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A seemingly simple question, “how does warm inflation exit gracefully?”, has a more complex answer
than in a cold paradigm. It has been highlighted here that whether warm inflation exits gracefully depends
on three independent choices: The form of the potential, the choice of the warm inflation model (i.e., on the
form of its dissipative coefficient) and the regime, of weak or strong dissipation, characterizing the warm
inflation dynamics. Generic conditions on slow-roll parameters and several constraints on the different
model parameters required for warm inflation to exit gracefully are derived.
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I. INTRODUCTION

Warm inflation (WI) [1], a variant inflationary paradigm,
where the inflaton field dissipates its energy to a thermal
bath throughout inflation, has many more attracting fea-
tures than its counterpart, the cold inflationary paradigm.
First of all, WI takes into account the interactions of the
inflaton field with other particle degrees of freedom during
inflation, which are in general ignored or considered
negligible in a cold inflation paradigm. Due to these
interactions of the inflaton field, when WI ends, it ends
in a universe which has an existing thermal bath. This is
unlike the case of the cold paradigm where the universe
ends up in a state devoid of matter at the end of inflation,
thus requiring a subsequent phase of (p)reheating. As WI
smoothly ends in a radiation dominated universe, it avoids
a following reheating phase; the physics of which is yet
not fully understood. Secondly, the dissipative effects that
are intrinsic to the WI picture offers an opportunity of
alleviating some of the long-lasting problems related to
cold inflation. In particular, recent works on WI have
shown that for sufficiently strong dissipation, sub-
Planckian inflaton values are allowed during inflation
[2–4]. This supports the current data [5] which prefer
small field models over the large-field ones. It also leads to
a lower radiation temperature that significantly alleviates
and possibly solves issues related to overproduction of
unwanted relics and, e.g., the gravitino problem [6,7]. WI
has also been shown (see, e.g., Ref. [2]) to provide a natural
solution to the so-called eta problem plaguing some cold
inflation models in the supergravity context. In addition, it
has been shown that an appropriate baryon asymmetry can

possibly be generated by dissipative effects alone during
warm inflation [8]. This, on the other hand, yields addi-
tional observable baryon isocurvature perturbations [9],
which can be probed to check the consistency of WI
models. Third, WI has a more enhanced scalar curvature
perturbation spectrum, which yields a lesser tensor-to-
scalar ratio and, thus, helps accommodate models that
would otherwise be ruled out by the observations in a cold
paradigm [5]. The monomial chaotic inflaton potentials
[10,11] are one such example. Fourth, but not least, it has
been shown that the fluctuation-dissipation dynamics,
which is an inherent feature of WI model realizations,
can help solving the initial condition problem of plateaulike
potentials and at the same time can work as a mechanism
which helps localize the inflaton at the origin to trigger a
period of sufficient slow-roll inflation [12].
In its initial days, WI was considered hard to be

implemented through a consistent microscopic model, with
the difficulty been mostly related to the problem of
shielding the inflaton sector from large thermal corrections
[13,14], which would endanger the required flatness of the
inflaton potential. However, this difficulty was soon over-
come, first by decoupling the inflaton sector from the light
radiation fields (for its model building construction, see
Refs. [15,16], while for the consistency with observations,
see Ref. [17]) and, later, by using an analogous model
motivated by the Higgs phenomenology, it was shown how
the inflaton could be coupled directly to the light radiation
fields, yet preventing any harmful large thermal corrections
to the inflaton potential. This was initially shown to be
possible when the inflaton was directly coupled to light
fermion fields [18], a model that was named the warm little
inflaton (WLI) model, and more recently through a variant
of the WLI, where the inflaton was coupled directly to light
scalar bosonic fields [2]. Wewill call the latter the variant of
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warm little inflaton (VWLI) model. Another model with
similar features to theWLI and the VWLI, but motivated by
the physics of axions and natural inflation has been named
the minimal warm inflation (MWI) model [19]. One thing
which is common to all these models is that the dissipation
coefficient typical of the WI dynamics can all be expressed
through a simple functional form that is dependent on the
temperature T of the thermal bath and the amplitude ϕ of
the inflaton field. The simplest functional form assumed in
most phenomenological studies involving WI involves a
dissipation coefficient ϒ given by

ϒðϕ; TÞ ¼ CϒTpϕcM1−p−c; ð1:1Þ

where Cϒ is a dimensionless constant (that carries the
details of the microscopic model used to derive the
dissipation coefficient, e.g., the different coupling constants
of the model (see, for example, Ref. [20]) for different Cϒ
expected for the dissipation coefficient in WI, depending on
the interactions involved and the regime of parameters).
The numerical powers given by c and p, can be either
positive or negative numbers and M is some appropriate
mass scale, such that the dimensionality of the dissipation
coefficient in Eq. (1.1) is preserved, ½ϒ� ¼ ½energy�.
WI has also more recently regained attention in the

literature in the context of the so-called swampland con-
jectures [21–24]. The swampland conjectures have been
formulated as conditions that an effective field theory
should satisfy in order to accommodate an ultraviolet
complete field theory within a string landscape. For
instance, in terms of the standard slow-roll coefficients,

ϵV ¼ M2
Pl

2

�
V 0

V

�
2

; ηV ¼ M2
Pl
V 00

V
; ð1:2Þ

with MPl ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
≃ 2.4 × 1018 GeV is the reduced

Planck mass, the de Sitter conjecture, requires either ϵV >
Oð1Þ or ηV < −Oð1Þ [22,23]. Thus, the de Sitter swamp-
land conjecture alone tends to overrule the generic con-
ditions for inflation, which requires ϵV ≪ 1, ηV ≪ 1
instead. This makes it difficult for the usual cold inflation
to be realized in the landscape of a string theory. As WI
modifies the slow-roll conditions, which are now expressed
as ϵV ≪ 1þQ and ηV ≪ 1þQ, where the dimensionless
quantity Q≡ϒ=ð3HÞ can be larger than 1, this paradigm
can much easily accommodate the swampland conjectures.
This was first noted in Ref. [25], and later, quite a few
discussions along the same line have followed [2–4,26–33].
Aside its many attractive features, ending inflation in the

WI scenario is, in a sense, a more complex process than in
the cold paradigm, and this is the main aim of this article; to
analyze how (and whether) WI gracefully exits. In a generic
cold paradigm, inflation takes place when ϵH ∼ ϵV ≪ 1 and
terminates when ϵV becomes of the order 1 (here ϵH and ϵV
are the Hubble and potential slow-roll parameters in their

conventional forms, respectively). Hence, the cold inflation
paradigm is always in need of appropriate forms of
potentials which yield growing slow-roll parameters (ϵV)
in time (or with number of e-foldings N). On the other
hand, in the WI paradigm, inflation ends when ϵV ∼ 1þQ.
This comes from the fact that, in WI, the Hubble slow-roll
parameter becomes ϵH ∼ ϵV=ð1þQÞ [15,34], and thus
inflation ends when the Hubble slow-roll parameter
becomes of the order unity (ϵH ∼ 1) or, equivalently, the
potential slow-roll parameter, ϵV , becomes of the order
1þQ. However, Q, in general, evolves during inflation, as
well as the potential slow-roll parameter ϵV. Both can
increase, decrease or even can remain constant depending
on the form of the potential, the region [strong (Q ≫ 1) or
weak (Q ≪ 1)] in which WI is taking place and also on the
form of the dissipative coefficient (i.e., on the choice of the
WI model). Note that the end of the slow-roll inflationary
phase in WI is also marked when the background radiation
energy density smoothly overtakes the inflation potential
energy density. Putting in these terms, the problem of
graceful exit can also be expressed by the fact that even
though radiation is being produced as a consequence of
dissipation, it might never overtake the inflaton energy
density. Without an efficient mechanism to shut down
dissipation, inflation can then prolong to asymptotic large
times, with both radiation and inflaton energy densities
decreasing but without radiation becoming dominant.
We will give explict examples where this can happen.
Hence, graceful exit is a more complex issue in WI than it is
in cold inflation.
To our knowledge, a systematic study of the relevant

parameter space corresponding to typical WI models
that fully leads to a graceful exit is still lacking in the
literature. The main objective of this work is to fill this
important gap. Besides investigating this issue, we also
analyze, as a consequence of our study, those generic WI
potential and dissipation model parameter regions of
space where the dissipation ratio can grow or decrease.
This is of particular importance for example in several
model buildings in WI.
In the next section, Sec. II, we introduce the problem in

more details. Then, in Sec. III, we discuss our results when
considering different forms of dissipation coefficients
typically considered in many WI studies and also with
different large classes of inflaton primordial potentials.
Potential applications of our results are discussed in
Sec. IV. Finally, in Sec. V, we give our conclusions and
final remarks.

II. SETTING UP THE PROBLEM

To look into the matter more closely, we need to first
look at the basic background dynamics of WI. In the
leading adiabatic approximation, the dynamics of the
inflaton field in WI has an extra friction term arising
due to dissipation,
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ϕ̈þ 3Hð1þQÞ _ϕ ¼ −V 0ðϕÞ; ð2:1Þ

while the equation for the evolution of the radiation energy
density ρR is given by

_ρR þ 4HρR ¼ 3HQ _ϕ2; ð2:2Þ

where dots denote temporal derivatives, H is the Hubble
parameter,

H2 ≡
�
_a
a

�
2

¼ 1

3M2
Pl

�
_ϕ2

2
þ V þ ρR

�
; ð2:3Þ

where a is the scale factor and the dimensionless quantityQ
is defined as

Q≡ ϒ
3H

; ð2:4Þ

with ϒ being the dissipation coefficient. In general, ϒ can
be a function of both ϕ and T. Different forms of dissipative
coefficients, derivable from nonequilibrium quantum field
theory methods, have been studied extensively in the
literature [13,15,16,20,34,35].
The graceful exit problem can be simply formulated as

follows: Inflation takes place in the WI scenario when
ϵV < 1þQ and ends when ϵV ∼ 1þQ. Therefore, if Q
increases with the number of e-foldings, then ϵV has to
increase faster than Q in order to end inflation. On the
other hand, when Q decreases, inflation naturally ends if
ϵV increases with the number of e-foldings or just remains
as a constant. Otherwise, ϵV has to decrease with a slower
rate than Q in order to end inflation. To put it simply, we
have that

ϵH ≡ −
_H
H2

≃ ϵwi ≡ ϵV
1þQ

; ð2:5Þ

which implies that inflation takes place when ϵwi < 1 and
ends when ϵwi ∼ 1.1 This shows that ϵwi has to grow with
the number of e-foldings N in order to end inflation,
yielding the condition

d ln ϵV
dN

>
Q

ð1þQÞ
d lnQ
dN

; ð2:6Þ

where dN ¼ Hdt. It is now quite apparent from Eq. (2.6)
that if Q is an increasing function of N, then ϵV has to
increase faster than that (noticing the fact that both ϵV and
1þQ are positive quantities). On the other hand, when Q
decreases with N, then either ϵV can grow at any rate or
may not evolve at all. But if ϵV decreases too, then it has to
decrease slower than Q. All these conditions have been
stated in the previous paragraph. It is also clear from
Eq. (2.6) that when Q does not evolve with e-foldings, ϵV
can grow at any rate, just like in the cold inflation
scenario, in order to end inflation.
We note here that in cold inflation, inflation generally

does not end when the inflaton field gets trapped into some
false vacuum. However, that is not necessarily the only
reason behind a nongraceful exit in the case of WI. We can
see from the above discussion that, mostly, inflation does
not end in cases in WI when Q grows faster than ϵV . As the
presence ofQ in the equation of motion of the inflaton field
acts like an extra frictional term over the one for the
expansion term, an increasing Q will eventually lead to an
overdamped equation of motion for the inflaton field. That
means, that the inflaton field will only reach the minimum
of the potential in asymptotic time, resulting in a scenario
of never-ending WI.
We will now derive the general conditions under which

WI undergoes a graceful exit. In order to do so, we assume
a generic parametrization for the dissipation coefficient ϒ
as a function of ϕ and the temperature T as given by
Eq. (1.1). The parametrization given by Eq. (1.1) covers a
large class of WI models that have been studied before in
the literature. For instance, the early dissipation coefficient
derived in Refs. [13,36], corresponds to p ¼ −1; c ¼ 2,
and the one derived in Refs. [15,16] corresponds to
p ¼ 3; c ¼ −2. The dissipative coefficient, ϒ, in WLI
model varies linearly with the temperature T, as ϒðTÞ ∝
T [18], corresponding to p ¼ 1, c ¼ 0 in Eq. (1.1), whereas
in MWI model it varies with a cubic power of T, ϒðTÞ ∝
T3 [19], where p ¼ 3, c ¼ 0. However, the temperature
dependence of ϒ in VWLI model is more complex, given
by [2]

ϒ ≃ C
M2T2

m3ðTÞ
�
1þ 1ffiffiffiffiffiffi

2π
p

�
mðTÞ
T

�
3=2

�
e−mðTÞ=T; ð2:7Þ

whereM is a mass scale of the model,m2ðTÞ ¼ m2
0 þ α2T2

is the thermal mass for the light scalars coupled to the
inflaton in the model of VWLI, with m0 the vacuum mass
of those light scalars and α is a coupling constant (actually,
a combination of coupling constants appearing in the
Lagrangian density of the model). Considering the leading
behavior when the effective mass is dominated by its
thermal part, mðTÞ ∼ αT, the dissipation coefficient (2.7)

1The condition ϵwi ¼ 1, in the true sense, is a weaker condition
to end WI than ϵH ¼ 1, as the first condition suggests that WI
ends when ρR ¼ V=2 (when Q ≫ 1), whereas, in reality, WI
tends to end when the radiation energy density equals and
surpasses the potential energy density. Therefore, the weaker
condition, ϵwi ¼ 1 predicts the end of inflation slightly earlier.
However, it is to note that, in all practical purposes, the weaker
condition only underestimates the end of inflation by less than
one e-folding. Therefore, using the stronger condition instead of
the weaker one would not alter the bounds we obtain in the later
part of the paper.
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varies as ϒðTÞ ∝ T−1, realizing the case with p ¼ −1;
c ¼ 0 in Eq. (1.1). On the other hand, as the temperature of
the thermal bath drops and the vacuum term m0 in mðTÞ
starts to no longer be negligible, it effectively would
correspond to values of p > −1, with a limiting case of
p ¼ 2 when m0 ≫ αT (with an exponentially suppressed
dissipation). The parametrization assumed here for the
dissipation coefficient, Eq. (1.1), also covers other particu-
lar forms for the dissipation coefficient and is used in earlier
phenomenological studies, like the case p ¼ 0, c ¼ 0
(a constant dissipation coefficient form), which can be
considered as a particular case that can emerge for some
specific dynamical regimes in the more general dissipation
coefficient Eq. (2.7). Also, cases with p ¼ 0 (but with
particular powers of the inflaton field), e.g., such that
ϒ ∝ H, can mimic many previous phenomenological
studies of WI dynamics, since it leads strictly to a constant
dissipation ratio Q ¼ ϒ=ð3HÞ. Such a form leading to a
constant dissipation ratio is particularly useful for deriving
analytical results in WI and has been employed by many
authors before exactly because of that (see also, e.g.,
Refs. [35,37–41] for different applications in WI using a
generic form for the dissipation coefficient).
In the analysis that follows now, we will also employ the

slow-roll approximated dynamical equations of WI, which
follow directly from Eqs. (2.1)–(2.3),

3Hð1þQÞ _ϕ≃−V 0; ρR≃
3Q _ϕ2

4
; 3H2≃

V
M2

Pl

: ð2:8Þ

It is important to note here that the slow-roll conditions in
WI do not imply the slow-roll parameters ϵV and ηV have to
be smaller than unity. These slow-roll parameters can be
large, while still maintaining the required conditions for
inflation, e.g., ϵH ≪ 1, provided that we have Q ≫ 1, as
one can see from Eq. (2.5). From the previous equations,
one can find out, after simple manipulations, that Q is
related to the form of the chosen potential as

ð1þQÞ2pQ4−p ¼ M2pþ4
Pl C4

ϒM
4ð1−p−cÞ

22p32Cp
R

V 02p

Vpþ2
ϕ4c

≡ C̃
V 02p

Vpþ2
ϕ4c; ð2:9Þ

where CR is the Stefan-Boltzmann factor relating the
radiation energy density to the temperature, ρR ¼ CRT4.
This allows us to determine how Q evolves during WI,

CQ
d lnQ
dN

¼ ð2pþ 4ÞϵV − 2pηV − 4cκV; ð2:10Þ

where

CQ ≡ 4 − pþ ð4þ pÞQ: ð2:11Þ

In Eq. (2.10), besides the standard slow-roll coefficients
(1.2), we have also defined

κV ≡M2
Pl
V 0

ϕV
: ð2:12Þ

We also note that CQ in Eq. (2.11) is a positive quantity,
otherwise CQ < 0 leads to the condition Q<ðp−4Þ=
ðpþ4Þ. So far, all the viable models of WI have temper-
ature dependent dissipative coefficients with −4 < p < 4,
which is required from the stability studies of the WI
dynamics [42–44]. Thus, we will treat CQ as a positive
quantity henceforth. On the other hand, depending on the
form of the inflaton potential, ϵV evolves during WI as

d ln ϵV
dN

¼ 4ϵV − 2ηV
1þQ

: ð2:13Þ

Equations (2.6), (2.10) and (2.13), along with the forms
of the primordial inflaton potential and dissipation coef-
ficient in WI, give all we need for our analysis.

III. DETERMINING THE REGION OF
PARAMETERS FOR GRACEFUL EXIT IN WI

We will now discuss how WI makes a graceful exit on a
case-by-case basis.

A. Increasing ϵV
We see from Eq. (2.13) that ϵV increases for potentials

with 4ϵV − 2ηV > 0. This encompasses a large class of
inflaton potentials commonly used in inflationary theories,
such as the whole range of monomial chaotic potentials,

VðϕÞ ¼ V0

n

�
ϕ

MPl

�
n
; ð3:1Þ

and the concave potentials, which are presently preferred
by the data and for which ηV is negative [5]. Though the
conventional monomial potentials, namely the quadratic
and the quartic, are not in good agreement with the data in a
cold inflationary scenario [5], they match with the obser-
vations very well in a WI setup as they produce less tensor-
to-scalar ratio in such cases [10,11,17]. Thus, monomial
potentials are still of importance as long as one is dealing
with WI.

1. Positive ηV
First, let us consider the potentials for which ηV is

positive, e.g., the monomial potentials, Eq. (3.1), which we
will take as an explicit example. Here, ϵV increases when

ϵV
ηV

>
1

2
: ð3:2Þ

SURATNA DAS and RUDNEI O. RAMOS PHYS. REV. D 103, 123520 (2021)

123520-4



In such a case, Q grows with N if

n >
2p − 4c
p − 2

; ð3:3Þ

with n being the order of the monomial potential.
Otherwise Q would decrease or remain constant, and
inflation ends without any further requirement in those
cases. For cases where Q increases, the inequality in
Eq. (2.6) sets a condition on the potential slow-roll
parameters in order to end inflation as

ϵV
ηV

>
1

2ð4−pÞþð6þpÞQ
�
−2cQ

κV
ηV

þ4−pþ4Q

�
: ð3:4Þ

Consider the class of WI models where the dissipative
coefficient is a functions of T alone, i.e., cases with c ¼ 0
in Eq. (1.1). Then, the condition Eq. (3.4) would read as

ϵV
ηV

>
ð4 − pÞ þ 4Q

2ð4 − pÞ þ ð6þ pÞQ : ð3:5Þ

We note that the above condition depends primarily on
whether WI is taking place in a weak or in a strong
dissipative regime. If inflation is taking place in the weak
regime, Q ≪ 1, the condition (3.5) yields

ϵV
ηV

����
weak

>
1

2
; ð3:6Þ

whereas if inflation is taking place in the strong dissipative
regime, Q ≫ 1, then one gets

ϵV
ηV

����
strong

>
4

6þ p
: ð3:7Þ

Note that the conditions in Eqs. (3.6) and (3.7) are
independent of that in Eq. (3.2). The condition in
Eq. (3.2) depends solely on the choice of the inflaton
potential, whereas then conditions in Eqs. (3.6) and (3.7)
depend also on the choice of the WI model, i.e., on the form
of the dissipative coefficient. However, the condition for
having ϵV evolving faster than Q in the weak regime,
Eq. (3.6), is the same as that of having a growing ϵV ,
Eq. (3.2). This implies that if WI takes place in a weak
dissipative regime with a potential yielding a growing ϵV ,
WI will always end gracefully. However, that is not the case
when WI takes place in a strong dissipative regime. Yet, if
the condition in Eq. (3.7) is stronger than in Eq. (3.2), i.e.,
4=ð6þ pÞ > 1=2, which takes place when p < 2, then the
condition in Eq. (3.7) determines whether or not ϵV would
increase faster than Q to end inflation. This, then, also
implies that for models with p ≥ 2, a potential with
growing ϵV is sufficient to end inflation. Thus, in a strongly
dissipative regime, the condition to end inflation can be
summed up as

ϵV
ηV

����
strong
p<2

>
4

6þ p
;
ϵV
ηV

����
strong
p≥2

>
1

2
: ð3:8Þ

The above discussion shows that except for models with
p < 2, where WI is taking place in a strong dissipative
regime, a form of potential yielding growing ϵV is sufficient
to end inflation, just like in a cold inflation paradigm.
Moreover, for the generic form of monomial potential
Eq. (3.1), one gets a condition for graceful exit for models
with p < 2 (while WI is taking place in the strong
dissipative regime) as

ð2 − pÞn < 8: ð3:9Þ

Therefore, considering for example the case for the WLI
model [18], withp ¼ 1, c ¼ 0, we obtain that n < 8 in order
to end inflation. This implies that the conventional mono-
mial potentials, like the quartic and the quadratic, help end
inflation in such aWImodel. However, for the VWLImodel
[2], when restricted to the casewhere the thermalmassmðTÞ
in Eq. (2.7) is dominated by the temperature dependent term,
the dissipative coefficient would effectively evolve as the
inverse of the temperature, yielding p ¼ −1; c ¼ 0 as
already explained before. In such a case, inflation only
ends with a choice of a monomial potential with n < 8=3
[while for n < 2=3, Q decreases, as can be seen from
Eq. (3.3) and inflation ends without any further require-
ment]. This is an important example case in WI, which
demonstrates the importance of not only considering the
phenomenological form of the dissipation coefficient but
also the associated microscopic physics involved in the
derivation of the model. To show this explicitly, in Fig. 1 we
show the results for ϵV andQwhen evolving the background
evolution equations, given by Eqs. (2.1)–(2.3), for three
cases: For the dissipation coefficient Eq. (1.1) when taking
p ¼ −1; c ¼ 0 and in the case of a quadratic potential n ¼ 2
(panel a), for p ¼ −1; c ¼ 0 and in the case of a quartic
potential n ¼ 4 (panel b), and when using the explicit full
form of the dissipation coefficient as derived from the
microscopic physics, Eq. (2.7), also for the quartic potential
(panel c). We see from the results shown in Fig. 1(a) that ϵV
evolves faster than Q, thus ending inflation eventually. In
Fig. 1(b), we show the evolution in the case of a quartic
potential, n ¼ 4, where we see an opposite behavior, ϵV
evolves slower than Q, thus never ending inflation. The
behavior shown in Fig. 1 panels (a) and (b) is exactly what
we anticipated from the analysis done above. However,
when considering the correct full form of the dissipation
coefficient [Eq. (2.7)] in the case of the quartic potential,
panel (c), inflation does end. This is because in the
corresponding dynamics, as shown e.g., in Ref. [2], the
temperature decreases with the evolution. Thus, eventually
the condition m0 ≪ αT required to give a ϒ ∝ 1=T in
Eq. (2.7) is no longer valid and the explicit form of
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Eq. (2.7) will cause Q to decrease faster as the system
evolves, which eventually helps end inflation.
Let us now consider the more general case described

in Eq. (3.4). For a monomial potential this condition
reduces to

8 − 2pþ ½ðp − 2Þnþ 8þ 4c�Q > 0: ð3:10Þ

As we are dealing with the range −4 < p < 4, the above
condition is easily satisfied when

ðp − 2Þn > −8 − 4c: ð3:11Þ

We see from Eq. (3.3) that Q increases when

ðp − 2Þn > 2p − 4c: ð3:12Þ

For the range −4 < p < 4, the condition in Eq. (3.11)
would also encompass Eq. (3.12). However, if Q remains
constant or decreases with e-foldings, in which case
inflation ends even more easily, one would require that
n ≤ ð2p − 4cÞ=ðp − 2Þ. In Fig. 2(a) we give the general
prediction from the above inequalities, in the space of
parameters p, c and n, required for graceful exit in WI in
the context of the class of monomial potentials Eq. (3.1).
The regions for which Q grows or decreases during WI
and there is graceful exit have been identified. An empty
(white) region indicates the parameter space where there is
no graceful exit. The results shown in Figs. 2(b) and 2(c)
exemplify the effect of having an inflaton field dependence
in the dissipation coefficient. It tends to improve the
available range of parameters allowing graceful exit in
WI, but at the same time it decreases the area available (i.e.,
models) for which the dissipation ratio Q grows and
increases the ones leading to a decreasing Q, which makes
inflation ending easier according to the general discussion
given above.
One also notes from the above results that the type of

graceful exit we discuss in the context of WI is mostly
associated with the fact that Q can grow faster than ϵV as
already pointed out before. In this case, even if during
inflation we might have the dynamics initially for Q ≪ 1,
i.e., start in the weak dissipative regime, it will certainly
evolve towards the strong regime. As shown in Fig. 2, the
regions for which WI do not end are essentially those for
which Q is growing. The cold inflation (CI) dynamics
would only be recovered in the opposite regime, when Q
decreases during the evolution and evolves to very small
values at the end of inflation. In this case, the condition
required for graceful exit would be similar to those in CI.
As already emphasized in the Introduction, even though

there is radiation production due to the dissipation, this
does not mean that radiation will overtake the inflaton
energy density and end inflation. This is illustrate by using
again the example shown in Fig. 1 for the cases in panels (a)
and (b). In Fig. 3 we show the evolution of the energy
densities in WI models where the dissipative coefficient is
inversely proportional to the temperature and the inflation
potential is quadratic (panel a) or quartic (panel b). These
correspond to the cases where inflation can end
in the former, which lies inside the red region shown in
Fig. 2(b), and never end in the latter, which lies inside the
white region shown in Fig. 2(b). Note that in the first case

FIG. 1. Example cases for the evolution of Q and ϵV with the
number of e-foldings N. We have taken parameters analogous to
those considered in Ref. [2] for convenience in this example.
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radiation overtakes the inflaton energy density ending
inflation smoothly in a radiation dominated regime. In
the second case there is always a nonvanishing radiation

energy density being produced, yet it gets damped in a rate
faster than the decrease in the inflaton energy density and
inflation does not end. This behavior persists for much
longer times (e-foldings) than the ones shown in the figure.

2. Negative ηV
Next, we consider the case for concave inflaton poten-

tials for which ηV is negative. In such a case, the condition
for graceful exit becomes

ϵV ½2ð4−pÞþð6þpÞQ�þ jηV jð4−pþ4QÞþ2cQκV > 0:

ð3:13Þ

As an example, we can consider the hilltoplike class of
potentials for the inflaton given by

VðϕÞ ¼ V0

�
1 −

�
ϕ

ϕ0

�
2n
�
2

; ð3:14Þ

with n ≥ 1 and with inflation taking place around the top
(plateau) of the potential, jϕj ≪ ϕ0. We also consider that
ϕ0 is sufficiently large such that inflation ends before the
inflection point of the potential, thus inflation takes place
exactly in the concave part of the potential. The condition
for graceful exit in this case then becomes 8n > 2cþ 4 in
the regime of strong dissipation, while for weak dissipation
we have that 8n > pð2n − 1Þ þ 4. In Fig. 4(a) we show the
corresponding region for graceful exit, along also with the
regions where we have a growing or decreasing Q.
Figures 4(b) and 4(c) show the c ¼ 0 and c ¼ 2 planes,
as we have shown in the previous case. Notice that here all
the parameter space allows for graceful exit.
Even though we have used the potential Eq. (3.14) in the

above study, it is easy to check that the results also apply to
other classes of concave potentials. Thus, the concave
potentials do lead generically to graceful exit in a WI setup.

FIG. 2. The parameter space for graceful exit in the case of the monomial class of inflaton potentials. The shaded areas indicate where
Q grows or decreases and WI has a graceful exit. Empty (white) space indicates where there is no graceful exit.

FIG. 3. Example cases for the evolution of the energy densities
with the number of e-foldings N. Parameters used were again
based on the ones considered in Ref. [2], corresponding e.g., to
Cϒ ≃ 5.13, M ≃ 5.5 × 10−5MPl in Eq. (1.1), with an initial
dissipation ratio Q0 ≃ 100.
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We also note that apart from WI taking place in strong
dissipative regimes, a growing ϵV is sufficient to ensure
graceful exit here, just as in cold inflation.

B. Constant ϵV
Let us now consider the case of a constant ϵV . Apart

from the cosmological constant Λ, the classic example of
such a potential is the runaway potential or the exponential
potential,

VðϕÞ ¼ V0e−αϕ=MPl ; ð3:15Þ
which leads to constant slow-roll parameters ηV ¼ 2ϵV ¼
α2. Such a potential drives a power-law type inflation in
cold inflation and does not lead to graceful exit [45] when
α <

ffiffiffi
2

p
, while for α ≥

ffiffiffi
2

p
there is not even an accelerated

expansion.
However, if Q decreases in a WI inflation setup, then

there is a possibility to have both inflation and graceful exit
in such inflationary scenarios when α >

ffiffiffi
2

p
. Accelerated

expansion happens because we can arrange for ϵV ¼
α2=2 < 1þQ for a sufficiently large dissipation ratio Q,
and graceful exit happens when Q decreases. It is easy to
see from Eq. (2.10) that Q decreases when p > 2 and it is
independent of the value of c whenever αϕ=MPl > 1. This
phenomenon has already been noted in Refs. [31,46]. Note
that in this case, the inflaton will keep on slow-rolling if Q
keeps on increasing, and there will not be graceful exit
since such a runaway potential possesses no minimum (just
as it happens in the case of cold inflation discussed above).

C. Decreasing ϵV
Equation (2.13) tells us that ϵV decreases whenever

ϵV
ηV

<
1

2
: ð3:16Þ

Clearly, such potentials are not employed in cold inflation
as they will not lead to graceful exit. However, as both ϵV
and Q can decrease simultaneously in WI, there is a sliver
of a chance that inflation might end in such scenarios. One
such potential of the form

VðϕÞ ¼ V0ð1þ e−αϕ=MPlÞ; ð3:17Þ

has been employed in the MWI model recently [31].
However, it is to note that WI takes place when
ϵV < 1þQ. Then, in such decreasing ϵV scenarios, one
needs to start with ϵV > 1 and Q is not only required to fall
faster than ϵV but it must fall much faster such that 1þQ
crosses ϵV before ϵV decreases below unity. Fulfilling such
a condition is rather challenging and inflation would not
end in such scenarios in most of the cases.
We have evolved the full background equations with the

above potential applied in the MWI model (e.g., p ¼ 3,
c ¼ 0), and have shown in Fig. 5 the typical behavior of ϵV
andQ in such scenarios. As shown in the example of Fig. 5,
even though Q starts to decrease faster than ϵV initially, it

FIG. 4. The parameter space for graceful exit in the case of the hilltop class of inflaton potentials Eq. (3.14). The shaded areas indicate
where Q grows or decreases and WI has a graceful exit.

FIG. 5. Typical behavior of Q and ϵV in the MWI model and
with a form a potential given in Eq. (3.17).
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does not fall fast enough. ϵV eventually drops below
unity and 1þQ saturates to 1, and, hence, inflation is
not terminated.

IV. FURTHER DISCUSSIONS AND POSSIBLE
APPLICATIONS

Let us discuss some possible applications of the results
obtained in this paper.
We should recall that the primordial spectrum of

scalar curvature perturbations is strongly affected by the
dissipation in WI [47–51]. In particular, a dynamical
regime for which Q grows invariably leads to a growing
spectral tilt ns, and thus to a bluer spectrum. In the opposite
regime, for which we have a decreasing Q, the effect has
been shown to produce a decreasing ns, i.e., a redder
spectrum (for systematic analysis of the effect of the
behavior of the dissipation on the power spectrum, see,
e.g., Refs. [47,48,50]). To see these effects explicitly on the
observables, let us recall that in WI the primordial curvature
power spectrum is of the general form [10,49]

ΔRðkÞ ¼
�
H2

2π _ϕ

�
2

F ðQÞ; ð4:1Þ

where all quantities are meant to be evaluated at the Hubble
radius crossing, k ¼ aH. The function F ðQÞ in Eq. (4.1)
strongly depends on the form of the dissipation coefficient
and the consequent dynamics (see, e.g., Refs. [47,48,50]).
From Eq. (4.1), the spectral tilt ns is defined as

ns − 1 ¼ d lnΔRðkÞ
d ln k

≃
d lnΔRðkÞ

dN

≃
−6ϵV þ 2ηV þ 2 dQ

dN

1þQ
þ dQ
dN

d lnF ðQÞ
dQ

: ð4:2Þ

Typically, the last term dominates in many of the WI
realizations. Thus, WI models for which Q grows with the
number of e-folds but have a decreasing F ðQÞ withQ, like
e.g., in the models with a dissipation coefficient with
negative powers in the temperature [26], will lead to a
redder scalar power spectrum. Other models leading also to
a growing Q with the number of e-folds but an increasing
F ðQÞ with Q will lead to a bluer spectrum. Similarly, a
decreasingQ with N will have an effect on the observables.
Hence, we see that the dynamical behavior of the dis-
sipation ratio is fundamental to determine whether we can
have a redder or bluer spectrum. Thus, determining
possible regimes for a growing or decreasing dissipation
ratio can be of fundamental relevance for WI model
building. For instance, models that in the cold inflation
context are excluded because the spectrum is too red or it is
too blue, can be rendered observationally consistent in the
WI picture by choosing models leading to either a growing
or to a decreasing dissipation ratio, respectively.

It is important to also point out that the issue of graceful
exit in WI may not be a negative feature but in some cases
might be a desirable outcome. A sustained acceleration
regime in the late Universe, attributed to dark energy, might
conceivably emerge as a special case of an overdamped
dynamical regime for a scalar field. In this case, given a
potential with a minimum at ϕ ¼ ϕ0 and if the approach to
ϕ0 is asymptotic, as discussed above in the context of the
graceful exit problem inWI, the scalar field can remain close
to the minimum ϕ0, then with Vðϕ ≠ ϕ0Þ > 0 the evolution
wouldmimic closely that of a cosmological constant. This is
particularly important when the energy density varies very
slowly. For instance, from the slow-roll Eq. (2.8), we can
deduce that the rate of change of the energy density of the
scalar field in a Hubble time can be expressed as [52]

1

H

���� _ρϕρϕ
���� ≃ 2

ρϕ
ρtotal

ϵwi ≪ 1; ð4:3Þ

wherewe have also used Eq. (2.5) and ρtotal denotes the total
energy density at that given time in the late-time Universe,
wherewe also expect that ρϕ ≪ ρtotal, if the energy density of
the scalar field is not the dominant energy component. The
result given by Eq. (4.3) shows that whenever ϵwi ≪ 1,
which happens in particular when the conditions for not
having graceful exit and that we have discussed aremet, then
the scalar field dissipates very little of its energy density on
cosmological timescales. Thus, the overdamped regime that
can potentially lead to a graceful exit problem in the early
Universe, at late times can also potentially sustain a (slowly-
varying) cosmological vacuum energy term mimicking a
cosmological constant. Thus, the result we have obtained in
the present paper can certainly be used as a guide in the
development of possible quintessential-like scalar field
models where the late-time accelerated expansion might
eventually emerge as a consequence of dissipative effects
(see, e.g., Ref. [46] for a specific attempt in this context).

V. CONCLUSIONS

To conclude, we have shown that the process of graceful
exit in WI is a more rich phenomenon than it is in cold
inflation. Graceful exit in WI depends on three independent
choices: The form of the potential (hence the behavior of ϵV
during inflation), the choice of the WI model (hence the
form of the dissipative coefficient) and whether we want
WI to take place in a weak or in a strong dissipative regime.
However, we have shown that there are cases, where a
potential with growing ϵV in time (or with e-foldings) is
good enough to exit WI gracefully, as it happens in a cold
paradigm. This happens in the cases of inflation happening
in the plateau region of the concave potentials or in cases
where Q is decreasing with e-foldings. In the rest of the
cases, one needs to make sure that ϵV grows faster thanQ in
order to exit gracefully. We have also shown that WI is
capable of terminating inflation even in cases where cold
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inflation fails to exit gracefully, such as in the case of
runaway potentials.
Note that the reason behind no graceful exit in these

cases of WI differs from the usual reason of getting trapped
in a false vacuum, as it happens in cold inflation. Mostly,Q
increasing faster than ϵV (where ϵV evolves) or a simply
growing Q in cases of constant ϵV leads to no graceful exit
in WI. Recall that the parameter Q incorporates extra
frictional term in the equation of motion of the inflaton
field, and an increasingQ, in these cases, will make such an
equation overdamped. Therefore inflation can only end in
an asymptotic time, resulting in a realizing of never-ending
inflation, and hence no graceful exit.
The situation is particularly delicate in the case of chaotic

like monomial potentials. In this case, not all parameter
space allows graceful exit, as far as the simple para-
metrization for the dissipation coefficient, given by
Eq. (1.1), is concerned. We have demonstrated the issues
involved in this case in an example making use of a
dissipation coefficient ϒ ∝ 1=T. In this case, the simple
parametrization Eq. (1.1) is not enough to get the complete
dynamics in WI and for studying graceful exit. We have
also to consider the microscopic physics leading to this
coefficient and the consistency conditions leading to the
simple form for the dissipation coefficient. Given that most
phenomenological studies involving WI make use of the
simple parametrization given by Eq. (1.1), these results
prompt a word of caution in the studies of the dynamics in

those models if details of the possible microscopic physics
are left unchecked. Likewise, we have also shown that
whether or not the dissipation coefficient depends on the
inflaton amplitude can change the conclusions regarding
graceful exit in a significant way.
Our study that we have performed in this paper has also

identified regimes for which the dissipation ratio Q can
either grow or decrease with the number of e-folds,
depending on the different combinations of dissipation
coefficient and primordial potentials. This is particularly
important in the context of obtaining observational pre-
dictions in WI. It would also be interesting to carry out a
similar analysis as the one performed here to other
dynamics involving WI, like in noncanonical types of
models [53–55].
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