
 

Cosmological perturbations in Gauss-Bonnet quasi-dilaton massive gravity

Amin Rezaei Akbarieh ,1,* Sobhan Kazempour ,1,† and Lijing Shao 2,3,‡

1Faculty of Physics, University of Tabriz, Tabriz 51666-16471, Iran
2Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China

3National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

(Received 28 March 2021; accepted 18 May 2021; published 9 June 2021)

We present the cosmological analysis of the Gauss-Bonnet quasi-dilaton massive gravity theory. This
offers a gravitational theory with a nonzero graviton mass. We calculate the complete set of background
equations of motion. Also, we obtain the self-accelerating background solutions and we present the
constraints on parameters to indicate the correct sign of parameters. In addition, we analyse tensor
perturbations and calculate the mass of graviton and find the dispersion relation of gravitational waves for
two cases. Finally, we investigate the propagation of gravitational perturbation in the Friedman-Lemaître-
Robertson-Walker cosmology in the Gauss-Bonnet quasi-dilaton massive gravity.
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I. INTRODUCTION

It is clear that the general theory of relativity has great
successes in Solar System tests [1–3] and various astro-
nomical observations [4–6]. However, there remain open
questions in gravity, cosmology and particle physics, such
as the hierarchy problem [7], the cosmological constant
problem [8,9], and the origin of the current accelerated
expansion of the Universe [10]. Therefore, there are enough
motivations for modifying general relativity. For instance, a
modification of general relativity can provide a plausible
way to explain the late-time acceleration of the Universe
without a dark energy component [11,12].
In the context of modern particle physics, general

relativity can be considered as a unique theory of a massless
Lorentz-invariant spin-2 particle (i.e., the graviton) in four
dimensions [13]. Actually, to find alternative theories to
general relativity, we need to break one of the underlying
assumptions. One possible way is, breaking Lorentz
invariance where these theories contain additional degrees
of freedom [14]. Another possible way is, maintaining
Lorentz invariance and considering gravity as a represen-
tation of a higher spin [15]. Here we consider a valuable
alternative theory, the massive gravity theory. In this theory,
the gravity is propagated by a spin-2 massive graviton.
The mass of graviton in massive gravity theory deter-

mines the speed of gravitational wave propagation.
Recently, gravitational waves have been detected from
merging of two neutron stars [16]. These events give us an
opportunity to have electromagnetic waves besides the

gravitational waves. One significance of these observations
lays in the fact that the speed of these waves can be
compared and can give us the constraints on the modified
gravity theories.
It is well known that the massive gravity theory was

introduced by Fierz and Pauli in 1939 [17]. They found the
unique Lorentz-invariant linear theory without ghost. In the
following, the massive gravity theory has undergone tremen-
dous changes throughout decades. The striking changes are
discoveries of the van Dam-Veltman-Zakharov (vDVZ)
discontinuity [18,19], the Vainshtein mechanism [20], and
Boulware-Deser ghost [21]. Eventually, the de Rham-
Gabadadze-Tolley (dRGT) theory, which is a fully nonlinear
massive gravity without Boulware-Deser ghost, was intro-
duced in 2010 by de Rham, Gabadadze, and Tolley [22,23].
It is expected that the extended massive gravity theories

can explain the cosmic acceleration without dark energy.
As all homogeneous and isotropic cosmological solutions
in dRGT theory are unstable [24], there are two alternative
approaches. In the first approach, either homogeneity or
isotropy of background can be broken [25–27]. In the
second approach, we can consider the extra degrees of
freedom such as an extra scalar field or an additional spin-2
field [28–31]. The quasi-dilaton massive gravity theory is
classified in the second approach. This theory introduces an
extra scalar degree of freedom to the dRGT theory [31].
Meanwhile, it should be pointed out that there are efforts to
extend the quasi-dilaton massive gravity theory [32–34].
In this paper, we propose a new extended quasi-dilaton
massive gravity theory which is achieved by adding a
Gauss-Bonnet term.
Actually, Gauss-Bonnet theory was introduced by

Lanczos [35], and Lovelock studied more details of this
theory [36]. It is interesting to note that the Gauss-Bonnet
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gravity includes curvature-squared terms which have quad-
ratic order of derivatives with respect to the metric [37,38].
Generally, it can be mentioned that this theory is ghost-free
and can solve some problems in general relativity [39,40].
In addition, we point out that Gauss-Bonnet theory arises
from the low-energy limit of heterotic string theories
[41,42]. It is worth noting that there are valuable inves-
tigations which have something to do with the inflation in
Gauss-Bonnet theory and cosmological perturbations [43–
51]. Actually in Refs. [43,44], the slow-roll inflation with a
nonminimally coupledGauss-Bonner term, was investigated
analytically and numerically. They analyzed and constrained
their models and results by the 7-year WilkinsonMicrowave
Anisotropy Probe, Planck and BICEP2 data, respectively.
There has been a trend toward cosmological and per-

turbation analysis of extended quasi-dilaton massive grav-
ity theories. For example, the cosmological perturbations in
extended massive gravity were studied in Ref. [34]; the
self-accelerated solutions in quasi-dilaton massive gravity
were purposed in Ref. [52]; the stability of self-accelerating
solutions in that theory in the presence of matter was
investigated in Ref. [53]; other investigations can be found
in Refs. [32,54–57].
The goal of this paper is introducing a new extension of

quasi-dilaton massive gravity theory which is achieved by
adding the Gauss-Bonnet term. In this paper, we introduce
the cosmological analysis and tensor perturbation in order
to calculate the mass of graviton. Actually, we analyse the
constraint on the mass of graviton according to this new
action. The paper is organized as follows. In Sec. II we
introduce the new action which contains the quasi-dilaton
massive gravity and Gauss-Bonnet terms. In following
stage, we derive the background equations of motion and
self-accelerating solutions elaborately. In Sec. III we
perform perturbation analysis for determining the mass
of graviton in this theory and we discuss the graviton mass
bounds in comparison with gravitational-wave data.
Finally, in Sec. IV we conclude with a discussion.

II. COSMOLOGICAL BACKGROUND

In this section, we review the quasi-dilaton dRGTmassive
gravity theory which is extended by the Gauss-Bonnet term,
and we discuss the evolution of a cosmological background.
The action includes Planck mass MPl, the Ricci scalar R,
the cosmological constant Λ, a dynamical metric gμν and its
determinant

ffiffiffiffiffiffi−gp
. The action is given by

S ¼ M2
Pl

2

Z
d4x

� ffiffiffiffiffiffi
−g

p �
R − 2Λþ 2m2

gUðKÞ

−
ω

M2
Pl

gμν∂μσ∂νσ þ ξðσÞGðRÞ
��

: ð1Þ

In the following, we introduce two main parts—namely
UðKÞ and GðRÞ—of this action separately.

A. Quasi-dilaton massive gravity term

In the first part, we start out with introducing the quasi-
dilaton massive gravity theory which includes the massive
graviton term and the quasi-dilaton term [31]. Let us now
introduce these two parts as a single theory. It is clear that
the mass of graviton comes up with the potential U which
consists of three parts.

UðKÞ ¼ U2 þ α3U3 þ α4U4; ð2Þ

where α3 and α4 are dimensionless free parameters of the
theory. Ui (i ¼ 2, 3, 4) is given by,

U2 ¼
1

2
ð½K�2 − ½K2�Þ;

U3 ¼
1

6
ð½K�3 − 3½K�½K2� þ 2½K3�Þ;

U4 ¼
1

24
ð½K�4 − 6½K�2½K2� þ 8½K�½K3� þ 3½K2�2 − 6½K4�Þ;

ð3Þ

where the quantity “½·�” is interpreted as the trace of the
tensor inside brackets. It is essential to mention that the
building block tensor K is defined as

Kμ
ν ¼ δμν − eσ=MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαfαν

p
; ð4Þ

where fαν is the fiducial metric, which is defined through

fαν ¼ ∂αϕ
c∂νϕ

dηcd: ð5Þ

Here gμν is the physical metric, ηcd is the Minkowski metric
withc,d ¼ 0, 1, 2, 3 andϕc are the Stueckelberg fieldswhich
are introduced to restore general covariance. Also, it is
important to note that σ is the quasi-dilaton scalar and ω
is a dimensionless constant.Moreover, the theory is invariant
under a global dilation transformation, σ → σ þ σ0.
According to our cosmological application purpose, we

adopt the Friedman-Lemaître-Robertson-Walker (FLRW)
Universe. So, the general expression of the corresponding
dynamical and fiducial metrics are given as follows,

gμν ¼ diag½−N2; a2; a2; a2�; ð6Þ

fμν ¼ diag½− _fðtÞ2; 1; 1; 1�: ð7Þ

Here it is worth pointing out that N is the lapse function of
the dynamical metric, and it is similar to a gauge function.
Also, it is clear that the scale factor is represented by a, and
_a is the derivative with respect to time. Furthermore, the
lapse function relates the coordinate-time dt and the proper-
time dτ via dτ ¼ Ndt [58,59]. Function fðtÞ is the

Stueckelberg scalar function whereas ϕ0 ¼ fðtÞ and ∂ϕ0

∂t ¼
_fðtÞ [60].
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Therefore, the Lagrangian of the quasi-dilaton massive
gravity in FLRW cosmology is

LQD ¼ M2
Pl

�
−3

a _a2

N
− Λa3N

�
þm2

gM2
PlfNa3ðX − 1Þ

× ½3ðX − 2Þ − ðX − 4ÞðX − 1Þα3 − ðX − 1Þ2α4�
þ _fðtÞa4XðX − 1Þ½3 − 3ðX − 1Þα3 þ ðX − 1Þ2α4�g

þ ωa3

2N
_σ2; ð8Þ

where

X ≡ eσ=MPl

a
: ð9Þ

B. Gauss-Bonnet term

Here, we introduce the Gauss-Bonnet term which we add
to the quasi-dilaton massive gravity theory. This term
consists of theGauss-Bonnet invariant,GðRÞ ¼ RμνγδRμνγδ−
4RμνRμν þ R2, and a coupling function ξðσÞ. It should be
noted that in D ¼ 4 if we consider ξ as a dimensionless
coupling constant instead of a coupling function ξðσÞ, the
Gauss-Bonnet term does not contribute to the gravitational
dynamics. The reason of this lays in the fact that the Gauss-
Bonnet invariant is a total derivative [61]. So, in this paper,
we adopt the coupling function ξðσÞ similar to Ref. [62].
Using integration by parts, we can convert the second
derivative terms into the first order derivatives. The part of
the Lagrangian which is related to the Gauss-Bonnet term is

LGB ¼ M2
Pl

2

ffiffiffiffiffiffi
−g

p
ξðσÞGðRÞ → −4M2

Pl
_a3

N3
ξ0ðσÞ _σ; ð10Þ

where the last expression shows its form in the FLRW
background. As a result, the total Lagrangian includes two
parts,

L ¼ LQD þ LGB: ð11Þ

So, the point-like Lagrangian for cosmology is

L ¼ M2
Pl

�
−3

a _a2

N
− Λa3N

�
þm2

gM2
Pl½Na3ðX − 1Þ

× ½3ðX − 2Þ − ðX − 4ÞðX − 1Þα3 − ðX − 1Þ2α4�
þ _fðtÞa4XðX − 1Þ½3 − 3ðX − 1Þα3 þ ðX − 1Þ2α4��

þ ωa3

2N
_σ2 − 4M2

Pl
_a3

N3
ξ0ðσÞ _σ: ð12Þ

In order to simplify expressions later, we define

H ≡ _a
Na

: ð13Þ

C. Background equations of motion

In order to achieve a constraint equation we should take
the unitary gauge into consideration, which means that we
choose fðtÞ ¼ t. The significance of the unitary gauge lays
in the fact that on the classical level the unphysical fields
could be eliminated from the Lagrangian with use of gauge
transformations [63]. In this procedure, a constraint equa-
tion can be derived by varying with respect to f. So, that
equation is given by

m2
gM2

Pl
d
dt
½a4XðX − 1Þ½3− 3ðX − 1Þα3 þ ðX − 1Þ2α4�� ¼ 0:

ð14Þ

In this stage, the Friedman equation is achieved by varying
with respect to the lapse N,

3H2 − Λ −
ω

2

�
H þ

_X
XN

�
2

−m2
gðX − 1Þ½−3ðX − 2Þ

þ ðX − 4ÞðX − 1Þα3 þ ðX − 1Þ2α4�

þ 12H3MPl

�
H þ

_X
XN

�
ξ0ðσÞ ¼ 0: ð15Þ

The equation of motion for σ is

12MPlH2

�
H2 þ

_H
N

�
ξ0ðσÞ − ω

MPl

�
3H

_σ

N
þ 1

N
d
dt

�
_σ

N

��

þ 3m2
gX

�
ð2X − 3þ rð2X − 1ÞÞ

þ ðX − 1Þ
�
α3ð3 − X þ rð1 − 3XÞÞ

−
1

3
α4ðX − 1Þð3þ rð1 − 4XÞÞ

��
¼ 0; ð16Þ

where

r≡ a
N
: ð17Þ

Using the notation in Eq. (9), the following equations can
be derived

_σ

NMPl
¼ H þ

_X
NX

;
σ̈

MPl
¼ d

dt

�
NH þ

_X
X

�
; ð18Þ

and the last equation of motion could be obtained by
varying with respect to the scale factor a,
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3H2 − Λþ ω

2M2
Pl

�
_σ

N

�
2

þ 4
d
dt

�
H2ξ0

σ̈

N2

�

− 4
H2

N
ξ0
�
d
dt

�
_σ

N

�
−
�
σ̈

N

�
− 2H _σ

�
þ 2

_H
N

þm2
gf1þ rXð2X − 3Þ þ ðX − 1Þ½X − 5

− α3ð4 − 2X þ rXðX − 3ÞÞ
− α4ðX − 1ÞðrX − 1Þ�g ¼ 0: ð19Þ

In the last part of this subsection, it should be noted that the
Stuckelberg field f introduces time reparametrization
invariance. So, there is a Bianchi identity which relates
the four equations of motion,

δS
δσ

_σ þ δS
δf

_f − N
d
dt

δS
δN

þ _a
δS
δa

¼ 0: ð20Þ

So, one equation is redundant and can be eliminated.

D. Self-accelerating background solutions

In this step, we want to discuss solutions. It could be
started with the Stueckelberg constraint in Eq. (14). After
integrating the equation we have

XðX − 1Þ½3 − 3ðX − 1Þα3 þ ðX − 1Þ2α4� ∝ a−4: ð21Þ

It would be suitable to mention that the constant solutions
of X lead to the effective energy density and behave similar
to a cosmological constant. If we consider an expanding
universe, according to the a−4 behavior in Eq. (21), the
right-hand side of that equation will decrease. Therefore,
after a long enough time, X leads to a constant value, XSA,
which is a root of the left-hand side of Eq. (21).
One of the solutions for Eq. (21) is X ¼ 0 which leads to

σ → −∞. Meanwhile, this solution multiplies to the per-
turbations of the auxiliary scalars which means that we
encounter strong coupling in the vector and scalar sectors.
Thus, in order to avoid strong coupling, we discard this
solution [31]. So, we are left with,

ðX − 1Þ½3 − 3ðX − 1Þα3 þ ðX − 1Þ2α4�jX¼XSA
¼ 0: ð22Þ

An obvious solution is X ¼ 1 which leads to a vanishing
cosmological constant and because of inconsistency it is
unacceptable. So, this solution should be discarded
too [31].
As a result, the two remaining solutions of Eq. (21) are

X�
SA ¼ 3α3 þ 2α4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
2α4

: ð23Þ

The Friedman equation (15) could be written in a different
form,

�
3 −

ω

2
þ 12MPlξ

0ðσÞH2

�
H2 ¼ Λþ Λ�

SA: ð24Þ

Considering self-accelerating solutions, in the case of
ξ0ðσÞ ¼ 0, a condition on the parameter ω is provided
by the Friedman equation (24). So, we need to consider
ω < 6 to keep the left hand side of Eq. (24) positive.
The importance of this issue lays in the fact that when we
add ordinary matters to the right hand side, throughout
the matter dominated era, we will have the standard
cosmology.
It is worth mentioning that the effective cosmological

constant from the mass term is

Λ�
SA ≡m2

gðX�
SA − 1Þ½−3X�

SA þ 6þ ðX�
SA − 4ÞðX�

SA − 1Þα3
þ ðX�

SA − 1Þ2α4�: ð25Þ

According to Eq. (23), the above equation can be written as

Λ�
SA ¼ 3m2

g

2α34
½9α43 � 3α33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

q
− 18α23α4

∓ 4α3α4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

q
þ 6α24�: ð26Þ

Therefore, H2 is obtained via Eq. (24),

H2 ¼ 1

24MPlξ
0ðσÞ

�
−
�
3 −

ω

2

�

∓
��

3 −
ω

2

�
2

þ 48MPlðΛþ Λ�
SAÞξ0ðσÞ

�1
2

�
: ð27Þ

Therefore, for the self-accelerating solutions, there are
two cases.
In the first case, ξ0ðσÞ is a constant so ξ00ðσÞ is equal to

zero. Therefore, from Eq. (16) we have,

rSA1 ¼ 1þ H2½ω − 4MPlH2ξ0ðσÞ�
m2

gX2�
SAð−2 − α3 þ α3X�

SAÞ
: ð28Þ

It is important to note that, in this case, we can consider
ξ0ðσÞ ¼ ξ0 where ξ0 is a constant parameter. In the following,
Λ̄ is redefined as Λ̄ ¼ 48MPlðΛþ Λ�

SAÞξ0. Therefore, in
order to keep the right-hand side of Eq. (27) positive,
the below conditions should be satisfied in “�” cases
respectively:

(i) In the case of “−” sign, we should have Λ̄ < 0 and
ω ≥ 6þ 2

ffiffiffiffiffiffiffi
−Λ̄

p
; in other words, ξ0 has to be

negative.
(ii) In the case of “þ” sign, there are two conditions:

(a) it can be considered Λ̄ < 0, ω ≥ 6þ
ffiffiffiffiffiffiffi
−Λ̄

p
, and

also ξ0 should be smaller than zero; (b) if we
consider Λ̄ ≥ 0, the right-hand side of Eq. (27) is
positive for any ω.
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In the second case, ξ0ðσÞ is an arbitrary function so ξ00ðσÞ is not zero. In the following, we calculated _H using Eq. (24) and
we substitute it into Eq. (28). As a result, we obtain,

rSA2 ¼ 1þ H2

m2
gX2�

SAð−2 − α3 þ α3X�
SAÞ

�
ω − 4MPlξ0ðσÞ

�
H2 þ 12H4M2

Plξ00ðσÞ
−6þ ω − 48H2MPlξ0ðσÞ

��
: ð29Þ

Actually, we have used the Stuckelberg equation (21) in
order to eliminate α4. Finally, we should take this into
account, and if we consider ξðσÞ ¼ 0, rSA1 and rSA2 convert
to the equation in Ref. [34] in its unexpanded form.

III. TENSOR PERTURBATION

In this section, we would like to analyse tensor pertur-
bation in order to calculate the mass of graviton for our
theory which we introduced in the previous section.
In order to find the action for quadratic perturbation, the

physical metric is expanded in small fluctuation, δgμν,

around a solution gð0Þμν ,

gμν ¼ gð0Þμν þ δgμν: ð30Þ

In the following analysis, we keep terms to quadratic order
in δgμν. As we demonstrate all analysis in the unitary gauge,
there are not any problems concerning the form of gauge
invariant combinations. Moreover, we write the actions
expanded in the Fourier domain with plane waves, i.e.,

∇⃗2 → −k2, d3x → d3k. We raise and lower the spatial
indices on perturbations by δij and δij. It should be
mentioned that we would like to consider N ¼ 1 which
means that the derivatives are with respect to time.

We start by considering tensor perturbations around the
background,

δgij ¼ a2hTTij ; ð31Þ
where

∂ihij ¼ 0 and gijhij ¼ 0: ð32Þ

Therefore, the action quadratic in hij is

S ¼ M2
Pl

8

Z
d3kdta3

�
ð1 − 4Hξ0ðσÞÞ _hij _hij

−
�
k2

a2
½1 − 4ξ00ðσÞ� þM2

GW

�
hijhij

�
: ð33Þ

As we have rSA1 and rSA2, in order to calculate the
dispersion relation of gravitational waves we have two
cases. In the first case, we obtain α3 using Eq. (28) and α4
using Eq. (23). So, in this case, the dispersion relation of
gravitational waves is

M2
GW1

¼ 4 _H þ 6H2 − 2Λ − 16ξ0Hð _H þH2Þ
þ ωH2 þϒ1; ð34Þ

where

ϒ1 ¼
1

ðrSA1 − 1ÞðX�
SA − 1ÞðX�

SAÞ2
fωH2½X�

SAðX�
SA − 3ÞðrSA1X�

SA − 2Þ − 2�

þm2
gðrSA1 − 1ÞX�

SA½X�
SAð6þ X�

SA½X�
SAð1þ rSA1Þ − 6�Þ − 2� þ 4H4MPlξ0½2 − X�

SAðX�
SA − 3ÞðrSA1X�

SA − 2Þ�g: ð35Þ

In the second case, α3 can be gotten from Eq. (29), and similar to the last case we obtain α4 from Eq. (23). Therefore, the
dispersion relation of gravitational waves is obtained for the second case,

M2
GW2

¼ 4 _H þ 6H2 − 2Λþ 8ξ00ðσÞH2 − 16ξ0ðσÞHð _H þH2Þ þ ωH2 þϒ2; ð36Þ

where

ϒ2 ¼
1

ðrSA2 − 1ÞðX�
SA − 1ÞðX�

SAÞ2
1

ω− 48H2MPlξ
0ðσÞ− 6

fm2
gðω− 6ÞðrSA2 − 1ÞX�

SA½X�
SA½6þX�

SAðX�
SAðrSA2 þ 1Þ− 6Þ�− 2�

− 4ð13ω− 6ÞH4MPlξ
0ðσÞ½X�

SAðX�
SA − 3ÞðrSA2X�

SA − 2Þ− 2� þH2½ωðω− 6ÞðX�
SAðX�

SA − 3ÞðrSA2X�
SA − 2Þ− 2Þ

− 48m2
gMPlξ

0ðσÞðX�
SAÞ2ðrSA2 − 1ÞðX�

SA½X�
SAðrSA2 þ 1Þ− 6�− 2Þ�

− 48H6M2
Plξ

0ðσÞðMPlξ
00ðσÞ− 4ξ0ðσÞÞ½X�

SAðrSA2X�
SA − 2ÞðX�

SA − 3Þ− 2�g: ð37Þ
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As we mentioned before, we eliminate α3 and α4 using
Eq. (23), and Eqs. (28)–(29). It can be pointed out that if the
mass square of gravitational waves is positive, the stability
of long-wavelength gravitational waves is guaranteed. On
the other hand, if it is negative, it should be tachyonic.
Therefore, as the mass of tachyon is of the order of Hubble
scale, the instability should take the age of the Universe to
develop.
The main results of this section are the modified

dispersion relations of gravitational waves, given in
Eq. (34) and Eq. (36). They represent the propagation of
gravitational perturbations in the FLRW cosmology in the
Gauss-Bonnet quasi-dilaton massive gravity. In principle,
the propagation can be tested with cosmological events,
notably by gravitational wave observations. These mod-
ifications will introduce extra contribution to the phase
evolution of gravitational waveform [64,65], and to be
detected with the accurate matched-filtering techniques in
the data analysis.
After the first discovery of gravitational waves in a

merging binary black hole (the so-called GW150914) by
the LIGO/Virgo Collaboration, tests of graviton mass are
revived [66–69]. The latest constraint on the graviton mass
from the combination of gravitational wave events from the
first and second gravitational wave transient catalogs is
mg ≤ 1.76 × 10−23 eV=c2 at 90% credibility [68]. The
corresponding Compton wavelength is still much smaller
than the Hubble scale, thus the relevance to modified
cosmology is restricted at present. Nevertheless, with future
prospects in mind, we shall keep testing this important
aspect of gravitation with more and more gravitational
events at different wavelengths, notably with future space-
based gravitational-wave detectors which are more sensi-
tive to the graviton mass [64].
In particular, modified propagation of gravitational

waves in the cosmological setting was investigated by
Nishizawa and Arai in a parametrized framework, consid-
ering a running Planck mass, a modified speed for
gravitation, as well as anisotropic source terms [70–72].
Our results here, representing theory-specific analysis in
Gauss-Bonnet quasi-dilaton massive gravity, are comple-
mentary to their work, and will provide a target for future
detailed analysis.

IV. CONCLUSION

In this work, we have presented a new extension of
quasi-dilaton massive gravity theory which is constructed
by adding the Gauss-Bonnet term. As the quasi-dilaton
massive gravity and its extensions have a rich phenom-
enology, we have been motivated to investigate some

cosmological analysis of Gauss-Bonnet quasi-dilaton mas-
sive gravity.
At the first, we have introduced the details of the new

action and total Lagrangian. We also presented the full set
of equations of motion for a FLRW background. Notice
that the investigation of extended massive gravity is
important in order to understand the late-time acceleration
of the Universe. Therefore, we have discussed the self-
accelerating background solutions elaborately. We have
provided a way to explain the late-time acceleration of the
Universe within the Gauss-Bonnet quasi-dilaton massive
gravity.
To study the mass of graviton for the Gauss-Bonnet

quasi-dilaton massive gravity theory, we have presented the
tensor perturbation calculation and have shown the
dispersion relation of gravitational waves for two cases.
In other words, we have represented the propagation of
gravitational perturbation in the FLRW cosmology in the
Gauss-Bonnet quasi-dilaton massive gravity. Such an
analysis will be a useful addition to probe alternative
gravity theories in the era of gravitational waves. In
addition, a detailed direct comparison with observational
data (e.g., from type Ia supernovae and the cosmic micro-
wave background) for the late-time acceleration of the
Universe will be extremely interesting to check for the valid
parameter space of the Gauss-Bonnet quasi-dilaton massive
gravity theory in this work. It will also be useful for an
insightful comparison with the canonical ΛCDM cosmol-
ogy model. However, such a statistical study dedicated to
data analysis is beyond the scope of the current paper, thus
we leave it for future study.
At the end, we think that other possible extensions of

quasi-dilaton massive gravity theory can be considered for
future investigations.
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