
 

Dynamics of tachyon dark energy on large scales and its imprint
on the observed galaxy power spectrum

Ajay Bassi ,1,* Ankan Mukherjee ,2,1,† and Anjan A. Sen3,1,‡
1Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi 110025, India

2Department of Physics, Bangabasi College, Kolkata 700009, India
3School of Arts and Sciences, Ahmedabad University, Ahmedabad 380009, India

(Received 17 April 2021; accepted 17 May 2021; published 9 June 2021)

In the present work, we study the large scale matter power spectrum as well as the observed galaxy
power spectrum for a noncanonical tachyon field dark energy model considering the full general relativistic
perturbation equations. We form a set of coupled autonomous equations, including both the background
and linearly perturbed quantities, and obtain their solutions numerically with proper set of initial
conditions. We consider different scalar field potentials for our study. Deviations from the concordance
Λ cold dark matter (ΛCDM) model are studied for different relevant quantities. Our study shows that the
noncanonical tachyon dark energy model produces enhanced gravitational potentials and comoving density
contrast, as well as linear growth factor for matter perturbations compared to ΛCDM. It is also observed
that, for tachyon dark energy models, there is suppression of power on large scales compared to both the
ΛCDM model as well as previously studied canonical scalar field models.
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I. INTRODUCTION

The observed phenomenon of late time cosmic accel-
eration [1,2] has brought a drastic change in our under-
standing of the present universe. The genesis of cosmic
acceleration is not yet firmly established. An exotic
component dubbed as “dark energy” can be introduced
in the energy budget of the Universe to produce the desired
repulsive gravitational effect. In addition to the dark energy
cosmology, modified gravity theories are also introduced
to explain the cosmic acceleration (for comprehensive
review, see [3]).
Among different theoretical prescriptions to explain late

time cosmic acceleration, the dark energy cosmology is
found to be the most consistent with astronomical obser-
vations. However, we hardly have the knowledge about the
actual physical entity of dark energy. Cosmological con-
stant or vacuum energy density are potential candidates of
dark energy [4–6]. The cosmological constant (Λ) along
with cold dark matter (CDM) is known as the concordance
ΛCDM model. Though the ΛCDM model is consistent
with most of the cosmological observations [7], there are
certain theoretical issues, like the fine-tuning problem,
as well as the cosmic coincidence problem. Apart from
this, some of the recent astronomical observations, mainly
the local measurement of Hubble constant (H0) [8] and the

direct measurements of the fluctuations in the matter
density distribution in the Universe (S8) by Kilo-Degree
Survey + VISTA Kilo-Degree Infrared Galaxy Survey
spanning 450 degree2 + Dark Energy Survey Y1 [9], are
in tension with the Planck-ΛCDM estimation of those
parameters. For all these reasons, time-evolving dark
energy models are also well emphasized in the literature.
In the case of time-evolving dark energy, the potential
candidates are different canonical and noncanonical scalar
fields [10–13] or some exotic fluid with specific equation of
state [14]. For a comprehensive review of different time-
evolving dark energy models, we refer the reader to [15].
In the present work, we study the evolution of cosmo-

logical perturbations in a tachyon dark energy model.
Tachyon is a noncanonical description scalar field dark
energy. A tachyon scalar field was invoked in the context
of dark energy by Padmanabhan [13]. Many more discus-
sions on tachyon dark energy are there in literature [16–21].
Spherical collapse of matter overdensity in tachyon dark
energy is studied by Rajvanshi and Bagla [22] and by Setare
et al. [23]. Effects of inhomogeneous tachyon dark energy on
cosmological perturbations are studied by Singh et al. [24].
It is an important task in dark energy cosmology to

distinguish the time-varying dark energy model from
the cosmological constant. A possible way to accomplish
this is to study the background expansion, as well as the
evolution of cosmological perturbations. Cosmological
perturbations in the matter field and its evolution can be
studied from the temperature and polarization spectrum of
the cosmic microwave background (CMB) [7] and also
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from the observed galaxy power spectrum [25]. CMB
observation by Planck along with other observational data
have ensured unprecedented constraints on cosmological
parameters [7]. However, most of these observations
probe subhorizon scale physics where the Newtonian
approximations for cosmological perturbation is valid
and the dark energy perturbations can be safely ignored.
Thus, all the dark energy parameters, constrained in
Planck observations, are related to the background evo-
lution of dark energy. Future observations like the
Large Synoptic Survey Telescope (LSST) [26], Square
Kilometer Array (SKA) [27] will provide a wide redshift
range sky survey in optical and radio observations and a
much more sophisticated map of the distribution of matter
in the Universe. These types of observations will be highly
effective to study the general relativistic (GR) effects in
the evolution of cosmological perturbations, where the
inhomogeneities in dark energy could not be ignored. As
the cosmological constant (Λ) is homogeneous, these
future observations would be the smoking gun to distin-
guish the cosmological constant from the time-varying
dark energy models and would also be effective to check
the viability of various dark energy models.
As already mentioned, the present analysis is carried

out for tachyon dark energy. The full general relativistic
effects on the evolution of linear perturbations and galaxy
power spectrum are studied. We formulate a set of
autonomous system of equations, which are studied
numerically with proper initial conditions. Quintessence
scalar field dark energy perturbation and its scale depend-
ence was studied by Unnikrishnan et al. [28]. In case of
tracker quintessence, the galaxy power spectrum incor-
porating GR corrections and its imprint on the neutral
hydrogen distribution in the Universe are studied by
Duniya et al. [29]. Dinda and Sen have studied the galaxy
power spectrum in inhomogeneous thawing scalar field
dark energy [30]. Recently, Singh et al. [24] have studied
the perturbations in tachyon dark energy and its effects on
the clustering of dark matter, and a comparative study of
linear perturbation in quintessence and tachyon is carried
out by Rajvanshi et al. [31].
The paper is organized as follows. In Sec. II, the

background evolution equations for the present models
are discussed. The perturbation equations with general
relativistic corrections and their solutions are discussed in
Sec. III. In Sec. IV, the different power spectrums and their
deviation from ΛCDM at different redshift are presented.
Finally, in Sec. V, we conclude with an overall discussion
about the results.

II. BACKGROUND EVOLUTION

A noncanonical description of scalar field dark energy,
namely the tachyon, is studied in the present work. We
consider Dirac-Born-Infeld–type action to study the
dynamics of the tachyon scalar field

S ¼
Z

−VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ∂μϕ∂μϕ

q ffiffiffiffiffiffi
−g

p
d4x: ð1Þ

Here VðϕÞ is the potential for noncanonical scalar field ϕ.
The energy density and pressure of the tachyon scalar field
are, respectively, given by [17]

ρ̄ϕ ¼ VðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q ; ð2Þ

P̄ϕ ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q
; ð3Þ

where the overhead dot represents the derivative with respect
to cosmic time. From the action, given in Eq. (1), the
equation of motion for scalar field is obtained as

ϕ̈þ 3H _ϕð1 − _ϕ2Þ þ V;ϕ

V
ð1 − _ϕ2Þ ¼ 0; ð4Þ

where subscript “;ϕ” is the derivative with respect to the
scalar field ϕ. The Hubble parameter (H) in a spatially flat
Friedmann-Lemaître-Robertson-Walker (FLRW) universe is
expressed as

H2 ¼ ρ̄ϕ þ ρ̄m
3

; ð5Þ

where ρ̄m is the energy density of the background matter,
which includes the contribution from both the dark matter
and baryons.

III. RELATIVISTIC PERTURBATION

We consider a conformal Newtonian gauge with vanish-
ing anisotropic stress for the flat FLRW spacetime with
perturbed metric

ds2 ¼ a2ðτÞ½ð1þ 2ΦÞdτ2 − ð1 − 2ΦÞdx⃗:dx⃗�; ð6Þ

where τ is the conformal time, aðτÞ is the conformal scale
factor, x⃗ are the comoving coordinates, and Φ is the
gravitational potential. The linearized Einstein equations
obtained for the above perturbed metric [Eq. (6)] are
written as [30]

∇2Φ − 3HðΦ0 þHΦÞ ¼ 4πGa2
X
i

δρi; ð7Þ

Φ0 þHΦ ¼ 4πGa2
X
i

ðρ̄i þ P̄iÞvi; ð8Þ

Φ00 þ 3HΦ0 þ ð2H0 þH2ÞΦ ¼ 4πGa2
X
i

δPi; ð9Þ

where prime denotes the derivative with respect to the
conformal time τ, P̄i and ρ̄i represent the background
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pressure and energy density of each component, namely
the matter and tachyon filed, andH denotes the conformal
Hubble parameter. δPi, δρi, and vi are the linear order
perturbed quantities for the background pressure, energy

density, and velocity field, respectively. v⃗i ¼ −∇⃗vi
defines the irrotational component of the velocity field.
From Eqs. (7) and (8), one gets the relativistic Poisson
equation as

∇2Φ ¼ 4πGa2
X
i

ρ̄iΔi; ð10Þ

where Δi ¼ δi þ 3Hð1þ wiÞvi represents the gauge-
invariant comoving energy density contrast for the ith
component. Δi is the correct tracer for the gravitational
potential on large scales. The relativistic continuity and
Euler equations can be obtained from the conservation of
stress-energy tensor as [30]

δ0 þ 3H
�
δP
δρ

−
P̄
ρ̄

�
δ ¼

�
1þ P̄

ρ̄

�
ðθ þ 3Φ0Þ; ð11Þ

and

θ0 þ 3H
�
1

3
−
P̄0

ρ̄0

�
θ ¼ ∇2δP

ρ̄þ P̄
þ∇2Φ; ð12Þ

respectively, where θ ¼ −∇⃗:v⃗ and δ ¼ δρ
ρ̄ . Finally the

evolution equations of perturbed energy density, pressure,
and velocity at linear order for tachyon scalar field are
given as

δρϕ ¼ VðϕÞ
ð1 − _ϕ2Þ3=2

ð _ϕδ _ϕ −Φ _ϕ2Þ þ Vϕδϕffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q ; ð13Þ

δPϕ ¼ VðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q ð _ϕδ _ϕ −Φ _ϕ2Þ − Vϕδϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q
; ð14Þ

aðρ̄ϕ þ P̄ϕÞvϕ ¼ VðϕÞ
_ϕδϕffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q : ð15Þ

Next, we define the following dimensionless parameters
related to the background and perturbed quantities for the
tachyon field:

x ¼ _ϕ; y ¼
ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp
ffiffiffi
3

p
H

;

λ ¼ −
V;ϕ

V3=2 ; Γ ¼ V
V;ϕϕ

ðV;ϕÞ2
;

δϕ ¼
_ϕ

H
q; Ωϕ ¼ y2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p ;

γϕ ¼ 1þ ωϕ ¼ _ϕ2 ¼ x2: ð16Þ

The x here is just a dimensionless parameter and is
different from the comoving coordinates in Eq. (6). Ωϕ is
the density parameter and wϕ is the equation of state
parameter for the tachyon scalar field ϕ. We can now form a
set of autonomous system of equations involving the
quantities defined in Eq. (16) to study the different
quantities associated with both the background and per-
turbed universe [32],

γ0ϕ ¼ −6γϕð1 − γϕÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3γϕΩϕ

p
λð1 − γϕÞ5=4;

Ω0
ϕ ¼ 3Ωϕð1 − γϕÞð1 −ΩϕÞ;
λ0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3γϕΩϕ

p
λ2ð1 − γϕÞ1=4ðΓ − 3=2Þ;

H0 ¼ −
1

2
ð1þ 3Ωϕðγϕ − 1ÞÞH;

Φ0 ¼ Φ1;

q0 ¼ q1;

Φ1
0 ¼ −ð1þ BÞΦ1 −

�
2B − 3þ 3

2
Ωϕγϕ

�
Φ

þ 3

2
Ωϕγϕ½q1 þ qð3γϕ − Bþ gð1 − γϕÞÞ�;

q10 ¼ −ðg − 3γϕ − BÞq1 − Bqq − ð3γϕ − 4ÞΦ1

þ ðg − 6γϕÞΦ: ð17Þ

Here prime represents derivative with respect to
N ¼ logðaÞ. We have defined B ¼ 1.5ð1 − ðγϕ − 1ÞΩϕÞ;
g ¼ 2λ

ffiffiffiffiffiffi
3Ωϕ

γϕ

q
ð1 − γϕÞ1=4, and Bq¼−B0 þðg−6γϕÞð3−BÞþ

k2

H2 ð1−γϕÞ.
Matter density contrast and peculiar velocity for

matter are obtained from the Fourier space solutions of
Eqs. (7), (8), (13), and (15) as

δm ¼ −
2

Ωm

�
Φ1 þΦ

�
1 −

Ωϕγϕ
2ð1 − γϕÞ

þ k2

3H2

�

þ Ωϕγϕ
2ð1 − γϕÞ

ðq1 þ qð3γϕ − BÞ
�
;

ym ¼ 3Hvm ¼ 2

Ωm
½Φ1 þΦ − 1.5qΩϕγϕ�: ð18Þ
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Using Eq. (18), we can define the gauge-invariant comov-
ing matter density contrast as Δm ¼ δm þ ym.

A. Initial conditions

One needs to set the initial conditions for (γ;Ωϕ; λ;H)
for the background universe and (Φ;Φ0; q; q0) for the
perturbed universe to solve the set of autonomous equations
defined in Eqs. (17). We fix the initial conditions at
decoupling epoch (z ¼ 1000), when the universe was
matter dominated and contribution from dark energy was
negligible. For this, we follow the same procedure as
described in [30]. The scalar field is frozen initially at
wϕ ∼ −1 due to large Hubble friction [3H _ϕ term in Eq. (4)],
such that γi ∼ 0, but we set it at very small value γi ¼ 10−7.
Ωϕ is negligible initially at z ¼ 1000 because the universe
was matter dominated. λ gives the slope of the potential and
determines the evolution of the scalar field. We set λin ≪ 1
so that the scalar field remains frozen to the initial value of
equation of state ωϕ ∼ −1 and behaves like a cosmological
constant initially. We fix the initial values of Ωϕ; λ, and H
in a manner so that we get the desired values ofΩϕ0 andH0

at present redshift z ¼ 0.
One can ignore the contribution of dark energy at

z ¼ 1000 as the universe was matter dominated at that
redshift, and hence we set q ¼ dq

dN ¼ 0 initially. Moreover,
the gravitational potential Φ being constant during matter
domination, we set the initial value of gravitational poten-
tial using Eq. (10) and relation Δm ∼ a (during matter
domination) as

Φin ¼ −
3

2

H2
in

k2
ain; ð19Þ

which is a constant, and hence dΦ
dN ¼ 0 initially.

B. Behavior of cosmological parameters

To get the desired results, we fix Ωm0 ¼ 0.28; λi ¼ 0.7,
and H0 ¼ 70 km=s=Mpc. These values are consistent with
different cosmological observations including CMB by
Planck, and the overall behavior of our final results are
not sensitive to these values. With the initial conditions set
as above, we solve the set of autonomous Eqs. (17) and
study the dynamics of the different cosmological param-
eters. We are considering power-law potentials, more
specifically, linear, inverse, and inverse-squared potentials.
In Fig. 1, we show the behavior of equation of state

parameter ðωϕ ¼ γϕ − 1Þ as a function of redshift for the
different potentials. We set the identical initial conditions
for all the potentials and ϕ remains frozen at ωϕ ¼ −1
initially and thaws away from cosmological constant-type
behavior in the near past.
In Fig. 2, we study the behavior of gravitational potential

in comparison to the ΛCDM case. We show the percentage
deviation in the gravitational potential Φ of the tachyon

dark energy from the ΛCDM model for different types of
potentials. For redshifts z ≠ 0, the deviation is less than 1%
for all scales, whereas for z ¼ 0, the deviation is around
3%–4% for large scales and around 1% at small scales.
Also the linear potential results in the highest deviation
compared to other potentials. This is similar to the
canonical scalar dark energy model [30]. We should stress
that the small scale behavior in the tachyon dark energy
model is primarily governed by its background evolution,
whereas on the large scales, effect of perturbation in
tachyon field plays a significant role.
In Fig. 3, we study the behavior of the gauge-invariant

matter density contrast Δm. The behavior is similar to the
gravitational potential, but with comparatively smaller
deviation from the ΛCDM case.
Next, we define the quantity f which depends on the

velocity field perturbations and gives rise to the redshift
space distortion

f ¼ −
k2vm
HΔm

: ð20Þ

In Fig. 4, we show the deviatin in f from ΛCDM model
for different scalar field potentials. For redshift z ¼ 0, the
deviation in f is smaller than 6%, and for higher redshifts,
the deviation is even smaller for all potentials considered.
There is hardly any scale dependency, which shows that
the contribution to the deviation in f is from background
expansion only.

IV. THE OBSERVED GALAXY POWER
SPECTRUM

Considering the different aspects of galaxy distribution,
we can study the evolution of our Universe. Newtonian
perturbations are enough to study the underlying dark

FIG. 1. Equation of state for the tachyon scalar field wϕ as a
function of redshift z at large scale k ¼ 10−4 Mpc−1 and for
different potentials with Ωm0 ¼ 0.28 and λi ¼ 0.7.
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matter distribution on subhorizon scales. On horizon scales,
we need full general relativistic treatment to study the
effects of dark energy perturbations on dark matter dis-
tribution. It will help us to distinguish between different
dark energy models from modified gravity models.
We see the galaxies in the redshift space and the galaxy

distribution is influenced by the peculiar velocities of the
galaxies in addition to the dark matter fluctuations. This
gives rise to Kaiser redshift space distortion [33], which is a
measure of large scale velocity fields. The gravitational
potential in the metric [Eq. (6)] can affect the photon
geodesics by integration along the path and gives rise to the
gravitational lensing effect. This effect alters the galaxy
distribution and results in magnification bias [34].
In the recent past, people have shown that the

general relativistic treatment on large scales can affect
the observed galaxy distribution by contributing to how the
gravitational potential, velocity fields, and matter density
affect the observed number density of galaxies on large

scales [35–40]. These general relativistic effects are neg-
ligible on small subhorizon scales but are significant on
large scales and help to distinguish between different dark
energy models from modified gravity models.
All the above effects play important parts in the observed

fluctuations in the number of galaxies across the sky at
different redshifts and angles. The galaxy number over-
density Δo incorporating these effects can be written as
[29,36,38,41]

Δo ¼
�
bþ fμ2 þA

�
H
k

�
2

þ iμB
�
H
k

��
Δm; ð21Þ

where b is the bias parameter on linear scales, f is the

redshift space distortion parameter, μ ¼ n⃗·k⃗
k with n⃗ gives the

direction of observation, and k⃗ is the wave vector with
magnitude k. The parameters A and B, which arise due to
full general relativistic treatment, are given by

FIG. 2. Percentage deviation in gravitational potential Φ from ΛCDM model as a function of k with Ωm0 ¼ 0.28 and λi ¼ 0.7. Here
and in subsequent plots, we use %ΔX ¼ ðXϕ=XΛ − 1Þ × 100.
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A ¼ 3f þ
�
k
H

�
2
�
3þ H0

H2
þ Φ0

HΦ

�
Φ
Δm

; ð22Þ

B ¼ −
�
2þ H0

H2

�
f: ð23Þ

We have assumed constant comoving galaxy number density,
thus galaxy evolution bias is zero in our case and we have
considered magnification bias b ¼ 1 [41]. We have neglected
time delay, integrated Sachs-Wolfe effect, and weak lensing
integrated terms in our calculations. In Eq. (21), the first term
inside the square bracket is related to the galaxy bias, the
second term is the Kaiser redshift term, and the third and
fourth terms are purely due to the general relativistic
corrections. In the last two terms, A [given by Eq. (22)] is
related to the peculiar velocity fields [Eq. (20)] and gravi-
tational potential, and B is related to the Doppler effect.
We can write the power spectrum for the observed

galaxy number overdensity using Eq. (21) (only real part)
as [29,35]

Pðk; zÞ ¼ Psðk; zÞ
�
ðbþ fμ2Þ2 þ 2ðbþ fμ2Þ

�
A
x2

�

þA2

x4
þ μ2

�
B2

x2

��
; ð24Þ

where x ¼ k
H and Psðk; zÞ is the standard matter power

spectrum,

Psðk; zÞ ¼ Akns−4TðkÞ2
�jΔmðk; zÞj
jΦðk; 0Þj

�
2

: ð25Þ

We can also define the power spectrum with only the
Kaiser redshift space distortion term included as

Pksðk; zÞ ¼ ðbþ fμ2Þ2Psðk; zÞ: ð26Þ

In the standard matter power spectrum given by Eq. (25),
A is fixed by σ8 normalization. We use the Eisenstein-Hu

FIG. 3. Percentage deviation in comoving density contrast Δm from ΛCDM model as a function of k.
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transfer function TðkÞ [42] in our case. In Fig. 5, we have
plotted the line of sight (μ ¼ 1) for the observed galaxy
power spectrum at z ¼ 0 for linear potentials only by using
Eq. (24). We put the spectral index for the initial power
spectrum ns ¼ 0.98; σ8 ¼ 0.8;Ωbo ¼ 0.05;Ωmo ¼ 0.28,
and h ¼ 0.7 using σ8 normalization.
In Fig. 5, we have plotted the observed galaxy power

spectrum with and without general relativistic corrections.
When the Kaiser redshift space distortion term is consid-
ered, the power spectrum Pksðk; zÞ shifts with an almost
constant factor to higher values on all scales compared to
the standard matter power spectrum. When general rela-
tivistic corrections are considered, then the total power
spectrum remains almost equal with Pksðk; zÞ on small
scales, but shows substantial enhancement to higher values
on large scales, which again shows that the GR corrections
contribute on large scales.
In Fig. 6, we have shown the percentage deviation in the

standard matter power spectrum Psðk; zÞ, the power spec-
trum with only the Kaiser term Pksðk; zÞ, and the total
power spectrum Pðk; zÞ from the ΛCDM model on

FIG. 4. Percentage deviation in f from ΛCDM model as a function of k.

FIG. 5. Continuous, dashed, and dash-dotted lines for the full
observed galaxy power spectrumPðkÞ given byEq. (24), the galaxy
power spectrumPksðkÞ by taking only the Kaiser redshift term [first
term inside the square bracket in Eq. (24)], and the standard matter
power spectrum PsðkÞ given by Eq. (25) as a function of k.
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different scales k for different redshifts and for different
scalar field potentials.
From Eq. (25), we can observe how Psðk; zÞ depends

uponΔm andΦ. From Fig. 3, except at z ¼ 0where there is
slight enhancement in Δm in the tachyon model compared
to ΛCDM, for other redshifts, the deviation in Δm from
ΛCDM is negligible. On the other hand, the gravitational
potential Φ has a reasonable enhancement in the tachyon
model compared to ΛCDM at z ¼ 0 on large scales. With
this, from Eq. (25), one expects the suppressions in Psðk; zÞ
in the tachyon model compared to ΛCDM on large scales,
which is shown in the left column in Fig. 6.
Next we consider the power spectrum with the Kaiser

redshift space distortion term Pksðk; zÞ [Eq. (26)]. It
depends upon the growth function f given by Eq. (20).
In Fig. 4, we have shown that there is an enhancement in f
in the tachyon model compared to ΛCDM for large redshift

and this enhancement is largely scale dependent. For
smaller redshifts, the enhancement is minimal. This reflects
the effect in Pksðk; zÞ [Eq. (26)], as shown in the middle
column in Fig. 6.
Finally, we consider the full power spectrum Pðk; zÞwith

general relativistic corrections given by Eqs. (22) and (23).
The deviation in Pðk; zÞ from the ΛCDM model is large on
large scales due to the contribution of dark energy
perturbations on large scales and small redshifts through
the Φ term (the scalar field model starts behaving like
matter-only model for higher redshifts). For redshift z ¼ 0,
at large scale, the suppression from ΛCDM is around
17%–24% depending upon different scalar field potentials.
However, if we look at at the smaller scale at z ¼ 0, we
observe a slightly higher PðkÞ for the present model than
the corresponding ΛCDM. At nonzero redshift, the PðkÞ
remains suppressed even at smaller scale. Comparing this

FIG. 6. Percentage deviation in power spectrum PðkÞ from ΛCDMmodel for different scalar field potentials and for different redshifts
as a function of k. The left column is for the deviation in standard matter power spectrum PsðkÞ given by Eq. (25), the middle column is
for the deviation in the power spectrum with the Kaiser redshift space distortion term PksðkÞ, and the right column is for the full observed
galaxy power spectrum PðkÞ given by Eq. (24).
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to the deviation in Pksðk; zÞ, we can see that the GR
corrections highly suppress the power spectrum at larger
scale. At smaller scale, the deviation in Pðk; zÞ has
similar behavior as in Pksðk; zÞ due to the negligible
contribution of the GR corrections on small scales. The
effect of GR corrections is maximum around present
day. We should also stress that, for the full power
spectrum Pðk; zÞ with general relativistic corrections,
deviation from ΛCDM in the tachyon model is much
larger than the corresponding deviations in canonical
scalar field models [30] as well as cubic Galilean models
[43]. This is why tachyon models can be more easily
distinguished from ΛCDM compared to canonical scalar
field as well as Galilean models.
It worth mentioning at this point that some earlier works

have also emphasized the perturbation in tachyon dark
energy and their effects on cosmic large scale structures.
Singh et al. [24] have discussed the perturbations in
tachyon dark energy and their effects on the clustering
of matter. They have studied the evolution of gravitational
potential, density contrast of dark matter, and dark energy
for inverse-squared and exponential potential. In the
present work, we have adopted linear, inverse, and
inverse-squared potential. In [24], it was observed that
the effect of dark energy perturbations is significant only at
superhorizon scale and it causes the enhancement of
gravitational potential and the growth of density contrast
at superhorizon scale for tachyon dark energy compared to
that of ΛCDM. These results are totally consistent with the
findings of the present work. Additionally, in the present
work, we have also emphasized the nature of matter power
spectrum for tachyon dark energy considering the fully
relativistic perturbation equations. Substantial suppression
of power is observed at large scale in the case of tachyon
dark energy. In another recent article, Rajvanshi et al. [31]
have compared the linear perturbations in tachyon and
quintessence dark energy and their impacts on the obser-
vational measurements of cosmological parameters from
cosmic microwave background. It was found that these two
models, namely the tachyon and quintessence, are not
distinguishable at background and linear perturbation level.
In the present work, we have shown that the fully
relativistic analysis of the matter and dark energy pertur-
bations enable us to distinguish the present model from
ΛCDM. The study of matter power spectrum using the
nonlinear equations of tachyon dark energy perturbations is
one of the new aspects of the present study. Similar analysis
for thawing quintessence dark energy has been carried by
Dinda and Sen [30]. A close observation of the results from
the present analysis and the results in [30] would reveal
that, though the suppression of power spectrum in the case
of tachyon and quintessence from the ΛCDM have similar
patterns, the amount of suppressions of power spectrum is
not the same in tachyon and quintessence. Thus, the

comparison of fully relativistic matter power spectrum
could successfully break the degeneracy of quintessence
and tachyon dark energy cosmology.

V. CONCLUSION

The present work deals with the relativistic perturbations
in a tachyon field dark energy model. The prime emphasis
is on the nature of cosmological perturbations considering
the full general relativistic corrections. The GR corrections
are important at large scales where the inhomogeneity in
dark energy distribution is no longer negligible. We have
formed a set of coupled dynamical equations involving the
relevant quantities of background and perturbed universe.
The solutions of the set of dynamical equations are studied
with proper initial conditions.
The gravitational potential (Φ) is found to be slightly

higher than that of ΛCDM (Fig. 2). The deviation is higher
at large scales, where GR corrections effectively contribute.
The deviation is higher at z ¼ 0. The comoving matter
density contrast also shows a similar profile of deviation
from the ΛCDM (Fig. 3). The linear growth rate of matter
perturbation (f) is also found to be higher for the present
model than the ΛCDM and the deviation is maximum at
z ¼ 0 (Fig. 4). Further, we have studied power spectrum of
matter density contrast and observed galaxy power spec-
trum for the present model and also investigated the
difference in the power spectrum from the ΛCDM power
spectrum (Figs. 5 and 6). Suppression in power in the
matter power spectrum [PsðkÞ] compared to the ΛCDM is
observed and the power suppression is higher at large scale
(left column of Fig. 6). The power is enhanced when the
Kaiser redshift space distortion term is introduced in the
power spectrum [PksðkÞ] (middle column of Fig. 6). At
large scales, PksðkÞ remains suppressed compared to the
ΛCDMmodel. However, at smaller scales and at z ¼ 0, the
PksðkÞ for the present model overtakes theΛCDM. At other
redshifts, it is almost the same as compared to the ΛCDM
curves at smaller scales. In the right column of Fig. 6, the
deviation in the observed galaxy power spectrum from
ΛCDM is shown. The observed galaxy spectrum is also
suppressed in the present model at large scales. At smaller
scales, it comes closer to the ΛCDM spectrum. It is
apparent from the plots that the general relativistic correc-
tions, which introduces the effect of dark energy inhomo-
geneity in cosmological perturbations, suppresses the
matter power spectrum and observed galaxy power spec-
trum substantially at large scales. On the other hand, the
power is not much affected by the GR corrections at smaller
scales, as the dark energy inhomogeneity is not effective at
those scales.
Future observations like SKA and LSST will observe

the sky at much larger scale and at much higher redshift.
For those observations, GR corrections in the cosmological
perturbations are essential. At that scale of observation, the

DYNAMICS OF TACHYON DARK ENERGY ON LARGE SCALES … PHYS. REV. D 103, 123522 (2021)

123522-9



inhomogeneity of dark energy distribution would have its
signature on the matter field. Hence those observations will
be highly effective to distinguish homogeneous dark energy
(the ΛCDM) from time-varying dark energy, which allows
the clustering of dark energy. Even different time-varying
dark energy models could be distinguished in this method.
Hence these type of studies are highly relevant in present
cosmological research. Future observations in radio and
optical regimes would be highly effective to reveal the
nature of dark energy, as well as to give a better under-
standing about the physical entity of the dark energy.
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