þþ���
ð13Þ

power spectra, where the spectral indices and their running
(included here for completeness only) are given by

ns ≃ 1 − 4ϵþ 2ηþ
�
10

3
þ 4B

�
ϵη − ð6þ 4BÞϵ2

þ 2

3
η2 −

2

3
ð3B − 1Þð2ϵ2 − 6ϵηþ ξ2Þ;

nt ≃ −2ϵþ
�
8

3
þ 4B

�
ϵη −

2

3
ð7þ 6BÞϵ2;

αs ≡ dns
d ln k

≃ −8ϵ2 þ 16ϵη − 2ξ2;

αt ≡ dnt
d ln k

≃ −4ϵðϵ − ηÞ; ð14Þ

and where B ¼ γE þ ln 2 − 2 ≈ −0.7296 and

ξ2 ≡M4
PlVϕVϕϕϕ

V2
ð15Þ

is the third slow-roll parameter [59]. The NLO amplitudes
are related to ϵ, η, and V by

As ≃
V

24π2M4
Plϵ

�
1 − ð4B þ 1Þϵþ

�
2B −

2

3

�
η

�
; ð16Þ

At ≃
V

6π2M4
Pl

�
1 −

�
2B þ 5

3

�
ϵ

�
: ð17Þ

All in all, the ratio of the NLO amplitudes of the spectra is
given by

r≡ At

As
≃ 16ϵþ 32

�
B −

1

3

�
ϵðϵ − ηÞ: ð18Þ

Substituting Eq. (1) into Eq. (18), we reproduce the well-
known constraint at LO in slow-roll parameters:

r ≃ 16ϵ≡ 8C2 ⇒ C ≃
ffiffiffiffiffiffiffi
r=8

p ≲ 0.09; ð19Þ

where we have taken r to saturate the 95% C.L. upper
limit. A comparison of this upper limit with the lower
limit in Eq. (1) has called into question whether slow-roll
single-field inflationary models could live on the swamp-
land [46–54]. Using the upper value of the measured 1σ
range, ns ¼ 0.9658� 0.0040 [11], a combined limit on C
and C0 can be derived substituting Eqs. (1) and (2) into the
expression of the scalar spectral index (14). At LO,

ns ≃ 1 − 2C2 þ 2η: ð20Þ

The allowed region of the ns − r plane at LO has been
reported in Ref. [50]. We can visualize the modification of
the NLO bounds on C and C0 posed by the data in Fig. 1 in a
model-independent way, to the degree that the ξ2 term in
the expansion for ns in Eq. (14) is negligible. This alone
suggests a certain degree of incompatibility between
observations and the de Sitter conjecture. The inclusion
of a nonzero ξ would slightly reduce the tension with c0,
displacing down the contours of Fig. 1 (right) but leaving
them almost unchanged along the C direction.
In the next section, we will particularize our study

to inflationary potentials with S-duality symmetry. In
particular, we will explore the relevance of the distance
swampland conjecture, which cannot be explored in a
model-independent way at any order.

III. S DUALITY STRIKES AGAIN

Dualities within gauge theories are striking, as they relate
a strongly coupled field theory to a weakly coupled one,
and thereby they are handy for evaluating a theory at strong
coupling, where perturbation theory breaks down, by
translating it into its dual description with a weak coupling
constant; ergo, dualities point to a single quantum system
which has two classical limits. The Uð1Þ gauge theory on
R4 is known to possess an electric-magnetic duality
symmetry that inverts the coupling constant and extends
to an action of SLð2;ZÞ [15]. There are also many
examples of S duality in string theory [16,17]. In this
section, we examine potentials which are invariant under
the S-duality constraint and confront them with experiment.
Herein, we do not attempt a full association with a
particular string vacuum but simply regard the self-dual
constraint as a relic of string physics in inflationary
cosmology. We adopt a phenomenological approach to
expand the inflationary potential in terms of a generic form
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satisfying the S-duality constraint, and then the determi-
nation of the expansion coefficients is data driven.
For a real scalar field ϕ, the S-duality symmetry is

ϕ → −ϕ (or, alternatively, g → 1=g, with g ∼ eϕ=MPl ). In
case there is an imaginary part, i.e., an axion, then the S-
duality group is extended to the modular group SLð2;ZÞ.
The S-duality constraint forces a particular functional form
on the inflationary potential: VðϕÞ ¼ f½coshðκϕ=MPlÞ�,
where κ is a constant [60].
A compelling property of inflationary potentials featuring

S-duality symmetry is that they resolve the “unlikeliness
problem,” which is typical of plateaulike potentials, e.g.,

V1ðϕÞ ¼
Vð1Þ
0

M4
Pl

ðϕ2 − ϕ2
0Þ2; ð21Þ

where V0 and ϕ0 are free parameters [61]. Note that the
plateau region satisfies ϕ ≪ ϕ0 terminating at the local
minimum, and for large values of ϕ the potential grows as a
power law ∼V0ðϕ=MPlÞ4. This means that we have two
paths to reach the minimum of the potential: by slow roll
along the plateau or by slow roll from the power-law side of
the minimum. The problem appears because the path from
the power-law side requires less fine-tuning of parameters,
has inflation occurring over a much wider range of ϕ, and
produces exponentially more inflation, but still CMB data
prefer the unlikely path along the plateau.
The simplest S self-dual form,

V2ðϕÞ ¼ Vð2Þ
0 sech

�
κϕ

MPl

�
; ð22Þ

solves the unlikeliness problem because it has no power-
law wall. Moreover, it is easily seen that for Eqs. (21) and
(22) the slow-roll parameters ϵ and η are of the scale
ðϕ0=MPlÞ2 ∼ κ−1 and, thus, have similar inflationary
growths; see Fig. 2. However, for Eq. (21), the slow-roll
parameters ϵ and η grow fast near the end of inflation
(ϕ ∼ ϕ0), but, for the S self-dual form, ϵ and η remain small,
because the potential has no local minimum. Thereby, ϕ
cannot exit the inflationary period.
To describe S-dual potentials for which inflation ends,

we adopt a polynomial expression in the sech function.
Without loss of generality, we can write it as

VðϕÞ ¼ V0

XN
n¼0

ansechn
�
κϕ

MPl

�
; ð23Þ

under the condition that
P

i ai ¼ 1, to ensure that
V0 ¼ Vð0Þ. Here, the normalization constant V0 and the
expansion coefficients an are determined empirically by
matching experimental constraints. To determine the coef-
ficients an, we demand

(i) Nðϕ� → ϕeÞ ≃ 60, with ϕ� the field value when the
k� scale crosses the horizon, k� ¼ aH;

(ii) the NLO expression of r given in Eq. (18) to satisfy
the 95% C.L. upper limit, i.e., r < 0.069 [11];

(iii) the NLO expression of the scalar spectral index ns
given in Eq. (14) to match the upper end of the
measured 1σ value, ns ≃ 0.9698 [11].

The phenomenological expression in Eq. (22) could
develop a minimum to support dissipative oscillations
at the cessation of the slow roll and reheating and
resolves the unlikeliness problem. In order to analyze

FIG. 1. Relation between ðr; nsÞ and ðC; C0Þ at LO and NLO, together with the bound (11) (shaded region) for N ¼ 50 and Δϕ ¼ MPl
(left), and experimental constraints on (C; C0Þ at LO and NLO from TT, TE, EEþ lowEþ lensingþ BK15þ BAO data [11] (right).
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the model, it is convenient to define y ¼ sechðκϕ=MPlÞ and
VðϕÞ ¼ V0fðyÞ, with

fðyÞ ¼
XN
n¼0

anyn: ð24Þ

Without conflicting with S duality, we restrict ourselves
here to ϕ > 0 to guarantee a bijection between y and ϕ.
Note that y ∈ ½0; 1� as ϕ ∈ ½0;∞Þ. It is then easy to see that

Vϕ ¼ −V0

κ

MPl
y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
f0ðyÞ; ð25aÞ

Vϕϕ ¼ V0

�
κ

MPl

�
2

½y2ð1 − y2Þf00ðyÞ þ yð1 − 2y2Þf0ðyÞ�;

ð25bÞ

and

Vϕϕϕ ¼ V0

�
κ

MPl

�
3

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
½−y2ð1 − y2Þf000ðyÞ

− 3yð1 − 2y2Þf00ðyÞ − ð1 − 6y2Þf0ðyÞ�; ð25cÞ

which allow one to obtain analytical expressions for ϵ, η,
and ξ.
Nontrivial potentials occur for N ≥ 2. Here, we study the

polynomial form in Eq. (22) at lowest order, i.e.,
fðyÞ ¼ a0 þ a1yþ a2y2. From the initially four model
parameters ðV0; a1; a2; a3Þ, the normalization condition
Vð0Þ ¼ V0 [or fð1Þ ¼ 1] allows one to remove one of
them. The potential has a minimum, at which we can
impose V ¼ 0, removing another constant. It is easily seen
that in this case f can be rewritten as

fðyÞ ¼
�
y − β

1 − β

�
2

; ð26Þ

where β ∈ ð0; 1Þ is the position of the minimum. This
corresponds to a potential

VðϕÞ ¼ V0

�sechðκ ϕ
MPl

Þ − sechðκ ϕ0

MPl
Þ

1 − sechðκ ϕ0

MPl
Þ

�2
; ð27Þ

where β ¼ sechðκϕ0=MPlÞ. A point worth noting at this
juncture is that the expansion of Eq. (23) is not hierarchical;
i.e., the coefficients an should not necessarily become
smaller and smaller with larger n. Our choice is based on
the complexity of the model, in which larger N potentials
would contain more free parameters and, under some
conditions, more maxima or minima. Note that an identi-
fication of Eq. (24) with Eq. (26) allows one to see that
a1=a0 ¼ −2=β and a2=a1 ¼ −1=2β and the hierarchy, if
existing, is contingent on the position of the minimum of
the field ϕ0 and on κ.
In Fig. 3, we show a comparison between the model

described by Eq. (27) and the one introduced in Eq. (21). It
is important to note that, for small κ, both potentials
become similar. Indeed, up to Oðκ3Þ terms,

VðϕÞ ≈ V0

Vð1Þ
0

��
MPl

ϕ0

�
4

−
5

6

κ2M2
Pl

ϕ2
0

ϕ2

ϕ2
0

�
V1ðϕÞ: ð28Þ

The zeroth-order difference may be absorbed in the
normalization of the potentials, so the potentials can
be made almost identical2 for

ϕ≲
ffiffiffi
6

5

r
MPl

κ
: ð29Þ

Then, only a relatively large κ would produce substantial
differences between both models if we want to avoid using

FIG. 2. Potential and slow-roll functions for the potentials defined by Eqs. (21) (solid line) and (22) with κ ¼ 2 (dotted line), κ ¼ 5
(dashed line), and κ ¼ 10 (dot-dashed line).

2To the extent that their overall normalizations are irrelevant,
as is the case for all quantities derived from the slow-roll
parameters or the number of inflation e-folds.
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highly trans-Planckian fields. For larger fields, the
differences are more obvious, as V1 grows indefinitely
while

lim
ϕ→∞

VðϕÞ ¼ V0

4
csch4

�
κϕ0

2MPl

�
: ð30Þ

The slow-roll parameters can be now obtained from
Eqs. (25) and (26) and are given by

ϵ ¼ 2κ2y2ð1 − y2Þ
ðy − βÞ2 ; ð31aÞ

η ¼ 2κ2yð1 − 2y2Þ
y − β

; ð31bÞ

and

ξ ¼ 4κ4y2ðy2 − 1Þðβ þ 2yð6y2 − 3βy − 2ÞÞ
ðy − βÞ3 ; ð31cÞ

these can be easily combined with Eqs. (14) and (18) to
explore the parameter space in terms of ns, r, and N. The
first step in that direction requires to find out the condition
(s) for slow roll to end. The potential under consideration
allows for two types of slow-roll inflation: (i) one in which
ϕ rolls down the potential toward a minimum at larger
values and (ii) one in which a large field rolls down the
potential toward smaller values. The condition ϵ ¼ 1 may
be rewritten as the quartic polynomial equation

y4 þ 1 − 2κ2

2κ2
y2 −

β

κ2
yþ β2

2κ2
¼ 0; ð32Þ

which has, in principle, four complex roots, which may be
obtained following Ferrari’s method [62]. For the poly-
nomial y4 þ qy2 þ ryþ s, the roots are found to be

y ¼ σ1

ffiffiffi
u
2

r
þ σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
u
2
−
q
2
− σ1

r

2
ffiffiffiffiffiffi
2u

p
r

; ð33Þ

where σ1 and σ2 are two independent signs that generate the
four solutions and u is a solution to the cubic equation
u3 þ qu2 þ ðq2=4 − sÞu − r2=8 ¼ 0. This can be reduced
by a change of variables u ¼ v − q=3 to a depressed cubic
equation v3−ðsþq2=12Þv−ð2q3þ27r2−72qsÞ=216¼0.
Such an equation, generally v3 þ avþ b ¼ 0, has a sol-
ution given by Cardano’s formula v ¼ ffiffiffi

3
p

Aþ þ ffiffiffi
3

p
A−,

withA� ¼ −b=2� ffiffiffiffi
Δ

p
andΔ ¼ ða=3Þ3 þ ðb=2Þ2, which,

reverting the changes of variables, is

Δ¼ −
β2

2833κ8
½32κ2β4 þ ð1− 8κ2ð5þ 4κ2Þβ2 − ð1− 2κ2Þ3�:

ð34Þ

It is clear that the nature of the solutions depends on the
sign of Δ, which is unconstrained. The lines Δ ¼ 0, which
separate both regions, may be solved explicitly for β. Out of
the four possible solutions, only

β0ðκÞ ¼
1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ð16κ2 þ 1Þ3=2

κ2
þ 32κ2 −

1

κ2
þ 40

s
ð35Þ

is in the β ∈ ½0; 1� and κ > 0 region. The previous equation
determines a limit in the κ > 1=

ffiffiffi
2

p
region, the value below

which β0 becomes complex. Moreover, κ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11þ 5

ffiffiffi
5

pp
marks the point at which β ¼ 1. For β > β0ðκÞ, Δ > 0.

Then κ < 1=
ffiffiffi
2

p
⇒ Δ > 0 and κ > 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11þ 5

ffiffiffi
5

pp
⇒

Δ < 0. Conversely, Δ < 0 ⇒ κ > 1=
ffiffiffi
2

p
and Δ > 0 ⇒

κ < 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11þ 5

ffiffiffi
5

pp
. For 1=

ffiffiffi
2

p
< κ < 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11þ 5

ffiffiffi
5

pp
, the

curve β0ðκÞ separates both regions.
Δ > 0.—In this case, A� is real, and u may be written

directly as u ¼ ffiffiffiffiffiffiffi
Aþ3

p þ ffiffiffiffiffiffiffi
A−3

p
− q=3. It it possible to

FIG. 3. Potential and slow-roll functions for the potentials defined by Eqs. (21) (solid line) and (27) with κ ¼ 1=2 (dotted line),
κ ¼ lnð1þ ffiffiffi

2
p Þ (dashed line), and κ ¼ 1 (dot-dashed line). The gray lines are the end of inflation (ϵ ¼ 1).
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see that A� > 0 over the region where Δ > 0. Moreover,
even if q > 0 somewhere, u > 0 everywhere. If σ1 ¼ þ1, y
is real and σ2 generates both solutions. The case σ1 ¼ −1
corresponds to complex solutions in all range whereΔ > 0.
Then, the two solutions of interest here are given by

y� ¼
ffiffiffi
u
2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
u
2
−
q
2
−

r

2
ffiffiffiffiffiffi
2u

p
r

ð36aÞ

and

u ¼
 
−
b
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
b
2

�
2

þ
�
a
3

�
3

s !1
3

þ
 
−
b
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
b
2

�
2

þ
�
a
3

�
3

s !1
3

−
q
3
: ð36bÞ

Δ < 0.—In this case, the solution to the cubic equation
contains complex terms, and it becomes convenient to
define A�¼Aexpð�iθÞ, where A≡ jA�j¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2=4−Δ

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ða=3Þ3
p

and θ ¼ 2 arctan½ ffiffiffiffiffiffiffi−Δ
p

=ðA − b=2Þ�, which
allows one to write v ¼ 2A

1
3 cosðθ=3Þ and see that it is

explicitly real. Moreover, as θ ranges in ½0; π�, cosðθ=3Þ is
not negative. This, together with the fact that q < 0 if
κ > 1=

ffiffiffi
2

p
, makes u positive as well. In this region, though,

both values of σ1 generate real solutions. It is clear that
σ1 ¼ σ2 ¼ −1 would yield a negative solution, irrelevant in
this case. Further investigation reveals that the other
solution with σ1 ¼ −1 yields negative solutions as well.
The other solutions are always contained in [0, 1]. Then, the
solutions in this case are the same y� defined in Eq. (36),
where now u is better expressed involving real numbers
only as

u¼2

ffiffiffiffiffiffiffi
−
a
3

r
cos

�
2

3
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðb=2Þ2−ða=3Þ3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ða=3Þ3

p
−b=2

��
−
q
3
: ð37Þ

The parameters a, b, and q used in all solutions above
are, respectively,

a ¼ −
β2

2κ2
−
ð1 − 2κ2Þ2

48κ4
; ð38aÞ

b ¼ β2ð1 − 2κ2Þ
12κ4

−
β2

8κ4
−
ð1 − 2κ2Þ3
864κ6

; ð38bÞ

and

q ¼ 1 − 2κ2

2κ2
: ð38cÞ

The solutions y� to the end of inflation equation ϵ ¼ 1
are shown in Fig. 4. We recall here that y− corresponds to
a solution for smaller y (larger ϕ) and yþ to larger y
(smaller ϕ). We define y� ¼ sechðκϕ�=MPlÞ.
We can now proceed with our analysis noting that,

besides the values of β and κ, which determine the end of
inflation, there is still freedom in choosing the value of the
field at the scale that corresponds to the experimental
values. We call this ϕ�� and define δ�¼�ðϕ�−ϕ��Þ=MPl.
We recall that the distance swampland conjecture demands
that δ� ≲Oð1Þ. In terms of our model, when we are
considering large fields (minus signs above), the value of
ϕ�− is unbounded and δ− could take any positive value.
Nevertheless, for small fields (plus signs above), δþ is
constrained so that ϕ�þ > 0, which means δþ < ϕþ=MPl.
All in all, the corresponding values for y are

FIG. 4. Exploration of the solutions y� to the end of inflation condition ϵ ¼ 1.
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y�� ¼ sechðarcsech y� ∓ κδ�Þ; ð39Þ

where δþ < κ−1arcsech yþ. A choice of values ðβ; κ; δÞ and a
branch (large or small ϕ) specifies the model completely.
Specifically, the values for y� and y�� described above can

be used to calculate the slow-roll functions at y�� and,
subsequently, thevalues ofns and r and thenumber ofe-folds
between y�� and y�. Finally, we also study the number of
inflation e-folds produced corresponding to the different
parameters, which can be obtained from Eq. (9) to be

N ¼
2βð 1

y��
− 1

y�
Þ þ ð1 − βÞ lnð 1−y�

1−y��
Þ þ ð1þ βÞ lnð 1þy�

1þy��
Þ − 2 lnð y�y��Þ

4κ2
: ð40Þ

Our results for the large-field solution (corresponding to
y−) with β ¼ 0.5 are encapsulated in Fig. 5. The results
show a mixed degree of compatibility between the swamp-
land conjectures and experimental data for the S-dual
potential. The model itself can easily accommodate the
experimental constraints for some region of the parameter
space (namely, κ ≳ 1 and δ≲ 1), as ns, r, and 50≲ N ≲ 60
are all reproducible. We can further study the compatibility
between the de Sitter conjecture, the distance conjecture,
and the experimental results. It is clearly visible how the
bound on C from the de Sitter conjecture and the require-
ment on Δϕ from the distance conjecture are in tension, as
values of C ∼Oð1Þ even for the 95% C.L. lower limit on ns
at 0.959 require δ ≫ 1. On the other hand, the de Sitter
bound on C0 and the distance conjecture set bounds that get
softer in the same direction of decreasing r. In this case, C0
is constrained by the data at the 95% C.L. lower limit on ns

to C0 ≳ −0.02. Despite this experimental constraint being
much stronger than the C ≲ 0.09, there is no strong
incompatibility with the distance conjecture.
As a final remark, we study the strength of Lyth’s bound

(11) on the current model, i.e., to which extent the model
saturates such a bound. In Fig. 6, we show the value of
NC=δ as obtained from Eq. (40) as a function of κ and δ,
which is bound above by 1 by means of Lyth’s bound. It is
visible that only for small values of δ is Lyth’s bound
saturated.

IV. AMBIGUITY IN SLOW-ROLL PARAMETER
DEFINITIONS AND IMPACT ON THE

SWAMPLAND CONJECTURES

It is common in the literature to observe two different
definitions of the slow-roll parameters, one defined in terms

FIG. 5. Exploration of the ðκ; δÞ parameter space for a fixed β ¼ 0.5. The dashed curves in black (white) are for constant δ (κ). The
solid lines contain the relations between ðC; C0Þ and ðrs; rÞ for the model [i.e., for the actual ξ obtained from Eq. (31c)]. The experimental
bounds are as in Fig. 1.
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of the Hubble parameter H and the other in terms of the
potential V; we have used the latter in previous sections.
We have seen that the slow-roll parameters of single-field
inflation defined by V are in tension with the swampland
conjectures. An interesting question we explore in this
section is whether these two choices of parameters differ in
a significant way, so that the tension with the swampland
conjectures can be reduced.
Accelerated expansion occurs as long as ä > 0, and,

since

ä
aH2

¼ 1þ
_H
H2

; ð41Þ

that condition may be rewritten as − _H=H2 < 1. The slow-
roll limit means thatH is constant, as this is the only way to
support exponential expansion with a ¼ expðHtÞ. The
slow-roll regime may be considered as that in which H
changes slowly, which is what motivates the definition of
the dimensionless slow-roll parameter as

ϵH ¼ −
_H
H2

; ð42Þ

for which ϵH < 1 means accelerated expansion, ϵ ≪ 1
means slow-roll expansion, and ϵH ¼ 0 means exponential
expansion. Using the Friedmann equation

H2 ¼ 1

3M2
Pl

�
V þ 1

2
_ϕ2

�
ð43Þ

and the equation of motion (3), this may be rewritten as

ϵH ¼ 3
_ϕ2=2

V þ _ϕ2=2
¼ 2M2

Pl

�
Hϕ

H

�
2

; ð44Þ

where we have made use of the relation _ϕ2 ¼ −2M2
Pl
_H.

In order to connect this to the V parameters, we write

Hϕ

H
¼ −

3H _ϕ

6M2
PlH

2
¼ Vϕ þ ϕ̈

6M2
PlH

2
ð45Þ

and

ϵH ¼ M2
Pl

2

�
Vϕ þ ϕ̈

V þ _ϕ2=2

�2

: ð46Þ

The slow-roll condition ϵH ≪ 1 directly implies that
V ≫ _ϕ2=2, in which case

ϵH ≈
M2

Pl

2

�
Vϕ þ ϕ̈

V

�2

: ð47Þ

If one further imposes the condition that jϕ̈j ≪ jVϕj, the
approximation

ϵH ≈
M2

Pl

2

�
Vϕ

V

�
2

ð48Þ

is valid. This motivates the definition of the V parameter as

ϵV ≡M2
Pl

2

�
Vϕ

V

�
2

: ð49Þ

The question of whether ϵH and ϵV may be approximately
equal depends on whether the two approximations used to
derive Eq. (48) are simultaneously satisfied. A glance at
Eq. (44) suggests that they may not always be, as in the
limit _ϕ → 0, ϵH → 0 while ϵV may take any finite value.
Moreover, one can rewrite the equation of motion as

ðVϕ þ ϕ̈Þ2 ¼ 3

M2
Pl

_ϕ2ðV þ _ϕ2=2Þ ð50Þ

to see that a condition on the smallness of _ϕ2 does not
guarantee the smallness of ϕ̈with respect to Vϕ unless Vϕ is
itself small. We conclude that, in general, both conditions
must be separately satisfied to guarantee the similarity
between ϵH and ϵV . A more comprehensive study of the
differences between both parameters (as well as the second-
order ones ηH and ηV) can be found in Ref. [63]. Here, we
highlight only the aspects relevant for our discussion.
Given a specific potential VðϕÞ, one can obtain a solution

ϕðtÞ to the equation of motion, subject to the initial
conditions ϕðt0Þ ¼ ϕ0 and _ϕðt0Þ ¼ _ϕ0. This makes the
difference between ϵV and ϵH explicit, since at t ¼ t0 the

FIG. 6. Value of NC=δ, bound to be lower than one by Eq. (11),
as a function of ðκ; δÞ for β ¼ 0.5.
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former depends only on ϕ0 while the latter depends on both
ϕ0 and _ϕ0. Therefore, the equality or similarity between ϵV
and ϵH is a matter of a handpicked pair ðϕ0; _ϕ0Þ that would
guarantee both _ϕ2=2 ≪ V and jϕ̈j ≪ Vϕ.
This makes clear that the end of inflation condition

ϵH ¼ 1would yield different results than ϵV ¼ 1. While the
latter condition is the most commonly used and is simpler
to evaluate due to its sole dependence on the shape of the
potential, it is the former condition that must be satisfied
exactly, since it depends on the full solution of the scalar
field equation of motion.
A judicious choice of initial conditions on the field and

its derivative at the time at which the scale k� crosses the
horizon should be able to accommodate multiple values of
C or C0, potentially reducing the tensions with the swamp-
land conjectures while remaining in the H-dictated slow-
roll regime. Nevertheless, keeping the de Sitter conjecture
and the observed number of inflation e-folds under control
is not guaranteed in this situation. A full study like the one
presented in Sec. III, adding these initial conditions, should
be considered if one aims to characterize the complete
parameter space. Nevertheless, we leave that for future
work, as the increase in computational complexity escapes
the aim of this paper. Here, instead, we choose initial
conditions that optimize the comparison between the H
parameters and the V parameters rather than the generality
of the study.
To remove part of the ambiguity caused by the freedom

of choice in the initial conditions, we consider t� (the time
at which the scale k� crosses the horizon) as the starting
point for the solution to the equation of motion. In order to
reduce the number of quantities affected by the choice of

parameters, we choose to leave the observable values of ns
and r unaffected. Since these values depend on ϵ and η at t�,
fixing the initial conditions on ϕ such that ϵHðt�Þ ¼ ϵVðt�Þ
allows one to remove any effect of this choice on them. This
is just an operational perspective that should allow us to
compare the differences that ϵH and ϵV have only in regard
to the other observable, N. This condition amounts to

_ϕ2ðt�Þ ¼
2Vðϕ�Þ

3=ϵVðϕ�Þ − 1
; ð51Þ

which may be rewritten in terms of y as3

_yðt�Þ¼
ffiffiffiffiffiffi
V0

p
MPl

2κ2y02ðβ−y0Þð1−y02Þ
ð1−βÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðy0−βÞ2−2κ2y02ð1−y02Þ

p : ð52Þ

In a similar manner as we proceeded before, we start by
fixing the model parameters ðβ; κÞ and finding the end of
inflation using the ϵVðye;VÞ ¼ 1 condition, and the value of
y� via Eq. (39), using a given value of δ, named here δV .
With both y� and ye;V , we can find the value of NV using
Eq. (40). To quantify the difference between the choice of
ϵV and of ϵH, we calculate the true end of inflation through
the ϵHðye;HÞ ¼ 1 condition, which provides a true value for
δ, as δH ¼ κ−1ðarcsechy� − arcsechye;HÞ, and a true num-
ber of e-folds NH as

FIG. 7. Comparison of the two end of inflation conditions, ϵH ¼ 1 and ϵV ¼ 1, regarding their effect on the number of inflation e-folds
and the parameter δ.

3Only the large ϕ (small y) solution (the negative sign in the y�
notation) is considered here, as we deemed it to be the interesting
case. Otherwise, the initial derivative should be negative.
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NH ¼−
1

MPl

Z
ϕe

ϕ�

dϕffiffiffiffiffiffiffiffi
2ϵH

p ¼ 1

κ

Z
te;H

t�

_y

y
ffiffiffiffiffiffiffiffiffiffiffiffi
1−y2

p ffiffiffiffiffiffiffiffi
2ϵH

p dt; ð53Þ

where te;H is the true time at which inflation ends.
In Fig. 7(a), we show the relation between NV and δV ,

and NH and δH. While a full analysis similar to that
presented in Fig. 5 might be the only way to fully
understand the relevance of the parameter set choice, here
it is visible how the difference ΔN ≡ NH − NV grows with
both κ and δ. We can see in Fig. 7(b) that for small values of
κ, which are of more interest in the study of the de Sitter
conjecture on C, ΔN is small enough to make it irrelevant,
and no significant difference would be expected in that
front. Regarding C0, the C0 ≳ −0.02 experimental bound
may be accommodated a bit easier regarding the number of
e-folds, as in that region the constraint ϵV ¼ 1 is under-
estimating the number of e-folds by a few percent points of
its true value.
Nevertheless, despite the minor changes introduced in

relation to the swampland conjectures, Fig. 7(b) makes
clear that the ϵV ¼ 1 condition might end inflation too
early, producing considerable underestimations of the
actual number of e-folds.
We want to remind the reader that these results are

obtained for β ¼ 0.5, as was the case with the results
presented in and after Fig. 5. It must also be clarified that
the information presented in Figs. 7(a) and 7(b) is not in
contradiction, unlike it may seem. Figure 7(a) presents the
curves NHðδHÞ and NVðδVÞ, so the horizontal axis is not
the same variable and makes it seem that, for a single δ, the
V-based condition overestimates the number of e-folds.
Nevertheless, in Fig. 7(b), we show the curves evaluated at
the same value of δ. This is therefore comparing the two
parameter choices for a fixed value of the field excursion
Δϕ. Under this circumstance, it is clearly seen that the
V-based conditions produce an underestimation of the
number of inflation e-foldswith respect to theH-based ones.

V. CONCLUSIONS

We have analyzed the most general form of single-field
S-dual inflationary potentials at NLO in slow-roll param-
eters within the context of the swampland program and con-
fronted model predictions with experiment. We have found
that to accommodate the 95% C.L. limit on r < 0.068 from
BICEP2/Keck Arrayþ Planckþ BAO data [11,12] we
require c ∼Oð10−1Þ. This requirement is in tension with
the de Sitter conjecture. However, in the spirit of Ref. [64],
we can adopt a conservative approach and regard the
de Sitter conjecture as a parametric constraint where the
inequality (1) holds, but the number c may not be
strictlyOð1Þ. Indeed, it is easy to establish a mass hierarchy
between the lightest moduli field and inflaton to

accommodate c ∼Oð10−1Þ [64]. From this viewpoint,
constraints on inflation can then be used to constrain c.
Still, as we have shown in Fig. 5, to accommodate c ∼
Oð10−1Þ a δ ∼Oð10Þ would be required. To be able to
match such a large value of δ, we must explore the
subtleties of the distance conjecture, which asserts that,
for any infinite field distance limit, an infinite tower of
states becomes exponentially light, and, therefore, EFTs are
valid only for finite scalar field variations [21–25]. This, in
turn, implies a quantum gravity cutoff associated to the
infinite tower of states, decreasing exponentially in terms of
the proper field distance, ΛQG ¼ Λselfe−λΔϕ, where ΛQG is
the quantum gravity cutoff, Λself is the cutoff of the EFT,
and λ is argued to be of the order of unity in Planck units
(see, however, Refs. [38,39]). Now, since Λself ≤ MPl, we
have Δϕ ≤ λ−1 lnðMPl=ΛselfÞ, which indicates that the
maximum field variation actually depends on the cutoff
of the EFT [65]. We know that, for the EFT to describe
inflation, its cutoff must be above the Hubble scale, i.e.,
Λself > H. If we adopt the conservative bound Λself ∼H,
then Δϕ≲ 10MPl [66]. Needless to say, it should be
stressed that the EFT will likely break down (or at least
get sensitive to the infinite tower) before the mass of the
first state becomes of the order of Hubble, so the constraints
might be stronger than those derived from the assumption
Λself ∼H. Next-generation CMB satellites searching for
primordial B modes (e.g., PIXIE [67], CORE [68], and
LiteBIRD [69]) will reach a 95% C.L. sensitivity of
r < 0.002. This will allow discrimination between small-
field Δϕ < MPl and large-field Δϕ > MPl inflationary
models and will provide a final verdict for the ideas
presented and discussed in this paper.
As a final remark, it would be interesting to study the full

parameter space using the H parameters introduced in
Sec. IV rather than the V parameters. As stated there, the
increase in the number of free parameters would make it
more feasible to reduce the tension with the swampland
conjectures. An analysis like the one presented here inwhich
the H parameters are used in full is left for future work.
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