
 

Nonparametric reconstruction of interaction in the cosmic dark sector
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The possibility of a nongravitational interaction between dark matter and dark energy is reconstructed
using some recent data sets. The crucial aspect is that the interaction is not parametrized at the outset, but
rather reconstructed directly from the data in a nonparametric way. The cosmic chronometer Hubble data,
the Pantheon supernova compilation of CANDELS and CLASH Multi-Cycle Treasury programs obtained
by the Hubble Space Telescope, and the baryon acoustic oscillation Hubble data are considered in this
work. The widely accepted Gaussian process is used for the reconstruction. The results clearly indicate that
a no-interaction scenario is definitely a possibility. Also, the interaction (if any) is not really significant at
the present epoch. The direction of the flow of energy is clearly from dark energy to dark matter, which is
consistent with the thermodynamic requirement.
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I. INTRODUCTION

That the Universe is expanding in an accelerated fashion
is now believed to be a certainty. Even though indications
of this started pouring in more than 20 years ago [1,2], there
is still no unequivocally accepted theoretical framework
that can settle this puzzle. Surely the good old cosmological
constant Λ, the “weight of the vacuum” as described by
Padmanabhan, can resolve the issue [3], but it has its own
share of problems, such as the enormous mismatch between
the theoretically predicted value and observationally
required one. This discrepancy was quite elaborately
discussed in the reviews [3,4]. Various inconsistencies
with Λ were in fact known even before its requirement
as dark energy, the driver of the acceleration of the
Universe. An account of this can be found in the famous
work of Weinberg [5].
As the easiest choice of Λ as the “dark energy” runs into

trouble, many other alternative models were suggested,
starting from the introduction of exotic fields of various
forms in the energy distribution in the realm of general
relativity (GR), to different kinds of modifications of GR as
the theory of gravity. For a recent review, we refer to the
work of Brax [6].
In various dark energy models, the normal practice is to

assume that the exotic dark energy and familiar cold dark
matter evolve independently of each other. For early
reviews, we refer to Refs. [3,7,8]. However, the so-called
coincidence problem [9], which poses the question of why
the dark energy and dark matter densities are of the same

order of magnitude at the present epoch, inspired a search
for any nongravitational interaction between them. In fact,
a possible interaction between the vacuum energy and
pressureless matter was suggested long ago; we refer, for
example, to the investigations by Henriksen [10] and Olson
and Jordan [11].
In the context of the present acceleration of the Universe,

the idea is that dark matter and dark energy may not evolve
independently; rather, there is a transfer of energy between
them. As a result, they do not satisfy individual conservation
equations and only the total energy is conserved via the
equation ∇μðTμν

m þ Tμν
D Þ ¼ 0, where Tμν

m and Tμν
D denote the

energy-momentum tensors for dark matter and dark energy,
respectively. A number of investigations in this direction
have already been carried out, e.g., Refs. [12–21]. A function
Q is introduced such that ∇μT

μν
m ¼ −∇μT

μν
D ∝ Q. The

function Q clearly determines the rate of transfer of energy
from one sector to the other. As the origin and nature of the
nongravitational interaction is not known,Q is phenomeno-
logically chosen in various forms. Usually it is assumed to
be proportional to theHubble parameterH and the density of
dark matter or dark energy. More general forms, where a
linear combination of both densities or even their derivatives
are involved, can also be found in the literature. For various
choices and their consequences in the context of observa-
tions, we refer to Refs. [22–42]. It was shown that the
interacting scenario can also potentially take care of the
issues connected to the local value of the Hubble parameter
[34,41,43]. For an exhaustive review, thework ofWang et al.
is quite useful [44].
A reconstruction of the interaction from observations

normally depends on the parametric form of Q, and the
parameters are estimated from data sets. Another approach
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for reconstruction is the nonparametric one where no
particular functional form of Q is assumed. Rather, one
makes an attempt to ascertain the quantity directly from
data, which is clearly less biased. The nonparametric
approach has found many applications in cosmology. It
all started with the reconstruction of physical quantities like
the equation-of-state parameter of dark energy, the scalar
potential when a quintessence scalar field is used as dark
energy, etc. [45–52]. Recently, the nonparametric approach
has been used in the reconstruction of kinematical quan-
tities, like the deceleration parameter q [53–60] and the jerk
parameter j [61].
Given that there is no a priori reason to rule out an

interaction in the dark sector on the one hand, and the lack
of any compulsive theoretical model for it on the other,
certainly a reconstruction of the interaction Q, in an
unbiased way without assuming any functional form of
Q, deserves a lot more attention than what is available in
the literature. Cai and Su [18] investigated a possible
interaction, in a way independent of any specific form,
by dividing the whole redshift range into a few bins and
setting the interaction term to a constant in each redshift
bin. The result indicated that there could be an oscillatory
interaction. Wang et al. [62] adopted a nonparametric
Bayesian approach, and indicated that an interacting
vacuum is not preferred over the standard ΛCDM.
Yang et al. [63] presented a nonparametric

reconstruction of the interaction between dark energy
and dark matter directly from type Ia supernova (SNIa)
Union 2.1 data using the Gaussian process. They found that
unless the equation of state (EoS) parameter w for the dark
energy deviates significantly from −1, the interaction is not
evident. If w is very different from −1, the interaction
cannot be ruled out at the 95% confidence level. A recent
analysis by Cai et al. [64] (another nonparametric
reconstruction using the Gaussian process) indicated a
very interesting possibility that a gravitational-wave signal
might carry signatures of the interaction in the dark sector
encoded in the wave signal. That work was based on the
LISA space-based interferometer. It was shown that a
10 year survey could unveil the interaction in a wide
redshift domain between 1 < z < 10.
The motivation of this work is to undertake a non-

parametric reconstruction of the interaction term Q as a
function of the redshift z using recent cosmological data
sets. The cosmic chronometer Hubble data, the Pantheon
supernova compilation of the CANDELS and CLASH
Multi-Cycle Treasury programs obtained by the Hubble
Space Telescope (HST), and the baryon acoustic oscillation
Hubble data are utilized for this purpose. The method
adopted is the widely used Gaussian process. We consider
three cases for the dark energy EoS: the decaying vacuum
energy Λ with w ¼ −1, the wCDM model, and the
Chevallier-Polarski-Linder (CPL) parametrization [65] of
dark energy. Here w is the EoS parameter. For different

combinations of data sets and for different choices of dark
energy, the most important common feature found is that
“no interaction” is almost always included at 2σ and
definitely at 3σ. Also, at the present epoch an interaction
is hardly indicated. Even if there's any, that would have
been in the past, close to or beyond z ∼ 0.5.
This manuscript is organized as follows. In Sec. II we

describe the model with an interaction in the dark sector.
Section III deals with the results of the actual reconstruction
following a brief description of the Gaussian process, a
summary of the data sets utilized, and the methodology.
Fitting functions for the reconstructed interaction are
shown in Sec. IV for different combinations of data sets.
A discussion on the evolution of the density parameters is
provided in Sec. V. In Sec. VI we attempt to test the
reconstructed model against the laws of thermodynamics.
In the last section we discuss the results obtained and make
some concluding remarks.

II. THE MODEL

The infinitesimal distance element in a spatially flat,
homogeneous, and isotropic universe is given by the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric

ds2 ¼ −c2dt2 þ a2ðtÞðdr2 þ r2dθ2 þ r2 sin2 θdϕ2Þ; ð1Þ

where aðtÞ is the scale factor.
The Hubble parameter, defined as the expansion rate of

the universe, is given by

H ¼ _a
a
; ð2Þ

where a dot signifies a derivative with respect to the cosmic
time t. This expression can again be written as a function of
the redshift z, given by the relation 1þ z ¼ a0

a , where any
subscript 0 indicates the present value of the quantity
considered and a0 is taken to be unity. We define the
dimensionless Hubble parameter as

EðzÞ ¼ HðzÞ
H0

: ð3Þ

In a flat universe with an interaction between dark energy
and dark matter, the Einstein equations describing the
evolution of the universe are given by

H2 ¼ 8πG
3

ðρm þ ρDÞ; ð4Þ

_H þH2 ¼ −
8πG
6

ðρm þ ρD þ 3pDÞ; ð5Þ

where ρm denotes the energy density of dark matter, ρD is
the energy density of the dark energy component, and we
consider 8πG ¼ 1; pD signifies the pressure component
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from the dark energy sector, and pm ¼ 0 for pressureless
dust. The energy conservation equation is given by the
contracted Bianchi identity,

_ρþ 3Hð1þ weffÞρ ¼ 0; ð6Þ

where the total energy density is given by ρ ¼ ðρm þ ρDÞ
and weff is the effective equation of state, defined as

weff ¼
p
ρ
¼ pD

ρm þ ρD
: ð7Þ

However, this conservation equation can be separated into
two parts:

_ρm þ 3Hρm ¼ −Q; ð8Þ

_ρD þ 3Hð1þ wÞρD ¼ Q; ð9Þ

where w ¼ pD
ρD

is the equation of state of dark energy (DE)
and Q describes the rate of transfer of energy between dark
matter and dark energy. When Q ¼ 0 and w ¼ −1, one
recovers the standard ΛCDM model. Unlike the usual
practice of parametrizing the interaction term Q using any
parametric form proportional to Hρ, here we want to
reconstruct it directly from observational data using a
nonparametric method.
By using d

dt ≡ −Hð1þ zÞ d
dz, one can rewrite the con-

servation equations, with the redshift z as the argument, in
the form

−Hð1þ zÞρ0m þ 3Hρm ¼ −QðzÞ; ð10Þ

−Hð1þ zÞρ0D þ 3Hð1þ wÞρD ¼ QðzÞ: ð11Þ

Equation (4) can be written in terms of the dimensionless
Hubble parameter E ¼ H

H0
as

E2ðzÞ ¼ ρ̃m þ ρ̃D; ð12Þ

where ρ̃m and ρ̃D are ρm and ρD scaled by a factor of 1
3H2

0

,

respectively. Upon differentiating Eq. (12) with respect to z,
we get

2EE0ðzÞ ¼ ρ̃0m þ ρ̃0D: ð13Þ

The conservation equations (10) can be reduced to the
following forms:

−Eð1þ zÞρ̃0m þ 3Eρ̃m ¼ −Q̃ðzÞ; ð14Þ

−Eð1þ zÞρ̃0D þ 3Eð1þ wÞρ̃D ¼ Q̃ðzÞ: ð15Þ

The dimensionless Q̃ characterizes the interaction, where
Q̃ ¼ 1

3H3
0

Q.

By combining Eq. (13) with Eqs. (14)–(15), one can
obtain

Q̃ ¼
�
E2ð1þ wÞ

w
þ ð1þ zÞE2w0

3w2

�

× ½2ð1þ zÞE0 − 3E� − ð1þ zÞE
3w

× ½2ð1þ zÞðE02 þ EE00Þ − 4EE0�: ð16Þ

From this,we see that byusing the observeddimensionless
Hubble parameter EðzÞ, one can reconstruct the interaction
once the equation of statewðzÞ of dark energy is known. This
will be the key equation for the reconstruction of Q̃.

III. THE RECONSTRUCTION

To reconstruct the interaction using current data sets, we
need a model-independent method to reconstruct EðzÞ, and
its derivatives E0ðzÞ and E00ðzÞ. In this work we use the
Gaussian processes (GP) [66–68] as a numerical tool for
this reconstruction purpose.

A. Gaussian process

AGP involves an indexed collection of random variables
having a multivariate normal distribution. GPs can be used
to infer a distribution over functions directly. The distri-
bution of a GP is the joint distribution of all random
variables, which is a distribution over functions within a
continuous domain. For a given set of Gaussian-distributed
observational data, we use GPs to reconstruct the most
probable underlying continuous function describing that
data, along with its higher derivatives, and also obtain the
associated confidence levels, without limiting to any
particular parametrization ansatz.
Due to its model-independent nature, this method has

been widely applied in cosmology. A nonparametric
reconstruction using GPs was utilized in Refs. [47–
49,53–61,63,64,69–75]. We refer to the publicly available
GP website [76] for more details on the method.
Let us consider a function f formed from a GP. The value

of f when evaluated at a redshift point z is a Gaussian
random variable with mean μðzÞ and variance varðzÞ. The
function value at redshift z is not independent of the
function value at some other point z̃ (especially when z
and z̃ are close to each other), but is related by a covariance
function covðfðzÞ; fðz̃ÞÞ ¼ κðz; z̃Þ which correlates the
values of different fðzÞ at data points z and z̃ separated
by jz − z̃j distance units.
Thus, the distribution of functions can be described by

the following quantities:

μðzÞ ¼ E½fðzÞ�; ð17Þ

κðz; z̃Þ ¼ E½ðfðzÞ − μðzÞÞðfðz̃Þ − μðz̃ÞÞ�; ð18Þ
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varðzÞ ¼ κðz; zÞ; ð19Þ

where E denotes the expectation.
The Gaussian process is written as

fðxÞ ∼ GPðμðzÞ; κðz; z̃ÞÞ; ð20Þ

where GP represents a Gaussian process.
The covariance function κðz; z̃Þ depends on a set of free

parameters, called the hyperparameters, namely, the char-
acteristic length scale l and the signal variance σf. A wide
range of possible covariance functions is already present in
the literature [66–68]. As a standard choice one may
consider the squared exponential covariance,

κðz; z̃Þ ¼ σ2f exp

�
−
ðz − z̃Þ2
2l2

�
: ð21Þ

Another possible choice is the Matérn covariance,

κν¼pþ1
2
ðz; z̃Þ¼ σ2f exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ1

p
l

jz− z̃j
�

×
p!

ð2pÞ!
Xp
i¼0

ðpþ iÞ!
i!ðp− iÞ!

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ1

p
l

jz− z̃j
�

p−i
:

ð22Þ
Given a data set D of n observations, D ¼

fðzi; yiÞji¼1;…;ng, we attempt to reconstruct a function
fðzÞ that describes this data. For GPs, any zi is assigned
a random variable fðziÞ, and the joint distribution of a finite
number of these variables ffðz1Þ;…; fðznÞg is itself
Gaussian,

f ∼ GPðμ;KÞ: ð23Þ

For a set of input pointsX ¼ fzig, the covariance matrix
K ¼ κðX;XÞ is given by ½κðX;XÞ�ij ¼ κðzi; zjÞ. Here, μ ¼
ðμðz1Þ;…; μðznÞÞ and f ¼ ðfðz1Þ;…; fðznÞÞ. Excluding
observational data, we use the covariance matrix K to
generate a Gaussian vector f� of function values atX� with
f�i ¼ fðz�i Þ such that

f� ∼ GPðμ�;K��Þ; ð24Þ
where μ� is the a priori assumed mean of f�, and
K�� ¼ κðX�;X�Þ.
Observational data ðzi; yiÞ can also be described by

GPs upon assuming that their errors are Gaussian. The
actual observations are assumed to be scattered around the
underlying function, i.e., yi ¼ fðxiÞ þ ϵi, where Gaussian
noise ϵi with variance σ2i is assumed. This variance needs to
be added to the covariance matrix,

y ∼ GPðμ;KþCÞ; ð25Þ

where C is the covariance matrix of the data. For uncorre-
lated data, we use C ¼ σ2i I. The above two GPs [Eq. (24)
for f� and Eq. (25) for y] can be combined in the joint
distribution,

�
y

f�

�
∼ GP

��
μ

μ�

��
Kþ C K�

K�T K��

��
; ð26Þ

where K� ¼ κðX;X�Þ and K�T ¼ κðX�;XÞ. While y is
known from observations, we want to reconstruct f�.
Using standard rules for conditioning Gaussians, the

predictive distribution is given by

f�jX�;X; y ∼ GPðμ�;Σ�Þ; ð27Þ

where

μ� ¼ μ� þK�T½Kþ C�−1ðy − μÞ ð28Þ

and

Σ� ¼ K�� −K�T½KþC�−1K� ð29Þ

are the mean and covariance of f�, respectively.
Equation (27) is the posterior distribution of the function
given the data (25) and the prior (24).
Although Eq. (27) covers noise in training data, it is still

a distribution over noise-free predictions f. To include
noise ϵ in the predictions y we add σ2i to the diagonal of Σ�,
i.e.,

y�jX�;X; y ∼ GPðμ�;Σ� þCÞ: ð30Þ

To apply the above equations for reconstructing a
function, we need to estimate the hyperparameters σf
and l. They can be trained by maximizing the marginal
likelihood. Note that the marginal likelihood depends
only on the locations X of the observations and not on
the points X�, where we want to reconstruct the function.
For a Gaussian prior fjX; σf; l ∼ GPðμ;KÞ and with
yjf ∼ GPðf;CÞ, the log marginal likelihood is given by

lnL ¼ −
1

2
ðy − μÞT½Kþ C�−1ðy − μÞ

−
1

2
ln jKþCj − n

2
ln 2π: ð31Þ

The hyperparameters σf and l are optimized by maximiz-
ing Eq. (31).
This approach also provides a robust way to estimate

derivatives of the function. While the covariance between
the observational points stays the same, one also needs a
covariance between the function and its derivative and
another between the derivatives for the reconstruction.
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These covariances can be obtained by differentiating the
original covariance function κðx; x̃Þ.
In the present work, the observational Hubble data from

cosmic chronometers and baryon acoustic oscillations,
along with the reduced Hubble data from the Pantheon
supernova compilation of the CANDELS and CLASH
Multi-Cycle Treasury programs, forms the function space.
The target function is EðzÞ, and its derivatives are E0ðzÞ and
E00ðzÞ, which are to be reconstructed using the GP method.
We have used both the squared exponential and the

Matérn ðν ¼ 9
2
; p ¼ 4Þ covariance functions. The former

has the advantage of being indefinitely differentiable. The
Matérn function ðνÞ leads to reliable and stable results
when ν > n where derivatives up to nth order are required.
In the present work, we need to use up to second-order
derivatives, so ν is easily greater than n. For a compre-
hensive comparison of various covariance functions, we
refer to the work of Seikel and Clarkson [77]. In contrast to
actual parameters, GPs do not specify the form of the
reconstructed function; rather, it characterizes the typical
changes in the function. The publicly available GaPP [78]
(Gaussian processes in PYTHON) code by Seikel et al. [69]
is employed in this work.

B. Observational data sets

The background data viz. the cosmic chronometer (CC)
Hubble data, the Pantheon supernova compilation of the
CANDELS and CLASH Multi-Cycle Treasury (MCT)
programs obtained by the HST, and the baryon acoustic
oscillation (BAO) Hubble data are utilized to reconstruct
the cosmic interaction as a function of redshift. A brief
summary of the data sets is given below.

1. CC data

The Hubble parameter HðzÞ is estimated by calculating
the differential ages of galaxies [79–84], usually called
cosmic chronometers, as

HðzÞ ¼ −
1

1þ z
dz
dt

: ð32Þ

The CC data are independent of the Cepheid distance scale
and do not assume any background cosmological model.
However, they are subject to other sources of systematic
uncertainties, such as the modeling of stellar ages carried
out through the stellar population synthesis (SPS) tech-
niques. Given a pair of ensembles of passively evolving
galaxies at two different redshifts, it is possible to infer Δz

Δt
from observations under the assumption of a concrete SPS
model [85–87]. Thus,HðzÞ can be directly computed using
Eq. (32), the quantity we are interested in. Therefore, the
CC measurements allow us to obtain direct information
about the Hubble function at different z, contrary to other
probes which do not directly measure HðzÞ, but rather
integrated quantities such as luminosity distances. In the

present work, we use both the BC03 and MaStro11 SPS
compilations of CC measurements shown in Table I
including almost all HðzÞ data reported in various surveys
so far. The sources of these data sets are quoted in the table.

2. Pantheon+MCT data

We make use of the Hubble rate data points, i.e., EðziÞ ¼
HðziÞ=H0 provided in Ref. [88] for six different redshifts in
the range z ∈ ½0.07; 1.5� shown in Table II. They compress
information very effectively about the 1048 SNIa data at
z < 1.5, which is a part of the Pantheon compilation (which
includes 740 SNIa of the joint light-curve analysis sample)
and the 15 SNIa at z > 1 of the CANDELS and CLASH
MCT programs obtained by HST, nine of which are at
1.5 < z < 2.3. Riess et al. [88] converted the raw SNIa
measurements into data on EðzÞ by parametrizing E−1ðzÞ.
The corresponding values of E−1ðziÞ are Gaussian to a very
good approximation, as shown in the work of Riess et al.
[88] which also contains the corresponding correlation

TABLE I. Cosmic chronometer Hubble parameter H measure-
ments (in units of km s−1 Mpc−1) and their errors σH at redshift z
obtained from the differential age method.

Index z
H � σH
(BC03)

H � σH
(MaStro11) References

1 0.07 69� 19.6 � � � [79]
2 0.1 69� 12 � � � [80]
3 0.12 68.6� 26.2 � � � [79]
4 0.17 83� 8 � � � [80]
5 0.1797 75� 4 81� 5 [81]
6 0.1993 75� 5 81� 6 [81]
7 0.2 72.9� 29.6 � � � [79]
8 0.27 77� 14 � � � [80]
9 0.28 88.8� 36.6 � � � [79]
10 0.3519 83� 14 88� 16 [81]
11 0.3802 83� 13.5 89.2� 14.1 [82]
12 0.4 95� 17 � � � [80]
13 0.4004 77.0� 10.2 82.8� 10.6 [82]
14 0.4247 87.1� 11.2 93.7� 11.7 [82]
15 0.4497 92.8� 12.9 99.7� 13.4 [82]
16 0.47 89� 34 � � � [83]
17 0.4783 80.9� 9.0 86.6� 8.7 [82]
18 0.48 97� 60 � � � [80]
19 0.5929 104� 13 110� 15 [81]
20 0.6797 92� 8 98� 10 [81]
21 0.7812 105� 12 88� 11 [81]
22 0.8754 125� 17 124� 17 [81]
23 0.88 90� 40 � � � [80]
24 0.9 117� 23 � � � [80]
25 1.037 154� 20 113� 15 [81]
26 1.3 168� 17 � � � [80]
27 1.363 160� 33.6 � � � [84]
28 1.43 177� 18 � � � [80]
29 1.53 140� 14 � � � [80]
30 1.75 202� 40 � � � [80]
31 1.965 186.5� 50.4 � � � [84]
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matrix. Here, we have adopted the mean value obtained
from the inversion of quoted E−1ðzÞ and the inverse
covariance matrix.

3. BAO data

An alternative compilation of the HðzÞ data can be
deduced from the radial BAO peaks in the galaxy power
spectrum, or from the BAO peak using the Ly-α forest of
quasi-steller objects (QSOs), which are based on the
clustering of galaxies or quasars [89–102]. Table III
includes almost all data reported in various surveys so
far. One may find that some of the HðzÞ data points from
clustering measurements are correlated since either they
belong to the same analysis or there is an overlap between
the galaxy samples. We take into account all covariances
among the respective data points in our analysis.

C. Methodology

We consider three choices for the dark energy equation-
of-state parameter w ¼ pD

ρD
. First we consider the decaying

vacuum energy case, followed by the wCDM model, and
finally the CPL parametrization,

ΛCDM∶ wðzÞ ¼ −1; ð33Þ

wCDM∶ wðzÞ ¼ w; ð34Þ

CPL∶ wðzÞ ¼ w0 þ wa

�
z

1þ z

�
: ð35Þ

For the dark energy EoS, considering the wCDMmodel, we
take the best-fit value of w ¼ −1.006� 0.045 from the
Planck 2015 data [103], and for the CPL parametrization
wðzÞ ¼ w0 þ wað z

1þzÞ we take w0 ¼ −1.046þ0.179
−0.170 and

wa ¼ 0.14þ0.60
−0.76 , respectively, from the HST Cluster

Supernova Survey 2011 [104].
We attempt to reconstruct Q̃ directly through theGaussian

process for the following combination of data sets:
(1) Set A

(a) CCðBC03Þ þ PantheonþMCT
(b) CCðMaStroÞ þ PantheonþMCT

(2) Set B
(a) CCðBC03Þ þ PantheonþMCTþ BAO
(b) CCðMaStroÞ þ PantheonþMCTþ BAO

We start with constraining the Hubble parameter in the
present epoch ðH0Þ. With the Hubble data, we utilize the
GP method to reconstruct HðzÞ. The value of H0 obtained
is shown in Table IV. Further, we normalize the recon-
structed data set to obtain the dimensionless or reduced

Hubble parameter EðzÞ ¼ HðzÞ
H0

. Considering the error of the
Hubble constant σH, we can calculate the uncertainty
associated with E, i.e., σE as

TABLE II. EðzÞ obtained from the inversion of E−1ðzÞ data
reported in Table 6 of Ref. [88]. Note the difference in the
estimate of Eðz ¼ 1.5Þ from the actual quoted value. We pick up
the mean value obtained from an inversion of the quoted E−1ðzÞ.
The inverse covariance matrix has been included in our analysis.

Index z EðzÞ
1 0.07 0.997� 0.023
2 0.20 1.111� 0.021
3 0.35 1.127� 0.037
4 0.55 1.366� 0.062
5 0.9 1.524� 0.121
6 1.5 2.924� 0.675

TABLE III. Hubble parameter measurements HðzÞ (in units of
kms−1 Mpc−1) and their errors σH at redshift z obtained from the
radial BAO method.

Index z H � σH References

1 0.24 79.69� 2.99 [89]
2 0.3 81.7� 6.22 [90]
3 0.31 78.17� 4.74 [91]
4 0.34 83.8� 3.66 [89]
5 0.35 82.7� 8.4 [92]
6 0.36 79.93� 3.39 [91]
7 0.38 81.5� 1.9 [93]
8 0.40 82.04� 2.03 [91]
9 0.43 86.45� 3.68 [89]
10 0.44 82.6� 7.8 [94]
11 0.44 84.81� 1.83 [91]
12 0.48 87.79� 2.03 [91]
13 0.51 90.4� 1.9 [93]
14 0.52 94.35� 2.65 [91]
15 0.56 93.33� 2.32 [91]
16 0.57 87.6� 7.8 [96]
17 0.57 96.8� 3.4 [97]
18 0.59 98.48� 3.19 [91]
19 0.6 87.9� 6.1 [94]
20 0.61 97.3� 2.1 [93]
21 0.64 98.82� 2.99 [91]
22 0.73 97.3� 7 [94]
23 0.978 113.72� 14.63 [101]
24 1.23 131.44� 12.42 [101]
25 1.526 148.11� 12.71 [101]
26 1.944 172.63� 14.79 [101]
27 2.3 224� 8 [95]
28 2.33 224� 8 [98]
29 2.34 222� 7 [99]
30 2.36 226� 8 [100]
31 2.4 227.8� 5.61 [102]

TABLE IV. Reconstructed value ofH0 using samples from Sets
A and B.

κðz;z̃Þ A 1 A 2 B 1 B 2

Sq. Exp 67.36�4.77 72.13�4.85 65.19�2.63 67.66�2.79
Matérn 9/2 68.47�5.08 72.76�5.00 65.15�2.72 67.57�2.90
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FIG. 1. Plots for the reconstructed interaction term Q̃ from the data set samples of Sets A and B using a squared exponential covariance
function considering the decaying dark energy EoS given by w ¼ −1 (top row), the wCDM model with DE EoS given by w ¼
−1.006� 0.045 [103] (middle row), and the CPL parametrization of dark energy with DE EoS given by wðzÞ ¼ w0 þ wað z

1þzÞ,
w0 ¼ −1.046þ0.179

−0.170 , and wa ¼ 0.14þ0.60
−0.76 [104] (bottom row). The black solid curve shows the best-fit values and the shaded regions

correspond to the 1σ, 2σ, and 3σ uncertainties.

FIG. 2. Plots for the reconstructed interaction term Q̃ from the data set samples of Sets A and B using a Matérn 9/2 covariance function
considering the decaying dark energy EoS given byw ¼ −1 (top row), thewCDMmodel with DEEoS given byw ¼ −1.006� 0.045 [103]
(middle row), and theCPLparametrization of dark energywithEoSgivenbywðzÞ ¼ w0 þ wað z

1þzÞ,w0 ¼ −1.046þ0.179
−0.170 , andwa ¼ 0.14þ0.60

−0.76
[104] (bottom row). The black solid curve shows the best-fit values and the shaded regions correspond to the 1σ, 2σ, and 3σ uncertainties.
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σE
2 ¼ σH

2

H0
2
þ H2

H0
4
σH0

2; ð36Þ

where σH0
is the error associated with H0.

We normalize the CC and BAO Hubble data with the
reconstructed H0 to obtain Eð¼ H

H0
Þ, with Eðz ¼ 0Þ ¼ 1.

These are now combined with E data obtained from the
PantheonþMCT compilation. The error uncertainties and
the covariance matrix associated with individual data sets
have been combined and taken into account. Assuming that
the E data obey a Gaussian distribution with a mean and
variance, the posterior distribution of the reconstructed
function EðzÞ and its derivatives can be expressed as a joint
Gaussian distribution of different data sets. Thus, given a
set of observational data, we have used the GP to construct
the most probable underlying continuous function EðzÞ
describing the data, along with its derivatives, and have also
obtained the associated confidence levels. Using the recon-
structed values of EðzÞ, E0ðzÞ, and E00ðzÞ in Eq. (16), the
interaction Q̃ðzÞ is reconstructed.

D. Results

In the present work, we make an attempt to get an
essence of how the reconstructed interaction function
evolves with redshift. The motivation is to find the nature
of the deviation from the zero-interaction scenario. We
reconstruct the dimensionless cosmic interaction Q̃ðzÞ
using the GP method for three choices of the dark energy
equation-of-state parameter w. Also, two choices for the
covariance function are considered. The reconstructed
interaction function Q̃ for various combinations of data
sets for each of the three dark energy models for the two
choices of covariance function are shown in Figs. 1 and 2.
The shaded regions correspond to the 68%, 95%, and
99.7% C.L., respectively, from darker to lighter shades. The
black solid line shows the curve with the best-fit values of
Q̃. Tables V–VII show the best-fit results for Q̃ðz ¼ 0Þ

along with the 1σ, 2σ, and 3σ uncertainties for all
combinations. In Figs. 3 and 4, we zoom in on the plots
for Q̃ in the range 0 < z < 0.5 to look at their behavior at
very low redshift more closely. It may be noted that
Figs. 1–4 are essentially plots of Eq. (16).
From Eq. (10) one can understand that a negative Q

indicates an energy flow from the dark energy to the dark
matter sector, and a positive Q indicates the reverse. The
plots show that the interaction function Q̃ remains close to
0, indicating no appreciable interaction for low redshift
ranges. The best-fit curve shows a small deviation towards
negative values, but the zero-interaction scenario is always
included at 2σ for most of the combinations. So the energy
gets transferred from the dark energy to the dark matter
sector, if it happens at all. This direction of the flow of
energy is consistent with the thermodynamic requirement,
as discussed by Pavón and Wang [105]. Interestingly, the
case of Q̃ < 0 guarantees that the ratio ρm

ρD
asymptotically

tends to a constant [106], and thus alleviates the coinci-
dence problem.

IV. FITTING FUNCTION FOR Q̃

In this section, an approximate fitting formula for the
reconstructed interaction is derived. This is done in the low
redshift range 0 < z < 1 using the combined data sets A1,
A2, B1, and B2. The goal is to find a simple analytic form
of Q̃ prior to the transition. As both covariance functions
yield similar results, we only choose one of them, namely,
the Matérn 9/2 covariance, as an example. We consider a
polynomial for Q̃ðzÞ as a function of redshift z as

Q̃fitðzÞ ¼
Xn
i¼0

Q̃izi: ð37Þ

We estimate the coefficients Q̃i of the above equa-
tion using the χ2 minimization, where we define the χ2

function as

TABLE V. Reconstructed value of Q̃ðz ¼ 0Þ using samples from Sets A and B for the decaying dark energy EoS given by w ¼ −1.

κðz; z̃Þ A 1 A 2 B 1 B 2

Sq. Exp −0.133þ0.126þ0.343þ0.686
−0.096−0.190−0.296 −0.162þ0.119þ0.301þ0.581

−0.088−0.170−0.261 −0.129þ0.102þ0.234þ0.417
−0.076−0.138−0.198 −0.063þ0.146þ0.331þ0.571

−0.109−0.193−0.269

Matérn 9/2 −0.085þ0.204þ0.529þ1.016
−0.145−0.280−0.429 −0.127þ0.174þ0.433þ0.812

−0.122−0.230−0.347 −0.141þ0.121þ0.280þ0.492
−0.092−0.168−0.243 −0.085þ0.168þ0.381þ0.671

−0.126−0.224−0.316

TABLE VI. Reconstructed value of Q̃ðz ¼ 0Þ using samples from Sets A and B for the wCDM model with EoS given by w ¼
−1.006� 0.045 [103].

κðz; z̃Þ A 1 A 2 B 1 B 2

Sq. Exp −0.135þ0.124þ0.335þ0.670
−0.096−0.190−0.296 −0.165þ0.116þ0.296þ0.567

−0.086−0.168−0.257 −0.133þ0.099þ0.228þ0.409
−0.075−0.136−0.197 −0.069þ0.143þ0.324þ0.564

−0.107−0.189−0.266

Matérn 9/2 −0.088þ0.202þ0.518þ1.008
−0.143−0.278−0.425 −0.130þ0.170þ0.425þ0.804

−0.120−0.229−0.345 −0.146þ0.118þ0.273þ0.488
−0.091−0.167−0.244 −0.091þ0.165þ0.376þ0.653

−0.124−0.219−0.311
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χ2 ¼
X
s

½Q̃ðzsÞ − Q̃fitðzsÞ�2
σ2ðzsÞ

: ð38Þ

We perform the fitting using a trial and error estimation
for different orders of i in Eq. (37). The value of the reduced

χ2, defined as χ2ν ¼ χ2

ν , where ν signifies the degrees of
freedom, is estimated. This procedure entails going from
order to order in the polynomial and getting the best-fitting
χ2, and truncating once χ2ν falls below one to prevent
overfitting. Again, the estimated Q̃i along with their 1σ
uncertainties are given. A comparison between the recon-
structed Q̃ðzÞ and estimated Q̃fit for various combinations
of data sets are shown in Figs. 5–8. The best-fit values of
the coefficients are shown in Tables VIII and IX.
For the A1 data set, in the redshift range 0 < z < 0.6,

Q̃fitðzÞ ¼ −0.060 − 0.322 z for w ¼ −1; ð39Þ

¼ −0.063 − 0.324 z for wCDM; ð40Þ

¼ −0.114 − 0.286 z for CPL: ð41Þ

For the A1 data set, in the redshift range 0.6 < z < 1,

Q̃fitðzÞ ¼ 0.443 − 1.865 z2 for w ¼ −1; ð42Þ

¼ 0.438 − 1.866 z2 for wCDM; ð43Þ

¼ 0.424 − 1.882 z2 for CPL: ð44Þ

For the A2 data set, in the redshift range 0 < z < 0.6,

Q̃fitðzÞ ¼ −0.110 − 0.375 z for w ¼ −1; ð45Þ

¼ −0.115 − 0.379 z for wCDM; ð46Þ

TABLE VII. Reconstructed value of Q̃ðz ¼ 0Þ using samples from Sets A and B for the CPL parametrization of dark energy with EoS
given by wðzÞ ¼ w0 þ wað z

1þzÞ, w0 ¼ −1.046þ0.179
−0.170 , and wa ¼ 0.14þ0.60

−0.76 [104].

κðz; z̃Þ A 1 A 2 B 1 B 2

Sq. Exp −0.175þ0.097þ0.249þ0.520
−0.091−0.185−0.293 −0.214þ0.087þ0.217þ0.429

−0.080−0.162−0.253 −0.202þ0.073þ0.169þ0.306
−0.061−0.117−0.177 −0.159þ0.111þ0.253þ0.448

−0.085−0.155−0.255

Matérn 9/2 −0.136þ0.157þ0.410þ0.814
−0.132−0.263−0.412 −0.187þ0.131þ0.330þ0.638

−0.108−0.214−0.331 −0.213þ0.091þ0.209þ0.374
−0.076−0.146−0.221 −0.178þ0.131þ0.299þ0.530

−0.100−0.186−0.272

FIG. 3. Plots for the reconstructed Q̃ function in the low redshift range 0 < z < 0.5 from the data set samples of Sets A and B using a
squared exponential covariance function considering the decaying dark energy EoS given by w ¼ −1 (top row), the wCDM model with
DE EoS given by w ¼ −1.006� 0.045 [103] (middle row), and the CPL parametrization of dark energy with DE EoS given by
wðzÞ ¼ w0 þ wað z

1þzÞ, w0 ¼ −1.046þ0.179
−0.170 , and wa ¼ 0.14þ0.60

−0.76 [104] (bottom row). The black solid curve shows the best-fit values and
the shaded regions correspond to the 1σ, 2σ, and 3σ uncertainties.
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¼ −0.173 − 0.336 z for CPL: ð47Þ

For the A2 data set, in the redshift range 0.6 < z < 1,

Q̃fitðzÞ ¼ 0.031 − 0.992 z2 for w ¼ −1; ð48Þ

¼ 0.025 − 0.993 z2 for wCDM; ð49Þ
¼ −0.011 − 0.973 z2 for CPL: ð50Þ

For the B1 data set, in the redshift range 0 < z < 1,

Q̃fitðzÞ ¼ −0.121 − 0.291 z for w ¼ −1; ð51Þ

FIG. 4. Plots for the reconstructed Q̃ function in the low redshift range 0 < z < 0.5 from the data set samples of Sets A and B using a
Matérn 9/2 covariance function considering the decaying dark energy EoS given by w ¼ −1 (top row), the wCDM model with DE EoS
given by w ¼ −1.006� 0.045 [103] (middle row), and the CPL parametrization of dark energy with EoS given by
wðzÞ ¼ w0 þ wað z

1þzÞ, w0 ¼ −1.046þ0.179
−0.170 , and wa ¼ 0.14þ0.60

−0.76 [104] (bottom row). The black solid curve shows the best-fit values
and the shaded regions correspond to the 1σ, 2σ, and 3σ uncertainties.

FIG. 5. Plots showing a comparison between the reconstructed interaction Q̃ðzÞ and the estimated Q̃fitðzÞ using the combined data set
A1, for EoS given by w ¼ −1 (left), wCDM model (middle), and the CPL parametrization (right). The black solid line is the
reconstructed function. The line with the marker represents the best-fit result from χ2 minimization. The 1σ C.L.s are shown as
dashed lines.
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¼ −0.126 − 0.298 z for wCDM; ð52Þ

¼ −0.196 − 0.231 z for CPL: ð53Þ

For the B2 data set, in the redshift range 0 < z < 1,

Q̃fitðzÞ ¼ −0.122þ 0.131 z for w ¼ −1; ð54Þ

¼ −0.128þ 0.124 z for wCDM; ð55Þ

¼ −0.217 − 0.225 z for CPL: ð56Þ

If we proceed to fitting with any higher-order poly-
nomial, the fitted function will not be contained within the
1σ error margin of Q̃ðzÞ reconstructed by GP.

FIG. 6. Plots showing a comparison between the reconstructed interaction Q̃ðzÞ and the estimated Q̃fitðzÞ using the combined data set
A2, for EoS given by w ¼ −1 (left), wCDM model (middle), and the CPL parametrization (right). The black solid line is the
reconstructed function. The line with the marker represents the best-fit result from χ2 minimization. The 1σ C.L.s are shown as
dashed lines.

FIG. 7. Plots showing a comparison between the reconstructed interaction Q̃ðzÞ and the estimated Q̃fitðzÞ using the combined data set
B1, for EoS given by w ¼ −1 (left), wCDM model (middle), and the CPL parametrization (right). The black solid line is the
reconstructed function. The line with the marker represents the best-fit result from χ2 minimization. The 1σ C.L.s are shown as
dashed lines.

FIG. 8. Plots showing a comparison between the reconstructed interaction Q̃ðzÞ and the estimated Q̃fitðzÞ using the combined data set
B2, for EoS given by w ¼ −1 (left), wCDM model (middle), and the CPL parametrization (right). The black solid line is the
reconstructed function. The line with the markers represents the best-fit result from χ2 minimization. The 1σ C.L.s are shown as
dashed lines.
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V. EVOLUTION OF THE COSMOLOGICAL
DENSITY PARAMETERS

With the nature of the interaction function reconstructed,
one can obtain the evolution of energy density parameters
as well. The model is a spatially flat, homogenous, and
isotropic universe where the total energy density is com-
posed of only a pressureless matter and dark energy. We
define the density parameters Ωi as

Ωm ¼ ρ̃m
E2

; ð57Þ

ΩD ¼ ρ̃D
E2

; ð58Þ

such that Ωm þ ΩD ¼ 1.
We make use of Eq. (14) and rewrite it as

dρ̃m
dz

−
3ρ̃m
1þ z

¼ Q̃
Eð1þ zÞ : ð59Þ

One can see that Eq. (59) is a linear first-order nonhomo-
geneous differential equation of the form

dy
dz

þ AðzÞy ¼ BðzÞ; ð60Þ

with AðzÞ ¼ − 3
1þz and BðzÞ ¼ Q̃

Eð1þzÞ. The integrating factor

for Eq. (60) is given by e
R

AðzÞdz, and the general solution is

y ¼ e−
R

Adz
Z

ðBe
R

AdzÞdzþ C; ð61Þ

where C is the constant of integration.
Similarly, we solve for Eq. (59) and arrive at an

expression for the reduced matter density ρ̃m,

ρ̃m ¼ ρ̃m0ð1þ zÞ3 þ ð1þ zÞ3
Z

z

0

Q̃
E
ð1þ zÞ−4dz: ð62Þ

If Q̃ ¼ 0, Eq. (62) reduces to the relation ρ̃m ¼ ρ̃m0ð1þ zÞ3
[where ρ̃m0 ¼ ρ̃mðz ¼ 0Þ] which is the standard evolution
scenario for a pressureless matter that evolves independ-
ently. One can now write the density parameters with the
help of Eqs. (57)–(58) as

Ωm ¼ ρ̃m0ð1þ zÞ3
E2

þ ð1þ zÞ3
E2

Z
z

0

Q̃
Eð1þ zÞ4 dz; ð63Þ

ΩD ¼ 1 −Ωm: ð64Þ

With the smooth functions of EðzÞ and Q̃ðzÞ recon-
structed from the combined data sets, we use the trapezoi-
dal rule [107] to calculate the integral

fðzÞ ¼
Z

z

0

Q̃
E
ð1þ zÞ−4dz

¼
Z

z

0

gðzÞdz

≃
1

2

Xn
i¼0

ðziþ1 − ziÞ½gðziþ1Þ þ gðziÞ�; ð65Þ

TABLE VIII. Q̃i for best-fit Q̃fit ¼ Q̃0 þ Q̃1z in the redshift range 0 < z < 0.6 and Q̃fit ¼ Q̃0 þ Q̃2z2 in the redshift range 0.6 <
z < 1 for data sets A1 and A2.

EoS Data sets Q̃0 Q̃1 Data sets Q̃0 Q̃2

w ¼ −1 A1 ð0 < z < 0.6Þ −0.060þ0.180
−0.180 −0.322þ0.516

−0.514 A1 ð0.6 < z < 1Þ 0.443þ0.329
−0.383 −1.865þ0.558

−0.481
wCDM A1 ð0 < z < 0.6Þ −0.063þ0.180

−0.180 −0.324þ0.516
−0.516 A1 ð0.6 < z < 1Þ 0.438þ0.332

−0.383 −1.866þ0.558
−0.484

CPL A1 ð0 < z < 0.6Þ −0.114þ0.180
−0.180 −0.286þ0.515

−0.518 A1 ð0.6 < z < 1Þ 0.434þ0.336
−0.385 −1.883þ0.561

−0.491

w ¼ −1 A2 ð0 < z < 0.6Þ −0.110þ0.180
−0.180 −0.375þ0.517

−0.516 A2 ð0.6 < z < 1Þ 0.031þ0.400
−0.401 −0.992þ0.586

−0.583
wCDM A2 ð0 < z < 0.6Þ −0.115þ0.179

−0.180 −0.379þ0.517
−0.516 A2 ð0.6 < z < 1Þ 0.025þ0.401

−0.401 −0.993þ0.586
−0.583

CPL A2 ð0 < z < 0.6Þ −0.173þ0.180
−0.179 −0.336þ0.517

−0.517 A2 ð0.6 < z < 1Þ −0.011þ0.401
−0.400 −0.973þ0.582

−0.584

TABLE IX. Q̃i for best-fit Q̃fit ¼ Q̃0 þ Q̃1z in the redshift range 0 < z < 1 for data sets B1 and B2.

EoS Data sets Q̃0 Q̃1 Data sets Q̃0 Q̃1

w ¼ −1 B1 ð0 < z < 1Þ −0.121þ0.153
−0.153 −0.291þ0.262

−0.263 B2 ð0 < z < 1Þ −0.122þ0.153
−0.153 0.131þ0.263

−0.263
wCDM B1 ð0 < z < 1Þ −0.126þ0.152

−0.153 −0.298þ0.264
−0.262 B2 ð0 < z < 1Þ −0.128þ0.153

−0.153 0.124þ0.264
−0.263

CPL B1 ð0 < z < 1Þ −0.196þ0.153
−0.153 −0.231þ0.263

−0.263 B2 ð0 < z < 1Þ −0.217þ0.153
−0.153 0.225þ0.263

−0.263
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where gðzÞ ¼ Q̃
E ð1þ zÞ−4. The uncertainty in fðzÞ is

obtained using the error propagation formula,

σ2f ¼ 1

4

Xn
i¼0

ðziþ1 − ziÞ2½σ2giþ1
þ σ2gi �; ð66Þ

where the contributions from the uncertainties in Q̃ and E
have been included.
We plot the density parameters Ωm and ΩD using

Eqs. (57) and (58). We choose the value ρ̃m0 ¼ 0.3, i.e.,
Ωm0 ¼ 0.3

Eð0Þ2. The plots are shown in Figs. 9 and 10 for the

two choices of the covariance function.
For the three different choices of the interacting dark

energy models, the evolutions of the density parameters are
found to be qualitatively similar and also not too sensitive
to the choice of the data sets. This feature hardly depends
on the choice of the covariance function, except for the fact
that the use of the Matérn 9/2 covariance function brings
the transition to dark energy dominance a bit closer to
z ¼ 0.5. One intriguing common feature to note is that for
the interacting models, ΩD takes over as the dominant role
overΩm later in the evolution (closer to z ¼ 0) compared to
the corresponding ΛCDM model.

One can note that the transition from a matter-dominated
phase to a dark-energy-dominated phase occurs within the
redshift range 0.5 < z < 1.

VI. THERMODYNAMICS OF THE INTERACTION

For the thermodynamic properties of the model, we
consider the universe as a system that is bounded by some
cosmological horizon, and the matter content of the
universe is enclosed within a volume defined by a radius
not bigger than the horizon. It is worth mentioning that this
idea primarily originated from the consideration of black
hole thermodynamics, which is equally valid for a cosmo-
logical horizon [3,108,109]. However, in an evolving
scenario such as in cosmology, an apparent horizon is
more relevant than an event horizon. An apparent horizon is
given by the equation gμνR;μR;ν ¼ 0. For a spatially flat
FLRW universe, this equation tells us that the apparent
horizon (rh) is in fact the Hubble horizon,

rh ¼
1

H
: ð67Þ

This serves the purpose of recovering the first law of
thermodynamics. For a comprehensive description, we

FIG. 9. Plots for the dark energy density ΩD and the matter density Ωm from the data set samples of Set A1 (column 1), Set
A2 (column 2), Set B1 (column 3), and Set B2 (column 4) using a squared exponential covariance function considering the decaying
dark energy EoS given by w ¼ −1 (top row), the wCDMmodel with DE EoS given by w ¼ −1.006� 0.045 [103] (middle row), and the
CPL parametrization of dark energy with EoS given by wðzÞ ¼ w0 þ wað z

1þzÞ, w0 ¼ −1.046þ0.179
−0.170 , and wa ¼ 0.14þ0.60

−0.76 [104] (bottom
row). The black solid curve corresponds to Ωm while the black dashed line represents ΩD. The 1σ and 2σ uncertainties in Ωm are shown
by the dark and light shaded regions, and those of ΩD are given by the regions bounded with dashed-dotted and dotted lines,
respectively. The line drawn with circles represents Ωm and the line with cross markers is that of ΩD, for the ΛCDM model.
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refer to the work of Ferreira and Pavón [110] and the
monograph by Faraoni [111].
For the second law to be valid, the entropy S should be

nondecreasing with respect to the expansion of the uni-
verse. If Sf and Sh stand for the entropy of the fluid and that
of the horizon containing the fluid, respectively, then the
total entropy of the system, i.e., S ¼ Sf þ Sh, should satisfy
the relation

dS
dx

≥ 0; ð68Þ

where x ¼ ln a, with a being the scale factor of the
universe. For an approach to equilibrium, the condition is

d2S
dx2

< 0: ð69Þ

With the apparent horizon as the cosmological horizon,
the entropy of the horizon Sh can be written as [112]

Sh ¼ 8π2r2h ¼
8π2

H2
: ð70Þ

Further, the temperature of the dynamical apparent horizon
is related to the horizon radius by the relation

Th ¼
1

2πrh

�
1 −

_rh
2Hrh

�
¼ 2H2 þ _H

4πH
; ð71Þ

which is called the Hayward-Kodama temperature
[113,114]. As the cosmological horizon is evolving, the
Hawking temperature is replaced by Hayward-Kodama
temperature (see Ref. [111]).
Now, if we denote Sf ¼ Sm þ SD, where Sm and SD are

the entropies of the matter sector and dark energy sector,
with T being the temperature of the composite matter
distribution inside the horizon, then the first law of
thermodynamics TdS ¼ dEþ pdV can be recast for the
individual matter components in the following form:

TdSm ¼ dEm þ pmdV ¼ dEm; ð72Þ

TdSD ¼ dED þ pDdV; ð73Þ

where V ¼ 4
3
πr3h ¼ 4π

3H2 is the fluid volume. Em and ED

represent the internal energies of the dark matter and
energy components, given by Em ¼ 4

3
πr3hρm ¼ ρmV and

ED ¼ 4
3
πr3hρD ¼ ρDV, respectively. Now, differentiating

Eqs. (70), (72), and (73) with respect to cosmic time t along

FIG. 10. Plots for the dark energy density ΩD and the matter density Ωm from the data set samples of Set A1 (column 1), Set
A2 (column 2), Set B1 (column 3), and Set B2 (column 4) using a Matérn 9/2 covariance function considering the decaying dark energy
EoS given by w ¼ −1 (top row), the wCDM model with DE EoS given by w ¼ −1.006� 0.045 [103] (middle row), and the CPL
parametrization of dark energy with EoS given by wðzÞ ¼ w0 þ wað z

1þzÞ, w0 ¼ −1.046þ0.179
−0.170 , and wa ¼ 0.14þ0.60

−0.76 [104] (bottom row).
The black solid curve corresponds toΩm while the black dashed line representsΩD. The 1σ and 2σ uncertainties inΩm are shown by the
dark and light shaded regions, and those of ΩD are given by the regions bounded with dashed-dotted and dotted lines, respectively. The
line drawn with circles represents Ωm and the line with cross markers is that of ΩD, for the ΛCDM model.
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with the assumption that T should be equal to Th [Eq. (71)],
we get

_Sm þ _SD ¼ 16π2
_H
H3

�
1þ

_H

2H2 þ _H

�
; ð74Þ

_Sh ¼ −16π2
_H
H3

: ð75Þ

Therefore,

_S ¼ _Sm þ _SD þ _Sh ¼ 16π2
_H2

H3

�
1

2H2 þ _H

�
: ð76Þ

One should note that it may not always be justified to
assume that the fluid temperature is equal to the horizon
temperature. This assumption is particularly unjustified for
a radiation distribution that obeys Stefan’s law. However,

for pressureless matter the equality of T and Th is valid, and
for dark energy this equality is at least approximately
correct. Thus, in the present context, this assumption is not
at all drastic. For an account of this justification, we refer to
the work of Mimoso and Pavón [115].
The relation (76) can be written with x as the argument,

where x ¼ ln a ¼ − lnð1þ zÞ, as

dS
dx

¼ 16π2

H4

�
dH
dx

�
2

ΨðxÞ; ð77Þ

where

ΨðxÞ ¼
�
2þ 1

H
dH
dx

�
−1
: ð78Þ

Again, upon differentiating Eq. (77) with respect to x,
one obtains

FIG. 11. Plots for Ψ from the data set samples of Sets A and B using a squared exponential covariance (top row) and the Matérn 9/2
covariance function. The solid black line gives the best-fit values of Ψ. The shaded region corresponds to the 1σ uncertainty.

FIG. 12. Plots for Φ from the data set samples of Sets A and B using a squared exponential covariance (top row) and the Matérn 9/2
covariance function. The solid black line gives the best-fit values of Φ. The shaded region corresponds to the 1σ uncertainty.
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d2S
dx2

¼ 16π2Ψ2

H4

�
dH
dx

�
2

ΦðxÞ; ð79Þ

where

Φ ¼
�
1

H
d2H
dx2

−
3

H2

�
dH
dx

�
2

þ 4
dH
dx

d2H
dx2

−
8

H
dH
dx

�
: ð80Þ

From Eq. (77) we see that for the inequality (68) to hold
true, the required condition is Ψ ≥ 0. Equation (79) shows
that the condition (69) will be satisfied provided that
Φ < 0. We try to understand the behavior of Ψ and Φ
by plotting them in Figs. 11 and 12, respectively, as
functions of x, where x ¼ − lnð1þ zÞ.
The plots in Fig. 11 show that Ψ remains positive at 1σ

throughout the domain of reconstruction 0 < z < 2. Thus,
the second law of thermodynamics is indeed satisfied for
the reconstructed scenario. From Fig. 12 the plots reveal
that Φ was positive in the past, but as we approach the
present epoch the value of Φ decreases gradually and
changes its signature. The best-fit value Φ becomes
negative as x increases. This hints towards a possibility
that the universe is undergoing a change from a thermo-
dynamic nonequilibrium in the past towards an equilibrium
state in the present epoch.

VII. DISCUSSION

It is argued quite often that the possibility of a non-
gravitational interaction in the cosmic dark sector should
not be ruled out a priori. As the nature of dark energy is not
known, it is impossible to model the interaction theoreti-
cally. The normal practice is to assume a transfer of energy
between dark matter and dark energy and write the rate of
transfer Q as a function of the densities ρD or ρm, or both,
and even their derivatives [116], and thus parametrize Q.
The next step is to reconstruct the model parameters using
the observational data. This is indeed biased in a way, as the
functional form of Q is already chosen.
The present work employed the widely practiced

Gaussian process and made an attempt to reconstruct the
transfer of energy Q in a dimensionless representation

(defined as Q̃ ¼ Q
3H2

0

) directly from observational data sets

without any parametrization. Thus, no functional form ofQ
was assumed. Various combinations of data sets were
utilized, properly described in Sec. III. There have been
only a few investigations on a nonparametric reconstruction
of Q, as mentioned in the Introduction. The primary
difference between the present work and the existing
literature is that we used more recent data sets and
investigated three different versions of dark energy. They
are (i) an interacting vacuum with w ¼ −1, (ii) a wCDM
model where w is close to but not exactly equal to −1, and
(iii) the CPL parametrization where wðzÞ ¼ w0 þ wa

z
1þz.

The universal feature that we found is that for any of these
choices and any combination of data sets, an interaction in
the dark sector is not significant at the present epoch. The
interaction may not be ruled out in the past, beyond z ≥ 0.5,
but a zero Q is indeed a possibility normally in 2σ and at
most in 3σ. This result is different from the oscillatory
behavior, as noted by Cai and Su [18]. Our result is closer
to that given by Wang et al. [62] where a nonparametric
Bayesian approach indicated that an interacting vacuum is
not preferred.
An analytic expression for the energy transfer rate Q in

the form of a polynomial in z was given in Sec. IV. The
reduced χ2 test allowed up to second order in z for some
combinations (A1 and A2) and only up to first order in z for
the other two combinations (B1 and B2) of data sets.
The evolution of the density parametersΩm andΩD were

also checked in the presence of the interaction in the dark
sector. The common feature that arose was that the
dominance of dark energy is delayed a bit (closer to z ¼ 0).
The thermodynamic considerations reveal an interesting

possibility. While the reconstructed interaction does not
infringe upon the thermodynamic viability in terms of the
increase in entropy, the universe seems to be evolving
towards a thermodynamic equilibrium only from the recent
past, namely, x ∼ −0.5, i.e., close to z ∼ 0.6.

ACKNOWLEDGMENTS

P. M. thanks her colleagues for lively discussions.

[1] A. G. Riess et al. (Supernova Search Team Collaboration),
Astron. J. 116, 1009 (1998).

[2] S. Perlmutter et al. (Supernova Cosmology Project
Collaboration), Astrophys. J. 517, 565 (1999).

[3] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[4] P. J. E. Peebles andB.Ratra, Rev.Mod. Phys. 75, 559 (2003).
[5] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[6] P. Brax, Rep. Prog. Phys. 81, 016902 (2018).

[7] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.
Phys. D 15, 1753 (2006).

[8] V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 15, 2105
(2006).

[9] I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82,
896 (1999).

[10] R. N. Henriksen, Phys. Lett. 119B, 85 (1982).
[11] T. Olson and T. F. Jordan, Phys. Rev. D 35, 3258 (1987).

PURBA MUKHERJEE and NARAYAN BANERJEE PHYS. REV. D 103, 123530 (2021)

123530-16

https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1016/S0370-1573(03)00120-0
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1088/1361-6633/aa8e64
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1142/S0218271806009704
https://doi.org/10.1142/S0218271806009704
https://doi.org/10.1103/PhysRevLett.82.896
https://doi.org/10.1103/PhysRevLett.82.896
https://doi.org/10.1016/0370-2693(82)90249-0
https://doi.org/10.1103/PhysRevD.35.3258


[12] G. R. Farrar and P. J. E. Peebles, Astrophys. J. 604, 1
(2004).

[13] R.-G. Cai and A. Wang, J. Cosmol. Astropart. Phys. 03
(2005) 002.

[14] L. Amendola, G. C. Campos, and R. Rosenfeld, Phys. Rev.
D 75, 083506 (2007).

[15] Z.-K. Guo, N. Ohta, and S. Tsujikawa, Phys. Rev. D 76,
023508 (2007).

[16] J. H. He and B. Wang, J. Cosmol. Astropart. Phys. 06
(2008) 010.

[17] G. Caldera-Cabral, R. Maartens, and L. A. Urena-Lopez,
Phys. Rev. D 79, 063518 (2009).

[18] R.-G. Cai and Q. Su, Phys. Rev. D 81, 103514 (2010).
[19] L. L. Honorez, B. A. Reid, O. Mena, L. Verde, and R.

Jimenez, J. Cosmol. Astropart. Phys. 09 (2010) 029.
[20] D. Bessada and O. D. Miranda, Phys. Rev. D 88, 083530

(2013).
[21] W. Yang and L. Xu, Phys. Rev. D 89, 083517 (2014).
[22] A. Paliathanasis and M. Tsamparlis, Phys. Rev. D 90,

043529 (2014).
[23] D. G. A. Duniya, D. Bertacca, and R. Maartens, Phys. Rev.

D 91, 063530 (2015).
[24] J. Valiviita and E. Palmgren, J. Cosmol. Astropart. Phys.

07 (2015) 015.
[25] S. del Campo, R. Herrera, and D. Pavn, Phys. Rev. D 91,

123539 (2015).
[26] A. Mukherjee, J. Cosmol. Astropart. Phys. 11 (2016) 055.
[27] S. Pan and G. S. Sharov, Mon. Not. R. Astron. Soc. 472,

4736 (2017).
[28] A. Mukherjee and N. Banerjee, Classical Quantum Gravity

34, 035016 (2017).
[29] S. Pan, A. Mukherjee, and N. Banerjee, Mon. Not. R.

Astron. Soc. 477, 1189 (2018).
[30] P. Mukherjee, A. Mukherjee, H. K. Jassal, A. Dasgupta,

and N. Banerjee, Eur. Phys. J. Plus 134, 147 (2019).
[31] G. S. Sharov, S. Bhattacharya, S. Pan, R. C. Nunes, and S.

Chakraborty, Mon. Not. R. Astron. Soc. 466, 3497 (2017).
[32] S. D. Odintsov, V. K. Oikonomou, and P. V. Tretyakov,

Phys. Rev. D 96, 044022 (2017).
[33] W. Yang, N. Banerjee, and S. Pan, Phys. Rev. D 95,

123527 (2017).
[34] E. Di Valentino, A. Melchiorri, and O. Mena, Phys. Rev. D

96, 043503 (2017).
[35] W. Yang, S. Pan, and J. D. Barrow, Phys. Rev. D 97,

043529 (2018).
[36] W. Yang, S. Pan, and D. F. Mota, Phys. Rev. D 96, 123508

(2017).
[37] V. Salvatelli, N. Said, M. Bruni, A. Melchiorri, and D.

Wands, Phys. Rev. Lett. 113, 181301 (2014).
[38] W. Yang and L. Xu, Phys. Rev. D 90, 083532 (2014).
[39] W. Yang and L. Xu, J. Cosmol. Astropart. Phys. 08 (2014)

034.
[40] R. C. Nunes, S. Pan, and E. N. Saridakis, Phys. Rev. D 94,

023508 (2016).
[41] S. Kumar and R. C. Nunes, Phys. Rev. D 94, 123511

(2016).
[42] W. Yang, H. Li, Y. Wu, and J. Lu, J. Cosmol. Astropart.

Phys. 10 (2016) 007.
[43] A. Pourtsidou and T. Tram, Phys. Rev. D 94, 043518

(2016).

[44] B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavón,
Rep. Prog. Phys. 79, 096901 (2016).

[45] M. Sahlén, A. R. Liddle, and D. Parkinson, Phys. Rev. D
72, 083511 (2005).

[46] M. Sahlén, A. R. Liddle, and D. Parkinson, Phys. Rev. D
75, 023502 (2007).

[47] T. Holsclaw, U. Alam, B. Sansó, H. Lee, K. Heitmann,
S. Habib, and D. Higdon, Phys. Rev. D 82, 103502
(2010).

[48] T. Holsclaw, U. Alam, B. Sansó, H. Lee, K. Heitmann, S.
Habib, and D. Higdon, Phys. Rev. Lett. 105, 241302
(2010).

[49] T. Holsclaw, U. Alam, B. Sansó, H. Lee, K. Heitmann, S.
Habib, and D. Higdon, Phys. Rev. D 84, 083501 (2011).

[50] R. G. Crittenden, G. B. Zhao, L. Pogosian, L. Samushia,
and X. Zhang, J. Cosmol. Astropart. Phys. 02 (2012) 048.

[51] R. Nair, S. Jhingan, and D. Jain, J. Cosmol. Astropart.
Phys. 01 (2014) 005.

[52] Z. Zhang, G. Gu, X. Wang, Y.-H. Li, C. G. Sabiu, H. Park,
H. Miao, X. Luo, F. Fang, and X.-D. Li, Astron. J. 878, 137
(2019).

[53] M. Bilicki and M. Seikel, Mon. Not. R. Astron. Soc. 425,
1664 (2012).

[54] H.-N. Lin, X. Li, and L. Tang, Chin. Phys. C 43, 075101
(2019).

[55] M.-J. Zhang and J.-Q. Xia, J. Cosmol. Astropart. Phys. 12
(2016) 005.

[56] R. C. Nunes, S. K. Yadav, J. F. Jesus, and A. Bernui, Mon.
Not. R. Astron. Soc. 497, 2133 (2020).

[57] C. A. P. Bengaly, Mon. Not. R. Astron. Soc. 499, L6
(2020).

[58] J. F. Jesus, R. Valentim, A. A. Escobal, and S. H. Pereira,
J. Cosmol. Astropart. Phys. 04 (2020) 053.

[59] R. Arjona and S. Nesseris, Phys. Rev. D 101, 123525
(2020).

[60] P. Mukherjee and N. Banerjee, arXiv:2007.15941.
[61] P. Mukherjee and N. Banerjee, Eur. Phys. J. C 81, 36

(2021).
[62] Y. Wang, G. B. Zhao, D. Wands, L. Pogosian, and R. G.

Crittenden, Phys. Rev. D 92, 103005 (2015).
[63] T. Yang, Z.-K. Guo, and R.-G. Cai, Phys. Rev. D 91,

123533 (2015).
[64] R.-G. Cai, N. Tamaninic, and T. Yang, J. Cosmol.

Astropart. Phys. 05 (2017) 031.
[65] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D10, 213

(2001).
[66] C. Rasmussen and C. Williams, Gaussian Processes for

Machine Learning (The MIT Press, Cambridge, MA,
2006).

[67] D. MacKay, Information Theory, Inference and Learning
Algorithms (Cambridge University Press, Cambridge,
England, 2003), Chap. 45.

[68] C. Williams, Prediction with Gaussian processes: From
linear regression to linear prediction and beyond, in
Learning in Graphical Models, edited by M. I. Jordan
(The MIT Press, Cambridge, MA, 1999), pp. 599–621.

[69] M. Seikel, C. Clarkson, and M. Smith, J. Cosmol.
Astropart. Phys. 06 (2012) 036.

[70] A. Shafieloo, A. G. Kim, and E. V. Linder, Phys. Rev. D
85, 123530 (2012).

NONPARAMETRIC RECONSTRUCTION OF INTERACTION IN … PHYS. REV. D 103, 123530 (2021)

123530-17

https://doi.org/10.1086/381728
https://doi.org/10.1086/381728
https://doi.org/10.1088/1475-7516/2005/03/002
https://doi.org/10.1088/1475-7516/2005/03/002
https://doi.org/10.1103/PhysRevD.75.083506
https://doi.org/10.1103/PhysRevD.75.083506
https://doi.org/10.1103/PhysRevD.76.023508
https://doi.org/10.1103/PhysRevD.76.023508
https://doi.org/10.1088/1475-7516/2008/06/010
https://doi.org/10.1088/1475-7516/2008/06/010
https://doi.org/10.1103/PhysRevD.79.063518
https://doi.org/10.1103/PhysRevD.81.103514
https://doi.org/10.1088/1475-7516/2010/09/029
https://doi.org/10.1103/PhysRevD.88.083530
https://doi.org/10.1103/PhysRevD.88.083530
https://doi.org/10.1103/PhysRevD.89.083517
https://doi.org/10.1103/PhysRevD.90.043529
https://doi.org/10.1103/PhysRevD.90.043529
https://doi.org/10.1103/PhysRevD.91.063530
https://doi.org/10.1103/PhysRevD.91.063530
https://doi.org/10.1088/1475-7516/2015/07/015
https://doi.org/10.1088/1475-7516/2015/07/015
https://doi.org/10.1103/PhysRevD.91.123539
https://doi.org/10.1103/PhysRevD.91.123539
https://doi.org/10.1088/1475-7516/2016/11/055
https://doi.org/10.1093/mnras/stx2278
https://doi.org/10.1093/mnras/stx2278
https://doi.org/10.1088/1361-6382/aa54c8
https://doi.org/10.1088/1361-6382/aa54c8
https://doi.org/10.1093/mnras/sty755
https://doi.org/10.1093/mnras/sty755
https://doi.org/10.1140/epjp/i2019-12504-7
https://doi.org/10.1093/mnras/stw3358
https://doi.org/10.1103/PhysRevD.96.044022
https://doi.org/10.1103/PhysRevD.95.123527
https://doi.org/10.1103/PhysRevD.95.123527
https://doi.org/10.1103/PhysRevD.96.043503
https://doi.org/10.1103/PhysRevD.96.043503
https://doi.org/10.1103/PhysRevD.97.043529
https://doi.org/10.1103/PhysRevD.97.043529
https://doi.org/10.1103/PhysRevD.96.123508
https://doi.org/10.1103/PhysRevD.96.123508
https://doi.org/10.1103/PhysRevLett.113.181301
https://doi.org/10.1103/PhysRevD.90.083532
https://doi.org/10.1088/1475-7516/2014/08/034
https://doi.org/10.1088/1475-7516/2014/08/034
https://doi.org/10.1103/PhysRevD.94.023508
https://doi.org/10.1103/PhysRevD.94.023508
https://doi.org/10.1103/PhysRevD.94.123511
https://doi.org/10.1103/PhysRevD.94.123511
https://doi.org/10.1088/1475-7516/2016/10/007
https://doi.org/10.1088/1475-7516/2016/10/007
https://doi.org/10.1103/PhysRevD.94.043518
https://doi.org/10.1103/PhysRevD.94.043518
https://doi.org/10.1088/0034-4885/79/9/096901
https://doi.org/10.1103/PhysRevD.72.083511
https://doi.org/10.1103/PhysRevD.72.083511
https://doi.org/10.1103/PhysRevD.75.023502
https://doi.org/10.1103/PhysRevD.75.023502
https://doi.org/10.1103/PhysRevD.82.103502
https://doi.org/10.1103/PhysRevD.82.103502
https://doi.org/10.1103/PhysRevLett.105.241302
https://doi.org/10.1103/PhysRevLett.105.241302
https://doi.org/10.1103/PhysRevD.84.083501
https://doi.org/10.1088/1475-7516/2012/02/048
https://doi.org/10.1088/1475-7516/2014/01/005
https://doi.org/10.1088/1475-7516/2014/01/005
https://doi.org/10.3847/1538-4357/ab1ea4
https://doi.org/10.3847/1538-4357/ab1ea4
https://doi.org/10.1111/j.1365-2966.2012.21575.x
https://doi.org/10.1111/j.1365-2966.2012.21575.x
https://doi.org/10.1088/1674-1137/43/7/075101
https://doi.org/10.1088/1674-1137/43/7/075101
https://doi.org/10.1088/1475-7516/2016/12/005
https://doi.org/10.1088/1475-7516/2016/12/005
https://doi.org/10.1093/mnras/staa2036
https://doi.org/10.1093/mnras/staa2036
https://doi.org/10.1093/mnrasl/slaa040
https://doi.org/10.1093/mnrasl/slaa040
https://doi.org/10.1088/1475-7516/2020/04/053
https://doi.org/10.1103/PhysRevD.101.123525
https://doi.org/10.1103/PhysRevD.101.123525
https://arXiv.org/abs/2007.15941
https://doi.org/10.1140/epjc/s10052-021-08830-5
https://doi.org/10.1140/epjc/s10052-021-08830-5
https://doi.org/10.1103/PhysRevD.92.103005
https://doi.org/10.1103/PhysRevD.91.123533
https://doi.org/10.1103/PhysRevD.91.123533
https://doi.org/10.1088/1475-7516/2017/05/031
https://doi.org/10.1088/1475-7516/2017/05/031
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1088/1475-7516/2012/06/036
https://doi.org/10.1088/1475-7516/2012/06/036
https://doi.org/10.1103/PhysRevD.85.123530
https://doi.org/10.1103/PhysRevD.85.123530


[71] S. Yahya, M. Seikel, C. Clarkson, R. Maartens, and M.
Smith, Phys. Rev. D 89, 023503 (2014).

[72] S. Santos-da Costa, V. C. Busti, and R. F. Holanda,
J. Cosmol. Astropart. Phys. 10 (2015) 061.

[73] R.-G. Cai, Z.-K. Guo, and T. Yang, Phys. Rev. D 93,
043517 (2016).

[74] D. Wang and X.-H. Meng, Phys. Rev. D 95, 023508 (2017).
[75] D. Wang, W. Zhang, and X.-H. Meng, Eur. Phys. J. C 79,

211 (2019).
[76] http://www.gaussianprocess.org
[77] M. Seikel and C. Clarkson, arXiv:1311.6678.
[78] https://github.com/carlosandrepaes/GaPP
[79] C. Zhang, H. Zhang, S. Yuan, T.-J. Zhang, and Y.-C. Sun,

Res. Astron. Astrophys. 14, 1221 (2014).
[80] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and

S. A. Stanford, J. Cosmol. Astropart. Phys. 02 (2010) 008.
[81] M. Moresco et al., J. Cosmol. Astropart. Phys. 08 (2012)

006.
[82] M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C.

Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, and
D. Wilkinson, J. Cosmol. Astropart. Phys. 05 (2016) 014.

[83] A. L. Ratsimbazafy, S. I. Loubser, S. M. Crawford, C. M.
Cress, B. A. Bassett, R. C. Nichol, and P. Visnen, Mon.
Not. R. Astron. Soc. 467, 3239 (2017).

[84] M. Moresco, Mon. Not. R. Astron. Soc. 450, L16 (2015).
[85] M. Ĺopez-Corredoira, A. Vazdekis, C. M. Gutíerrez, and

N. Castro-Rodŕguez, Astron. Astrophys. 600, A91 (2017).
[86] M. Ĺopez-Corredoira and A. Vazdekis, Astron. Astrophys.

614, A127 (2018).
[87] M. Moresco, R. Jimenez, L. Verde, L. Pozzetti, A. Cimatti,

and A. Citro, Astrophys. J. 868, 84 (2018).
[88] A. G. Riess et al., Astrophys. J. 853, 126 (2018).
[89] E. Gaztanaga, A. Cabre, and L. Hui, Mon. Not. R. Astron.

Soc. 399, 1663 (2009).
[90] A. Oka, S. Saito, T. Nishimichi, A. Taruya, and K.

Yamamoto, Mon. Not. R. Astron. Soc. 439, 2515 (2014).
[91] Y. Wang et al. (BOSS Collaboration), Mon. Not. R.

Astron. Soc. 469, 3762 (2017).
[92] C.-H. Chuang and Y. Wang, Mon. Not. R. Astron. Soc.

435, 255 (2013).
[93] S. Alam et al. (BOSS Collaboration), Mon. Not. R. Astron.

Soc. 470, 2617 (2017).
[94] C. Blake, S. Brough, M. Colless et al., Mon. Not. R.

Astron. Soc. 425, 405 (2012).

[95] N. G. Busca, T. Delubac, J. Rich et al., Astron. Astrophys.
552, A96 (2013).

[96] C.-H. Chuang et al., Mon. Not. R. Astron. Soc. 433, 3559
(2013).

[97] L. Anderson et al. (BOSS Collaboration), Mon. Not. R.
Astron. Soc. 441, 24 (2014).

[98] J. E. Bautista et al., Astron. Astrophys. 603, A12
(2017).

[99] T. Delubac et al. (BOSS Collaboration), Astron.
Astrophys. 574, A59 (2015).

[100] A. Font-Ribera et al. (BOSS Collaboration), J. Cosmol.
Astropart. Phys. 05 (2014) 027.

[101] G.-B. Zhao et al., Mon. Not. R. Astron. Soc. 482, 3497
(2019).

[102] H. M. Bourboux et al., Astron. Astrophys. 608, A130
(2017).

[103] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 594, A13 (2016).

[104] N. Suzuki, D. Rubin, C. Lidman et al., Astrophys. J. 746,
85 (2012).

[105] D. Pavón and B. Wang, Gen. Relativ. Gravit. 41, 1 (2009).
[106] L. P. Chimento and D. Pavón, Phys. Rev. D 73, 063511

(2006).
[107] R. Holanda, J. Carvalho, and J. Alcaniz, J. Cosmol.

Astropart. Phys. 04 (2013) 027.
[108] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738

(1977).
[109] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
[110] P. C. Ferreira and D. Pavón, Eur. Phys. J. C 76, 37

(2016).
[111] V. Faraoni, Cosmological and Black Hole Apparent

Horizons (Springer International Publishing, Switzerland,
2015).

[112] D. Bak and S. J. Rey, Classical Quantum Gravity 17, L83
(2000).

[113] S. A. Hayward, Classical Quantum Gravity 15, 3147
(1998).

[114] S. A. Hayward, R. Di Criscienzo, L. Vanzo, M. Nadalini,
and S. Zerbini, Classical Quantum Gravity 26, 062001
(2009).

[115] J. P. Mimoso and D. Pavón, Phys. Rev. D 94, 103507
(2016).

[116] W. Yang, N. Banerjee, A. Paliathanasis, and S. Pan, Phys.
Dark Universe 26, 100383 (2019).

PURBA MUKHERJEE and NARAYAN BANERJEE PHYS. REV. D 103, 123530 (2021)

123530-18

https://doi.org/10.1103/PhysRevD.89.023503
https://doi.org/10.1088/1475-7516/2015/10/061
https://doi.org/10.1103/PhysRevD.93.043517
https://doi.org/10.1103/PhysRevD.93.043517
https://doi.org/10.1103/PhysRevD.95.023508
https://doi.org/10.1140/epjc/s10052-019-6726-3
https://doi.org/10.1140/epjc/s10052-019-6726-3
http://www.gaussianprocess.org
http://www.gaussianprocess.org
http://www.gaussianprocess.org
https://arXiv.org/abs/1311.6678
https://github.com/carlosandrepaes/GaPP
https://github.com/carlosandrepaes/GaPP
https://doi.org/10.1088/1674-4527/14/10/002
https://doi.org/10.1088/1475-7516/2010/02/008
https://doi.org/10.1088/1475-7516/2012/08/006
https://doi.org/10.1088/1475-7516/2012/08/006
https://doi.org/10.1088/1475-7516/2016/05/014
https://doi.org/10.1093/mnras/stx301
https://doi.org/10.1093/mnras/stx301
https://doi.org/10.1093/mnrasl/slv037
https://doi.org/10.1051/0004-6361/201629857
https://doi.org/10.1051/0004-6361/201731647
https://doi.org/10.1051/0004-6361/201731647
https://doi.org/10.3847/1538-4357/aae829
https://doi.org/10.3847/1538-4357/aaa5a9
https://doi.org/10.1111/j.1365-2966.2009.15405.x
https://doi.org/10.1111/j.1365-2966.2009.15405.x
https://doi.org/10.1093/mnras/stu111
https://doi.org/10.1093/mnras/stx1090
https://doi.org/10.1093/mnras/stx1090
https://doi.org/10.1093/mnras/stt1290
https://doi.org/10.1093/mnras/stt1290
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1111/j.1365-2966.2012.21473.x
https://doi.org/10.1111/j.1365-2966.2012.21473.x
https://doi.org/10.1051/0004-6361/201220724
https://doi.org/10.1051/0004-6361/201220724
https://doi.org/10.1093/mnras/stt988
https://doi.org/10.1093/mnras/stt988
https://doi.org/10.1093/mnras/stu523
https://doi.org/10.1093/mnras/stu523
https://doi.org/10.1051/0004-6361/201730533
https://doi.org/10.1051/0004-6361/201730533
https://doi.org/10.1051/0004-6361/201423969
https://doi.org/10.1051/0004-6361/201423969
https://doi.org/10.1088/1475-7516/2014/05/027
https://doi.org/10.1088/1475-7516/2014/05/027
https://doi.org/10.1093/mnras/sty2845
https://doi.org/10.1093/mnras/sty2845
https://doi.org/10.1051/0004-6361/201731731
https://doi.org/10.1051/0004-6361/201731731
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1088/0004-637X/746/1/85
https://doi.org/10.1088/0004-637X/746/1/85
https://doi.org/10.1007/s10714-008-0656-y
https://doi.org/10.1103/PhysRevD.73.063511
https://doi.org/10.1103/PhysRevD.73.063511
https://doi.org/10.1088/1475-7516/2013/04/027
https://doi.org/10.1088/1475-7516/2013/04/027
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1140/epjc/s10052-016-3886-2
https://doi.org/10.1140/epjc/s10052-016-3886-2
https://doi.org/10.1088/0264-9381/17/15/101
https://doi.org/10.1088/0264-9381/17/15/101
https://doi.org/10.1088/0264-9381/15/10/017
https://doi.org/10.1088/0264-9381/15/10/017
https://doi.org/10.1088/0264-9381/26/6/062001
https://doi.org/10.1088/0264-9381/26/6/062001
https://doi.org/10.1103/PhysRevD.94.103507
https://doi.org/10.1103/PhysRevD.94.103507
https://doi.org/10.1016/j.dark.2019.100383
https://doi.org/10.1016/j.dark.2019.100383

