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An optical equation for null strings is derived. The equation is similar to Sachs’s optical equations for null
geodesic congruences. The string optical equation is given in terms of a single complex scalar function Z,
which is a combination of spin coefficients at the string trajectory. Real and imaginary parts of Z determine
the expansion and rotation of strings. Trajectories of strings can be represented by diagrams in a complex
Z plane. Such diagrams allow one to draw some universal features of null strings in different backgrounds.
For example, in asymptotically flat space-times Z vanishes as future null infinity is approached, that is,
gradually shapes of strings are “freezing out.” Outgoing gravitational radiation and flows of matter leave
ripples on the strings. These effects are encoded in subleading terms of Z. String diagrams are demonstrated
for rotating and expanding strings in a flat space-time and in cosmological models.
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I. INTRODUCTION

One-dimensional objects, strings, which move with the
speed of light have been studied since the 1970s. Points of
null strings move along trajectories of light rays, orthogo-
nally to strings. Null strings were introduced by Schild [1]
as microscopic objects in the theory of strong interactions.
Later on such strings attracted much attention as a
tensionless limit of the string theory, since they may
capture different features of fundamental strings at
Planckian energies [2,3]. Modern scenarios concerning
how fundamental tensionless strings may emerge in a
quantum gravity theory have been discussed in [4,5].
If fundamental tensionless strings were produced in the

early Universe, then they might be stretched to cosmo-
logical scales and became cosmic strings. At the present
moment, such mechanisms are known for fundamental
strings with a finite tension, called tensile strings [6,7].
Cosmic tensile strings [8,9] have a finite rest mass per

unit length. Tensionless strings have zero rest mass but a
finite energy per unit length. So one can also call these two
types of cosmic strings, respectively, massive and massless
strings [10,11]. These names are more appropriate in
studying physical effects caused by the gravitational field
of the stings on the surrounding matter.
Massless cosmic strings in a flat space-time can be

obtained from massive cosmic strings as a limiting case,
when the velocity of the string reaches the speed of light,
mass tends to zero, while energy remains finite [12]. As a
result of this limit, a holonomy along a closed contour
around a massive string is transformed into a nontrivial
holonomy [13], which belongs to the parabolic subgroup
associated to null rotations. Effects caused by massless

strings look like mutual transformations of trajectories of
massive bodies or light rays when the string moves in
between two trajectories.
A method describing the physical effects around mass-

less cosmic strings has been developed in [10,11] for
strings in flat and de Sitter space-times. Here backreaction
effects can be described analytically due to maximal
isometries. For some extension of these results see [14].
Massless cosmic strings generate perturbations of the

velocities of bodies resulting in overdensities of matter. The
strings also shift energies of photons and may yield
additional anisotropy of cosmic microwave background.
These effects are direct analogs of, respectively, wake
effects [15] and the Kaiser-Stebbins effect [16,17] known
for tensile cosmic strings. Thus, if cosmic strings which
move with velocity of light do exist in nature, then their
physical effects can be discovered in future cosmological
and astrophysical observations.
In the rest of this paper we consider general properties of

trajectories of null strings introduced in [1]. We use name
“null strings” instead of “massless strings” to keep con-
nection to earlier publications. As we will see, the massless
strings in space-times with parabolic isometries studied in
[10,11,14] are a subclass of the null strings.
Solutions to equations of motion for null strings in

various gravitational backgrounds have been presented in
many publications, see e.g., [18–24]. The solutions are
coordinate and parametrization dependent. To extract
useful physical information one needs some invariant
characteristics of the string trajectories (world sheets).
The aim of the present work is to identify such character-

istics and establish universal features of string trajectories.
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We treat them as 1-parameter null geodesic congruences
and derive equations analogous to Sachs’s optical equa-
tions. The string optical equations are given in terms of a
single complex function Z, which determines expansion
and rotation of the string.
The paper is organized as follows. We start in Sec. II with

description of trajectories of stringlike objects (not neces-
sarily null strings) which move with the speed of light. The
trajectories are specified by a set of spin coefficients
introduced with respect to a tetrad l, n, p, q, where n, l
are null, l and p are tangent to the trajectory, and l is the
velocity of the string. Rotations of the tetrad and repar-
ametrizations make a 2-parameter group of l-preserving
null rotations of n, p, q, accompanied with rescalings of l
and n. In general, the spin coefficients are not invariant with
respect to this group. For null strings, however, two spin-
coefficients along the trajectories, θs ¼ ðp ·∇plÞ and
κ2 ¼ ðq ·∇plÞ, are invariant up to boost rescalings. In
Sec. III we demonstrate that the complex quantity Z ¼
θs þ iκ2 satisfies an equation analogous to Sachs’s optical
equations for null geodesic congruences (NGC). We call
equation for Z the string optical equation. In fact, Sachs’s
equations taken at the trajectory follow from string equa-
tions and vice versa. Z is a linear combination of complex
divergence ρ and complex shear σ of NGC where string
trajectory belongs to. Scalars θs and κ2 determine expan-
sion and rotation of the string congruence. Trajectory of the
string in a space of parameters θs; κ2, the Z plane, looks as a
sequence of diagrams, see Sec. IV. Examples of null strings
in flat and cosmological backgrounds and their diagrams
are presented in Sec. V. In Sec. VI we discuss null strings in
asymptotically flat space-times. We consider strings on
outgoing null hypersurfaces, and, in particular, strings in
the Bondi-Sachs formalism. We show that the leading
asymptotics of Z capture the amplitude of the outgoing
gravitational radiation. The gravitational memory effect in
Z caused by an ingoing flux of energy is calculated for
string trajectories in the weak field approximation. Short
discussion of our results can be found in Sec. VII.

II. STRING TRAJECTORIES

A. Spin coefficients and symmetries

The “trajectory” of a string in a space-time M with
coordinates xμ is defined as xμ ¼ xμðλ; τÞ. Two real
parameters, λ and τ, numerate points on the string. It is
implied that the string trajectory has no caustics, or, in the
case of caustics, the definitions below are not applied at
their locations. One can introduce the tangent vectors lμ ≡
xμ;λ and ημ ≡ xμ;τ. For a string which moves with the speed
of light we require that

ðl · lÞ ¼ 0; ð2:1Þ

ðl · ηÞ ¼ 0; ð2:2Þ

where the notation ð:: · ::Þ stands for the scalar product in
the tangent space of M. We also assume that l is future
directed, η is spacelike, and ðη · ηÞ > 0. Thus, λ is lightlike
and τ is a spatial coordinate on the world sheet. The
velocity of the string is directed along l.
Parameters ðτ; λÞ can be denoted as χa, a ¼ 1, 2. The

matrix hab ¼ xμ;agμνxν;b is degenerate, det h ¼ 0. One can
demand that det h ¼ 0 at first. Then (2.2) follows from
(2.1), or (2.1) follows from (2.2).
The strings which are considered in this work obey (2.1),

(2.2) and the condition that each point of the string at fixed
τ moves along a null geodesic,

∇ll ∼ l: ð2:3Þ

To put it another way, the string is a 1-parameter family of
rays. Such a definition was first given by Schild [1], and the
corresponding strings are called “null strings.”
Trajectories of null strings can be considered as a certain

type of NGC. NGC play an important role in general
relativity. They have been extensively studied since the
mid-fifties of the last century. The material of this section
follows in part the classicalmonograph [25],whereη is called
the connecting vector between two rays. Given (2.2) a pair of
neighboring rays are called abreast. Equation (2.2) ensures
that two points of the string with neighboring worldlines
always lie in a 2-plane orthogonal to the worldlines.
To study congruences which obey (2.1), (2.2) we intro-

duce a tetrad l, n, p, q at the each point of the string
trajectory. Herep is a unit vector directed along η,p ¼ η=N,
N2 ¼ ðη · ηÞ. Vector n is null, orthogonal to p, and normal-
ized as ðn · lÞ ¼ −2. Vector q is spacelike, unit, and
orthogonal to l, n, p. Note that the tetrad cannot be
introduced at fixed point sets of η, where η ¼ 0, and
N ¼ 0. These points are caustics, where the interval between
two neighboring rays vanishes. We discuss these cases later,
see Sec. VA. From now on we assume that N ≠ 0.
The tetrad is defined up to null rotations (Lorentz

transformations of the parabolic type) of n, q:

n ¼ n0 þ 2ωq0 þ ω2l0; q ¼ q0 þ ωl0; ð2:4Þ

where ωmay vary along the trajectory. The transformations
leave invariant the tangent vectors, l ¼ l0 and p ¼ p0.
There is an arbitrariness in the choice of l and p.

Conditions (2.1), (2.2) allow reparametrizations

λ0 ¼ gðλ; τÞ; τ0 ¼ ϕðτÞ; ð2:5Þ

which change tangent vectors to l0, η0,

l ¼ g;λl0; η ¼ ϕ;τη
0 þ g;τl0: ð2:6Þ

Then (2.6) requires change of p and n of the tetrad
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n¼ 1

g;λ
ðn0 þ2ω̄p0 þ ω̄2l0Þ; p¼p0 þ ω̄l0; ω̄¼ g;τ

N
; ð2:7Þ

similar to (2.4). Reparametrizations (2.5) generate null
rotations of p and n and rescalings of l and n.
Therefore, the tetrad l, n, p, q is defined up to a

2-parameter family of l-preserving null rotations of n, p,
q, and rescalings of l and n. These are class I and class III
transformations, respectively, according to [26]. We call
(2.4)–(2.7) “S transformations” for brevity. Our aim is to
construct from l, n, p, q quantities which are S-transform
invariant.
We define Xλ ≡ l, Xτ ≡ η, and denote reparametrizations

(2.5) as ðχ0Þa ¼ ðχ0ÞaðχÞ. One can introduce a set of vectors
∇aXb (∇a ¼ Xμ

a∇μ) tangent to the string world sheet. Since
∇lη ¼ ∇ηl,

∇aXb ¼ ∇bXa: ð2:8Þ

∇aXb yield three independent vectors which can be
decomposed as

∇aXb ¼ fcabXc þ κnabnþ κqabq: ð2:9Þ

Coefficients fcab, κ
n
ab, κ

q
ab are symmetric with respect to the

permutation of a and b, and are related to spin coefficients
for the chosen tetrad.
With the help of (2.1) and (2.2) one finds

κnττ ¼
1

2
N;σN; κnτλ ¼ κnλλ ¼ 0; ð2:10Þ

fτττ ¼ ∂τðlnNÞ; fτλτ ¼ ∂λðlnNÞ; fτλλ ¼ 0: ð2:11Þ

The rest six coefficients, fλab, κ
q
ab, are not all independent

and get mixed under S transforms. Null rotations (2.4) yield
relations

κqab ¼ ðq · ∇aXbÞ ¼ ðκ0Þqab − 2ωðκ0Þnab; ð2:12Þ

fλab ¼ −
1

2
ðn ·∇aXbÞ

¼ ðf0Þλab − ωðκ0Þqab þ ω2ðκ0Þnab: ð2:13Þ

Reparametrizations (2.5) imply that

κqab ¼ ðχ0Þa0 ;aðχ0Þb0 ;bðκ0Þqa0b0 ; ð2:14Þ

fλab ¼
1

g;λ
ðχ0Þa0 ;aðχ0Þb0 ;b

�
ðf0Þλa0b0 −

g;τ
ϕ;τ

ðf0Þτa0b0 þ
g2;τ
N2

ðκ0Þna0b0
�

þ 1

g;λ

�
λ0;ab−

g;τ
ϕ;τ

τ0;ab

�
; ð2:15Þ

where we used (2.7) and (2.9).

B. Null strings and boost-weighted scalars

A boost-weighted scalar (a b scalar) along the string
trajectory is defined as a scalar Q which changes under S
transformations (2.4)–(2.7) asQ ¼ ðg;λÞbQ0. Parameter b is
called the boost weight of Q. Boost-weighted and spin-
weighted quantities are discussed in [25] in the context of
spin-coefficient formalism.
The b scalars play a key role in our analysis since they

allow one to construct physical quantities measured by
specific observers. In a frame of reference related to
observers with velocities uo (u2o ¼ −1) one can introduce
a b scalar ðuo · lÞ which is nonvanishing, since uo is
timelike, and has a boost weight b ¼ 1. If Q is b scalar,
then Qo ¼ ðuo · lÞ−bQ is S-transform invariant scalar,
b ¼ 0. In the given frame, Qo can be interpreted as a
physical observable.
We construct b scalars from κqab. Coefficients in (2.10),

(2.11) depend only on N. Parameter N determines length of
a small segment of the string, dL ¼ Ndτ:S transformations
are N ¼ ϕ;τN0, dL ¼ dL0. One can introduce the expansion
parameter

θs ≡ ∂λðlnNÞ ¼ ðp · ∇plÞ; ð2:16Þ

which is b ¼ 1 scalar. θs measures how fast dL changes
along the worldline of a point on the string,
∂λðdLÞ ¼ θsðdLÞ. The next set of scalars is related to
κqab. It follows from (2.12), (2.14), and (2.6) that

κ1 ≡ κqλλ ð2:17Þ

is b ¼ 2 scalar. According to (2.9), (2.10), (2.11)

∇ll ¼ fλλλlþ κ1q: ð2:18Þ

Hence, the condition κ1 ¼ 0 implies that the string is null.
Coefficient κqλτ does not change under null rotations

(2.12) but transforms as

κqλτ ¼ g;λϕ;τðκ0Þqλ0τ0 þ g;λg;τðκ0Þqλ0λ0 ð2:19Þ

under reparametrizations (2.6). If the string is null the last
term in the rhs of (2.19) is zero and

κ2 ≡ ðq ·∇plÞ ¼ N−1κqλτ; ð2:20Þ

is weight b ¼ 1 scalar. Scalars κ2 and θs play an important
role in the subsequent analysis. We show that κ2 measures
the rotation of η in a plane orthogonal to the velocity of the
string under a parallel transport of η along a worldline, see
Sec. IV C.
One can continue in this way to come to other b scalars

under certain restrictions. For example,

OPTICAL EQUATIONS FOR NULL STRINGS PHYS. REV. D 103, 123526 (2021)

123526-3



κ3 ≡ ðq · ∇ppÞ ¼ N−2κqττ ð2:21Þ

is b ¼ 0 scalar, if θs ¼ κ1 ¼ κ2 ¼ 0. When the string is not
null (κ1 ≠ 0),

κ4 ≡ N−2 det κqab ð2:22Þ

is b ¼ 2 scalar, if θs ¼ 0.
Coefficients fλab yield no scalars due to the last term in

the rhs of (2.15).
Note that θs and κ1 are the b scalars which do not require

any conditions. Other κi requires the vanishing of spin
coefficients. Condition κ1 ¼ 0 can be imposed in any
space-time: null strings, like rays, can always be con-
structed. Hence, κ2 can be introduced for null strings.
In certain space-times, null strings include a subclass of

strings with θs ¼ κ2 ¼ 0. Then κ3 can be considered as a
physical parameter. This subclass includes other subclasses
with θs ¼ κ2 ¼ κ3.
Strings in space-times with global parabolic isometries

[10,11,14] are of special interest since they allow for the
explicit description of backreaction effects. They were
called massless strings. The world sheets of such strings
are null 2-surfaces which are fixed points sets of null
rotations. The metric of a space-time which allows a global
parabolic isometry is [14]

ds2 ¼ −2efðdudv − dy2Þ þ hðdzþ sduÞ2; ð2:23Þ

where f, h, and s are functions of u, z, and θ ¼ uv − y2.
The isometries of (2.23) are null rotations of coordinates

u0 ¼ u; v0 ¼ vþ 2ωyþ ω2u;

y0 ¼ yþ ωu; z0 ¼ z; ð2:24Þ

which leave θ invariant. The trajectory of a massless string
is given by simple equations: v ¼ λ, z ¼ τ, u ¼ y ¼ 0. One
can check that it fulfills (2.1), (2.2), (2.3). Hence the string
is null.
Now let ζ be the Killing field which generates (2.24) and

the corresponding null rotation of the tetrad (2.4). Since
ζ ¼ 0 on the world sheet one gets the set of conditions:

0 ¼ δζð∇aXb · nÞ ¼ ð∇aXb · δζnÞ
¼ 2ωð∇aXb · qÞ ¼ 2ωκqab; ð2:25Þ

0 ¼ δζð∇aXb · qÞ ¼ ð∇aXb · δζqÞ
¼ ωð∇aXb · lÞ ¼ −2ωκnab: ð2:26Þ

By taking into account (2.10) one concludes that
strings studied in [10,11,14] are null strings for which
θs ¼ κ1 ¼ κ2 ¼ κ3 ¼ 0.

III. OPTICAL EQUATIONS

A. String scalar and its equation

Consider now the relation between spin coefficients at
the string trajectory and the curvature of the background
space-time M. It follows from (2.8) that

½∇a;∇b�Xμ
c ¼ −Rμ

αρνXα
cX

ρ
aXν

b; ð3:1Þ

where Rμ
αρν is the Riemann tensor of M at the string

trajectory (we use the definition Rμ
αρνVα ≡ ½∇ν;∇ρ�Vμ).

The left-hand side of (3.1) can be calculated with the help
of (2.9). After some algebra, replacing ηwith p gets us a set
of relations for components of the Riemann tensor at the
string trajectory

Rplpl ¼ ð∂l − β1Þθs þ θ2s þ κ1κ3 − κ22; ð3:2Þ

Rqlpl ¼ ð∂l − β1Þκ2 þ 2θsκ2 − ð∂p − β2Þκ1; ð3:3Þ

Rqplp¼ð∂pþβ2Þκ2− ð∂lþθsÞκ3−β3κ1þ
1

2
θsα1; ð3:4Þ

Rnllp ¼ ð∂l þ 2θsÞβ2 − κ2α1 þ κ1α2; ð3:5Þ

Rnplp ¼ 2ðð∂l þ θsÞβ3 − ∂pβ2 þ β3β1 − β22Þ
þ κ2α2 − κ3α1: ð3:6Þ

We put β1 ¼ − 1
2
ðn · ∇llÞ ¼ fλλλ, β2 ¼ − 1

2
ðn · ∇plÞ, β3 ¼

− 1
2
ðn ·∇ppÞ, α1 ¼ ð∇lq · nÞ, α2 ¼ ð∇pq · nÞ, and use

notation Rabcd ¼ Rμαρνe
μ
aeαbe

ρ
ceνd for ea ¼ l, p, n, q.

Equations (3.2), (3.3) are of the most interest since Rplpl,
Rqlpl are b ¼ 2 scalars. One can use these equations to get
an analog of Raychaudhuri-type equations and draw a
physical information. Other curvatures in (3.4)–(3.3) are
not boost weighted scalars, in general. Under S trans-
formations Rqplp, Rnllp get mixed with Rplpl, Rqlpl. Thus,
Rqplp, Rnllp are b ¼ 2 and b ¼ 1 scalars, respectively, only
if Rplpl ¼ Rqlpl ¼ 0. Analogously Rnplp is b ¼ 1 scalar,
if Rplpl ¼ Rqlpl ¼ Rnllp ¼ 0.
From now on we assume that the string is null, κ1 ¼ 0.
It is convenient to introduce a pair of null complex

vectors m̂, ˆ̄m, ðm̂ · ˆ̄mÞ ¼ 1,

m̂ ¼ 1ffiffiffi
2

p ðpþ iqÞ; ˆ̄m ¼ 1ffiffiffi
2

p ðp − iqÞ: ð3:7Þ

By following the standard procedure [25,26] one defines
invariants Cabcd and Rab constructed from the Weyl tensor
and Ricci tensor, respectively,

Ψ̂0 ¼ −Cm̂lm̂l; Φ00 ¼ −
1

2
Rll:
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Since Cm̂l ˆ̄ml ¼ 0, see [26], it follows that

Rplpl ¼ Cplpl þ
1

2
Rll ¼ −Re Ψ̂0 − Φ̂00; ð3:8Þ

Rqlpl ¼ Cqlpl ¼ −Im Ψ̂0: ð3:9Þ

We also introduce complex b ¼ 1 scalar

Z≡ θs þ iκ2 ¼ ððpþ iqÞ · ∇plÞ: ð3:10Þ

With these definitions Eqs. (3.2), (3.3) in the case of null
strings take the following simple form:

DlZ þ Z2 ¼ −Ψ̂0 −Φ00; ð3:11Þ

whereDl ≡ ∂l − β1 is a covariant derivative with respect to
boost transformations.
We call Z the string scalar. This parameter plays an

important role for the rest of the article. By taking square of
the left- and right-hand sides of (2.9) for a ¼ τ, b ¼ λ, one
gets a useful identity

ð∇ηl · ∇ηlÞ ¼ N2ðθ2s þ κ22Þ; ð3:12Þ

where we took into account (2.11). Then it follows from
(3.10) that

jZj ¼ j∇plj: ð3:13Þ

We call (3.11) an optical equation for strings, by analogy
with optical equations of Sachs for NGC. The importance
of (3.11) is that it can be used to draw some universal
features of string trajectories, for example, in asymptoti-
cally flat or asymptotically de Sitter space-times, where
curvatures Ψ̂0, Φ00 decay fast enough at null infinities.

B. Relation to Sachs’s equations

To establish the relation between (3.11) and the Sachs
equations we introduce another complex dyad at the string
trajectory, m and m̄,

ðm · m̄Þ ¼ 1; ðm · lÞ ¼ ðm · nÞ ¼ 0: ð3:14Þ

The set ðn; l; m; m̄Þ is a doubly null tetrad. Note that m and
m̄ are arbitrary vectors while dyad m̂, ˆ̄m is connected with η
and q, and implies the condition ∇lη ¼ ∇ηl. The fact that
ðn; l; m; m̄Þ are not restricted by any conditions allows one
to use the Newman-Penrose formalism [25,26] and require
that m is parallel transported along the worldlines,
∇lm ¼ 0. We put m̂ ¼ Nζ−1m, where ζ is a complex
parameter, jζj ¼ N. The connecting vector in the new
basis is

η ¼ 1ffiffiffi
2

p ðζm̄þ ζ̄mÞ: ð3:15Þ

When a point moves along a worldline the phase of ζ
determines orientation of η in the plane ðm; m̄Þ. The
condition ∇lη ¼ ∇ηl requires that

∂lζ ¼ −ρζ − σζ̄; ð3:16Þ

ρ≡ −ðm ·∇m̄lÞ; σ ≡ −ðm ·∇mlÞ: ð3:17Þ

Here we took into account that ∇lm ¼ 0. Spin coefficients
ρ, σ are known as optical scalars which are defined for
NGC with velocity vector l. One can check that ρ, σ are
b ¼ 1 boost-weighted scalars on trajectories of null strings.
It then follows from definition (3.10) that

ζZ ¼ −ζρ − ζ̄σ: ð3:18Þ

So (3.16) implies

∂lζ ¼ Zζ: ð3:19Þ

If a string optical equation (3.11) is satisfied, then one can
take the derivative Dl of the left and right parts of (3.18),
and use (3.16), (3.19), to get

−ζΦ00 − ζ̄Ψ0 ¼ ζðρ2 þ jσj2 −DlρÞ
þ ζ̄ðσðρþ ρ̄Þ −DlσÞ; ð3:20Þ

Ψ0 ¼ −Cmlml ¼ ζ̄−1ζΨ̂0: ð3:21Þ

Equation (3.20) requires the following relations known as
optical equations of Sachs:

Dlρ ¼ ρ2 þ jσj2 þΦ00; ð3:22Þ

Dlσ ¼ σðρþ ρ̄Þ þΨ0: ð3:23Þ

Sachs equations (3.22), (3.23) are derived for general NGC
and are not related to string trajectories. Given a string
trajectory, Sachs equations at the trajectory may follow
from (3.11). Opposite is true as well: if a string trajectory is
a 1-parameter family of rays in a NGC, then the string
equation (3.11) follows from Sachs equations for the
given NGC.

IV. REPRESENTATION OF
STRING TRAJECTORIES

A. Diagram description of string trajectories

The physical meaning of θs, the real part of the string
scalar Z, is related to local expansion (contraction) of string
segment moving along a worldline, see Sec. II B. To find
the interpretation of κ2, the imaginary part of Z, we use

OPTICAL EQUATIONS FOR NULL STRINGS PHYS. REV. D 103, 123526 (2021)

123526-5



(3.19). When a point of the string moves along the
worldline, the components ðζ; ζ̄Þ of the connecting vector
with respect to dyad ðm; m̄Þ change,

ζðλþ δλÞ ≃ ð1þ ZδλÞζðλÞ: ð4:1Þ

If ζ ¼ jζjeiα, then Eq. (4.1) implies change of the phase

αðλþ δλÞ ≃ αðλÞ þ ImZδλ: ð4:2Þ

Therefore, ImZ determines rotation of η in the plane ðm; m̄Þ.
The rotation angle of η under the shift δλ is κ2δλ. The sign
of the rotation is connectedwith the sign of κ2. It changes if q
is replaced with −q. This reflection arbitrariness can be
eliminated by additional arguments. For example, one can
introduce a null vector l̃μ¼ϵμνλρpνqλlρ. Since l̃ ¼ al one can
fix the sign of q by requiring, for example, that a > 0.
In the next sections we study constant λ slices of the

string world sheet. These slices are curves that determine
shape of the string. If λ is fixed, then Z ¼ Zðλ; τÞ is a curve
in a space of parameters θs, κ2, or in a complex Z plane.
String scalar Z can be used to describe the evolution of the
shape of the string in a given slicing.
We call such curves diagrams of the string trajectory.

The diagrams can be written locally as θs ¼ θsðκ2Þ or
κ2 ¼ κ2ðθsÞ, so they do not depend on spatial parametriza-
tion of the trajectory by τ. String diagrams yield “portraits”
of the string trajectories.
To construct the string diagrams one needs to remember

that λ is not uniquely defined and allows transformations
(2.6). One can use physical arguments and relate λ to a
frame of reference where the string trajectory is considered.
If uo are 4-velocities of observers which make a certain
frame of reference, then it is natural to require that

ðuo · ηÞ ¼ 0: ð4:3Þ

Condition (4.3) fixes λ up to rescalings λ0 ¼ gðλÞ which
leave constant λ slices invariant and, hence, do not change
string diagrams. Alternatively, one can require that constant
λ slices coincide with constant time slices. [This condition
is reduced to (4.3) when uo is orthogonal to constant time
slices.] The rescalings can be restricted by further argu-
ments. For instance, in some cases one can require that
ðuo · lÞ ¼ −1. Examples of string trajectories with such
conditions are presented in Secs. IV B and V B.

B. Exact solutions for Z

To give an idea of the string diagrams consider strings in
space-times where Ψ̂0 ¼ Φ00 ¼ 0. One can choose affine
parametrization,Dl ¼ ∂l, to get a general solution to (3.11)

Zðλ; τÞ ¼ 1

λþ zðτÞ ; ð4:4Þ

where z is a complex function. Scalars θs and κ2 are real
and imaginary parts of the rhs of (4.4), respectively.
Solutions like (4.4) hold for strings in conformally flat
space-times with Φ00 ¼ 0. Equation (4.4) holds for strings
in de Sitter and anti–de Sitter geometries. Singularities of Z
at λ ¼ −zðτÞ may appear in different models. They corre-
spond to caustics at fixed points of the vector field η,
see below.
As an example, consider the case when z ¼ ceiτ, where c

is a positive constant. One finds for jλj ≠ c:

θsðλ; τÞ ¼
λþ c cos τ

ðλþ c cos τÞ2 þ c2sin2τ
;

κ2ðλ; τÞ ¼ −
c sin τ

ðλþ c cos τÞ2 þ c2sin2τ
; ð4:5Þ

which is equivalent to

ðθs − dÞ2 þ κ22 ¼ R2; ð4:6Þ

d ¼ dðλÞ ¼ λ

λ2 − c2
; R ¼ RðλÞ ¼ c

jλ2 − c2j : ð4:7Þ

One can represent Z as

Zðλ; τÞ ¼ dðλÞ þ RðλÞeiξ; ð4:8Þ

eiξ ¼ � cþ λeiτ

λþ ceiτ
; ð4:9Þ

where signs þ and − correspond to the cases λ < c and
λ > c, respectively. Equation (4.9) is a linear fractional
transformation from z ¼ eiτ to w ¼ eiξ. Therefore, the
diagram of the string at fixed λ is a circle. The diagrams
for jλj ≠ c are shrinking or expanding circles shown
on Fig. 1.
The case λ ¼ c is special,

Zðc; τÞ ¼ e−iτ=2

2c cos τ
2

:

FIG. 1. String diagrams for string scalar Z given by (4.4) with
z ¼ ceiτ. For λ > r, (a), circles shrink as λ grows. For 0 < λ < r,
(b), circles expand as λ grows.
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Let us emphasize that the diagrams depend on the choice of
λ. Examples given above are for λ being an affine
parameter. The residual freedom of changing λ to λ0 ¼
λþ fðτÞ can be eliminated by additional conditions like
(4.3). Examples are given in Sec. VA.

C. Closed strings

To see how parameters θs and κ2 determine the
transformation of the shape of the string consider, as
an illustration, a closed string, Zðλ; τ þ 2πÞ ¼ Zðλ; τÞ.
Suppose that λ slices are fixed by (4.3).
One can use (2.4) to choose vector q orthogonal to uo.

Then the pair ðp; qÞ yield a 2-plane in the frame of
reference of the observers. If one considers the Fourier
transform

Zðλ; τÞ ¼
X
n

einτcnðλÞ; ð4:10Þ

then the coefficients cn determine different transformations
of the shape of the string, the stringmodes. Assume that only
the single mode with n ≠ 0 is present in (4.10) and cn > 0.
The corresponding expansion and rotation scalars are

θsðλ;τÞ¼ cnðλÞcosnτ; κ2ðλ;τÞ¼ cnðλÞsinnτ: ð4:11Þ

At fixed λ, parameters τ ¼ 2kπ=n, k ¼ 0; 1; 2… are the
points of maximal expansion, θs > 0, while maximal con-
traction occurs at τ ¼ ð2kþ 1Þπ=n, θs < 0. There is no
rotation of η at these points, κ2 ¼ 0. Between τ ¼ 2kπ=n and
τ ¼ ð2kþ 1Þπ=n rotation of η is, say, counterclockwise,
κ2 > 0, from τ ¼ 2kπ=n to τ ¼ ð2kþ 1Þπ=n. Between τ ¼
ð2k − 1Þπ=n and τ ¼ 2kπ=n rotation is clockwise, κ2 < 0,
from τ ¼ 2kπ=n to τ ¼ ð2k − 1Þπ=n. That is, points of the
string rotate toward a nearby point of maximal contraction.
String modes have a simple form if the string is a circle.

String modes n ¼ 1, 2, 3, 4 are shown on Fig. 2.

V. EXAMPLES OF STRING TRAJECTORIES

A. Strings in Minkowsky space-time

A general solution to Eqs. (2.1)–(2.3) for a null string
in a flat space-time, for the choice of λ as an affine
parameter, is

Xμðλ; τÞ ¼ λbμðτÞ þ aμðτÞ; ð5:1Þ

where bμ is an arbitrary null vector, b2 ¼ 0. Restrictions on
aμ are ðb · _aÞ ¼ 0, see (2.2), and _a2 > 0, _a≡ a;τ. One finds

N2 ¼ λ2 _b2 þ 2λð _b · _aÞ þ _a2; ð5:2Þ

θs ¼ N−2ðλ _b2 þ ð _b · _aÞÞ: ð5:3Þ

To calculate the rotation scalar we use (3.12)

κ22 ¼ N−2 _b2 − θ2s ¼ N−4ð _a2 _b2 − ð _b · _aÞ2Þ: ð5:4Þ

In the flat space-time we can fix the parametrization of the
string-world sheet for an inertial frame of reference by
conditions ðl · uoÞ ¼ −1, ðη · uoÞ ¼ 0. In Minkowsky coor-
dinates, where velocity of observers is uμo ¼ δμ0, these
conditions are ensured if tðλ; τÞ ¼ λ, that is, _a and _b have
only spatial components. Let j _bj ≠ 0, and

cosφ≡ ð _b · _aÞ
j _ajj _bj ; r≡ j _aj

j _bj : ð5:5Þ

Then under the appropriate choice of the sign of κ2 the
string scalar is

Zðλ; τÞ ¼ 1

λþ rðτÞeiφðτÞ ; ð5:6Þ

in accord with (4.4). The rotation scalar vanishes when
_a ¼ 0, or φ ¼ 0.
Let us consider several examples.
1. Take Eq. (5.1) in Minkowsky coordinates as

t ¼ x ¼ λ, y ¼ yðτÞ, z ¼ zðτÞ. The corresponding string
moves along the x axis, the string lies in a 2-plane
orthogonal to the direction of motion. One can check that
Z≡ 0. The string diagrams are a single dot, since the
strings do not change their shape.
2. An interesting string trajectory is

t ¼ λ; x ¼ λ cos τ þ c
4
cos 2τ;

y ¼ λ sin τ þ c
4
ðsin 2τ þ 2τÞ; z ¼ c cos τ; ð5:7Þ

FIG. 2. Shows schematically first four deformation modes of a circular string in the ðp; qÞ plane when λ is slightly increased.
Deformations a,b,c,d correspond to n ¼ 1, 2, 3, 4.
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where c > 0 is a constant. At fixed λ the string is twisted
along y axis. It is instructive to calculate the corresponding
connecting vector field ημ ¼ _xμ:

ηt ¼ 0; ηx ¼ − sin τðλþ c cos τÞ;
ηy ¼ cos τðλþ c cos τÞ; ηz ¼ −c sin τ: ð5:8Þ

This vector field vanishes, η ¼ 0, at two fixed points of the
congruence: λ ¼ r, τ ¼ π and λ ¼ −r, τ ¼ 0. One can
check that

b2 ¼ ðb · _aÞ ¼ 0; _b2 ¼ 1;

r ¼ j _aj ¼ c; ð _b · _aÞ ¼ c cos τ ¼ c cosφ: ð5:9Þ

Therefore, θs and κ2 in the Z plane satisfy (4.6), (4.7), for
λ ≠ r. Z has simple poles at fixed points of η.
The diagrams of the string are shrinking or expanding

circles shown on Fig. 1.
3. Consider a closed string described by equations

t ¼ λ; x ¼ λ cos τ;

y ¼ λ sin τ; z ¼ c sin τ; ð5:10Þ

where c > 0 is a constant. For such a string

b2 ¼ ðb · _aÞ ¼ 0; _b2 ¼ 1;

r ¼ j _aj ¼ cj cos τj; ð _b · _aÞ ¼ 0: ð5:11Þ

Zðλ; τÞ ¼ 1

λþ ic cos τ
: ð5:12Þ

It follows from (5.12) that θs and κ2 are related with

ðθs − RÞ2 þ κ22 ¼ R2; R ¼ 1

2λ
: ð5:13Þ

Zðλ; τÞ ¼ RðλÞ þ RðλÞeiξ; ð5:14Þ

eiξ ¼ λ − ic cos τ
λþ ic cos τ

: ð5:15Þ

Map (5.15) from z ¼ eiτ to w ¼ eiξ is not a linear fractional
transformation. At fixed λ, the string portrait is only an arc
of the circle (5.13). Ends of the arc are at points ξ ¼ �ξ0,
where ∂τξ ¼ 0. This corresponds to τ ¼ 0; π, and

sin ξ0 ¼
2λc

λ2 þ c2
:

Each point on the arc corresponds to two values of τ. The
diagrams of the string are shown on Fig. 3 for positive λ.
In the above examples string diagrams have a common

feature: the diagrams shrink to point Z ¼ 0 as λ grows.
At large λ, or as null future infinity is approached, all

deformations of string’s shape gradually decay. One can
say that the null strings are “freezing out.”

B. Strings in cosmological models

Studying null cosmic strings in an expanding universe is
of particular interest, since such objects may result in
observable physical effects [11]. We consider conformally
flat cosmologies with

ds2 ¼ −dt2 þ a2ðtÞðdxiÞ2; ð5:16Þ

where the scale factor aðtÞ is determined by a concrete
model. Coordinate t is the cosmological time. The string
equations are defined as

t ¼ λ; xiðλ; τÞ ¼ fðλÞbiðτÞ þ aiðτÞ; ð5:17Þ

∂λf ¼ a−1ðλÞ; ð5:18Þ

where ðbiÞ2 ¼ 1, bi _ai ¼ 0. The tangent vectors are
l ¼ ∂t þ f0bi∂i, η ¼ ðf _bi þ _aiÞ∂i. With the help of
(5.18) one checks that

l2 ¼ 0; ∇ll ¼ χl; ðη · lÞ ¼ 0; ð5:19Þ

where χ ¼ ∂λa=a. Thus, (5.17) describes a null string.
In the frame of freely moving observers with 4-velocities
uμo ¼ δμt the following conditions hold:

ðuo · lÞ ¼ −1; ðuo · ηÞ ¼ 0: ð5:20Þ

Equation (5.20) can be used to fix the parametrization.
Relation between λ and the affine parameter λ̄ is
∂λλ̄ ¼ CðτÞaðλÞ, where CðτÞ is an arbitrary real function.

FIG. 3. Diagrams of a closed string in Minkowsky space-time.
The diagrams are arcs of circles that shrink as λ grows.
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A straightforward calculation yields

Zðλ; τÞ ¼ 1

aðλÞ
1

fðλÞ þ zðτÞ þ ∂λ ln a; ð5:21Þ

where zðτÞ ¼ rðτÞeiφðτÞ is defined by (5.5). For a universe
filled with a matter with the equation of state p ¼ wρ,
a ∼ λp, f ∼ λ1−p, where p ¼ 2=ð3ð1þ wÞÞ. One concludes
that, for a dust or radiation dominated universe, Zðλ; τÞ ¼
Oðλ−1Þ at large λ. This means that strings do not change
their shape at large cosmological time t.
For a flat de Sitter universe, aðλÞ ¼ eHλ,

Zðλ; τÞ ¼ H2zðτÞ
HzðτÞ − e−Hλ : ð5:22Þ

At large λ, Zðλ; τÞ ≃H. Cosmic strings at late times do not
rotate but expand exponentially, similarly to other scales.
Scalar Z vanishes if ai is a constant and z ¼ 0 in (5.22).

Trajectories of these strings lie on the cosmological horizon
jxiðtÞ − aij ¼ H−1e−Ht. A particular type of such strings,
massless strings on the equator of the horizon sphere, admit
an exact analysis of backreaction effects, and has been
studied in detail in [11].
String diagrams for (5.17) can be constructed analo-

gously to the case of string trajectories in Minkowsky
space-time.

VI. STRINGS IN ASYMPTOTICALLY
FLAT SPACE-TIMES

A. Strings on null hypersurfaces

String trajectories may lie on null hypersurfaces. Then l
is directed along a normal vector to the surface. This case
can be studied by using the Bondi-Sachs formalism. One
can always choose a tetrad basis in the entire space-time so
that it coincides with n, l, m̂, ˆ̄m at the string trajectory,
see Sec. III, and introduce corresponding spin-coefficients.
As we saw, Eq. (3.18) relates the string scalar Z to the spin
coefficients ρ and σ, which are divergence and shear of a
null geodesic congruence. In the chosen basis, ζ ¼ 1
in (3.18).
This fact is important since asymptotic form of the shear

at future null infinity Iþ together with asymptotics of the
complex tetrad components of the Weyl tensor Ψk are used
to extract interior physical properties of the space-time,
see [27], for a review. We return to this issue in Sec. VI B.
In asymptotically flat space-times curvature scalars

behave as Ψ0 ¼ Oðλ−5Þ, Φ00 ¼ Oðλ−6Þ at Iþ. Therefore
the rhs of (3.11) can be ignored and (4.4) can be used to get
for expansion and rotation scalars the following asymp-
totics at large jλj:

Z ≃
1

λ
−
zðτÞ
λ2

þ � � � ; θs ≃
1

λ
−
z1ðτÞ
λ2

þ � � � ;

κ2 ≃ −
z2ðτÞ
λ2

þ � � � ; ð6:1Þ

where z1 ¼ Rez, z2 ¼ Imz. We see from (6.1) the already
familiar phenomenon: shapes of strings in asymptotically
flat space-times cease to vary at large λ, as Iþ is
approached. Possible ripples on the strings are encoded
in subleading terms in Z, and are determined in (6.1) by a
complex parameter zðτÞ.
Asymptotic behavior of a NGC on an outgoing null

hypersurface is [27]

ρ ¼ ρ̄ ≃ −
1

λ
−
σ0σ̄0

λ3
þ � � � ; σ ≃

σ0

λ2
þ � � � ; ð6:2Þ

where σ0 is called the asymptotic complex shear of the
NGC. If the string belongs to the given NGC and the tetrads
are chosen so that they coincide with n, l, m̂, ˆ̄m at the string
trajectory, then one can use (3.18) to find the simple
relation

z ¼ σ0: ð6:3Þ

That is, the subleading term in the string scalar Z is
determined by the asymptotic shear σ0 calculated in the
special basis.
Note that the string trajectory itselfmay be forming a null 2

surface. This surface is defined by conditions f ¼ 0, t ¼ 0,
and lμ ¼ af;μ, qμ ¼ bt;μ, where a and b are functions set on
the surface. Then ðq ·∇qlÞ ¼ −∂l lnb ¼ 0, and one gets an
additional relation

θ≡∇ll ¼ ðp ·∇plÞ þ ðq · ∇qlÞ −
1

2
ðn · ∇llÞ ¼ θs: ð6:4Þ

For a general NGC with velocity l parameter θ measures
expansion or contraction of the area of 2D spacelike sections
of the congruence. Thus, if the NGC is null surface forming,
the string trajectory belongs to NGC and it is 2-surface
forming, then the string expansion θs coincides with the
expansion of NGC.

B. Strings in the Bondi-Sachs formalism
and gravitational waves

The asymptotic shear σ0 is known to measure the
amplitude of gravity waves far from the source. We now
find out an explicit relation between asymptotic form of Z,
see (6.1), and outgoing gravitational radiation. We consider
strings in asymptotically flat space-times, far from a source
of gravity waves. It is convenient to use the Bondi-Sachs
coordinates xμ ¼ ðu; r; xAÞ, A ¼ 1, 2, based on a family
of outgoing null hypersurafces, see [28] for a review.
The corresponding metric is
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ds2 ¼ −Udu2 − 2e2βdudr

þ gABðdxA − VAduÞðdxB − VBduÞ: ð6:5Þ

The null hypersurfaces in question are u ¼ c, where c is a
constant. Coordinate r which varies along null rays is
chosen to be a real coordinate. The future null infinity is
at r → þ∞.
Metric (6.5) is flat when U ¼ 1, β ¼ VA ¼ 0,

gAB ¼ r2γAB, with γAB being a metric on a unit 2-sphere.
In an asymptotically flat space-time at large r

U ¼ 1 −
2M
r

þOðr−2Þ; ð6:6Þ

gAB ¼ r2
�
γAB þ CAB

r
þOðr−2Þ

�
; ð6:7Þ

Other parameters, β and VA, are Oðr−2Þ, see [28]. The
parameter M ¼ Mðu; xAÞ is the mass aspect. CAB ¼
CABðu; xAÞ is a traceless tensor in a tangent space to S2.
The term CAB=r in (6.7) is a perturbation of the metric
caused by the outgoing gravitational radiation.
Vector l ¼ ∂r ¼ −e−2β∇u is a tangent vector to null

geodesics on the null hypersurfaces u ¼ c. We choose the
“gauge” β ¼ 0. Then ∇ll ¼ 0, and r can be identified with
an affine parameter. The string equations in coordinates u,
r, xA are

u ¼ c; r ¼ λ; xA ¼ xAðτÞ: ð6:8Þ

The connecting vector is η ¼ ηA∂A, where ηA ¼ _xA.
One can check with the help of (6.5) that (2.1), (2.2) are
satisfied and

θs ¼
1

2
pApB∂rgAB; pA ¼ ηA

ðηAηBgABÞ1=2
: ð6:9Þ

The simplest choice for the vector q in the tetrad at the
string trajectory is q ¼ qA∂A,

qA ¼ gACϵCBpB; ϵAB ¼ −ϵBA;

ϵ12 ¼ ðdet gABÞ1=2: ð6:10Þ

A, B are risen and lowered with the help of gAB and its
inverse matrix. Equation (6.10) is not a unique choice, but it
is enough to find κ2. A straightforward calculation with the
help of (2.20), (6.5) yields

κ2 ¼
1

2
qApB∂rgAB; ð6:11Þ

Zðλ; τÞ ¼ 1

2
ðpA þ iqAÞpB∂rgAB: ð6:12Þ

We are interested in asymptotic properties of Z at large
r ¼ λ, which easily follow from (6.6),

∂rgAB ¼ 2gAB
r

− CAB þOðr−1Þ;

Zðλ; τÞ ¼ 1

λ
−

z
λ2

þOðλ−3Þ; ð6:13Þ

z ¼ 1

2
ðp̄A þ iq̄AÞp̄BCAB: ð6:14Þ

Here we took into account that pA ¼ p̄A=rþOðr−2Þ,
qA ¼ q̄A=rþOðr−2Þ. In fact, p̄A, q̄A are mutually orthogo-
nal vectors tangent to S2

p̄A ¼ ηA

ðηAηBγABÞ1=2
; q̄A ¼ ϵ̄ABp̄B;

ϵ̄12 ¼ ðdet γABÞ1=2: ð6:15Þ

Since the metric can be written as γAB ¼ p̄Ap̄B þ q̄Aq̄B,
and CAB is traceless, CABγ

AB ¼ 0, one can decompose

CAB ¼ ðp̄Ap̄B − q̄Aq̄BÞCþ þ ðp̄Aq̄B þ q̄Ap̄BÞCx; ð6:16Þ

and rewrite (6.14) in a simple form

z ¼ −
1

2
ðCþ þ iCxÞ: ð6:17Þ

Coefficients Cþ and Cx correspond to “þ” and “x” polar-
izations of a gravity wave in the given basis. Expression
(6.17) is in accord with the fact that “þ” and “x” polar-
izations are related to real and imaginary parts of the shear.

C. Interaction of the string with ingoing flux

Consider an outgoing null string which moves toward
Iþ and an ingoing flux of matter which crosses the string
trajectory. Our aim is to find out how the flux affects
parameter zðτÞ in asymptotic (6.1). We assume that the flux
is weak and its interaction with all points of the string
happens in a short interval (λ⋆, λ⋆ þ Δλ).
Substitution Z ¼ Y−1 brings (3.11) to the form

∂λY ¼ 1þRY2; R ¼ Ψ̂0 þΦ00; ð6:18Þ

in the affine parametrization. We assume that R is
entirely due to the flux. Solution to (6.18) can be found
perturbatively,

Y ¼ Y0 þ Y1 þ Y2 þ � � � ; ð6:19Þ

∂λY0 ¼ 1; ∂λY1 ¼ RY2
0; ð6:20Þ

where Yk ¼ OðRkÞ. Solutions to (6.19), (6.20) are
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Y0ðλ; τÞ ¼ λþ zðτÞ;

Y1ðλ; τÞ ¼
Z

λ

λ⋆
Rðτ; λ0Þðλ0 þ zðτÞÞ2dλ0: ð6:21Þ

Before the interaction with the flux, λ < λ⋆

Zðλ; τÞ ≃ 1

λ
−
zðτÞ
λ2

: ð6:22Þ

After the interaction, at λ > λ⋆ þ Δλ, (6.19), (6.21) imply
that

Zðλ; τÞ ≃ 1

Y0

−
Y1

Y2
0

≃
1

λ
−
zðτÞ þ Δz

λ2
; ð6:23Þ

ΔzðτÞ ≃Rðτ; λ⋆Þλ2⋆Δλ: ð6:24Þ
The shift Δz is the gravitational memory left after the
interaction with the flux.
In the Einstein gravity, ifΨ0 ¼ 0, then the memory effect

is due toR ¼ −4πGTll, where Tll is the null component of
the stress-energy tensor of ingoing matter. In this case Δz is
real, and the flux does not cause an additional rotation of
the string.

VII. SUMMARY

The aim of this paper is to develop a coordinate, para-
metrization, and basis independent description of null strings.
We identified a complex spin coefficient Z, which is a boost-
weighted scalar. Z obeys a string optical equation and
determines the transformationof the stringalong its trajectory.
The string diagrams introduced in the Z plane may be a

useful tool to study the string trajectories in simple terms.

The diagrams are portraits of the strings. Some examples of
the diagrams have been presented for strings in flat space-
times and in conformally flat cosmological models.
Constructing diagrams for other physically interesting
situations, such as null strings interacting with black holes
or null strings in realistic cosmological models, is left for
further research.
Null cosmic strings, similarly to tensile strings, may

result in a number of observable effects in their environ-
ment. The strings create overdensities of matter, additional
anisotropy of CMB, etc. All these effects are related to a
backreaction of the geometry caused by strings.
In the present paper we were interested in the opposite

effects: how geometry affects null strings, and, in particular,
asymptotic properties of their trajectories. It follows from
the string optical equation that all transformations of the
shape of strings in asymptotically flat space-times gradu-
ally decay. Strings are “freezing out” as the future null
infinity Iþ is approached. The same property holds for null
strings in cosmological models of dust or matter dominated
flat universes. In asymptotically de Sitter space-times
strings stop rotating but stretch accordingly with the
cosmological expansion.
Interactions of null strings with the background curva-

ture and flows of matter cause ripples on the strings near
Iþ. These gravitational memory effects are encoded in the
subleading terms of Z. If null cosmic strings are funda-
mental tensionless strings produced in the early Universe
and stretched to cosmological scales the ripples may carry
an important information about the Planckian physics. This
would be an intriguing feature of null cosmic strings,
analogous to features of relic gravitational waves, and
would be an interesting future research topic.
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