
 

Slow and safe gravitinos

Emilian Dudas,1,* Marcos A. G. Garcia ,2,† Yann Mambrini,3,‡ Keith A. Olive,4,§ Marco Peloso ,5,6,∥ and Sarunas Verner4,¶
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It has been argued that supergravity models of inflation with vanishing sound speeds, cs, lead to an
unbounded growth in the production rate of gravitinos. We consider several models of inflation to delineate
the conditions for which cs ¼ 0. In models with unconstrained superfields, we argue that the mixing of the
Goldstino and inflatino in a time-varying background prevents the uncontrolled production of the
longitudinal modes. This conclusion is unchanged if there is a nilpotent field associated with
supersymmetry breaking with constraint S2 ¼ 0, i.e., (s)Goldstino-less models. Models with a second
orthogonal constraint, SðΦ − Φ̄Þ ¼ 0, where Φ is the inflaton superfield, which eliminates the inflatino,
may suffer from the overproduction of gravitinos. However, we point out that these models may be
problematic if this constraint originates from a UV Lagrangian, as this may require using higher derivative
operators. These models may also exhibit other pathologies, such as cs > 1, which are absent in theories
with the single constraint or unconstrained fields.
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I. INTRODUCTION

Although supersymmetry has so far eluded discovery at
the LHC [1,2], it remains an important component for
building models beyond the Standard Model, particularly
when going to grand unified scales and beyond. It is well
known that supersymmetry can provide for the naturalness
of the weak scale [3], the unification of gauge couplings
[4], and a cold dark matter candidate [5,6]. As supergravity
[7,8] is the extension of supersymmetry that includes
gravity, it is the natural framework for any cosmological
scenario involving supersymmetry. Thus, the gravitino also
becomes a component in postinflationary cosmology.
The gravitino has long since been a cosmological

headache [9–12]. It has the potential to overclose the

Universe if it is stable (and hence, a dark matter candidate),
or lead to an overabundance of the lightest supersymmetric
particle if it decays. While inflation may dilute any
primordial gravitinos [11], they are reproduced during
reheating after inflation [6,13–33]. Decaying gravitinos
may also upset the concordance of big bang nucleosyn-
thesis [34], and these constraints result in limits on the
gravitino abundance that ultimately translate into limits on
the reheat temperature [19,24,26,35,36].
In addition, there is also a nonthermal contribution to the

gravitino abundance stemming from the nonperturbative
decay of the inflaton when supersymmetry is broken during
inflation [22,37–42]. However, it was shown that what is
produced in this process is the Goldstino, that is, the
combination of fermions contributing to supersymmetry
breaking at the time of their production. At the inflationary
scale, the Goldstino is typically dominated by the inflatino,
the fermionic partner of the inflaton. The longitudinal
component of the gravitino at low energy is associated with
the true Goldstino, which may be unrelated to the inflatino
produced in reheating [40,41]. The production of inflatinos
may be problematic, particularly if the mass of the inflatino
is less than the mass of the inflaton, but may be suppressed,
and the final gravitino abundance is model dependent [43].
It has been claimed in [44], and more recently, in [45,46],

that if the sound speed, cs, for gravitinos were to vanish,
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there would be a catastrophic nonthermal production of
slow gravitinos [47]. This is due to the lack of suppression
in the production of high momentum modes in the helicity
1=2 spectrum. While cs may indeed vanish in certain
models of inflation derived from supergravity, as in the case
of the nonthermal production of the longitudinal mode,
mixing with other fermionic fields whose scalar partners
have nonvanishing time derivatives precludes the runaway
production of gravitinos. Nevertheless, in some realizations
of nonlinear supergravity with constrained fields, the
inflatino may not be present in the spectrum, and indeed,
catastrophic production may occur.
In this paper, we consider the conditions that lead to

cs ¼ 0. We look at several models of inflation in super-
gravity theories and distinguish those for which cs ¼ 0 at
some point in the postinflationary oscillation period of the
inflaton. We stress that cs ¼ 0 is not a generic feature of
supergravity inflation models. Further, we argue that even if
cs ¼ 0, in the absence of constrained fields, catastrophic
gravitino production does not occur. Indeed even in con-
strained models with a nilpotent field (eliminating a scalar
from the spectrum) [48–57], there is no catastrophic
production. Only when a second, orthogonal constraint
[58–62], which eliminates the pseudoscalar, fermionic, and
auxiliary partners of the inflaton, can catastrophic produc-
tion occur when cs ¼ 0. In a time dependent background, if
the inflatino is present in the spectrum of the theory, it
couples at the linear level to the longitudinal gravitino. In
this context, the physical gravitino sound speed is an
eigenvalue of a 2 × 2 matrix, which, as we show, is not
suppressed. For simplicity, in this work, we always denote
as c2s the diagonal entry corresponding to the gravitino field
(rather than the physical eigenvalue). In [44], only models
with both constraints were considered1 leading to a
truncated equation of motion for the longitudinal compo-
nent of the gravitino [58] and explosive particle production.
While the nilpotent constraint can easily be viewed as the
infrared limit of a heavy (s)Goldstino (the scalar field
associated with supersymmetry breaking), the orthogonal
constraint appears to require higher derivative operators in
the action [62]. Indeed, we would argue that the constraints
from gravitino production signal a further problem for the
orthogonal constraint rather than imposing conditions on
general models of inflation in supergravity.
In what follows, we first consider, in Sec. II, the

calculation of the sound speed in supergravity theories.
It is easy to see that in models with a single chiral field,
cs ¼ 1. We next consider, in Sec. III, several models of
inflation with supersymmetry breaking showing that cs is
quite model dependent. In some cases, cs ¼ 0 occurs at

some specific points during the oscillation of the inflaton,
while in other often studied models, cs ≃ 1 always. In
Sec. IV, we reconsider the equations of motion for the
longitudinal component of the gravitino. We show clearly
that even when cs ¼ 0, there is no enhanced production of
gravitinos. The nilpotency conditions are discussed in
Sec. V. With a single nilpotent field, our conclusions are
left unchanged. Only when a second orthogonal condition
is imposed, and the inflatino is eliminated from the
spectrum, is there the potential for explosive gravitino
production. A discussion and our conclusions are given
in Sec. VI.

II. GRAVITINO SOUND SPEED IN
SUPERGRAVITY

It is argued in [45,46] that the vanishing of the gravitino
sound speed is accompanied by a catastrophic gravitino
overproduction during the first set of inflaton oscillations.
The mathematical reason for this statement can be under-
stood from the linearized theory of an uncoupled longi-
tudinal gravitino. The gravitino has a dispersion relation of
the type ω2

k ¼ c2sk2 þ a2m2ðtÞ, a being the scale factor and
k the comoving momentum. As is well known from studies
of preheating [63–66], a nonadiabatic change of the
frequency, ω0

k=ω
2
k ≫ 1 (where prime denotes derivative

with respect to conformal time) results in significant
particle production. Normally, the k2 term ensures that
the variation is adiabatic in the deep UV, so that modes of
high momenta remain in their vacuum state. This is not the
case if c2s ¼ 0. In fact, the production obtained in [44–46] is
formally divergent in the UV, and it is presumably regulated
by higher-order operators. This would, in any case, result
in the production of an unacceptably large gravitino
abundance.
As we shall see in Sec. IV, this problem is typically not

present in multifield models, since in this case, the
longitudinal gravitino is coupled already at the linearized
level to a linear combinationϒ of the fermions in the theory
[39,41]. The gravitino momentum term is then replaced by
a matrix in field space, that is nonsingular when c2s ¼ 0.
Therefore, the physical eigenvalues of the system do not
vanish, and the catastrophic production in the UV is
avoided.
We begin by first computing cs in supergravity. The

equations for the transverse and longitudinal gravitino
component presented in this work follow the formalism
of Ref. [39]. In that work, the Friedmann-Lemaître-
Robertson-Walker line element is chosen according to
ds2 ¼ a2ðτÞ½−dτ2 þ dx⃗2�, where τ is the conformal time.
We denote by γμ the gamma matrices in flat spacetime.
We work in units of Mp ¼ 1, where Mp is the reduced
Planck mass.
The equation of motion for the transverse gravitino

component is

1On the other hand, this constraint is not always invoked in the
models considered in [45,46]. We stress that it is incorrect to
disregard the mixing with the inflatino in absence of this
constraint.
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ðγ0∂0 þ iγiki þ am3=2ÞψT ¼ 0; ð1Þ

where k⃗ is the comoving momentum, and ∂0 is the
derivative with respect to the conformal time. The propa-
gation of the transverse mode of the gravitino is not directly
affected by the supersymmetry breaking mechanism and
obeys a classical Dirac equation with a speed of sound
cs ¼ 1. The gravitino mass is given by

m3=2 ¼ eK=2jWj; ð2Þ

where K and W denote the Kähler potential and the
superpotential, respectively.
The equation for the longitudinal gravitino will be

presented and discussed in Sec. IV. Here, we discuss
one important difference with Eq. (1) for the longitudinal
component. Namely, the momentum-dependent term in the
equation for the longitudinal component is multiplied by a
function of the background scalar fields, that, once squared,
is identified as the square of the longitudinal gravitino
sound speed c2s ,

c2s ¼
ðp − 3m2

3=2Þ2
ðρþ 3m2

3=2Þ2
þ 4 _m2

3=2

ðρþ 3m2
3=2Þ2

; ð3Þ

where p is the pressure, ρ is the energy density, and dot
denotes the derivative with respect to cosmological time.
Reference [45] provides a rather compact expression for
this quantity in a supergravity model, namely,

c2s ¼ 1 −
4

ðj _φj2 þ jFj2Þ2 fj _φj
2jFj2 − j _φ · F�j2g; ð4Þ

where φ is the multiplet of scalar fields in the model, and
the F term is

Fi ≡ eK=2Kij�Dj�W�; ð5Þ

where, using standard supergravity notation, Kij� is the
inverse of the Kähler metric,

Kij� ≡ ∂2K
∂φi∂φj� ; ð6Þ

while

DiW ≡ ∂W
∂φi þ

∂K
∂φi W: ð7Þ

The dot operator in Eq. (4) denotes a scalar product with the
Kähler metric (6), namely, j _φj2 ¼ _φiKij� _φ

j�, and analo-
gously for the other terms. Notice that due to the Cauchy-
Schwarz type inequality j _φj2jFj2 ≥ j _φ · F�j2, causality
cs ≤ 1 is always guaranteed to hold.

In the case of a single chiral superfield, the two terms in
the curly bracket in Eq. (4) are equal to each other, and
therefore, cs ¼ 1. Thus, c2s ≃ 1 is expected whenever a
single field dominates the kinetic energy and supersym-
metry breaking in the model.
Reference [45] considered the case in which multiple

fields are relevant, and they conspire to give a vanishing or
nearly vanishing c2s . This can be achieved if

_φ · F� ¼ 0 and _φ · _φ� ¼ F · F� ⇒ c2s ¼ 0: ð8Þ

Note that the first of these conditions, _φ · F� ¼ 0, is
realized whenever the gravitino mass is constant. These
conditions can be satisfied during inflaton oscillations after
inflation. Typically, the inflaton dominates the kinetic
energy, so the condition _φ · F� ≃ 0 generically requires
that the F term associated with the inflaton is small. Barring
cancellations, this would typically require that both W and
∂W
∂ϕ , where ϕ denotes the inflaton field, are small. We note
that the potential energy is given by

V ¼ F · F� − 3eKjWj2; ð9Þ

which we can approximate by V ≃ F · F� if W is small.
Then the second condition in (8) simply demands that the
kinetic and the potential energy are equal to each other,
which happens twice per period of the inflaton oscillations.
In Sec. III, we discuss several supergravity models of
inflation where these conditions are and are not achieved.

III. GRAVITINO SOUND SPEED IN
SPECIFIC MODELS

In this section, we consider several specific supergravity
models where c2s is very small, or is of order one, to
emphasize what aspects of the model can lead to a slow
gravitino.
We start our discussion from a model constructed in [45],

where Φ is the inflaton superfield while S is a superfield
responsible for supersymmetry breaking. Reference [45]
imposes that this field is nilpotent, S2 ¼ 0. To study the
relevance of this assumption, we instead use a strong
stabilization mechanism for S [12,67–73] (see also
Sec. V below),

K ¼ −
ðΦ − Φ̄Þ2

2
þ SS̄

1þ m2

M2 jΦj2 −
ðSS̄Þ2
Λ2

;

W ¼ MSþW0: ð10Þ

The resulting potential is extremized along the real
directions Φ ¼ Φ̄ ¼ ϕffiffi

2
p ; S ¼ S̄ ¼ sffiffi

2
p . The minimum of

the potential with respect to s is ϕ dependent and given by
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hsiϕ ¼ Λ2ffiffiffi
6

p ðm2ϕ2

2M2 þ 1Þ2
þOðΛ4Þ: ð11Þ

We see that, as is typical for strong stabilization, hsiϕ
vanishes in the limitΛ → 0. Inserting this into the potential,
leads to

V ¼ m2ϕ2

2
þM2

3

�
1 −

1

ðm2ϕ2

2M2 þ 1Þ2
�
Λ2 þOðΛ4Þ: ð12Þ

In both Eqs. (11) and (12), the parameterW0 has been set to
W0 ¼ Mffiffi

3
p ð1 − Λ2

6
þOðΛ4ÞÞ, so to have a vanishing poten-

tial in the minimum at ϕ ¼ 0. In the minimum, the
gravitino mass is given by

m3=2

����
ϕ¼0

¼ Mffiffiffi
3

p þOðΛ2Þ: ð13Þ

From Eqs. (12) and (13), we see that m corresponds to the
inflaton mass, while (assuming gravity mediation), M to
the supersymmetry breaking scale in the model. Therefore,
the ratio ðm=MÞ2 ∼ ðm=m3=2Þ2 appearing in the Kähler
potential is typically much greater than 1 in models with
weak-scale supersymmetry breaking.
Evaluating the quantities entering in Eq. (4) leads to

_φi ≃
_ϕffiffiffi
2

p
�
1;−

8
ffiffiffi
2

p
Λ2M4ffiffiffi

3
p

m4ϕ5

�
;

Fi ≃
� ffiffiffi

2

3

r
2M5Λ2

m4ϕ5
;
m2ϕ2

2M

�
; ð14Þ

where i ¼ 1, 2 corresponds to the field Φ, S, respectively.
These expressions hold for Λ ≪ 1 and M2 ≪ m2ϕ2, and
only the dominant term has been retained in each entry.
From Eq. (14), we see that the model approximately

meets the conditions (8) for a vanishing sound speed.
The scale of the superpotential,M, is much smaller than the
inflationary scale, m, and dW=dϕ ¼ 0. In particular, the
inflaton provides a negligible contribution to supersym-
metry breaking. Applying Eq. (4), we find

c2s ¼
 

_ϕ2

2
− m2ϕ2

2
−M2

_ϕ2

2
þ m2ϕ2

2
þM2

!
2

þOðΛ2Þ; ð15Þ

which indeed vanishes to OðΛ0Þ when the inflaton kinetic
and potential energy are equal to each other (disregarding
the subdominant M2 correction). Expanding the various
terms to higher order in Λ we find that, when the OðΛ0Þ
vanishes, the minimum sound speed is

c2s;min ¼
256Λ4

3ϕ2

�
M
mϕ

�
10
�
1þO

�
M2

m2ϕ2

�	
þOðΛ6Þ: ð16Þ

The strong stabilization condition Λ ≪ 1 provided us
with an expansion parameter to organize the study of the
model and present a simple analytical result. However, we
see that it (or the nilpotency condition) is not the origin for
the near vanishing of cs, which is instead mostly due to the
absence of ϕ from the superpotential and from the small-
ness of the mass scale M.
To emphasize this, let us consider a different model with

strong stabilization, which does not lead to a small
gravitino sound speed. The model [74] is also characterized
by the two superfields Φ and S, and by

K ¼ −
ðΦ − Φ̄Þ2

2
þ jSj2 − jSj4

Λ2
;

W ¼ fðΦÞð1þ δSÞ; fðΦÞ ¼ f0 þ
m
2
Φ2: ð17Þ

The Kähler potential in this model is relatively simple, and
the origin of the inflationary potential resides in the
superpotential. Supersymmetry breaking in the vacuum
is due to the constant f0, though supersymmetry breaking
gets a contribution from the inflaton during inflation and in
its subsequent oscillations. We can anticipate that the
condition (8), and in particular, _φ · F� ¼ 0 will not be
satisfied.
As in the previous example considered, this model has

real solutions. The field s is stabilized to a ϕ dependent
OðΛ2Þ value, while the parameter δ can be set to δ ¼ffiffiffi
3

p þ Λ2

2
ffiffi
3

p þOðΛ4Þ to ensure that the vacuum energy

vanishes in the minimum at ϕ ¼ 0. We then find that
the potential and the gravitino mass are given by

VðϕÞ ¼ Vð0ÞðϕÞ þOðΛ2Þ;
m3=2ðϕÞ ¼ mð0Þ

3=2ðϕÞ þOðΛ2Þ; ð18Þ

with

Vð0ÞðϕÞ ¼ jf0ðϕÞj2 ¼ m2ϕ2

2
; ð19Þ

and

mð0Þ
3=2ðϕÞ ¼ jfðϕÞj ¼ f0 þ

mϕ2

4
; ð20Þ

and we see that m is the inflaton mass, while f0 is the
gravitino mass in the vacuum. In terms of the zeroth order
potential and gravitino mass, the ϕ-dependent minimum
value of s is given by the compact expression,
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hsiϕ ¼ 2mð0Þ2
3=2 − Vð0Þ

mð0Þ2
3=2

Λ2

2
ffiffiffi
6

p þOðΛ4Þ: ð21Þ

For this model, we then have

_φi ¼
�

_ϕffiffiffi
2

p ; 0

�
þOðΛ2Þ;

Fi ¼
�
mϕffiffiffi
2

p ;
ffiffiffi
3

p �
f0 þ

mϕ2

4

��
þOðΛ2Þ: ð22Þ

We see that Fϕ is not suppressed, and hence, we do not
expect a small sound speed. Indeed, we obtain

c2s ¼ 1 −
6 _ϕ2mð0Þ2

3=2

½1
2
_ϕ2 þ Vð0Þ þ 3mð0Þ2

3=2 �2
þOðΛ2Þ

¼ ½ϕ2ð1þ 3
8
ϕ2Þ þ _ϕ2

m2�2 − 3
2

_ϕ2

m2 ϕ4

½ϕ2ð1þ 3
8
ϕ2Þ þ _ϕ2

m2�2
þO

�
f0
m

;Λ2

�
; ð23Þ

which is always of Oð1Þ.
The comparison of the two models (10) and (17) shows

that, as already remarked, the main cause for the suppressed
sound speed is the smallness of the inflaton F term. In the
model (10), this happens because of the rather peculiar fact
that Φ is absent from the superpotential, particularly when
combined with the lack of mobility of S (S ¼ 0 in the
nilpotent limit Λ → 0). That is, _φ and F� are nearly
orthogonal ( _φi ∼ f _ϕ; 0g, Fi ∼ f0; FSg). In the model of
(17), that is clearly not the case, as there is a large
contribution to supersymmetry breaking from Φ as long
as Φ is displaced from its minimum at Φ ¼ 0. Thus, with
this latter simple example, we see that cs → 0 is not a
general consequence for supergravity models of inflation
nor for the restricted set of examples with a nilpotent field.
The above two examples, lead to chaotic inflation

models of the type V ¼ m2ϕ2 [75]. As this model is
disfavored due to the upper limit on the tensor-to-scalar
ratio (the model predicts r ¼ 0.13, whereas the experimen-
tal upper limit is r < 0.06 [76–78]), we next consider an
alternative set of models leading to Starobinsky-like infla-
tion [79]. These models are based on no-scale supergravity
[80,81], which can be derived from string models as their
effective low-energy theories [82]. Further, there is a strong
relation between no-scale supergravity and higher deriva-
tive theories of gravity [83–85]. Starobinsky inflation
models in no-scale supergravity generally require two
chiral superfields, one of which is associated with the
volume modulus of string theory. Depending on a choice of
basis, this or the second field may serve as the inflaton
[71,86,87]. In the former, it is necessary to include a third
chiral multiplet for supersymmetry breaking. In the remain-
der of this section, we consider an example of each type.

In the first Starobinsky-like model we consider, the
volume modulus serves as the inflaton [71,88]. As noted
above, to include supersymmetry breaking, we need to add
a third chiral superfield [72,73,89], which we denote as Z
and plays the role of a Polonyi field [90].2 The Kähler
potential and superpotential can be written as

K ¼ −3 ln
�
Φþ Φ̄ −

1

3
jSj2 þ jSj4

Λ2
S
−
1

3
jZj2 þ jZj4

Λ2

�
;

W ¼ m

� ffiffiffi
3

p
S

�
Φ −

1

2

�
þ δðZ þ bÞ

	
: ð24Þ

As we will see, Starobinsky inflation is obtained for S and
Z near 0.
As in the previous cases, the model admits real solutions,

and we parametrize asΦ ¼ Φ̄ ¼ ϕ; S ¼ S̄ ¼ s; Z ¼ Z̄ ¼ z.
The potential is minimized by hϕi ¼ 1

2
þ δ2

3
þOðδ4;Λ2Þ, by

hsi ¼ δþOðδ3;Λ2Þ, and by hzi ¼ Λ2

6
ffiffi
3

p þOðδ2Λ2;Λ4Þ,
where the coefficient b has been set to b ¼ 1ffiffi

3
p ð1 − δ2

6
Þ þ

Oðδ4;Λ2Þ so to have a vanishing potential in the minimum.
In the minimum, the gravitino mass is

m3=2 ¼
mδffiffiffi
3

p þm ×Oðδ3;Λ2Þ: ð25Þ

The extremization of the potential with respect to s and z
when ϕ is away from the minimum gives instead

hsiϕ ¼ 4Λ2
Sϕ

36ð1 − 2ϕÞ2ϕþ Λ2
Sð1þ 4ϕ − 4ϕ2Þ δþOðδ3;Λ2Þ;

hziϕ ¼ 2Λ2Λ2
Sϕ

3
ffiffiffi
3

p ½36ð1 − 2ϕÞ2ϕþ Λ2
Sð1þ 4ϕ − 4ϕ2Þ�

þOðδ2Λ2;Λ4Þ: ð26Þ

The potential along this direction is

V ¼ 3m2

16

ð1 − 2ϕÞ2
ϕ2

þm2 ×Oðδ2;Λ2Þ: ð27Þ

Note that unlike the previous examples discussed, ϕ does
not have a properly normalized kinetic term. For small s
and z, the canonical field is given by

ρ ¼
ffiffiffi
3

2

r
ln ð2ϕÞ; ð28Þ

2The model described here is the untwisted Polonyi field
model of Refs. [72,73,89]. Analogous result are obtained for the
twisted Polonyi field model of that work. To keep a notation as
close as possible to that of the models (10) and (17) discussed
above, we have relabeled as Φ and as S the inflaton and the
stabilizer field that were denoted, respectively, as T and ϕ in those
papers.
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so that the potential becomes

V ¼ 3m2

4
ð1 − e−

ffiffiffiffiffiffi
2=3

p
ρÞ2: ð29Þ

The inflaton mass is m, and hence, we see that δ ≪ 1 is the
ratio of the gravitino mass to the inflaton mass and justifies
the limit that we have adopted in our analysis. Along this
direction, labeling as 1,2,3 the fields Φ, S, Z, respectively,
we find

_φi ¼ f _ϕ;m×Oðδ;Λ2Þ;m×OðΛ2Þg;

Fi ¼m

�
Oðδ;Λ2Þ;−

ffiffiffi
3

p ð1− 2ϕÞffiffiffiffiffiffi
2ϕ

p þOðδ2;Λ2Þ;Oðδ;Λ2Þ
�
:

ð30Þ

We see that _φ · F is suppressed, leading to the possibility of
a small gravitino sound speed. We indeed find

c2s ¼
�
4 _ϕ2 −m2ð1 − 2ϕÞ2
4 _ϕ2 þm2ð1 − 2ϕÞ2

�2

þOðδ2;Λ2Þ; ð31Þ

and the leading term can vanish during the oscillations of
the inflaton.
We conclude this section with a second no-scale super-

gravity model, based on a simple Wess-Zumino form for
the inflaton superpotential [91]. In this case, the volume
modulus is strongly stabilized [71]. This simple model
further emphasizes that the suppression of the sound speed
is by no means a generic feature of supergravity models.
The model does not require an additional field for super-
symmetry breaking and can be written as [72,73]

K ¼ −3 ln
�
Sþ S̄þ ðSþ S̄ − 1Þ4

Λ2
þ dðS − S̄Þ4

Λ2
−
jΦj2
3

�
;

W ¼ m

�
Φ2

2
−

Φ3

3
ffiffiffi
3

p
�
þ λm3; ð32Þ

where d is a constant of Oð1Þ, and λ sets the scale of
supersymmetry breaking.
The model admits real solutions that we parametrize as

in the previous models, Φ ¼ Φ̄ ¼ ϕ; S ¼ S̄ ¼ s. In the
minimum, hϕi ¼ 0 and hsi ¼ 1

2
. For these values, the

potential vanishes, while the gravitino mass ism3=2 ¼ λm3.
Extremizing the potential with respect to s, with the

inflaton away from the minimum, we find

hsiϕ ¼ 1

2
þ ϕ2

2ð6λm2 þ ϕ2Þ2
ffiffiffi
3

p
− ϕffiffiffi

3
p þ ϕ

Λ2 þOðΛ4Þ; ð33Þ

leading to the potential,

V ¼ 3m2ϕ2

ð ffiffiffi
3

p þ ϕÞ2 þOðΛ2Þ: ð34Þ

As in the previous no-scale example, ϕ is not canonical and
writing

ϕ ¼
ffiffiffi
3

p
tanh

�
ρffiffiffi
6

p
�

ð35Þ

leads to the same potential given in Eq. (29).
We then find, using the same notation as for the previous

models,

_φi ¼ f _ϕ; m ×OðΛ2Þg;

Fi ¼
�
mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
− ϕffiffiffi

3
p þ ϕ

s
;−

mð3λm2 þ ϕ2Þ
2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − ϕ2

p �
þm ×OðΛ2Þ:

ð36Þ

We see that _φ · F is not suppressed, and we do not expect a
suppression in the gravitino sound speed. A direct inspec-
tion of theOðΛ0Þ term indicates that this is indeed the case,
though the full expression is not particularly illuminating.

In the
ffiffiffi
λ

p
m ≪ ϕ;

_ϕ
m ≪ 1 regime, we obtain

c2s ≃ 1−
m2ϕ4 _ϕ2

6ðm2ϕ2 þ _ϕ2Þ2 ;Λ≪ 1;
ffiffiffi
λ

p
m≪ ϕ;

_ϕ

m
≪ 1: ð37Þ

IV. COMPLETE LINEARIZED EQUATION FOR
THE LONGITUDINAL GRAVITINO

So far, we have seen that while it is possible to find
models with cs ≃ 0, it is by no means a generic feature of
supergravity inflation models. Next, we point out that even
if cs ¼ 0, one can not conclude that there is any enhanced
production of gravitinos. We show that this is the case by
considering the equation of motion for the longitudinal
gravitino, as obtained in [39] and then studied in [41].
In the unitary gauge, the dynamical variable encoding

the longitudinal gravitino is the combination θ ¼ γiψ i,
where ψ is the gravitino field. In a nontrivial background,
the longitudinal gravitino is coupled to another fermionic
combination ϒ at the linearized level. In a cosmological
background, where the scalar fields depend on time,

ϒ ¼ Kij�ðχi∂0φ
j� þ χj

�∂0φ
iÞ; ð38Þ

where the indices run over the number of chiral superfields
in the model, ðφi; χiÞ are the scalar and fermion compo-
nents of a chiral complex multiplet (where χi is a left-
handed fermion), while ðφi� ; χi

�Þ are their conjugates.
For simplicity, we consider the case of two chiral

superfields, although this can be immediately generalized
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to an arbitrary number. In this case, the coupled equations
for θ and ϒ form a closed system. To write these equations,
we introduce the following quantities (that we express
through the scalar product defined above):

α≡ ρþ 3m2
3=2 ¼ _φ · _φ� þ F · F�;

α1 ≡ p − 3m2
3=2 ¼ _φ · _φ� − F · F�;

α2 ≡ 2
∂
∂t ½e

K=2WPL þ eK=2W�PR�
¼ 2ð _φ · F�PL þ _φ� · FPRÞ

þ eK=2
�
_φi ∂K
∂φi − _φ�i ∂K

∂φ�i

�
ðW�PR −WPLÞ: ð39Þ

In these expressions ρ and p denote, respectively, the
energy density and pressure of the background scalars,
while PL=R are the left- and right-handed chiral fermion
projection operators. These expressions considerably sim-
plify along real solutions for the scalar fields,

real scalars∶α ¼ _φ · _φþ F · F;

α1 ¼ _φ · _φ − F · F;

α2 ¼ 2 _φ · F: ð40Þ

These expressions apply to the models considered in the
previous sections, that have real background solutions. In
the following, we employ the simplified expressions (40).
The closed system of equations for θ and ϒ is

ðγ0∂0 þ iγikiN þMÞX ¼ 0; X ¼
�

θ̃

ϒ̃

�
; ð41Þ

where θ̃ and ϒ̃, are canonically normalized fields, related to
the original fields by

θ≡ 2iγiki
ðαa3Þ1=2 θ̃; ϒ≡ Δ

2

�
α

a

�
1=2

ϒ̃; ð42Þ

(with Δ to be defined shortly), and where

N ¼
�− α1

α − γ0 α2
α −γ0Δ

−γ0Δ − α1
α þ γ0 α2

α

�
; ð43Þ

while the expression for M is not important for the present
discussion and can be found in [41].
Disregarding the presence of the field ϒ amounts to the

system studied in [45,46]. The square of the gravitino
sound speed would then be given by the square of the N11

element (we note that, due to the signature we have chosen,
γ0 is anti-Hermitian),

N11N
†
11 ¼

jα1j2 þ jα2j2
α2

¼ c2s : ð44Þ

Namely, using the expressions (40) leads precisely to the
sound speed (4). The complete system however has also
off-diagonal elements, with

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2s

q
: ð45Þ

Therefore, when the coefficient c2s vanishes,

c2s ¼ 0 → Δ ¼ 1; N ¼
�

0 −γ0

−γ0 0

�
; ð46Þ

leading to a nonsingular matrix N and therefore, to a
nonvanishing sound speed for the physical eigenstates of
the system. Consequently, none of the models discussed in
Sec. III have catastrophic production of gravitinos.
Problems can only arise if ϒ can be ignored as is the case
when a second, orthogonal nilpotency condition, is applied
as discussed in the next section. Then, the only problematic
models would be those defined in Eqs. (10) and (24), in
the case where the inflaton multiplet Φ is subject to the
additional orthogonal constraint SðΦ − Φ̄Þ ¼ 0. Indeed,
this additional constraint removes the inflatino from the
spectrum (hence, ϒ ¼ 0) and the speed of sound in these
models hits zero at some point during the inflationary
evolution. As we will see, such models seem suspicious
from the viewpoint of a fundamental theory of gravity.

V. MODELS WITH ORTHOGONAL
NILPOTENT SUPERFIELDS

In the cases considered in this paper, the goldstino G
belongs to a chiral multiplet and has a scalar superpartner
[the (s)Goldstino], which, once supersymmetry is broken,
acquires a nonsupersymmetric mass. Decoupling the
(s)Goldstino by giving it an infinite mass leads to a
nonlinear realization of supersymmetry. A particularly
simple way nonlinear realization can be obtained is by
imposing the nilpotent constraint [48–54,56,57],

S2 ¼ 0: ð47Þ

When supersymmetry is broken by means of a nontrivial
FS ≠ 0, the constraint is solved by

S ¼ G2

2FS þ
ffiffiffi
2

p
θGþ θ2FS: ð48Þ

Here and in what follows, we discuss the constraints at the
level of global supersymmetry for simplicity. The gener-
alization to supergravity can be found in the literature
[50–62]. The constraint (47) can be interpreted as the
infrared limit of a very heavy (s)Goldstino. This can
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be obtained starting from a microscopic Lagrangian of the
type [49],

K ¼ jSj2 − 1

Λ2
jSj4; W ¼ W0 þW1S; ð49Þ

in the limit Λ → 0. Indeed, the (s)Goldstino mass m2
S ¼

4 FS2

Λ2 is sent to infinity in this limit, leading to a nonlinear
realization of supersymmetry in the IR. The limit Λ → 0
has its limitations [74], since it implies field-theory
dynamics in some heavy sector, which after decoupling,
leaves behind the “strong stabilization” term 1

Λ2 jSj4.
Modulo these subtleties, the UV Lagrangian (49) contains
only two derivatives and is pretty standard.
The situation is different for the orthogonal constraint on

the chiral superfield Φ that removes the imaginary part of
the scalar, the fermion, and the auxiliary field [49,58–62],

SðΦ − Φ̄Þ ¼ 0: ð50Þ

It was shown in [62] that (50) is equivalent to the following
set of constraints:

jSj2ðΦ − Φ̄Þ ¼ 0; ð51Þ

jSj2D̄ _αΦ̄ ¼ 0; ð52Þ

jSj2D̄2Φ̄ ¼ 0: ð53Þ

Each constraint above eliminates one component field:
Eq. (51) eliminates the scalar, Eq. (52) eliminates the
fermion, whereas Eq. (53) eliminates the auxiliary field in
theΦmultiplet. The constraint (50) can be obtained starting
from a microscopic Lagrangian containing three additional
terms [62], which generate nonsupersymmetric masses for
the component fields that we removeZ

d4θ

�
m2

b

2f2
jSj2ðΦ − Φ̄Þ2 − gFΦ

f2
jSj2D2ΦD̄2Φ̄

	

−
mζ

2f2

Z
d4θ½jSj2DαΦDαΦþ c:c:�: ð54Þ

In (54), f can be taken to be (by convention) the
supersymmetry breaking scale in the vacuum f ¼ hFSi,
mb and mζ are mass parameters for the decoupling scalar
and fermion, respectively, gFΦ is a dimensionless coupling,
Dα denotes a covariant derivative in superspace, and
D2 ¼ DαDα; see, e.g., [92]. Notice that only the first term
in (54) is a standard correction to the Kähler potential,
whereas the second and the third terms contain higher
derivatives. The limit mb → ∞, gFΦ → ∞ and mζ → ∞
generate infinitely large masses to the scalar and fermion
and an infinite coefficient to the auxiliary field FΦ. In this
limit, the superspace equations of motion for the chiral
superfield Φ are dominated by

D̄2

�
m2

b

f2
jSj2ðΦ − Φ̄Þ þmζ

f2
DαðjSj2DαΦÞ

−
gFΦ

f2
D2ðjSj2D̄2Φ̄Þ

�
¼ 0: ð55Þ

This indeed reproduces the constraints (51)–(53) and
therefore, (50): multiplication with SS̄ leads to (53), the
multiplication with DβSS̄ gives (52), and finally, using (53)
and (52) in (55) then multiplying with S̄ leads to (51).
As emphasized already, in contrast to the nilpotent UV

Lagrangian (49), the action (54) contains higher deriva-
tives. As such, it is qualitatively different and the orthogo-
nal constraint cannot therefore be obtained, to our
knowledge, starting from a standard two-derivative action
in the UV. In particular, if the chiral superfield S was not
nilpotent, the second term in Eq. (54) proportional to gFΦ

could introduce ghosts into the theory. This is a special
property of the decoupling procedure and could signal that
such constraints could (but not necessarily) come from a
sick UV theory. This could explain the problems with the
slow gravitinos in some inflationary models using the
orthogonal constraint.
We conclude this section with some general properties

and implications of supersymmetric models with a second
degree nilpotency condition, S2 ¼ 0, and the orthogonality
constraint, SðΦ − Φ̄Þ ¼ 0. It follows from these constraints
that if we choose to work in the unitary gauge the Goldstino
and inflatino fields are absent in these models. If we
consider a supergravity model with a Kähler potential
and superpotential of the form,

K ¼ −
ðΦ − Φ̄Þ2

2
þ SS̄; ð56Þ

and

WðΦ; SÞ ¼ fðΦÞSþ gðΦÞ; ð57Þ

so that the Kähler potential possesses a shift symmetry,
and vanishes when the field constraints are imposed,
KðS; S̄;Φ; Φ̄ÞjS¼S̄¼Φ−Φ̄¼0 ¼ 0. The orthogonality con-
straint ensures that the covariant derivative DΦW is absent
in the effective scalar potential, which is then given by
[58,59]

V ¼ eKðKSS� jDSWj2 − 3jWj2Þ ¼ f2 − 3m2
3=2; ð58Þ

where the gravitino mass is

m3=2 ¼ jgðΦÞj: ð59Þ

Note that the sound speed given in Eq. (4) should not be
used in this case, since Fϕ ¼ 0 for the bosonic part, while
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DϕW ≠ 0. Rather, one can use Eq. (3) and the potential in
Eq. (58) with Eq. (59) to obtain

c2s ¼
ðfðΦÞ2 − _Φ2Þ2
ðfðΦÞ2 þ _Φ2Þ2 þ

ð2g0ðΦÞ _ΦÞ2
ðfðΦÞ2 þ _Φ2Þ2

¼ 1 − 4
_Φ2

ðf2 þ _Φ2Þ2 ðf
2 − g02Þ; ð60Þ

where g0ðΦÞ ¼ ∂g=∂Φ. If we want to ensure that the
sound speed cs > 0 does not vanish, we must impose
the constraint,

ðfðΦÞ2 − _Φ2Þ2 þ ð2g0ðΦÞ _ΦÞ2 > 0: ð61Þ

The above quantity is non-negative at all times in moduli
space, and this condition is only violated when fðΦÞ ¼ � _Φ
and g0ðΦÞ ¼ 0. If the gravitino mass is constant at all times,
this implies that g0ðΦÞ ¼ 0 and the constraint (61) will be
violated when the first term vanishes.
While it is straightforward to construct models for which

the gravitino mass is not constant, additional problems
quickly ensue. Consider, for example, a superpotential
defined by

f ¼ f0 þ
ffiffiffi
3

p
g; g ¼ 1

2
ffiffiffi
3

p ðaf0 þ m̃Þ; ð62Þ

where m̃ is associated with the weak scale, and the
parameter a is an arbitrary positive number. At the
minimum of the potential, the gravitino mass is of order
m̃. Any variation in a quantity this small will still lead to a
sound speed which is also very small. For a ≠ 0, the
variation of the gravitino mass may be comparable to the
potential. The effective scalar potential (58) becomes

V ¼ ðaþ 1Þf20 þ m̃f0: ð63Þ

If we choose

f0 ¼
ffiffiffi
3

p

2
ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p mð1 − e−
2ffiffi
3

p ΦÞ; ð64Þ

and use the canonically normalized field Φ ¼ ϕ=
ffiffiffi
2

p
, we

recover approximately, for m̃ ≪ m, the Starobinsky infla-
tionary potential (29). However, during each oscillation,
when Φ ¼ 0, f2 − g02 ¼ −a2=12ð1þ aÞ. As a result the
sound speed exceeds 1, signaling a sickness in the theory.
The Cauchy-Schwarz inequality noted above is no longer
guaranteed to hold as the sound speed is now

c2s ¼ 1 −
4

ðj _Φj2 þ jFSj2Þ2 fj
_Φj2jFSj2 − j _ΦeK=2DΦWj2g;

ð65Þ

and there is no such inequality between j _φj2jFj2 ¼
j _Φj2jFSj2 and j _φ · F�j2 ¼ jeK=2 _ΦDΦWj2, since we can
no longer use Eq. (5) to relate FΦ and DΦW. Thus,
pathologies might arise whenever jeK=2DΦWj > jFSj.
Such behavior was also seen in [45]. We are not sure if
this behavior is a remnant of the lack of two derivative UV
origin stemming from the orthogonal constraint.

VI. CONCLUSIONS

If supersymmetry is realized below the Planck scale, it is
natural to construct models of inflation in the context of
supersymmetry/supergravity. Particle production and
reheating after the period of exponential expansion is an
essential component of any model of inflation, and in the
context of supersymmetry, the production of gravitinos
must be considered. If the gravitino is not the lightest
supersymmetric particle, it is expected to be unstable.
Because of its gravitational coupling, its lifetime can be
quite long (for weak scale gravitino masses), causing a host
of potential problems [10].
In general, the production of gravitinos following infla-

tion is complicated by the possibility that the field content
of the longitudinal mode comprised of the Goldstino may
be different during inflation from that in the vacuum.
Indeed, supersymmetry might be broken during inflation,
and the longitudinal component of the gravitino may be
identified with the inflatino. Thus, models with substantial
nonperturbative particle production [22,37–39] may be
producing an inflatino rather than a gravitino [40,41].
The inflatino problem is generally model dependent and
is nonexistent in certain constructions [43].
An additional problem associated with gravitinos has

been discussed recently [44–46] in connection with a
vanishing sound speed for gravitinos. It was argued that
when cs → 0, the nonperturbative production of high-
momentum modes in the helicity 1=2 mode is unsup-
pressed. Indeed, there are a variety of well-studied models
where the gravitino sound speed does vanish. We have
discussed several examples for which cs → 0 and several
for which it does not. That is, while a vanishing sound
speed may occur in supergravity models of inflation, it is by
no means a necessary consequence. Furthermore, we have
shown that even in the models where cs → 0, runaway
gravitino production is blocked by mixing with the infla-
tino in a time-dependent background. This is the case in
models with and without a nilpotent field associated with
supersymmetry breaking.
However, the problem of catastrophic gravitino produc-

tion may occur in models with a second orthogonal
constraint for which the inflatino is removed from the
particle spectrum. It is not clear how these models can be
extracted from a UV theory involving no more than two
derivatives. This argument along with the problem of a
vanishing sound speed (or superluminal sound speed when
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cs ≠ 0) may be a constraint on models with constrained
fields rather than supergravity models of inflation in
general.

ACKNOWLEDGMENTS

The authors want to thank T. Gherghetta, H. P. Nilles, and
L. Sorbo for helpful discussions. This project has received
support from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-
Curie Grant Agreement No. 860881-HIDDeN, by the ANR

grant Black-dS-String Grant No. ANR-16-CE31-0004-01,
the CNRS PICS MicroDark, and the IN2P3 Master Project
UCMN. The work of K. A. O. was supported in part by
DOE Grant No. DE-SC0011842 at the University of
Minnesota. The work of M. G. was supported by the
Spanish Agencia Estatal de Investigación through Grants
No. FPA2015-65929-P (MINECO/FEDER, UE) and
No. PGC2018095161-B-I00, IFT Centro de Excelencia
Severo Ochoa Grant No. SEV-2016-0597, and Red
Consolider MultiDark Grant No. FPA2017-90566-REDC.

[1] M. Aaboud et al. (ATLAS Collaboration), J. High Energy
Phys. 06 (2018) 107; Phys. Rev. D 97, 112001 (2018);
ATLAS Collaboration, https://twiki.cern.ch/twiki/bin/view/
AtlasPublic/SupersymmetryPublicResults.

[2] M. Aaboud et al. (ATLAS Collaboration), J. High Energy
Phys. 06 (2018) 107; Phys. Rev. D 97, 112001 (2018);
CMS Collaboration, https://twiki.cern.ch/twiki/bin/view/
CMSPublic/PhysicsResultsSUS.

[3] L. Maiani, in Proceedings, Gif-sur-Yvette Summer School
On Particle Physics (1979), pp. 1–52; G. Hooft and others,
Recent Developments in Gauge Theories, Proceedings of
the Nato Advanced Study Institute, Cargese, France, 1979,
Nato Advanced Study Institutes Series: Series B, Physics,
Vol. 59 (Plenum Press, New York, USA, 1980); E. Witten,
Phys. Lett. 105B, 267 (1981).

[4] J. R. Ellis, S. Kelley, and D. V. Nanopoulos, Phys. Lett. B
249, 441 (1990); 260, 131 (1991); U. Amaldi, W. de Boer,
and H. Furstenau, Phys. Lett. B 260, 447 (1991); P.
Langacker and M.-x. Luo, Phys. Rev. D 44, 817 (1991);
C. Giunti, C. W. Kim, and U.W. Lee, Mod. Phys. Lett. A
06, 1745 (1991).

[5] H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983).
[6] J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, and M.

Srednicki, Nucl. Phys. B238, 453 (1984).
[7] E. Cremmer, B. Julia, J. Scherk, P. van Nieuwenhuizen,

S. Ferrara, and L. Girardello, Phys. Lett. 79B, 231 (1978);
E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello,
and P. van Nieuwenhuizen, Nucl. Phys. B147, 105 (1979);
E. Cremmer, S. Ferrara, L. Girardello, and A. Van Proeyen,
Phys. Lett. 116B, 231 (1982); Nucl. Phys. B212, 413
(1983).

[8] H. P. Nilles, Phys. Rep. 110, 1 (1984).
[9] P. Fayet, in Proceedings at the XVIIth Rencontre de

Moriond, Ecole Normale Superieure Preprint LPTENS
82/10 (1982); L. M. Krauss, Nucl. Phys. B227, 556
(1983); M. Kawasaki, F. Takahashi, and T. T. Yanagida,
Phys. Rev. D 74, 043519 (2006).

[10] S. Weinberg, Phys. Rev. Lett. 48, 1303 (1982).
[11] J. R. Ellis, A. D. Linde, and D. V. Nanopoulos, Phys. Lett.

118B, 59 (1982).
[12] J. L. Evans, M. A. G. Garcia, and K. A. Olive, J. Cosmol.

Astropart. Phys. 03 (2014) 022.

[13] D. V. Nanopoulos, K. A. Olive, and M. Srednicki, Phys.
Lett. 127B, 30 (1983).

[14] M. Y. Khlopov and A. D. Linde, Phys. Lett. 138B, 265
(1984).

[15] J. R. Ellis, J. E. Kim, and D. V. Nanopoulos, Phys. Lett.
145B, 181 (1984).

[16] K. A. Olive, D. N. Schramm, and M. Srednicki, Nucl. Phys.
B255, 495 (1985).

[17] R. Juszkiewicz, J. Silk, and A. Stebbins, Phys. Lett. 158B,
463 (1985).

[18] T. Moroi, H. Murayama, and M. Yamaguchi, Phys. Lett. B
303, 289 (1993).

[19] M. Kawasaki and T. Moroi, Prog. Theor. Phys. 93, 879
(1995).

[20] T. Moroi, arXiv:hep-ph/9503210.
[21] J. R. Ellis, D. V. Nanopoulos, K. A. Olive, and S. J. Rey,

Astropart. Phys. 4, 371 (1996).
[22] G. F. Giudice, A. Riotto, and I. Tkachev, J. High Energy

Phys. 11 (1999) 036.
[23] M. Bolz, A. Brandenburg, and W. Buchmuller, Nucl. Phys.

B606, 518 (2001); B790, 336(E) (2008).
[24] R. H. Cyburt, J. Ellis, B. D. Fields, and K. A. Olive, Phys.

Rev. D 67, 103521 (2003).
[25] K. Kohri, T. Moroi, and A. Yotsuyanagi, Phys. Rev. D 73,

123511 (2006).
[26] F. D. Steffen, J. Cosmol. Astropart. Phys. 09 (2006) 001.
[27] J. Pradler and F. D. Steffen, Phys. Rev. D 75, 023509

(2007).
[28] J. Pradler and F. D. Steffen, Phys. Lett. B 648, 224 (2007).
[29] M. Kawasaki, K. Kohri, T. Moroi, and A. Yotsuyanagi,

Phys. Rev. D 78, 065011 (2008).
[30] V. S. Rychkov and A. Strumia, Phys. Rev. D 75, 075011

(2007).
[31] J. Ellis, M. A. G. Garcia, D. V. Nanopoulos, K. A.

Olive, and M. Peloso, J. Cosmol. Astropart. Phys. 03
(2016) 008.

[32] M. A. G. Garcia, Y. Mambrini, K. A. Olive, and M. Peloso,
Phys. Rev. D 96, 103510 (2017).

[33] H. Eberl, I. D. Gialamas, and V. C. Spanos, Phys. Rev. D
103, 075025 (2021).

[34] B. D. Fields, K. A. Olive, T. H. Yeh, and C. Young, J.
Cosmol. Astropart. Phys. 03 (2020) 010; 11 (2020) E02.

EMILIAN DUDAS et al. PHYS. REV. D 103, 123519 (2021)

123519-10

https://doi.org/10.1007/JHEP06(2018)107
https://doi.org/10.1007/JHEP06(2018)107
https://doi.org/10.1103/PhysRevD.97.112001
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://doi.org/10.1007/JHEP06(2018)107
https://doi.org/10.1007/JHEP06(2018)107
https://doi.org/10.1103/PhysRevD.97.112001
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://doi.org/10.1016/0370-2693(81)90885-6
https://doi.org/10.1016/0370-2693(90)91013-2
https://doi.org/10.1016/0370-2693(90)91013-2
https://doi.org/10.1016/0370-2693(91)90980-5
https://doi.org/10.1016/0370-2693(91)91641-8
https://doi.org/10.1103/PhysRevD.44.817
https://doi.org/10.1142/S0217732391001883
https://doi.org/10.1142/S0217732391001883
https://doi.org/10.1103/PhysRevLett.50.1419
https://doi.org/10.1016/0550-3213(84)90461-9
https://doi.org/10.1016/0370-2693(78)90230-7
https://doi.org/10.1016/0550-3213(79)90417-6
https://doi.org/10.1016/0370-2693(82)90332-X
https://doi.org/10.1016/0550-3213(83)90679-X
https://doi.org/10.1016/0550-3213(83)90679-X
https://doi.org/10.1016/0370-1573(84)90008-5
https://doi.org/10.1016/0550-3213(83)90574-6
https://doi.org/10.1016/0550-3213(83)90574-6
https://doi.org/10.1103/PhysRevD.74.043519
https://doi.org/10.1103/PhysRevLett.48.1303
https://doi.org/10.1016/0370-2693(82)90601-3
https://doi.org/10.1016/0370-2693(82)90601-3
https://doi.org/10.1088/1475-7516/2014/03/022
https://doi.org/10.1088/1475-7516/2014/03/022
https://doi.org/10.1016/0370-2693(83)91624-6
https://doi.org/10.1016/0370-2693(83)91624-6
https://doi.org/10.1016/0370-2693(84)91656-3
https://doi.org/10.1016/0370-2693(84)91656-3
https://doi.org/10.1016/0370-2693(84)90334-4
https://doi.org/10.1016/0370-2693(84)90334-4
https://doi.org/10.1016/0550-3213(85)90149-X
https://doi.org/10.1016/0550-3213(85)90149-X
https://doi.org/10.1016/0370-2693(85)90795-6
https://doi.org/10.1016/0370-2693(85)90795-6
https://doi.org/10.1016/0370-2693(93)91434-O
https://doi.org/10.1016/0370-2693(93)91434-O
https://doi.org/10.1143/ptp/93.5.879
https://doi.org/10.1143/ptp/93.5.879
https://arXiv.org/abs/hep-ph/9503210
https://doi.org/10.1016/0927-6505(96)00006-0
https://doi.org/10.1088/1126-6708/1999/11/036
https://doi.org/10.1088/1126-6708/1999/11/036
https://doi.org/10.1016/S0550-3213(01)00132-8
https://doi.org/10.1016/S0550-3213(01)00132-8
https://doi.org/10.1016/j.nuclphysb.2007.09.020
https://doi.org/10.1103/PhysRevD.67.103521
https://doi.org/10.1103/PhysRevD.67.103521
https://doi.org/10.1103/PhysRevD.73.123511
https://doi.org/10.1103/PhysRevD.73.123511
https://doi.org/10.1088/1475-7516/2006/09/001
https://doi.org/10.1103/PhysRevD.75.023509
https://doi.org/10.1103/PhysRevD.75.023509
https://doi.org/10.1016/j.physletb.2007.02.072
https://doi.org/10.1103/PhysRevD.78.065011
https://doi.org/10.1103/PhysRevD.75.075011
https://doi.org/10.1103/PhysRevD.75.075011
https://doi.org/10.1088/1475-7516/2016/03/008
https://doi.org/10.1088/1475-7516/2016/03/008
https://doi.org/10.1103/PhysRevD.96.103510
https://doi.org/10.1103/PhysRevD.103.075025
https://doi.org/10.1103/PhysRevD.103.075025
https://doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1088/1475-7516/2020/11/E02


[35] D. Lindley, Astrophys. J. 294, 1 (1985); J. R. Ellis, D. V.
Nanopoulos, and S. Sarkar, Nucl. Phys. B259, 175 (1985);
M. Kawasaki and K. Sato, Phys. Lett. B 189, 23 (1987);
S. Dimopoulos, R. Esmailzadeh, L. J. Hall, and G. D.
Starkman, Nucl. Phys. B311, 699 (1989); J. R. Ellis,
G. B. Gelmini, J. L. Lopez, D. V. Nanopoulos, and S.
Sarkar, Nucl. Phys. B373, 399 (1992); M. Y. Khlopov, Y.
L. Levitan, E. V. Sedelnikov, and I. M. Sobol, Yad. Fiz. 57,
1466 (1994) [Phys. At. Nucl. 57, 1393 (1994)]; E. V.
Sedelnikov, S. S. Filippov, and M. Y. Khlopov, Yad. Fiz.
58, 280 (1995) [Phys. At. Nucl. 58, 235 (1995)]; E.
Holtmann, M. Kawasaki, K. Kohri, and T. Moroi, Phys.
Rev. D 60, 023506 (1999); M. Kawasaki, K. Kohri, and T.
Moroi, Phys. Rev. D 63, 103502 (2001); K. Kohri, Phys.
Rev. D 64, 043515 (2001); J. L. Feng, A. Rajaraman, and F.
Takayama, Phys. Rev. D 68, 063504 (2003); J. L. Feng, S. F.
Su, and F. Takayama, Phys. Rev. D 70, 063514 (2004); M.
Kawasaki, K. Kohri, and T. Moroi, Phys. Lett. B 625, 7
(2005); Phys. Rev. D 71, 083502 (2005); J. R. Ellis, K. A.
Olive, and E. Vangioni, Phys. Lett. B 619, 30 (2005); K.
Kohri, T. Moroi, and A. Yotsuyanagi, Phys. Rev. D 73,
123511 (2006); D. G. Cerdeno, K. Y. Choi, K. Jedamzik, L.
Roszkowski, and R. Ruiz de Austri, J. Cosmol. Astropart.
Phys. 06 (2006) 005; K. Jedamzik, K. Y. Choi, L.
Roszkowski, and R. Ruiz de Austri, J. Cosmol. Astropart.
Phys. 07 (2006) 007; R. H. Cyburt, J. R. Ellis, B. D. Fields,
K. A. Olive, and V. C. Spanos, J. f Astropart. Phys. 11
(2006) 014; J. Pradler and F. D. Steffen, Phys. Lett. B 666,
181 (2008); M. Kawasaki, K. Kohri, T. Moroi, and A.
Yotsuyanagi, Phys. Rev. D 78, 065011 (2008); S. Bailly, K.
Jedamzik, and G. Moultaka, Phys. Rev. D 80, 063509
(2009); K. Jedamzik and M. Pospelov, New J. Phys. 11,
105028 (2009); R. H. Cyburt, J. Ellis, B. D. Fields, F. Luo,
K. A. Olive, and V. C. Spanos, J. Cosmol. Astropart. Phys.
10 (2009) 021; 10 (2010) 032; M. Pospelov and J. Pradler,
Annu. Rev. Nucl. Part. Sci. 60, 539 (2010); R. H. Cyburt, J.
Ellis, B. D. Fields, F. Luo, K. A. Olive, and V. C. Spanos, J.
Cosmol. Astropart. Phys. 12 (2012) 037.

[36] R. H. Cyburt, J. Ellis, B. D. Fields, F. Luo, K. A. Olive,
and V. C. Spanos, J. Cosmol. Astropart. Phys. 05 (2013)
014.

[37] R. Kallosh, L. Kofman, A. D. Linde, and A. Van Proeyen,
Phys. Rev. D 61, 103503 (2000).

[38] G. F. Giudice, I. Tkachev, and A. Riotto, J. High Energy
Phys. 08 (1999) 009.

[39] R. Kallosh, L. Kofman, A. D. Linde, and A. Van Proeyen,
Classical Quantum Gravity 17, 4269 (2000); 21, 5017(E)
(2004).

[40] H. P. Nilles, M. Peloso, and L. Sorbo, Phys. Rev. Lett. 87,
051302 (2001).

[41] H. P. Nilles, M. Peloso, and L. Sorbo, J. High Energy Phys.
04 (2001) 004.

[42] Y. Ema, K. Mukaida, K. Nakayama, and T. Terada, J. High
Energy Phys. 11 (2016) 184.

[43] H. P. Nilles, K. A. Olive, and M. Peloso, Phys. Lett. B 522,
304 (2001).

[44] F. Hasegawa, K. Mukaida, K. Nakayama, T. Terada, and Y.
Yamada, Phys. Lett. B 767, 392 (2017).

[45] E.W. Kolb, A. J. Long, and E. McDonough, arXiv:
2102.10113.

[46] E.W. Kolb, A. J. Long, and E. Mcdonough, arXiv:
2103.10437.
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