
 

Bayesian reconstruction of the inflaton’s speed of sound using CMB data

Guadalupe Cañas-Herrera ,1,2,* Jesús Torrado ,3,4,† and Ana Achúcarro 1,5,‡

1Lorentz Institute for Theoretical Physics, Leiden University,
PO Box 9506, Leiden 2300 RA, The Netherlands

2Leiden Observatory, Leiden University, PO Box 9506, Leiden 2300 RA, Netherlands
3Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University,

D-52056 Aachen, Germany
4Department of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom

5Department of Theoretical Physics, University of the Basque Country UPV-EHU, 48080 Bilbao, Spain

(Received 17 February 2021; accepted 20 May 2021; published 11 June 2021)

We update the search for features, due to transient reductions in inflaton’s speed of sound, in the cosmic
microwave background (CMB) angular power spectrum using Planck 2018 temperature, polarization and
lensing data. We develop a new methodology to test more flexible templates to reconstruct the reduction of
the speed of sound based on Gaussian processes. We formally derive a dynamical prior for the shape of the
reduction using a maximum-entropy approach to ensure the physical conditions of the model are satisfied.
The posterior allows for one or more consecutive reductions, fitting apparent features in the CMB power
spectra in multipoles from a few tens to l ≃ 2000. As expected, these fits are not statistically favored with
respect to the standard cosmological ΛCDMmodel. The methodology derived here allows for the inclusion
of additional data sets (in particular, Large Scale Structure data), which in principle will increase the
statistical significance of the reconstruction of the inflaton’s speed of sound.
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I. INTRODUCTION

The standard cosmological model (ΛCDM) is currently
favored by the available data. It assumes that primordial
fluctuations are Gaussian and defined by an almost scale-
invariant primordial power spectrum. These assumptions
do not point to any particular origin, although the simplest
inflationary model, canonical slow-roll single-field infla-
tion, naturally predicts them. By contrast, other models of
inflation predict deviations from the near scale-invariant
spectrum in the form of features. If ever detected, they
would open a new window of research in the field of
primordial dynamics. See i.e., [1–4].
The study of features of primordial origin can be done

within an effective field theory (EFT) approach. Within this
scenario, features can be produced by the time dependence
of primordial functions such as the slow-roll parameters or
the speed of sound of the effective inflaton (the adiabatic
mode). In particular, small, soft and transient reductions in
the inflaton’s speed of sound produce such correlated
localized oscillatory features in the n-point correlation
functions. In the three-point function (or bispectrum), these
localized oscillations present a distinct difference in phase
between the squeezed and equilateral configurations [5].

The Planck Collaboration [6] searched for deviations
of the canonical scenario in its last release of data.
Nevertheless, they did not find strong evidence in the
context of features in the primordial power spectrum [7].
They included, for the first time, a joint search of correlated
simple features in the primordial power spectrum and in the
bispectrum, also without significant results. However, the
Planck Collaboration has not studied in detail different
feature templates such as the above mentioned ones due to
small and transient reductions of the inflaton’s speed of
sound. This motivates us to continue our previous study
[8–11], in preparation for a future release of the Planck
bispectrum likelihood or for future investigation in light of
incoming large scale structure surveys.
Most of the time, the study of features in both observ-

ables (primordial power spectrum and higher correlation
functions) are model dependent, both regarding their
physical origin and the ansatz used. In our latest paper
in this series [11], we already pointed out the need for
testing more flexible feature templates to mitigate the
dependence on the ansatz. Within this approach, we can
test whether multiple and consecutive reductions of the
inflaton’s speed of sound can take place consecutively, a
possibility already pointed out in the previous work [11].
Furthermore, reconstructing the inflaton’s speed of sound
allows us to test more complex feature templates with
variable amplitude and oscillation frequency, which implies
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more possibilities to fit well-motivated deviations from
ΛCDM beyond those that only used a predefined ansatz for
the features.
Reconstructions at the level of the primordial power

spectrum have already been attempted [12–19]. However,
there is not enough constraining power in Planck’s power
spectrum alone to decide on a particular model for the
features. Model-informed reconstructions have the advan-
tage of increasing the constraining power by adding the
information contained in higher-order correlation func-
tions; but this is only possible if the constraints of the
theoretical model are properly imposed on the recon-
structed spectrum, so that it will always lead to a consistent
prediction. The task of imposing these physical constraints
along the reconstruction is nontrivial [20]. It is advisable,
instead, to reconstruct the primordial dynamics directly.
In our case, we reconstruct the inflaton’s speed of
sound; the timing, intensity and rate of its reduction.
Since we are reconstructing the underlying function leading
to the correlated features, it is not only guaranteed that we
will obtain a consistent bispectrum feature prediction
using power spectrum data alone, but we will also be able
to use both data sets simultaneously to get a more stringent
reconstruction once a bispectrum likelihood has been
released.
In this paper, we develop a new analysis pipeline that

uses Gaussian Processes (GPs), a hyperparametric regres-
sion technique, to model the inflaton’s speed of sound
profile. The analytic nature of GPs makes it easy to impose
the constraints of the theoretical model, which involve
derivatives of the reconstructed function. For a given
number of nodes in the GP, we construct a prior on the
hyperparameters of the GP model (the position of the nodes
and the correlation length), that maximizes entropy with
respect to the bare physical constraints. In this way, we
verify that nodes are not placed wherever they would lead
to an unphysical reconstruction, and that the density with
which the hyperparameters are explored reproduces the
measure of the physical prior [21–23].
We test our new pipeline against Planck 2018 temper-

ature, polarization and lensing CMB angular power spec-
trum data, obtaining corresponding posteriors of the
parameters of interest and several maxima a posteriori.
Our results do not only reproduce our previous findings
[11], but also allow for combinations of multiple consecu-
tive reductions as well as more complex shapes.
This article is organized as follows; In Sec. II we review

the theoretical framework for inflationary correlated fea-
tures in the primordial power spectrum due to transient
reductions in the speed of sound. In Sec. III we explain the
methodology used to generate features in the primordial
power spectrum: the parametrization for the reduction in
the speed of sound (Sec. III A), the chosen priors for the
different parameters (Sec. III B) and the computational
procedure (Sec III C). In Sec. IV, we present the results

corresponding to the fitting of features using the CMB
angular power spectrum. Finally, we discuss the results,
draw our conclusion and show prospective work for the
future in Sec. V.

II. THEORETICAL MODEL

We follow the EFT of inflationary perturbations [24] to
characterize the fluctuations of comoving curvature per-
turbations around an inflating cosmological background. It
starts with an effective action for the Goldstone boson of
cosmic time diffeomorphisms πðt;xÞ. This Goldstone
boson is related to the comoving curvature perturbation
Rðt;xÞ through the relation R ≈ −HðtÞπðt;xÞ, with the
Hubble parameter HðtÞ≡ _a=a, with a being the scale
factor (where the dot denotes derivatives with respect to
cosmic time t). The effective single field action for π up to
second order is given by

S2 ¼
Z

d4xa3M2
Pϵ1H

2

�
−
_π2

c2s
þ ð∂iπÞ2

a2

�
; ð1Þ

where MP ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass in

natural units c ¼ ℏ ¼ 1, ϵ1 ≡ − _H=H2 is the first slow-roll
parameter and cs ≡ csðtÞ is the time-dependent speed
of sound.
The effective single field action up to third order,

neglecting higher order slow-roll corrections (∼Oðϵ21Þ)
and assuming _π3 to be small and approximately constant
reads [25]

S3 ¼
Z �

d4xa3M2
Pϵ1H

2 − 2Hsc−2s π _π2

− ð1 − c−2s Þ _π
�
_π2

c2s
−
ð∂iπÞ2
a2

��
; ð2Þ

where s≡ sðtÞ parameterizes the change in the speed of
sound csðtÞ defined as

s≡ _csðtÞ
ðcsðtÞHÞ : ð3Þ

The physical details of the theory are encoded in the speed
of sound cs and in its corresponding rate of change given by
s. The speed of sound cs accounts for the effects of
integrating out the heavy fields within the effective action.
To get an insight of what this variable csðtÞmeans, we look
at the particular case of an effective theory for the
comoving curvature perturbation R, when a strong turn
in the inflationary trajectory in multifield space is supported
by a heavy fieldF with effective massMeff . In this case, the
curvature perturbationR is kinetically coupled to the heavy
field F . This effective action is similar to the EFT of
inflation Eq. (1), with the speed of sound cs of the adiabatic
perturbation R given by [26,27]
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c−2s ¼ 1þ 4Ω2

k2=a2 þMeff
; ð4Þ

where Ω is the angular velocity when there is a turn in the
inflationary trajectory, inducing a momentary reduction on
the speed of sound cs [25]. The effect of this variable speed
of sound cs can be seen in the primordial power spectrum
PR, in the bispectrum BR and in higher-order correlation
functions. In particular, transient variations of cs produce
localized oscillatory and correlated features in both PR and
BR [28]. Generally, csðtÞ encodes the effect of derivative
interactions.
The almost scale-invariant featureless power spectrum

PR0, with cs ¼ 1 → u ¼ 0, is defined as,

PR0 ¼ As

�
k
k�

�
ns−1

; ð5Þ

where As is the scalar amplitude, k� is the pivot scale and ns
the so-called spectral index, which depends on the slow-roll
parameters as

ns ≡ 1 − 2ϵ1 − ϵ2; ð6Þ

where ϵ2 ≡ _ϵ1=ðϵ1HÞ is the second slow-roll parameter.
Under the assumption of small, mild and transient reduc-
tions of the speed of sound cs, the modifications in the
primordial power spectrum of curvature perturbations
ΔPR=PR0 were already calculated [5]. The quadratic
action of EFT of inflation, Eq. (1), is divided into a free
part (resembling single field inflation, with cs ¼ 1) and a
small perturbation,

S2 ¼
Z

d4xa3M2
PϵH

2

�
_π2 −

ð∂iπÞ2
a2

�

−
Z

d4xa3M2
PϵH

2ðð1 − c−2s Þ _π2Þ: ð7Þ

Transitioning from cosmic time t to the conformal time τ,
so that dτ ¼ dt=aðtÞ, using the in-in formalism [29] and the
following definition of the variable u,

uðτÞ≡ ð1 − c−2s ðτÞÞ; ð8Þ

the change in the primordial power spectrum ΔPR is given
by the Fourier transform of the reduction in the speed of
sound cs,

ΔPR

PR0

¼ k
Z

0

−∞
dτuðτÞ sinð2kτÞ: ð9Þ

III. METHODOLOGY

The reduction of the speed of sound and its rate of
change are encoded in uðτÞ and sðτÞ respectively. We aim

to use current cosmological data (the temperature,
polarization and lensing power spectrum of Planck
2018) to estimate them given the theoretical framework
presented in Sec. II. To do that, we use Bayesian inference.
The estimation of the joint probability distribution of a set
of parameters θ of a model M given some data d, the so-
called posterior Pðθjd;MÞ, is computed using Bayes’s
theorem [30]

Pðθjd;MÞ ∝ Lðdjθ;MÞΠðθjMÞ; ð10Þ

where Lðdjθ;MÞ is the likelihood (probability of
observing the data d given the model M is realized with
parameters θ) and ΠðθjMÞ the prior (probability distribu-
tion of the parameters θ given some a priori information).
In this section, we present the methodology that we have
employed to study the posterior distribution of uðτÞ, and
hence sðτÞ.

A. Reconstruction model for the reduction
in the speed of sound

We use GPs [31] as an interpolator for reconstructing the
speed of sound of the inflaton. The mean curve of a GP,
which we use to represent the speed of sound evolution, is
smooth by construction (given our choice of kernel) and
naturally returns to a baseline value away from the nodes of
the interpolator, which is useful for representing the
transient character of the speed of sound reductions.
The length scale over which the return to the baseline
happens is called correlation length, and it is the same for
all individual nodes in a particular realization. The par-
ticular properties of the correlation between nodes is given
by the kernel of the GP, which we choose to be a squared
exponential kernel. This means that when the interpolator is
defined by a single node placed at ðx1; y1Þ, the interpolating
curve looks like a (non-normalized) Gaussian peaking at
the node’s position, with standard deviation equal to the
correlation length l, i.e., yðxÞ ¼ y1 exp½−1=2ðx − x1Þ2=l2�.
We aim to reconstruct uðτÞ≡ ð1 − c−2s ðτÞÞ. Since uðτÞ is

a negative quantity, it makes sense to reconstruct the
logarithm of −u ¼ juj, to guarantee that the GP interpo-
lator, once exponentiated, conserves sign. On the other
hand, there is a choice to be made about the scale of the
conformal time axis; whether to reconstruct log juðτÞj or
log juðlog jτjÞj. We show results for the latter case in this
section for illustration purposes.
As explained above, in the case where a single node is

placed at ðτ1; logð−u1ÞÞ the reconstruction of logð−uðτÞÞ
corresponds to a single transient reduction given by a log-
normal function of conformal time, whose maximum occurs
exactly at the node. The parameters that we would try to
infer from the data would be the position of the node
ðτ1; logð−u1ÞÞ and the correlation length l representing the
standarddeviationof the log-normal. The rate of changeof the
reduction, of interest in our theoretical framework, would
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peak approximately at jsjmax≈0.5lju1j=ðexpð0.5Þþju1jÞ. See
Fig. 1 for an example.
To reconstruct log juðlog jτjÞj as a generalization of the

previous case using GPs, we choose a number i of training
nodes1 ðlog jτij; log juijÞ where log juij ≔ log juðlog jτijÞj
(see Fig. 2), to which we fit a GP with kernel function

κðlog jτij; log jτiþ1j; lÞ

¼ c2 exp

�
−
1

2

�
log jτij − log jτiþ1j

l

�
2
�
; ð11Þ

where c is the output scale, and l is the correlation length.
The output scale c plays no role in this approach, and can
be fitted using maximum likelihood and then ignored.
The correlation length will be sampled together with the
position of the nodes. To compute the GPs, we use the
Python package sklearn [32]. The mean of the GP is
used as an interpolator for log juðlog jτjÞj, and reads, in
terms of the training nodes, as the matrix product,

log juðlog jτjÞj ¼ κðlog jτj; log jτij; lÞ
× ½κðlog jτij; log jτjj; lÞ�−1 log jujj; ð12Þ

where the first kernel function κ is a vector of evaluations at
the requested log jτj combined with each of the training

log jτij, the second one is the matrix of evaluations of κ for
each pair of training nodes ði; jÞ, and the final term is the
vector of training log jujj. Once uðτÞ is generated, we
calculate sðτÞ from Eq. (3) numerically, which we can
rewrite more conveniently as

sðτÞ ¼ 1

2

u
1 − u

d log u
d log jτj

¼ 1

2

u
u − 1

1

l2
½ðlog jτj − log jτijÞκðlog jτj; log jτij; lÞ�

× ½κðlog jτij; log jτjj; lÞ�−1 log jujj; ð13Þ

where we have taken the derivative after substituting u by
the mean of the GP defined in Eq. (12). Notice that this
reproduces the matrix product in Eq. (12), just changing the
first vector. Finally, we compute the power spectrum
feature of Eq. (9) from a fine sampling of the GP using
the FFTLog algorithm [33,34]. The density and limits of
the log jτj sampling for the FFTLog are chosen adaptively
to minimize computational costs and guarantee the accurate
computation of the transform.
The most consequential difference of the choice between

linear and logarithmic τ in the GP will show up whenever
we have nodes separated by a distance much larger than the
correlation length, appearing as isolated (log) Gaussians; in
the linear case, their width in τ will be similar, whereas for
the logarithmic one, the width will scale logarithmically
(see Fig. 2). Looking at the first equality in Eq. (13), and
seeing how s depends on the logarithmic derivative on τ, it
is easy to see that the linear parametrization is going to
struggle to place two or more nodes away from each other,
since sðτÞ will peak at highly different values in each of
them, making it hard not to violate the perturbativity
bounds on s (see Sec. III B).
Thus for the primary results in this paper, we model

log juðlog jτjÞj. To mitigate excessive sensitivity to the prior
results, we also perform a reconstruction in uðτÞ. Notice
that by modelling u and not log juj we need to deal with
cases in which uðτÞ goes positive, by assigning it null prior
density. However, those are generally disfavored by the
data (require large l compared to the distance between
nodes), and the large difference between the log juðlog jτjÞj
and the uðτÞ reconstruction is useful for assessing prior
sensitivity.

B. Parameters and priors

The action described in Eqs. (1) and (2) is perturbative in
terms of ð1 − 1=c2sÞ. It implies that the reduction in the
speed of sound, cs, cannot be too big (juj ≪ 1) and the rate
of change in the reduction cannot be too fast (jsj ≪ 1).
Also, the contributions of the slow-roll corrections ϵ1, ϵ2
have to be smaller than those of the variable speed of sound
cs. We need to impose these conditions for all values of τ,
but it is enough to restrict to the point where uðτÞ and sðτÞ

FIG. 1. Example of reductions of the inflaton’s speed of sound
uðτÞ in logarithmic space GP with a single node at ðτ1; u1Þ. The
reductions peak at τ1 ≈ 103 with a maximum reduction value
−u1 ¼ jujmax ≈ 0.025. The width of each of the reductions (given
by the correlation length l, which, for a single GP node, plays the
role of the standard deviation) is different, being the green-dashed
parametrization (l ¼ 0.5) milder than the solid blue one (l ¼ 0.1).
The rate of change of uðτÞ, see Eq. (3), can be approximated as
jsjmax ¼ jujmax=½lðe0.5 þ jujmaxÞ� using this parametrization. The
vertical lines indicate the values of τ at which jsjmax is reached in
each case.

1Notice that our use of GPs as interpolators does not involve
machine learning, but we are borrowing the term training from its
literature.
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take their maximum value ðjujmax; jsjmaxÞ. Note that impos-
ing the perturbative limit on jsjmax satisfies the consistency
conditions in [35–37]. In short,

maxðϵ1; ϵ2Þ ≪ maxðjujmax; jsjmaxÞ ≪ 1: ð14Þ

In [11] we argued that this condition could be naturally
imposed by a prior Beta(5,5) on maxðlog10jujmax;
log10jsjmaxÞ between the extremes in Eq. (14) (see left part
of Fig. 3), the logarithm coming from the difference in
order of magnitude between both bounds.
Contrary to [11], in this work jujmax and jsjmax are not

sampled directly. Instead, the parameter space for the feature
consists of the position of the nodes fðτi;ui¼uðτiÞÞg and the
correlation length l. Thus, the total number of feature
parameters is 2N þ 1 for a number N of nodes. Imposing
the Beta prior described above is not as simple as sampling
the GP parameters from some prior, computing jujmax and
jsjmax along the reconstruction, and multiplying by the Beta
density. That procedure will likely introduce undesired
information in the shape of under- or overdensities in the
probability induced on ðjujmax; jsjmaxÞ, which would finally
diverge significantly from a Beta. The correct way to
proceed so that the induced probability on the physical
parameters is the desired one is by constructing a distribution
on the parameters of the nodes that maximizes entropy with
respect to the desired one, which can be computed, accord-
ing to [21], as

πpert;maxentðτi;ui; lÞ¼
π0ðτi;ui; lÞπpertðjujmax; jsjmaxÞ

Pðjujmax; jsjmaxjπ0Þ
; ð15Þ

where π0ðτi; ui; lÞ is some initial prior on the node param-
eters and πpertðjujmax; jsjmaxÞ the Beta prior described above.

The term in the denominator is the probability density
induced by πo on ðjujmax; jsjmaxÞ, which we compute from a
Monte Carlo sample from π0 using PolyChord [38,39].
The Monte Carlo sample is fed to GetDist [40] to
construct a density estimator. Both the Beta prior and the
maxent prior can be seen in Fig. 3.
For π0, we choose log-uniform prior distributions on the

correlation length l and on the training node location
ðτi; uiÞ.2 The bounds for the time positions τi are chosen
so that the feature falls in the CMB window function
(features running from scales k ≈ 10−3 to k ≈ 3 × 10−1,
though a larger region has been scanned as a consistency
check (see Sec. IVA). The bounds for the amplitude of the
reductions at the nodes, ui, are chosen to generously fulfill
the EFT condition in Eq. (14). Summarizing,

π0ðlog10ðjτ1jÞ;…;log10ðjτnjÞ;log10ðju1jÞ;…;

log10ðjunjÞ;log10lÞ¼Uð1.8< log10ðjτnjÞ<3.3Þ

×
Y2
i¼n

Uðlog10ðjτijÞ< log10ðjτi−1jÞ<3.3Þ

×
Yn
i¼1

Uð−4< log10ðjuijÞ<0Þ×πðlÞ

ð16Þ

where U means a uniform distribution, and the prior on
the time positions of the nodes includes sorting so that τi <
τi−1 (i runs from 1…n). The prior on l is chosen so that it
produces reasonable values of jsjmax. For each of the two

FIG. 2. Left panel: Reconstruction of uðτÞ using a GP on log juðlog jτjÞj (continuous line) and on uðτÞ (dashed line), both using as
training nodes ðτ; uÞ ∈ fð−100;−0.016Þ; ð−375;−0.03Þg, and correlation length for each model such that the width of the mode
corresponding to the first node is similar (notice the difference in width of the mode of the second one). As the reconstruction is done in
conformal time τ, the x axis is always negative and τ ¼ 0 indicates the end of inflation. Right panel: Corresponding feature in the
primordial power spectrum. Notice how, despite the similar position of the training nodes, their features look quite different: similar in
the leftmost oscillations (corresponding to the node at τ ¼ −100), but very different after that, due to the broader width of the first mode.

2Note that we are sampling the training nodes and the
correlation length in a logarithmic scale as we expect them to
vary several orders of magnitude.
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reconstructions studied here, log juðlog jτjÞj and uðτÞ, the
boundaries can be chosen as3

πlog juðlog jτjÞjðlÞ ¼ Uð−2 < log10l < 2Þ and

πuðτÞðlÞ ¼ Uð−2 < log10l < 3.3Þ: ð17Þ

As an improvement on [11], in this work we do not
fix the value of the slow-roll parameters ϵ1 and ϵ2 as

bounds of the perturbativity condition Eq. (14). Instead we
let the bounds of the Beta distribution run dynamically,
marginalizing over the slow-roll parameters. We use as
priors uniform distributions Uð0.0001 < ϵ1 < 0.05Þ and
Uð−0.06 < ϵ2 < 0.06Þ, which encompass the ΛCDM pos-
terior found for them in Planck 2018 [12].
A diagram showing the different assumptions that enter

the final prior is shown in Fig. 4.

C. Data sets and sampler

To constrain the reduction of the speed of sound, we use
the Planck 2018 polarized CMB and lensing data. In
particular we use the product of the low multipole like-
lihoods lowT and lowE, the unbinned high-l likelihood
plik_TTTEEE and the lensing likelihood. We use the
unbinned likelihoods because of the fast frequency of

FIG. 3. A description of the Bayesian priors adopted in this study. Left panel: Desired Beta density distribution for the parameters
log10ðjujmaxÞ and log10ðjsjmaxÞ, with ϵ2 ¼ 0.008 and ϵ2 ¼ 0.04, respectively. Right panel: probability density distribution induced by π0
on log10ðjsjmaxÞ and log10ðjujmaxÞ [defined as P in the denominator of Eq. (15)], for GPs reconstruction in log juðlog jτjÞj using two
training nodes. The initial prior π0ðτi; ui; lÞ induces overdensities at low log10ðjsjmaxÞ due to this quantity being doubly correlated to
early-time position of the nodes and large correlation lengths; Eq. (15) corrects for this effect.

3Notice that, while smaller values of l will result in sharper
reductions with too high, forbidden jsjmax values, larger values of
l would result in small jsjmax values which are actually allowed as
long as jujmax fulfills Eq. (14). In any case, we are imposing these
upper l boundaries for the main runs, since reductions with very
small jsjmax tend not to be easily distinguishable from changes in
the background cosmological model (see Sec. IVA).

CAÑAS-HERRERA, TORRADO, and ACHÚCARRO PHYS. REV. D 103, 123531 (2021)

123531-6



oscillations in the features, as was already pointed out
in [11].
We compute the changes to the CMB power spectra Cl

using the Boltzmann code CAMB [41], modified accord-
ingly to account for the increased sampling in k needed by
the oscillatory features ΔPR=PR0 in the primordial power
spectrum. We sample over the parameter space described in
Sec. III B, i.e., the positions of the training nodes
fðτi; ui ¼ uðτiÞÞg, the correlation length l of the GP, and
the kinetic slow-roll parameters ϵ1 and ϵ2. We also allow for
the possibility of tensor modes, as changes in the Sachs-
Wolfe plateau caused by them could possibly be correlated
with features at very large scales. We track as derived
parameters the scalar tilt ns, the tensor-to-scalar ratio r and
the EFT parameters ðjujmax; jsjmaxÞ. We fix the rest of
cosmological parameters of ΛCDM to the best fit of Planck
2018 with the present likelihoods, as well as the nuisance
parameters of the likelihoods. Fixing the ΛCDM param-
eters is justified by previous sensitivity analyses in [11],
that we repeat here for the background ΛCDM parameters
by exploring a broader range of τ and l than the one
indicated above (see Sec. IVA, where we have also
assessed the impact of fixing the nuisance parameters of
the Planck likelihoods).
We obtain the posterior distribution of the parameters

using the sampler PolyChord [38,39]. We use this nested
sampler since, from previous searches, we expect the
posterior distributions of umax and τi to be multi-modal.
The handling of the priors, likelihoods, Boltzmann code
and sampler is managed by the Bayesian framework
Cobaya [42]. The analysis of the posterior distributions
is carried out using GetDist [40].
We sample the posterior of two different parameterizations

of the GP sound speed reconstruction: log jujðlog jτjÞ and

uðτÞ, in the following called simply logarithmic and linear
parameterizations, respectively. We know the logarithmic
parametrization is more stable numerically, as it consistently
makes the reconstruction of uðτÞ negative. However, we still
use the runs in the linear parametrization for the purposes of
assessing prior sensitivity. For the first sampling processes
(up to three GPs nodes), we run Cobaya in parallel
launching eight MPI processes, each allowed to thread
across three CPU cores. In the case of four nodes, we run
Cobaya with 32 MPI processes, each allowed to thread
across only one single CPU core. The nested sampler
PolyChord has been run with 1000 live points (which
is far above the requirements for the current number of
dimensions in the parameter space) and a stopping criterion
of 0.01. The computation time varies depending on the
number of training nodes in the GPs; from a few days with
only one node, up to several weeks with four nodes.
All the maxima a posteriori (MAP) presented in the next

section have been obtained running Py-BOBYQA [43,44]
(a Python implementation of the BOBYQA algorithm [45],
available via Cobaya), initialized on the relevant local
maxima of the PolyChord samples.

IV. RESULTS

A. Consistency checks

Before presenting our results, we shortly discuss whether
the assumptions made in previous sections were justified.
In particular, we have tested whether we find clear posterior
modes outside the ðτi; lÞ prior region described Sec. III B
(the CMB window prior), and whether in posterior modes
either in our initial prior or in the broader region, the
assumption of no-correlation with background cosmologi-
cal parameters is fulfilled.
To do that, we produced a 1-node posterior sample in the

logarithmic parameterization in the enlarged prior region
0< log10ðjτijÞ< 4.3 and 2 < log10 l < 10, and let the back-
groundΛCDM parameters vary. No significant modes were
found outside the original, reduced prior region. We found
mild modes in the region 1.8 < log10ðjτijÞ < 3.3 and
2< log10 l<3.3, which presented some degeneracy between
Ωm, ns and the reconstruction parameters (ρ ≈ 0.17), due to
the fact that these features can be confused with the shape of
the first and second acoustic peaks (already observed
in [11]). This justifies restricting ourselves to the prior
described in III B, since any mode found outside of it would
not be distinguishable from background cosmology.
The check for degeneracies between the cs reconstruction

parameters and the slow-roll parameters is of particular
importance, since the latter determine the perturbative prior
limits on the former (see Eq. (14) and Fig. 3).We have found
no significant degeneracies, neither in the tests described
above nor in the final runs. We have reproduced the Planck
ΛCDM posterior on the slow-roll parameters in all cases
(see Fig. 5).

FIG. 4. Diagram showing the structure of the prior. The
conformal time τi of the nodes must fulfill that the feature
happens within the observable CMB window. The physically-
motivated perturbativity condition of Eq. (14) is imposed using
maximum entropy (see text) on the position of the nodes and the
correlation length. Since the value of the slow-roll parameters
influences the prior on the position of the nodes via the lower
bound of the perturbativity condition, the full prior (dashed grey
box) is nonseparable.
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Most of the results below have been run both in the linear
and logarithmic parameterizations for the Gaussian Process
(GP) reconstruction of the speed of sound profile uðτÞ. The
results agree with each other, in particular, for the maxima
a posteriori found at late conformal time (i.e., towards the
end of inflation, with −τi of a few hundreds, where both
parameterizations look similar). However, the logarithmic
parameterization differs from the linear one when training
nodes are thrown at early values of conformal time (i.e., −τi
over 800), see Fig. 2). This is due to modes of constant
width in logarithmic scale getting broader the further we go
along the axis of conformal time. In the 1-node case, the
linear parameterization reproduces the results in [11]
(which uses a Gaussian ansatz in uðτÞ), whereas the
logarithmic parameterization produces different one-node
posterior modes (see Sec. A 1 in Appendix).
It is worth remarking that the use of the logarithmic

parametrization does not compromise the flexibility of our
reconstruction of uðτÞ. Even though the logarithmic
parameterization reconstructs naturally profiles of uðτÞ
with broad reductions at earlier conformal times and
narrower reductions at later times (which is preferred so

that jsjmax is not violated), narrow reductions at early
conformal times can always be achieved by adding further
nodes that would force the profile to return to zero. If the
data and EFT conditions did allow for a narrow reduction at
earlier conformal times, we would have seen it during the
analysis of the posterior distributions when more than one
training node was used.
Moreover, we have assessed the effect of fixing the

nuisance parameters of the Planck likelihoods by running a
minimizer around both the baseline, featureless ΛCDM
model and the MAP features presented below, now letting
the nuisance parameters vary. We find that this choice has
almost no impact in our analysis, changing the Δχ2 values
by less an unit.
Finally, we have assessed the impact of using

separately each of the high-l unbinned TT and EE
Planck 2018 data sets, in order to check which subset
dominates the posterior around each of the fits. To do that,
we have combined each of these subsets with low-l
temperature and polarisation, and lensing data, fixing
LCDM and nuisance parameters, and assuming a single
dip. Using high-lTT data alone, we recover the main
single-dip MAP described in the next section and Appendix
(i.e., τ1 ≈ −100;−200;−400;−1000). When using high-l
EE data alone, we clearly recover the dip at τ1 ≈ −100,
whereas just barely the peaks at τ1 ≈ −200 and τ1 ≈ −400,
and none of the earlier-time dips found in combination with
TT data. This shows that our posterior is temperature-
dominated in most of the parameter range. Concordance at
late times is encouraging, but it needs to be explored further
with future less noisy polarized data from space- and
ground-based surveys.

B. Reconstruction of the inflaton’s
speed of sound profile uðτÞ

In this section, we present the results of the GP
reconstruction in the logarithmic parametrization using
the Planck data as described above, and imposing the
maximum-entropy prior described in III B for the derived
quantities jujmax and jsjmax.
When presenting our results, we use an effective Δχ2

where we have subtracted the χ2 of the MAP of the
featureless ΛCDM (obtained by using a minimizer) for
the same likelihood combination (see Sec. III C). Note that
this effective Δχ2 is not meant for model selection purposes
and it is used for illustration only. As an example, a triangle
plot of the posterior distribution for the two-nodes case can
be seen in Fig. 6.
We have reconstructed the inflaton’s speed of sound

profile uðτÞ using up to four training nodes. We have
stopped there after checking that the Akaike Information
Criterion [46] has a minimum for three training nodes
and stabilizes after that. The profile uðτÞ shows different
patterns depending on how many training nodes are
used in the GP reconstruction. We have decided to classify

FIG. 5. Posterior distributions of the primordial parameters: the
kinetic slow-roll parameters ϵ1 and ϵ2, and the derived spectral
index ns and tensor-to-scalar ratio r, for a two-node
reconstruction in the logarithmic parameterization (red line).
The grey contours correspond to the featureless ΛCDM scenario.
The correspondence between both posteriors is due to the absence
of degeneracies between the cs reconstruction parameters and the
slow-roll parameters. Similar results are found for one, three and
four nodes.
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all possible profiles uðτÞ based on whether they
show differentiated and nonoverlapping reductions (that
we denominate dips) or they present some kind of
substructure:
a. One single dip: usually present at either late values of

conformal time (−100, −200, −400), or at earlier
times (−800, ∼−1000). Early-time dips produce
features in the CMB power spectra localized in l’s
up to the first acoustic peak, whereas features from
late-time dips affect the power spectra along the full l
range. Similar profiles were already found in previous
studies (see Sec. IVA). Details on this posterior modes
can be found in Appendix A 1.

b. Combination of nonoverlapping reductions (two,
three, and four dips): appearing when more than
one training node is used, they consist of consecutive,

isolated reductions in the speed of sound.4 Details can
be found in Appendices A 2–A 4. These combinations
can be classified as (for details see Appendix)

—All dips at late conformal times: when at least two
training nodes are considered, there is a preference for
two of the possible dips remaining at late-time values
of τi, combining either −100 and −200, or −400 and
−200. Their effect in the CMB power spectrum
overlap each other along a large range of l’s.

—Combination of early- and late-time dips: these appear
typically as a combination of features at both low l’s

FIG. 6. Posterior distribution for the reconstruction of the speed of sound’s profile uðτÞ using two training nodes and the logarithmic
parametrization shown in Fig. 2. We use Δχ2 ¼ χ2model − χ2baseline as the variable for the scatter plot’s color scale, the reference χ

2
baseline

corresponding to the MAP of the baseline ΛCDMmodel to the same datasets. We show the parameters of the training nodes ðτi; uiÞ and
the correlation length l (described in Sec. III A; priors in Sec. III B). We also show the posteriors of the EFT parameters ðjujmax; jsjmaxÞ
(described in Sec. II, and not sampled directly, but derived from the nodes parameters). It can be seen how longer correlation lengths
(broader reductions) lead to lower values of jsjmax, and vice-versa. The posterior distributions for different numbers of nodes display
similar patterns. For all cases, the posterior distributions are clearly multi-modal.

4Notice that the number of training nodes is not always equal
to the number of dips: reconstructions with m dips found with m
GP nodes usually reappear as posterior modes in the mþ 1 GP
nodes case, where one of the nodes is placed at ui ≈ 0.
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(from the early-time dips) and high l’s (from the late
time ones), e.g., from the presence of dips both at
−800 and −100.

c. Dips with substructure: We have found some maxima
a posteriori where the reconstructed uðτÞ does not
show clearly separated reductions, but a more complex
profile with some degree of substructure. These
substructures are presented either at early and late
τi, trying to fit some of the characteristic features of the
CMB angular power spectrum (i.e.,: l ≈ 20–40 fea-
ture). The fits are presented in Appendix, in subsec-
tion A 5.

As noticed in previous works [11,47], we do not have a
highly predictive posterior of the maximum of the rate of
change of the sound speed, jsjmax, whose value is mostly
constrained by the prior information. By contrast, the
positions of the nodes (the oscillation frequency of the
features in the power spectrum) are tightly constrained
within each of the multiple posterior modes, specially for
nodes at late conformal time.
Using the sampling results of the profile uðτÞ with four

training nodes in the GPs, we have reconstructed the
allowed confidence contours for uðτÞ given Planck 2018
data. The result can be seen in Fig. 7. As expected from the
1-D marginalized posterior distributions, the confidence
contours are narrower around τi ¼ ½−100; 200�. These
modes were found in every single reconstruction of the
inflaton’s speed of sound independently of the number of
training nodes (and were also observed in previous studies
[11]), and usually show the highest individual dip Δχ2 with

respect to ΛCDM (since they produce features at a long
range of l for which Planck has low error bars). On the
other hand, the confidence contours are broader for earlier
conformal times τi < −400. This is the range of τ where we
have found the modes at τi ¼ ½−800;−1000� and some
degree of substructure. In this range, the posterior distri-
butions are not very predictive (see again Fig. 6, where the
posterior peaks are small for τi < −800), since they
produce low-multipole features hidden by cosmic variance.

V. CONCLUSIONS

We have searched for features in the primordial power
spectrum as given by the last release of Planck 2018 data.
Following an EFT of inflation approach, we have focused
our search on features coming from reductions of the sound
speed of the inflaton, assuming these reductions to be
small, mild and transient. These feature templates were not
tested by the Planck Collaboration.
We have improved over previous studies (which used a

single-reduction Gaussian ansatz) by developing a
reconstruction technique for the speed of sound’s profile
based on Gaussian Processes. We have also marginalized
over the slow roll parameters to allow for a dynamical prior.
In this new pipeline, the parameters of the reconstruction
(the position of the training nodes and the correlation
length) are fitted to the Planck 2018 data. The physical
constraints of the model are imposed on the reconstruction
parameters by means of a Maximum-Entropy prior defined
on the EFT quantities ðjujmax; jsjmaxÞ, which define the

FIG. 7. Reconstruction of the inflaton’s speed of sound profile uðτÞ based a four-nodes GP, where the confidence contours (68% and
95%) are shown. We are able to constrain the shape the inflaton’s speed of sound more stringently at late times (up to ∼ − 200), whereas
the confidence intervals get larger at earlier times (i.e., starting from −800). This difference in the constraining power between early and
late conformal times is mostly due to early-time reductions being associated to low-multipole features where cosmic variance is largest.
The best maxima a posteriori are also plotted on top of the confidence contours: two three-dipped cases (labelled C.2, dashed blue, and
C.3, dashed orange), two four-dipped cases (labelled D.0, solid blue, and D.1, solid orange) and a three-dipped case in which one of the
dips possesses some substructure (labelled S.3, solid green). For additional fits and a more detailed presentation of them see Appendix.
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consistency bounds of the model. We have also tracked as
derived parameters ns and r.
This template-free reconstruction of uðτÞ has allowed us

to make an exhaustive search of more flexible features’
templates, constrained only by EFT conditions. The analy-
sis of the result of Bayesian parameter inference on the
Planck 2018 data has demonstrated that there are many
possible different and complex uðτÞ profiles which are
consistent with Planck’s CMB power spectra. As expected,
none of these fits is preferred with respect to ΛCDM (their
Δχ2’s are not significant), although show some interesting
results in terms of new feature templates. First, we have
argued that there is a strong preference for two consecutive
reductions of the speed of sound to coexist at late times
around τi ≈ −200 and τi ≈ −100. Also, combinations of
modes at late conformal time τi ≈ −100 and early con-
formal time τi ≈ −800 are also possible. Second, we have
found certain profiles which show some degree of sub-
structure at early and late conformal times. Finally, we
have been able to obtain reconstruction confidence con-
tours for the uðτÞ profile given the results obtained with
four training nodes.
In the future, we plan to exploit this robust and novel

pipeline in the search of features using new sets of data (in
particular, large scale structure surveys or the CMB
bispectrum). Furthermore, the improvement of current data
(for example, the polarization of the CMB) will also help to
reduce the noise and, therefore, the uncertainty we have at
large scales. If the noise is reduced, we could discern how
realistic the reductions at earlier conformal times are.
Moreover, we also consider introducing new features
coming from a variable first slow-roll parameter [18] to
perform a joint search of both patterns: features induced by
a variable csðτÞ and ϵðτÞ.
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APPENDIX: DETAILED RESULTS UP TO
FOUR NODES OF uðτÞ IN LOG-LOG

PARAMETRIZATION

In this Appendix, we explain in detail the several
maxima a posteriori found during the sampling runs when
the profile of the inflaton’s speed of sound uðτÞ was
reconstructed using GPs up to four training nodes.

1. One dip (denoted by A)

These profiles of uðτÞ show only one single reduction of
the inflaton’s speed of sound or one dip. These reductions
can be found using just one training node in the GP. The
modes at late conformal time τi (see the first row of Fig. 8)
present a well defined oscillation frequency τi (at −100,−200 and−400). The value of jujmax is around 0.02 and the
rate of change in the speed of sound jsjmax ≫ jujmax. These
dips are exactly reproduced with the linear parametrization
of the reconstruction of uðτÞ. They were already listed
during previous searches using Planck 2013 and 2015 data
[11,48]. In particular, the mode corresponding at τi ≈ −400
was identified faintly in [11]. These modes are present in a
broad multipole l range (l ≈ ½100 − 2000�Þ, fitting some
structures in the temperature and polarization data.
Modes at early conformal time τi ð−800;−1000Þ (see the

second row of Fig. 8) are found, but are more poorly
constrained and with worse Δχ2 with respect to ΛCDM.
Mode A.3 at τi ≈ −800 shows similar characteristics to the
modes at a late conformal time (small amplitude and same
behaviour in the EFT parameter s). It fits an apparent
oscillating structure of the temperature Cl at the first
acoustic peak. This mode is also found with the linear
parametrization and in previous searches in [11,48]. The
modes at −800 and −1000, with a larger amplitude, have
jsjmax ≈ jujmax. They slightly differ from the modes found
in previous studies. The main reason is that uðτÞ recon-
structed using the logarithmic parametrization differs from
the linear one at high values of τi. The modes at −1000 try
to fit the characteristic l ≈ 20–40 structure of the CMB
temperature angular power spectrum. As identified in [11],
this kind of features impose a tighter upper limit on the
scalar-to-tensor ratio r (see Tables I–VII), although these
are still within the analogous bounds in ΛCDM.

2. Two dips (denoted by B)

In this case, the inflaton would suffer two consecutive
reductions of the speed of sound (due to, for instance,
two consecutive turns in the field space). In the previous
study using Planck 2015 [11], it was pointed out that,
a priori, the features due to single reductions of the sound

BAYESIAN RECONSTRUCTION OF THE INFLATON’S SPEED … PHYS. REV. D 103, 123531 (2021)

123531-11



speed that do not overlap can in principle coexist. These
combinations would be modes at early τi with another
late mode (i.e., −1000 and −100). However, the results of
the reconstruction using two training nodes show a richer

picture (see Fig. 9). We have identified that the modes at
−100 and −200 can result from an overlapping feature that
is preferred by the data, and thus, it is the overall maxima
a posteriori for the two-nodes reconstruction. The dips at

FIG. 8. One single dip, one training node. Top: Different profiles uðτÞ for the six maxima a posteriori when only one training node is
used (and consequently only one dip is visible). The reconstruction is done following the logarithmic parametrization explained in
Sec. III A. We found a principal maxima a posteriori and five other fits when the multimodal posterior distribution is further analysed
(see, for example, Fig. 6, where other peaks in the posterior distribution are visible). Bottom: Differences in the CMB temperature (TT),
E-polarization (EE) and cross-correlated power spectra (TE) between the to the Planck 2018 data and the featureless ΛCDM baseline
model for the reconstructed speed of sound profiles uðτÞ A.0–A.5 shown above. Notice how these profiles fit small deviations from
ΛCDM at low and high multipoles l. The same color and line-style correspondence between the uðτÞ profiles and the differences in the
CMB spectra has been used.
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−200 and −400 can also coexist (mode B.1), with a worse
Δχ2. These two overlapping features fit TT, TE and EE
structure across a large range of l. On the other hand, there
is a possible combination of the modes at −800 and −100
(see the first row of Fig. 9). This uðτÞ profile includes the
fitting of the apparent oscillations around the first acoustic
peak and small deviations across the rest of the multipole

scale. All of these combinations of modes ful-
fill jsjmax ≫ jujmax.

3. Three dips (denoted by C)

When the profile of the inflaton’s reduction of the speed
of sound uðτÞ is reconstructed using three training nodes,

FIG. 9. Two nonoverlapping dips, two training nodes. Top: Different profiles uðτÞ for the three maxima a posteriori when only two
training nodes are used and only two clearly different dips are observed. The reconstruction is done following the logarithmic
parametrization explained in Sec. III A. We found a principal best fit and two other fits when the multimodal posterior distribution is
further studied (see, for example, Fig. 6, where other peaks in the posterior distribution are visible). Bottom: Differences in the CMB
temperature (TT), E-polarization (EE) and cross-correlated power spectra (TE) between the best fit to the Planck 2018 data and the
featureless ΛCDM baseline model for the reconstructed speed’s of sound profile uðτÞ shown above. Notice how these profiles fit small
deviations from ΛCDM at low and high multipoles l. The same color and line-style correspondence between the uðτÞ profiles and the
differences in the CMB spectra has been used.
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we find more complex profiles. The usual dips at late τi
around −100 and −200 combine to mild and small
reductions at early conformal times around −1000 and
−1500 (see modes C.2 and C.3 of Fig. A 3, respectively).
The combinations that are preferred by the data are those
whose earlier training node τi is placed around ui ≈ −0.01.
These small dips at early τi were not found alone during
the search using one training node (modes A shown in
Fig. 8). However, these modes at early conformal times

are loosely constrained and the confidence intervals are
large. Overall, these profiles fits the data very similarly as
the single standing modes A.0 and A.1, as well as the
combination B.0. Furthermore, we have also verified that
the modes A.0 and A.2 can co-exist (contrary to the case
of reconstruction with two training nodes, where the
combination −100 and −400 was not found) if a very
small mode is added close to −100. All these profiles
presented in Fig. 10 are in the limit jsjmax ≫ jujmax.

FIG. 10. Three nonoverlapping dips, three training nodes. Top: Different profiles uðτÞ for the three maxima a posteriori when only
three training nodes are used and three differentiated dips are observed. The reconstruction is done following the logarithmic
parametrization explained in Sec. III A. We found 3 MAP when the corresponding multimodal posterior distribution is further studied
(see, for example, Fig. 6, where other peaks in the posterior distribution are visible). Bottom: Differences in the CMB temperature (TT),
E-polarization (EE) and cross-correlated power spectra (TE) between the best fit to the Planck 2018 data and the featureless ΛCDM
baseline model for the reconstructed speed’s of sound profile uðτÞ shown above. Notice how these profiles fit small deviations from
ΛCDM at low and high multipoles l. The same color and line-style correspondence between the uðτÞ profiles and the differences in the
CMB spectra has been used.
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Finally, the 2-dip profiles explained above are also
reproduced when we run with three training nodes.

4. Four dips (denoted by D)

We find similar profiles for uðτÞ as the ones for three
training nodes, adding one extra dip and finding the
remaining possible combination of nodes at late τi around
−100, −200 and −400 with modes at earlier times at −800,
−1000 or −1500 (see modes D.0, D.1 and D.3 of Fig. 11).

Thus, we have corroborated that the modes A.0, A.1, A.2
and A.4 can, in principle, co-exist. Still, the small modes at
early τi ≈ −1000;−1500 are less likely to show up in the
posterior, as they are poorly constrained given the data. It is
worth mentioning that we can mostly reproduce all the
different profiles found during the search using up to three
nodes when four training nodes are used. In this case, one,
two or three training nodes are placed in such a way the
corresponding profile looks very similar to the cases A, B

FIG. 11. Four nonoverlapping dips, four training nodes. Top: Different profiles uðτÞ for the three maxima a posteriori when only four
training nodes are used and four differentiated dips are observed. The reconstruction is done following the logarithmic parametrization
explained in Sec. III A. In this case, we observe how possible reductions at τ ≈ −100;−200;−400 and −800 can consecutively take
place. Bottom: Differences in the CMB temperature (TT), E-polarization (EE) and cross-correlated power spectra (TE) between the best
fit to the Planck 2018 data and the featureless ΛCDM baseline model for the reconstructed speed’s of sound profile uðτÞ shown above.
Notice how these profiles fit small deviations from ΛCDM at low and high multipoles l. The same color and line-style correspondence
between the uðτÞ profiles and the differences in the CMB spectra has been used.
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or C (either the training node is placed close to ui ≈ 0 or
close to the previous training mode itself).

5. Reductions with substructure (denoted by S)

Apart from concatenations of transient reductions in the
speed of sound, we have also observed some possible fits
which showmore complicated feature patterns according to

the data. These are profiles of uðτÞ that do not clearly show
full dips but have some kind of substructure (see the upper
row of Fig. 12, profile S.1). We find a substructured
maxima a posteriori at a late conformal time (centered
around τi ≈ −100), which resembles the mode A.0 but with
two small subreductions. Similarly to A.0, the limit of the
EFT functions is jsjmax ≫ jujmax.

FIG. 12. Profiles with substructure (two training nodes and four training nodes). Top: Different profiles uðτÞ for two maxima
a posteriori when only two or four training nodes are used and the profiles of uðτÞ show some grade of substructure. The reconstruction
is done following the logarithmic parametrization explained in Sec. III A. We found two fits (one an earlier conformal time and a another
one at late conformal time), when the corresponding multimodal posterior distributiosn are further studied (see, for example, Fig. 6,
where other peaks in the posterior distribution are visible). Bottom: Differences in the CMB temperature (TT), E-polarization (EE) and
cross-correlated power spectra (TE) between the best fit to the Planck 2018 data and the featureless ΛCDM baseline model for the
reconstructed speed’s of sound profile uðτÞ shown above. Notice how these profiles fit small deviations from ΛCDM at low and high
multipoles l. The same color and line-style correspondence between the uðτÞ profiles and the differences in the CMB spectra has
been used.
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Motivated by the loose constraints of the training nodes
in the range of early conformal times −800 < τi < −3000,
we have launched a GPs reconstruction using two
training nodes, which are restricted to remain in the range
−3500 < τi < −990, obtaining the profile S.2 of Fig. 12.
This profile have the particularity that jsjmax ≪ jujmax.
This profile tries to fit not only the structure of the
CMB TT angular power spectrum around l ≈ 20–40
but also the apparent structure of the first acoustic
peak in the TT and TE data. To answer the question if
it is possible the substructure mode S.2 to co-exist with

any of the modes at late conformal time τi, we have
relaunched the GPs reconstruction with four training
nodes, constraining the two early ones in the range
−3500 < τ1 < τ2 < −990. When this constraint is
imposed, the later training nodes τ3 and τ4 are placed
clearly around −100 and −200. The resulting profile (see
mode S.3 in Fig. 12) can fit the CMB data at low l but also
in a broader range similarly to the case of the mode A.0,
increasing the statistical significance Δχ2. In this case, the
EFT limit is reverted to jsjmax ≫ jujmax due to the narrow
mode at −100.

TABLE I. Maxima a posteriori values and 68% confidence intervals of the feature and primordial parameters for the cases where jΔχ2j
is the largest, when a minimizer method is used. The correspond to one, two, three, and four training nodes used in the GPs
reconstruction, respectively.

Name A.0 (Δχ2 ¼ −14.3) B.0 (Δχ2 ¼ −19.9) C.2 (Δχ2 ¼ −28.2) D.0 (Δχ2 ¼ −29.5)

Parameters Center Lower Upper Center Lower Upper Center Lower Upper Center Lower Upper

log10 l −0.972 −1.997 0.300 −0.995 −1.989 0.282 −1.231 −1.211 −0.754 −0.994 −1.165 −0.917
log10ðjτ1jÞ 2.014 1.959 2.299 2.305 1.993 3.299 3.192 2.834 3.297 2.896 2.397 3.100
log10ðju1jÞ −1.760 −2.687 −0.271 −1.528 −3.999 −0.593 −1.979 −1.952 −0.851 −1.101 −3.997 −0.597
log10ðjτ2jÞ � � � � � � � � � 2.002 1.845 3.145 2.295 2.237 2.395 2.564 2.285 3.301
log10ðju2jÞ � � � � � � � � � −1.764 −3.843 −0.977 −1.840 −3.958 −1.495 −2.229 −3.987 −0.404
log10ðjτ3jÞ � � � � � � � � � � � � � � � � � � 2.003 1.963 2.030 2.564 2.492 2.629
log10ðju3jÞ � � � � � � � � � � � � � � � � � � −1.749 −2.039 −1.495 −2.229 −1.854 −0.741
log10ðjτ4jÞ � � � � � � � � � � � � � � � � � � � � � � � � � � � 2.002 1.983 3.310
log10ðju4jÞ � � � � � � � � � � � � � � � � � � � � � � � � � � � −1.764 −2.693 −0.256
log10ðjujmaxÞ −1.462 −2.694 −0.282 −1.523 −2.587 −0.500 −1.621 −1.810 −0.851 −0.998 −1.831 −0.804
log10ðjsjmaxÞ −0.768 −1.442 −0.235 −0.813 −1.352 −0.312 −0.928 −1.084 −0.206 −0.266 −1.731 −0.471
ϵ1 0.000 0.000 0.007 0.000 0.000 0.006 0.001 0.000 0.005 0.001 0.000 0.005
ϵ2 0.036 0.021 0.039 0.036 0.025 0.040 0.035 0.027 0.037 0.032 0.025 0.038
ns 0.964 0.960 0.968 0.963 0.959 0.968 0.963 0.961 0.967 0.963 0.963 0.968
r 0.002 0.002 0.111 0.005 0.002 0.094 0.015 0.002 0.078 0.014 0.002 0.069

TABLE II. 1 node secondary maxima a posteriori values, at low conformal time, and 68% confidence intervals of the feature and
primordial parameters when a minimizer method is used.

Number of nodes i One training node (late conformal time)

Modes A.1 (Δχ2 ¼ −10.3) A.2 (Δχ2 ¼ −7.7)

Parameters Center Lower Upper Center Lower Upper

log10 l −1.012 −1.942 −0.762 −1.445 −1.996 −0.983
log10ðjτ1jÞ 2.299 2.202 2.300 2.583 2.501 2.639
log10ðju1jÞ −1.682 −2.304 −1.410 −1.804 −2.168 −0.870
log10ðjujmaxÞ −1.592 −2.313 −1.412 −1.814 −2.777 −0.282
log10ðjsjmaxÞ −0.727 −0.999 −0.275 −0.617 −1.442 −0.304
ϵ1 0.000 0.000 0.004 0.0001 0.0001 0.0043
ϵ2 0.036 0.027 0.039 0.035 0.026 0.038
ns 0.964 0.961 0.967 0.965 0.961 0.968
r 0.003 0.002 0.058 0.002 0.002 0.068
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TABLE III. One node secondary maxima a posteriori values and 68% confidence intervals of the feature and primordial parameters
when a minimizer method is used.

Number of nodes i One training node (early conformal time)

Modes A.3 (Δχ2 ¼ −6.1) A.4 (Δχ2 ¼ −5.6) A.5 (Δχ2 ¼ −6.9)

Parameters Center Lower Upper Center Lower Upper Center Lower Upper

log10 l −0.988 −1.642 −0.661 −0.488 −1.066 0.050 −0.233 −1.141 0.328
log10ðjτ1jÞ 2.923 2.402 3.100 2.931 2.804 2.995 3.087 3.001 3.299
log10ðju1jÞ −1.215 −2.976 −0.807 −1.210 −1.470 −0.472 −0.554 −1.457 −0.270
log10ðjujmaxÞ −1.169 −1.880 −0.797 −1.367 −1.470 −0.474 −0.554 −1.459 −0.282
log10ðjsjmaxÞ −0.473 −1.231 −0.340 −0.702 −1.371 −0.406 −0.614 −1.442 −0.329
ϵ1 0.000 0.000 0.005 0.0001 0.0001 0.0035 0.0001 0.0001 0.0041
ϵ2 0.036 0.026 0.040 0.037 0.028 0.037 0.036 0.026 0.038
ns 0.964 0.960 0.966 0.963 0.961 0.967 0.963 0.961 0.967
r 0.004 0.002 0.068 0.002 0.002 0.055 0.002 0.002 0.065

TABLE IV. Two nodes secondary maxima a posteriori values and 68% confidence intervals of the feature and primordial parameters,
when a minimizer method is used.

Number of nodes i Two training nodes (other fits)

Modes B.1 (Δχ2 ¼ −16.1) B.2 (Δχ2 ¼ −17.3)

Parameters Center Lower Upper Center Lower Upper

log10 l −1.522 −1.922 0.292 −0.999 −1.462 −0.618
log10ðjτ1jÞ 2.565 2.296 3.297 2.896 2.400 3.200
log10ðju1jÞ −2.230 −3.987 −0.404 −1.210 −3.997 −0.797
log10ðjτ2jÞ 2.277 2.213 2.300 2.002 1.970 2.0335
log10ðju2jÞ 1.452 −3.895 −1.424 −1.693 −2.240 −1.426
log10ðjujmaxÞ −1.591 −2.299 −0.385 −1.169 −1.980 −0.803
log10ðjsjmaxÞ −0.613 −1.279 −0.381 −0.468 −1.226 −0.318
ϵ1 0.000 0.000 0.005 0.000 0.000 0.005
ϵ2 0.037 0.026 0.037 0.036 0.026 0.039
ns 0.963 0.961 0.967 0.964 0.960 0.968
r 0.003 0.002 0.076 0.005 0.002 0.082

TABLE V. Three nodes secondary maxima a posteriori values and 68% confidence intervals of the feature and primordial parameters,
when a minimizer method is used.

Number of
nodes i Three training nodes (other fits)

Modes C.0 (Δχ2 ¼ −21.4) C.1 (Δχ2 ¼ −20.7) C.3 (Δχ2 ¼ −24.5) C.4 (Δχ2 ¼ −22.3) C.5 (Δχ2 ¼ −17.1)

Parameters Center Lower Upper Center Lower Upper Center Lower Upper Center Lower Upper Center Lower Upper

log10 l −0.979 −1.634 −0.559 −1.166 −1.514 −0.646 −1.208 −1.209 −0.821 −1.297 −1.475 −0.721 −0.909 −1.443 −0.690
log10ðjτ1jÞ 2.940 2.214 3,300 2.253 2.214 3.286 3.002 2.840 2.998 2.580 2.405 2.599 2.903 2.814 2.997
log10ðju1jÞ −3.205 −4.000 −0.825 −1.658 −3.989 −0.939 −1.974 −1.952 −1.288 −2.169 −3.931 −1.507 −1.205 −3.953 −0.971
log10ðjτ2jÞ 2.309 1.969 3.261 2.080 1.969 2.100 2.356 2.237 2.395 2.019 2.014 2.506 2.078 1.981 2.100
log10ðju2jÞ −1.486 −3.998 −1.120 −3.487 −3.965 −1.572 −2.216 −3.724 −1.965 −2.741 −3.303 −1.560 −2.735 −3.965 −1.572
log10ðjτ3jÞ 2.027 1.846 2.318 2.003 1.901 2.064 1.970 1.963 2.018 1.846 1.846 2.065 1.945 1.915 2.064
log10ðju3jÞ −1.822 −3.261 −1.415 −2.185 −2.860 −1.559 −1.733 −2.019 −1.565 −1.807 −3.261 −1.513 −2.296 −2.822 −1.629
log10ðjujmaxÞ −1.462 −2.046 −0.473 −1.633 −1.878 −0.939 −1.697 −1.697 −1.288 −1.584 −1.844 −1.409 −1.205 −1.878 −0.971
log10ðjsjmaxÞ −0.768 −1.287 −0.206 −0.925 −1.216 −0.231 −0.808 −0.994 −0.516 −0.872 −1.151 −0.410 −0.547 −1.216 −0.231
ϵ1 0.000 0.000 0.005 0.002 0.000 0.005 0.001 0.001 0.003 0.000 0.000 0.002 0.002 0.000 0.005
ϵ2 0.036 0.024 0.039 0.033 0.025 0.039 0.035 0.031 0.036 0.036 0.031 0.039 0.033 0.025 0.038
ns 0.963 0.960 0.968 0.964 0.960 0.968 0.963 0.962 0.964 0.964 0.961 0.965 0.963 0.961 0.966
r 0.004 0.002 0.087 0.025 0.002 0.082 0.018 0.018 0.044 0.003 0.002 0.039 0.028 0.002 0.081
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