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An exponential kind of quintessential inflation potential motivated by supergravity is studied. This type
belongs to the class of α-attractor models. The model was studied for the first time by Dimopoulos and
Owen in [J. Cosmol. Astropart. Phys. 06 (2017) 027], in which the authors introduced a negative
cosmological constant in order to ensure a zero-vacuum energy density at late times. However, in this
paper, we disregard this cosmological constant, showing that the obtained results are very close to the ones
obtained recently in the context of Lorentzian quintessential inflation and thus depicting with great
accuracy the early- and late-time acceleration of our Universe. The model is compatible with the recent
observations. Finally, we review the treatment of the α-attractor and we show that our potential depicts the
late time cosmic acceleration with an effective equation of state equal to −1.
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I. INTRODUCTION

The inflationary paradigm is considered as a necessary
part of the standard model of cosmology, since it provides
the solution to the horizon, the flatness, and the monopole
problems [1–9]. It can be achieved through various mech-
anisms, for instance, through the introduction of a scalar
inflaton field [10–34]. The well-known Starobinsky model
[35] (see also Ref. [36] for a review), originally conceived
to find nonsingular solutions going beyond general rela-
tivity—although it really only contains one unstable non-
singular solution—is one of the best candidates to correctly
depict the inflationary period, in the sense that the theo-
retical results provided by the model match perfectly with
the current observation data [37–39]. An important exten-
sion of the Starobinsky model, coming from supergravity,
are the so-called α-attractors [40–48], which also depict
inflation very well and are used for the first time in the
context of quintessential inflation—see the papers [49–58]
for a detailed explanation of the early and recent results of

this topic—in Ref. [59] (see also Ref. [60]). In that paper,
the authors also introduce a negative cosmological constant
(CC) in order to have at late times an exponential potential
which guarantees an eternal acceleration for a wide range of
the parameters involved in the model or getting a transient
acceleration at the present time.
However, as we will show in this paper, for this simple

model, which only depends on two parameters, quintes-
sential inflation is also obtained without the introduction
of this CC. In fact, the model leads to the same
results provided by Lorentzian quintessential inflation
[61–63]; i.e., the model behaves as an α-attractor at early
times and provides, at late times, an eternal inflation with
an effective equation of state (EoS) parameter equal to −1
at very late times.
The paper is organized as follows. In Sec. II, we calculate

the power spectrum of perturbations and the value of the
parameters involved in the model in agreement with the
observational data at early and late times. Section III is
devoted to the analytic calculation of the value of the field
and its derivative at the reheating time, which is needed to
perform the numerical calculations up to the present and
future times. In Sec. IV, we perform the numerical
calculations, showing that at late times the Universe enters
in an eternal acceleration and, at the present time, the
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effective EoS parameter, given by the model, agrees with
the Planck’s results. Section VI introduces a CC, and there
we review the work done in Ref. [59], showing that the
model with a CC is only compatible with Planck’s
observational data for a narrow range of values of the
parameter α, which, from our point of view, does not prove
its viability.
The units used throughout the paper are ℏ ¼ c ¼ 1, and

we denote the reduced Planck mass by Mpl ≡ 1ffiffiffiffiffiffi
8πG

p ≅
2.44 × 1018 GeV.

II. α-ATTRACTORS IN
QUINTESSENTIAL INFLATION

We consider the following Lagrangian motivated by
supergravity and corresponding to a nontrivial Kähler
manifold (see, for instance, Ref. [59] and the references
therein), combined with an standard exponential potential,

L ¼ 1

2

_ϕ2

ð1 − ϕ2

6αÞ2
M2

pl − λM4
ple

−κϕ; ð1Þ

where ϕ is a dimensionless scalar field and κ and λ are
positive dimensionless constants.
For the kinetic term to have the canonical form, one can

redefine the scalar field as

ϕ ¼
ffiffiffiffiffiffi
6α

p
tanh

�
φffiffiffiffiffiffi

6α
p

Mpl

�
; ð2Þ

obtaining the potential

VðφÞ ¼ λM4
ple

−n tanhð φffiffiffi
6α

p
Mpl

Þ
; ð3Þ

where we have introduced the dimensionless parameter
n ¼ κ

ffiffiffiffiffiffi
6α

p
. Similarly to Refs. [61–63], the potential sat-

isfies the cosmological seesaw mechanism, where the left
side of the potential gives a very large energy density—the
inflationary side–and the right side gives a very small
energy density—the dark energy side. The asymptotic
values are V�¼λexpð�nÞ. The parameter n is the loga-
rithm of the ratios between the energy densities, as ξ in the
earlier versions [63]. Dealing with this potential at early
times, the slow-roll parameters are given by

ϵ≡M2
pl

2

�
Vφ

V

�
2

¼ n2

12α

1

cosh4ð φffiffiffiffi
6α

p
Mpl

Þ ; ð4Þ

where we must assume that n2
12α > 1 because inflation ends

when ϵEND ¼ 1, and the other slow-roll parameter is

η≡M2
pl

Vφφ

V
¼ n

3α

2
64 tanh

�
φ=Mplffiffiffiffi

6α
p

�
cosh2

�
φ=Mplffiffiffiffi

6α
p

�þ n=2

cosh4
�
φ=Mplffiffiffiffi

6α
p

�
3
75: ð5Þ

Both slow-roll parameters have to be evaluated when the
pivot scale leaves the Hubble radius, which will happen for
large values of coshð φffiffiffiffi

6α
p

Mpl
Þ, obtaining

ϵ� ¼
n2

12α

1

cosh4
�
φ�=Mplffiffiffiffi

6α
p

� ; η� ≅−
n
3α

1

cosh2
�
φ�=Mplffiffiffiffi

6α
p

� ; ð6Þ

with φ� < 0.
Next, we calculate the number of e-folds from the

leaving of the pivot scale to the end of inflation, which
for small values of α is given by

N ¼ 1

Mpl

Z
φEND

φ�

1ffiffiffiffiffi
2ϵ

p dφ ≅

ffiffiffiffiffiffiffi
3α

4ϵ�

s
; ð7Þ

so we get the standard form of the spectral index and the
tensor/scalar ratio for an α-attractor [45],

ns ≅ 1 − 6ϵ� þ 2η� ≅ 1 −
2

N
; r ≅ 16ϵ� ≅

12α

N2
: ð8Þ

Finally, it is well known that the power spectrum of
scalar perturbations is given by

Pζ ¼
H2�

8π2ϵ�M2
pl

∼ 2 × 10−9 ð9Þ

and, since in our case Vðφ�Þ ≅ λM4
ple

n and thus

H2� ≅
λM2

pl

3
en, taking into account that ϵ� ≅ 3α

16
ð1 − nsÞ2,

one gets the constraint

λen=α ∼ 10−10; ð10Þ

where we have chosen as the value of ns its central value
given by the Planck team, i.e., ns ¼ 0.9649 [38].
Choosing, for example, α ¼ 10−2, the constraint (10)

becomes λen ∼ 10−12. On the other hand, at the present
time, we will have φ0ffiffiffiffi

6α
p

Mpl
≫ 1, where φ0 denotes the

current value of the inflaton field. Hence, we will have
Vðφ0Þ ∼ λM4

ple
−n, which is the dark energy at the present

time, meaning that

0.7 ≅ Ωφ;0 ≅
Vðφ0Þ
3H2

0M
2
pl

∼
λe−n

3

�
Mpl

H0

�
2

: ð11Þ

Thus, taking, for example, the value provided by the Planck
team [38,39], H0¼67.81km=sec=Mpc¼5.94×10−61Mpl,
we get the equations
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λen ∼ 10−12 and λe−n ∼ 10−120; ð12Þ

the solutions of which are given by n ∼ 124 and λ ∼ 10−66.

III. DYNAMICAL EVOLUTION OF THE
SCALAR FIELD

The goal of this section is to calculate the value of the
scalar field and its derivative at the reheating time. To do it,
first of all we need to calculate the value of the inflaton field
and its derivative at the beginning of kination [64,65],
which could be calculated as follows: taking into account
that the slow-roll regime is an attractor, we only need to
take initial conditions in the basin of attraction of the slow-
roll solution and thus integrate the conservation equation up
to the moment that the effective EoS parameter was very
close to 1, which is the moment when nearly all the energy
density of the scalar field is kinetic.
So, we will take as initial condition the value of the

inflaton when the pivot scale leaves the Hubble radius with
vanishing temporal derivative (recall that during the slow
roll the kinetic energy is negligible compared with the
potential one). In this way, from Eq. (8), we get the relation

ϵ� ¼
3α

16
ð1 − nsÞ2; ð13Þ

which, together with the expression of ϵ� given in (6), leads
to the relation

cosh

�
φ�ffiffiffiffiffiffi
6α

p
Mpl

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

3αð1 − nsÞ

s
; ð14Þ

the solution of which is given by

φ� ¼
ffiffiffiffiffiffi
6α

p
Mpl ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

3αð1 − nsÞ

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

3αð1 − nsÞ
− 1

s !
:

Finally, integrating numerically the conservation equation

φ̈þ 3H _φþ Vφ ¼ 0; ð15Þ

where H ¼ 1ffiffi
3

p
Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_φ2

2
þ VðφÞ

q
and with initial conditions

φi ¼ φ� and _φi ¼ 0, we have obtained for the values
α ¼ 10−2, n ≅ 124, and ns ¼ 0.9649 the following values
at the beginning of the kination period: φkin ≅ 1.1Mpl

and _φkin ≅ 6 × 10−8M2
pl.

When one has these values, analytical calculations can be
done disregarding the potential during kination because in
this epoch the potential energy of the field is negligible
compared with the kinetic one. Then, since during kination
one has a ∝ t1=3 ⇒ H ¼ 1

3t, using the Friedmann equation,
the dynamics in this regime will be obtained solving the
equation

_φ2

2
¼ M2

pl

3t2
⇒ _φ ¼

ffiffiffi
2

3

r
Mpl

t
⇒

φðtÞ ¼ φkin þ
ffiffiffi
2

3

r
Mpl ln

�
t
tkin

�
: ð16Þ

Thus, at the reheating time, i.e., at the beginning of the
radiation era, one has

φrh ¼ φkin þ
ffiffiffi
2

3

r
Mpl ln

�
Hkin

Hrh

�
: ð17Þ

By using that at the reheating time (i.e., when the energy
density of the scalar field and the one of the relativistic
plasma are of the same order) the Hubble rate is given by
H2

rh ¼ 2ρrh
3M2

pl
, one gets

φrh ¼ φkin þ
ffiffiffi
2

3

r
Mpl ln

 
Hkinffiffiffiffiffiffiffiffi
π2grh
45

q
T2
rh

Mpl

!

and _φrh ¼
ffiffiffiffiffiffiffiffiffiffiffi
π2grh
15

r
T2
rh; ð18Þ

where we have used that the energy density and the
temperature are related via the formula ρrh ¼ π2

30
grhT4

rh,
where the number of degrees of freedom for the standard
model is grh ¼ 106.75 [66].
Assuming instant preheating due to the smoothness of

the potential [67–69], we will choose as the reheating
temperature Trh ≅ 109 GeV because it is its natural value
when this kind of mechanism is the responsible for
reheating our Universe.
Then, at the beginning of the radiation era, we will have

φrh ≅ 21.5Mpl _φrh ≅ 1.41 × 10−18M2
pl: ð19Þ

IV. NUMERICAL SIMULATION

To perform our numerical calculations, first of all, we
consider the central values obtained in Ref. [37] (see the
second column in Table IV) of the redshift at the matter-
radiation equality zeq ¼ 3365; the present value of the ratio
of the matter energy density to the critical one Ωm;0 ¼
0.308; and, once again, H0 ¼ 67.81 km= sec =Mpc ¼
5.94 × 10−61Mpl. Then, the present value of the matter
energy density is ρm;0¼3H2

0M
2
plΩm;0¼3.26×10−121M4

pl,
and at matter-radiation equality, we will have ρeq¼
2ρm;0ð1þzeqÞ3¼2.48×10−110M4

pl¼8.8×10−1 eV4. So, at
the beginning of matter-radiation equality, the energy
density of the matter and radiation will be ρm;eq ¼ ρr;eq ¼
ρeq=2 ≅ 4.4 × 10−1 eV4. Therefore, the dynamical equa-
tions after the beginning of the radiation can be easily
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obtained using as a time variableN ≡ − lnð1þ zÞ ¼ lnð aa0Þ.
Recasting the energy density of radiation and matter,
respectively, as a function of N, we get

ρmðaÞ ¼ ρm;eq

�
aeq
a

�
3

→ ρmðNÞ ¼ ρm;eqe3ðNeq−NÞ ð20Þ

and

ρrðaÞ ¼ ρr;eq

�
aeq
a

�
4

→ ρrðNÞ ¼ ρr;eqe4ðNeq−NÞ; ð21Þ

where Neq ≅ −8.121 denotes the value of the time N at the
beginning of the matter-radiation equality. The dynamical
system for this scalar field model is obtained introducing
the dimensionless variables

x ¼ φ

Mpl
and y ¼ _φ

H0Mpl
: ð22Þ

Thus, from the conservation equation φ̈þ 3H _φþ Vφ ¼ 0,
one gets the dynamical system

�
x0 ¼ y=H̄;

y0 ¼ −3y − V̄x=H̄;
ð23Þ

where the prime is the derivative with respect to N, H̄ ¼ H
H0

and V̄ ¼ V
H2

0
M2

pl
. Note also that one can write

H̄ ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

2
þ V̄ðxÞ þ ρ̄rðNÞ þ ρ̄mðNÞ

r
; ð24Þ

where we have defined the dimensionless energy densities
as ρ̄r ¼ ρr

H2
0
M2

pl
and ρ̄m ¼ ρm

H2
0
M2

pl
. Finally, we have to integrate

the dynamical system (23), with initial conditions xðNrhÞ ¼
xrh ¼ 21.5 and yðNrhÞ ¼ yrh ¼ 2.42 × 1042 imposing that

H̄ð0Þ ¼ 1, which must be accomplished in order to ensure
that the Hubble constant at the present time is the observed
one, and where Nrh denotes the beginning of reheating,
which is obtained imposing that

ρr;eqe4ðNeq−NrhÞ ¼ π2

30
grhT4

rh; ð25Þ

that is,

Nrh ¼ Neq −
1

4
ln

�
grh
geq

�
− ln

�
Trh

Teq

�
≅ −50.68; ð26Þ

where we have used that ρeq;r ¼ π2

30
geqT4

eq with geq ¼ 3.36
[66] and thus Teq ≅ 7.81 × 10−10 GeV. The obtained
results are presented in Fig. 1, where one can see the
similitude with the recent results obtained in Ref. [63]
dealing with Lorentzian quintessential inflation.
The Planck team [38] provided the following value of

the dark energy EoS parameter at the present time,
wde;0 ¼ −1.03� 0.03. So, since the effective EoS param-
eter is given by

weff ¼
1

3
Ωr þ wdeΩde; ð27Þ

taking into account that the present value of Ωr is
approximately 0.0001 and Ωde;0 ≅ 0.69, one gets at 1σ
C.L. that weff ¼ −0.712� 0.021; i.e., at 2σ C.L., we have
−0.754 ≤ weff;0 ≤ −0.67, which is compatible with our
model, as one can see on the right-hand side of Fig. 1. In
fact, in our case, we have obtained weff;0 ≅ −0.68.

V. OBSERVATIONAL CONSTRAINTS

Next, we describe the observational datasets along with
the relevant statistics in constraining the model. The dataset
incorporates few different measurements.

FIG. 1. Left: the density parameters Ωm ¼ ρm
3H2M2

pl
(orange curve), Ωr ¼ ρr

3H2M2
pl
(blue curve), and Ωφ ¼ ρφ

3H2M2
pl
, from kination to future

times. Right: The effective equation of state parameter weff, from kination to future times. As one can see in the picture, after kination,
the Universe enters in a large period of time where radiation dominates. Then, after the matter-radiation equality, the Universe becomes
matter dominated, and, finally, near the present, it enters in a new accelerated phase where weff approaches −1.
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A. Direct measurements of the Hubble expansion

1. Cosmic chronometers

The dataset exploits the evolution of differential ages of
passive galaxies at different redshifts to directly constrain
the Hubble parameter [70]. We use uncorrelated 30 CC
measurements of HðzÞ discussed in Refs. [71–74]. Here,
the corresponding χ2H function reads

χ2H ¼
X30
i¼1

�
Hi −HpredðziÞ

ΔHi

�
2

; ð28Þ

where Hi is the observed Hubble rates at redshift zi
(i ¼ 1;…; N) and Hpred is the predicted one from the
model.

B. Standard candles

As standard candles (SCs), we use measurements of the
Pantheon Type Ia supernova (SnIa) [75]. The model
parameters of the models are to be fitted with by comparing
the observed μobsi value to the theoretical μthi value of the
distance moduli which are the logarithms

μ ¼ m −M ¼ 5 log10ðDLÞ þ μ0; ð29Þ

where m and M are the apparent and absolute magnitudes
and μ0 ¼ 5 log ðH−1

0 =MpcÞ þ 25 is the nuisance parameter
that has been marginalized. The luminosity distance is
defined by

DLðzÞ ¼
c
H0

ð1þ zÞ
Z

z

0

dz�

Eðz�Þ : ð30Þ

Here, Ωk ¼ 0 (flat spacetime). Following standard lines,
the chi-square function of the standard candles is given by

χ2SCðϕν
sÞ ¼ μsC−1

s;covμ
T
s ; ð31Þ

where μs ¼ fμ1 − μthðz1;ϕνÞ;…; μN − μthðzN;ϕνÞg and
the subscript s denotes SnIa and quasars. For the SnIa
data, the covariance matrix is not diagonal, and the distance
modulus is given as μi ¼ μB;i −M, where μB;i is the
maximum apparent magnitude in the rest frame for redshift
zi and M is treated as a universal free parameter [75],
quantifying various observational uncertainties. It is ap-
parent thatM and h parameters are intrinsically degenerate
in the context of the Pantheon dataset, so we cannot extract
any information regarding H0 from SnIa data alone.

C. Baryon acoustic oscillations

We use uncorrelated data points from different baryon
acoustic oscillations (BAOs). BAOs are a direct conse-
quence of the strong coupling between photons and baryons
in the prerecombination epoch. After the decoupling of

photons, the overdensities in the baryon fluid evolved and
attracted more matter, leaving an imprint in the two-point
correlation function of matter fluctuations with a character-
istic scale of around rd ≈ 147 Mpc that can be used as a
standard ruler and to constrain cosmological models.
Studies of the BAO feature in the transverse direction
provide a measurement of DHðzÞ=rd ¼ c=HðzÞrd, with
the comoving angular diameter distance being [76,77]

DM ¼
Z

z

0

cdz0

Hðz0Þ : ð32Þ

The angular diameter distances DA ¼ DM=ð1þ zÞ and
DVðzÞ=rd are a combination of the BAO peak coordinates
above, namely,

DVðzÞ≡ ½zDHðzÞD2
MðzÞ�1=3: ð33Þ

The surveys provide the values of themeasurements at some
effective redshift. We employ the following BAO data
points, collected in Ref. [78] from Refs. [79–90], in the
redshift range 0.106 < z < 2.34. Since Ref. [78] proves the
uncorrelation of this dataset,

χ2BAO ¼
X17
i¼1

�
Di −DpredðziÞ

ΔDi

�
2

; ð34Þ

where Di is the observed distant module rates at redshift zi
(i ¼ 1;…; N) andDpred is the predicted one from themodel.

D. Cosmic microwave background

Finally, we take the cosmic microwave background
(CMB) distant prior measurements [91]. The distance
priors provide effective information of the CMB power
spectrum in two aspects: the acoustic scale lA characterizes
the CMB temperature power spectrum in the transverse
direction, leading to the variation of the peak spacing, and
the “shift parameter” R influences the CMB temperature
spectrum along the line-of-sight direction, affecting the
heights of the peaks, which are defined as

lA ¼ ð1þ zdÞ
πDAðzdÞ

rd
;

RðzdÞ ¼
ffiffiffiffiffiffiffi
Ωm

p
H0

c
ð1þ zdÞDAðzdÞ; ð35Þ

with its corresponding covariance matrix (see Table I in
Ref. [91]). The BAO scale is set by the sound horizon at the
drag epoch zd ≈ 1060when photons and baryons decouple,
given by

rd ¼
Z

∞

zd

csðzÞ
HðzÞ dz; ð36Þ
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where cs ≈ cð3þ 9ρb=ð4ργÞÞ−0.5 is the speed of sound in
the baryon-photon fluid with the baryon and photon
densities being ρbðzÞ and ργðzÞ, respectively [92].
However, in our analysis, we used rd as an independent
parameter. The χ2CMB is defined in Ref. [91].
We include the latest measurement of the Hubble

parameter

H0 ¼ ð73.2� 1.3Þ km=s=Mpc ð37Þ

reported by Ref. [93]. The measurement presents an
expanded sample of 75 Milky Way Cepheids with
Hubble Space Telescope photometry and Gaia EDR3
parallaxes which uses the extragalactic distance ladder in
order to recalibrate and refine the determination of the
Hubble constant. The combination is related via the relation

χ2Hub ¼
�
H0 − 73.2

1.3

�
2

: ð38Þ

The χ2Hub estimates the deviation from the latest measure-
ment of the Hubble constant.

E. Joint analysis and model selection

To perform a joint statistical analysis of four cosmo-
logical probes, we need to use the total likelihood function;
consequently, the χ2tot expression is given by

χ2tot ¼ χ2CMB þ χ2H þ χ2SC þ χ2BAO þ χ2Hub: ð39Þ

Regarding the problem of likelihood maximization, we use
an affine-invariant Markov chain Monte Carlo sampler
[94], as it is implemented within the open-source package
POLYCHORD [95] with the GETDIST package [96] to present
the results. The prior we choose is with a uniform
distribution, where Ωm ∈ ½0.; 1.�, Ωde ∈ ½0.; 1 −Ωm�,
Ωr ∈ ½0.; 1 −Ωm −Ωde�, H0 ∈ ½50; 100� km= sec =Mpc,
and rd ∈ ½130; 160� Mpc. For the scalar field final con-
dition, we imposed ϕ ∈ ½20; 25�.
Furthermore, we use the logarithmic Bayes factor

defined as

logðB01Þ ¼ logðZ0Þ − logðZ1Þ; ð40Þ

where Zi is the logarithmic marginalized evidence reported
by POLYCHORD [97]. For the logarithmic Bayes factor, a
difference of logðB01Þ ∈ ½1=2; 1� is substantial in favor of
Z0, logðB01Þ ∈ ½1; 2� is strong, and logðB01Þ > 2 is deci-
sive. In the case of negative values, the same applies for Z1.

F. Results

Figure 2 shows the posterior distribution of the data
fit with the best-fit values at Table I. The posterior one
for the additional parameters is described in Fig. 3. The

quintessential α-attractor inflation (QαI) model is a viable
model and can describe early times as well as late times.
Actually, there is no distinguishable difference between the
ΛCDM fit and the QαI, since the potential in that regime
includes a slow-roll behavior. In conclusion, this model
includes the inflationary period and predicts the large
difference between the inflationary and the late dark
energy, while the standard models do not predict that.
But also for the measurements from the observed Universe,
there is no distinguishable difference between the standard
models and the QαI model.
To complete our analysis, we use the Bayesian evidence.

The difference between the models yields ΔBij ¼ 1.11,
which implies a slight preference for the ΛCDM model. It
seems that the difference is due to the additional parameters
that the model suggests. However, as we said, this addi-
tional parameter gives a natural explanation for the dark
energy differences. But statistically, there is a slight
preference for the ΛCDM model.

VI. α-ATTRACTORS WITH A FINE-TUNED
COSMOLOGICAL CONSTANT

In this section, we review the treatment of α-attractor
done in Ref. [59]. First of all, one has to introduce a CC
with the form Λ ¼ λM2

ple
−n, and thus, adding to the

Lagrangian the term ΛM2
pl leads to the following effective

potential:

VðφÞ ¼ λM4
ple

−n
�
e
nð1−tanhð φffiffiffi

6α
p

Mpl
ÞÞ
− 1
�
: ð41Þ

During inflation, φ < 0, and the potential becomes as (3)
because e−n ≪ 1. So, as we have shown for the potential
(3), for small values of α, inflation works also well when
this CC is introduced in the model.
In the same way, for large values of the scalar field, the

potential will become

VðφÞ ¼ 2nλe−nM4
ple

−γφ=Mpl ; ð42Þ

with γ ≡
ffiffiffiffi
2
3α

q
. It is well known [98,99] that for an

exponential potential a late-time eternal acceleration is
achieved when γ <

ffiffiffi
2

p
, that is, for α > 1=3. Effectively, as

has been shown in Ref. [54], by introducing the dimen-
sionless variables

x̃≡ _φffiffiffi
6

p
MplH

and ỹ≡
ffiffiffiffi
V

pffiffiffi
3

p
MplH

; ð43Þ

after the matter-radiation equality, the dynamical system
(23) can be written as
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(
x̃0 ¼ −3x̃þ

ffiffi
3
2

q
γỹ2 þ 3

2
x̃½x̃2 − ỹ2 þ 1�

ỹ0 ¼ −
ffiffi
3
2

q
γx̃ ỹþ 3

2
ỹ½x̃2 − ỹ2 þ 1�;

; ð44Þ

together with the constraint

x̃2 þ ỹ2 þ Ωm ¼ 1: ð45Þ

The system (44) has the following fixed point x̃ ¼ γffiffi
6

p and

ỹ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

6

q
, which depicts an attractor (tracker) solution

with weff ¼ x̃2 − ỹ2 ¼ γ2

3
− 1 and Ωφ ¼ 1. For this reason,

if one demands an accelerated period at late times, one has

FIG. 2. The posterior distribution for different measurements with the quintessential α-attractor inflation (QαI) model with 1σ and 2σ
for Ωm, Ωde, H0, and rd.

TABLE I. The best-fit values for the discussed model. The
values φ0 and _φ0 denote the current values of the scalar field and
its derivative.

Parameter QαI ΛCDM

H0ðkm= sec =MpcÞ 72.25� 0.74 72.24� 0.65
φ0=Mpl 22.46� 1.419 � � �
_φ0=ðH0MplÞ10−71 5.09� 2.858 � � �
Ωm 0.2323� 0.0286 0.2393� 0.02751
Ωde 0.7535� 0.02092 0.7489� 0.2027
n 122.1� 2.021 � � �
α 0.2760� 0.1448 � � �
rdðMpcÞ 143.4� 1.941 143.5� 1.577
Bij −80.54 −79.43
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to choose γ2 < 2, as seen in Fig. 4 for the case γ ¼ 0.277.
In addition, as has been shown in Ref. [54], this tracker
solution is given by

φtraðNÞ ¼ −
n
γ
Mpl þ NMpl þ

Mpl

γ
ln

�
4nλ

ð6 − γÞ2
�

þ 2Mpl

γ
ln
�
Mpl

H0

�
: ð46Þ

However, since in this case one has to choose α > 1=3,
the calculation of the spectral index and the ratio of tensor
to scalar perturbations changes a little bit with respect to the
case α ≪ 1, obtaining (see Ref. [59] for details)

ns ≅ 1 −
2

N þ
ffiffiffiffi
3α

p
2

; r ¼ 12α

ðN þ
ffiffiffiffi
3α

p
2
Þ2
: ð47Þ

To end with the case γ ≤
ffiffiffi
2

p
, we have numerically checked

that, in order to obtain at the present time an effective EoS

parameter compatible with the Planck data, there is a very
narrow range of values of α, as is shown in Fig. 4. In fact,
the only value which might be considered viable is
γ ≅ 0.277 ⇔ α ≅ 8.688, which lies very close to the lower
boundof the2σC.L. of the allowedvalues. So, this is not at all
sufficient to prove or disprove the viability of the CC model.
On the other hand, in the case γ >

ffiffiffi
3

p
⇒ α < 2=9, the

dynamical system (44) has another fixed point, namely,

x̃ ¼ ỹ ¼
ffiffi
3
2

q
1
γ, which corresponds to a matter-dominated

Universe because weff ¼ 0. In that case, it is argued in
Ref. [59] that, when

ffiffiffi
3

p
< γ < 2

ffiffiffi
6

p
⇒ 1=36 < α < 2=9,

the scalar field may dominate for a brief period, obtaining a
short period of acceleration. However, we have not been
able to find the numerical values of the parameters λ and n
satisfying the constraint λen=α ∼ 10−10 provided by the
power spectrum of scalar perturbations and the essential
identity H̄ð0Þ ¼ 1 at the present time. That is, when one
adds this cosmological constant, for values of α less than
2=9, from our viewpoint, it is impossible to unify the early-
and late-time acceleration of our Universe.

FIG. 3. The posterior distribution for the QαI model with 1σ and 2σ C.L., for the Hubble parameter vs the parameter n and α. The
dataset include baryon acoustic oscillations dataset, cosmic chronometers, the Hubble diagram from Type Ia supernova, and the CMB.
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VII. POWER-LAW POTENTIALS

In the Lagrangian (1), one can replace the exponential
potential by a power law with the form

VsðϕÞ ¼ λM4
pl

�
1 − e−β

ϕffiffiffiffiffiffi
6α

p
�

s
; ð48Þ

where λ, β, and α are positive dimensionless variables and s
is an odd number. We also assume that β is close to zero.
Then, in terms of the scalar field φ, the potential becomes

VsðφÞ ¼ λM4
pl

�
1 − e−β tanh

�
φffiffiffiffiffiffi

6α
p

Mpl

��
s
; ð49Þ

which, for small values of α, belongs to the class of α-
attractors (see, for instance, Ref. [47]).
To obtain the value of the parameters λ and β, we follow

the same method as in Sec. II, getting

2sλ=α ∼ 10−10; λð1 − e−βÞs ∼ 10−120: ð50Þ

Choosing, for example, α ∼ 10−2, we get

λ ∼ 10−122−s and β ∼ − lnð1 − 2 × 10−108=sÞ; ð51Þ

which, for s ¼ 1 leads to

λ ∼ 5 × 10−13 and β ∼ 2 × 10−108; ð52Þ

for s ¼ 3 to

λ ∼ 1.25 × 10−13 and β ∼ 2 × 10−36; ð53Þ

and so on.
Then, since for small values of s one has β ≅ 0, we can

safely assume that β ¼ 0, and the potential becomes
VsðφÞ ¼ λM4

plð1 − tanhð φffiffiffiffi
6α

p
Mpl

ÞÞs, which for large values

of the scalar field (which happens at the present time) has
the exponential form

VsðφÞ ≅ 2sλM4
ple

− 2sφffiffiffi
6α

p
Mpl ≅ α10−10M4

ple
−γφ=Mpl ; ð54Þ

where now γ ¼
ffiffiffiffi
2
3α

q
s. Thus, as we have already com-

mented in Sec. VI, in order to have an accelerated
expansion at late times, the value of γ must be smaller
than

ffiffiffi
2

p
; that is, one has to choose α > s2=3. In fact, to

agree with the Planck observational data, one has to
choose the parameter α to satisfy, at the present time,
weff;0 ¼ −0.712� 0.03.
Unfortunately, in these power-law models, inflation

never ends. Effectively, choosing for simplicity s ¼ 1,
the main slow-roll parameter is given by

ϵ ¼ 1

12α

1

cosh4ð φffiffiffiffi
6α

p
Mpl

Þ
1

ð1 − tanhð φffiffiffiffi
6α

p
Mpl

ÞÞ2

¼ 1

12α

�
1þ tanh

�
φffiffiffiffiffiffi

6α
p

Mpl

��
2

: ð55Þ

Thus, at the end of inflation (ϵ ¼ 1), we will have

FIG. 4. Left: evolution of the equation of state parameter weff from the kination phase to late times for γ ¼ 0.277 according to the
system (44), taking as initial conditions the ones obtained from the numerical simulation carried out in Sec. IV. We see that weff is 1
during the kination phase that takes place in quintessential inflation models after inflation. Then, reheating occurs, and weff becomes
1=3, which is maintained during all the radiation phase until the matter-radiation equality. And then, it finally effectively converges to
γ2=3 − 1, obtaining an eternal accelerating Universe. Right: equation of state parameter at the present time for different set of values of
0 < γ <

ffiffiffi
2

p
. All of them lie outside of the 2σ C.L. Planck observational data, including γ ¼ 0.277 with weff;0 ¼ −0.669, though this

value lies very close to it.

α-ATTRACTORS IN QUINTESSENTIAL INFLATION … PHYS. REV. D 103, 123535 (2021)

123535-9



tanh

�
φENDffiffiffiffiffiffi
6α

p
Mpl

�
¼ −1þ

ffiffiffiffiffiffiffiffi
12α

p
; ð56Þ

which does not have solution for α > 1=3. Therefore, we
can conclude that these power-law potentials must be
disregarded.

VIII. CONCLUDING REMARKS

We have studied different quintessential inflation poten-
tials such as exponential or power-law potentials in the
context of α-attractors. We have shown that the potential
which provides the best results compatible with the current
observational data is the exponential one without any kind
of cosmological constant. In fact, the behavior of the
dynamics provided by an exponential α-attractor potential
is very similar to the dynamics in the so-called Lorentzian
quintessential inflation, where at very late times the
effective EoS parameter converges to −1.
We have also verified that this model fits statistically

very well with the observational datasets coming from
Type Ia supernova, cosmic microwave background, and the
cosmic chronometers. The QαI model is a viable model
from the data fit. There is a slight preference for the ΛCDM

model from the Bayesian evidence. However, this model
still unifies naturally inflationary and late-time dark energy
behavior and explains the difference between the energy
density values from these epochs.
On the contrary, the introduction of a cosmological

constant leads for values of the parameter α greater than
1=3, at the present time, to an effective EoS parameter that
does not enter at the 2σ C.L., in the region provided by the
Planck team, and even worse, for α < 2=9, the model is
unable to depict both the early- and late-time acceleration
of the Universe. In addition, for power-law potentials, in the
context of α-attractors, the inflationary regime never
finishes, which invalidates its viability.
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