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We investigate the late-time evolution of the Universe within a cosmological model in which dark matter
and dark energy are identified with two interacting scalar fields. Using methods of qualitative analysis of
dynamical systems, we identify all cosmological solutions of this model. We show that viable solutions—in
the sense that they correspond to a cosmic evolution in which a long enough matter-dominated era is
followed by a current era of accelerated expansion—can be found in several regions of the parameter space.
These solutions can be divided into two categories, namely, solutions that evolve to a state of everlasting
accelerated expansion, in which the energy density of the dark-matter field rapidly approaches zero and the
evolution becomes entirely dominated by the dark-energy field, and solutions in which the stage of
accelerated expansion is temporary and the ratio between the energy densities of dark energy and dark
matter tends, asymptotically, to a constant nonzero value.
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I. INTRODUCTION

One of the most striking developments of modern
cosmology was the discovery that the Universe is presently
undergoing a period of accelerated expansion [1,2], driven
by a still unknown form of energy, called dark energy,
which accounts for about 69% of the total energy density of
the Universe [3].
The simplest candidate for dark energy is the cosmo-

logical constant, whose energy density remains unchanged
throughout the evolution of the Universe. Although con-
sistent with current observational data, the cosmological
constant is unsatisfactory from the theoretical point of view,
since its energy scale estimated at both the classical and
quantum levels strongly deviates from the value required by
cosmic observations [4,5].
An alternative and appealing approach is to consider the

role of dark energy to be played, not by a cosmological
constant, but rather by a dynamical scalar field, whose
potential energy starts to dominate the evolution of the
Universe at later times, giving rise to a period of cosmic
acceleration, in a way similar to primordial inflation (for a
review on dynamical dark energy see Ref. [6]).
A natural extension of this dynamical approach is to

consider that dark matter—whose physical nature, after
decades of intense experimental efforts, still remains
unknown [7]—can also be identified with a scalar field.
This field could then, under certain circumstances, become
the dominant component of the Universe, giving rise to a

matter-dominated era of evolution needed for structure
formation.
Identifying both dark energy and dark matter with scalar

fields opens the possibility to unify two seemingly dis-
parate phenomena under the same theoretical framework.
This unifying effort can be taken even further if one of the
scalar fields also plays the role of the inflaton in the early
Universe (for such triple unifications see, for instance,
Refs. [8–17]).
In a recent article [15], a unified description of inflation,

dark energy, and dark matter was proposed within a two-
scalar-field cosmological model given by the action1

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
ð∇ϕÞ2

−
1

2
e−ακϕð∇ξÞ2 − e−βκϕVðξÞ

�
; ð1Þ

where α and β are dimensionless parameters. Such an
action arises in a great variety of gravity theories, like the
Jordan-Brans-Dicke theory, Kaluza-Klein theories, fðRÞ-
gravity, and string theories (see Refs. [18–20] for a
derivation of the above action within these theories), as
well as the hybrid metric-Palatini theory [21,22].
According to the proposed unification scenario, for an
appropriate choice of the potential VðξÞ (see below),
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1We adopt in this article the natural system of units and use the
notation κ ≡ ffiffiffiffiffiffiffiffiffi

8πG
p ¼ ffiffiffiffiffi

8π
p

=mP, where G is the gravitational
constant and mP ¼ 1.22 × 1019 GeV is the Planck mass.
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inflation, assumed to be of the warm type, is driven by the
scalar field ξ, which shortly after the end of the inflationary
period decouples from radiation and starts behaving like a
cold-dark-matter fluid; after a radiation-dominated era,
which encompasses the primordial nucleosynthesis period,
the dark-matter fluid, together with ordinary baryonic
matter, gives rise to a matter-dominated era, long enough
to allow for structure formation; finally, at recent times, the
second scalar field ϕ emerges as the dominant component
of the Universe, giving rise to an era of accelerated
expansion. Resorting to numerical simulations, it was
shown in Ref. [15] that, for certain values of the parameters
α and β, the picture emerging in this unified description of
inflation, dark energy, and dark matter is consistent with the
standard cosmological model.
In the present article, we further investigate the two-

scalar-field cosmological model given by action (1), using
the powerful methods of qualitative analysis of dynamical
systems. Our goal is to perform a thorough investigation of
the dynamical system arising in our model, covering the
entire parameter space ðα; βÞ, in order to identify all
solutions that reproduce the later stages of evolution of
the Universe, namely, the dark-matter- and dark-energy-
dominated eras.
This article is organized as follows. In Sec. II we present

the evolution equations for the two-scalar-field cosmologi-
cal model. Section III and Appendix are devoted to the
stability analysis of the critical points of the dynamical
system arising in our cosmological model. In Sec. IV we
interpret the results of this analysis and identify all
solutions that correspond to viable cosmological scenarios.
Finally, in Sec. V, we present our conclusions.

II. TWO-SCALAR-FIELD COSMOLOGICAL
MODEL

Let us consider a cosmological model described by
action (1). Varying this action with respect to gμν, ϕ and ξ
and assuming a flat Friedmann–Lemaître–Robertson–
Walker metric,2 we obtain the Einstein equations for the
scale factor aðtÞ

�
_a
a

�
2

¼ κ2

3

�
_ϕ2

2
þ

_ξ2

2
e−ακϕ þ Ve−βκϕ

�
; ð2Þ

ä
a
¼ −

κ2

3
ð _ϕ2 þ _ξ2e−ακϕ − Ve−βκϕÞ; ð3Þ

and the equations of motion for the scalar fields ξðtÞ
and ϕðtÞ

̈ξþ 3
_a
a
_ξ − ακ _ϕ _ξþ ∂V

∂ξ e
ðα−βÞκϕ ¼ 0; ð4Þ

ϕ̈þ 3
_a
a
_ϕþ ακ

2
_ξ2e−ακϕ − βκVe−βκϕ ¼ 0; ð5Þ

where an overdot denotes a derivative with respect to time t.
These two last equations differ from the usual ones in that
they contain an extra term arising due to the presence in
action (1) of a nonstandard kinetic term for the scalar field
ξ; the usual equations are recovered for α ¼ 0.
Choosing the potential VðξÞ to be of the form3

VðξÞ ¼ Va þ
1

2
m2ξ2; ð6Þ

where Va and m are constants, and defining the energy
density and pressure of the scalar fields as

ρξ ¼
_ξ2

2
e−ακϕ þ 1

2
m2e−βκϕξ2; ð7Þ

ρϕ ¼
_ϕ2

2
þ Vae−βκϕ; ð8Þ

and

pξ ¼
_ξ2

2
e−ακϕ −

1

2
m2e−βκϕξ2; ð9Þ

pϕ ¼
_ϕ2

2
− Vae−βκϕ; ð10Þ

we can write Eq. (4) for the scalar field ξ as

_ρξ þ 3Hðρξ þ pξÞ ¼
κ

2
ðα_ξ2e−ακϕ − βm2ξ2e−βκϕÞ _ϕ; ð11Þ

where H ¼ _a=a is the Hubble parameter.
Let us now assume that the scalar field ξ oscillates

rapidly around the minimum of its potential, thus behaving
like a nonrelativistic dark-matter fluid with an equation of
state hpξi ¼ 0, where the brackets h…i denote the average
over an oscillation period. Then, averaging over an oscil-
lation and taking into account that hpξi ¼ 0 implies hξ2i ¼
ρξm−2eβκϕ and h_ξ2i ¼ ρξeακϕ, the evolution equations
become

_ρξ þ 3Hρξ ¼
κ

2
ðα − βÞρξ _ϕ; ð12Þ

2Because the curvature density parameter Ωk is constrained by
current cosmological measurements to be very small [3], we can
assume a spatially flat metric without much loss of generality.

3Within scalar-field models for the interaction of dark energy
and dark matter, several potentials have been considered in the
literature; for a discussion of a generic potential of the form
Vðϕ; ξÞ ¼ e−λϕPðϕ; ξÞ, where Pðϕ; ξÞ is a polynomial, see
Ref. [23].
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ϕ̈þ 3H _ϕ − βκVae−βκϕ ¼ −
κ

2
ðα − βÞρξ; ð13Þ

_H ¼ −
κ2

2
ð _ϕ2 þ ρξÞ; ð14Þ

subject to the Friedmann constraint

H2 ¼ κ2

3

�
_ϕ2

2
þ Vae−βκϕ þ ρξ

�
: ð15Þ

In previous work [15], we have shown that this two-
scalar-field cosmological model allows for a unified
description of inflation, dark matter, and dark energy, in
which the scalar field ξ plays the roles of both inflaton and
dark matter, while the scalar field ϕ plays the role of dark
energy.4 There, the solution of Eq. (12),

ρξ ¼ ρξ;0

�
a0
a

�
3

e
κ
2
ðα−βÞðϕ−ϕ0Þ; ð16Þ

where the subscript 0 denotes present-time quantities, was
inserted into Eqs. (13)–(15) and the resulting system was
solved numerically for specific values of α and β.
In the present article, instead of numerical methods, we

use methods of qualitative analysis of dynamical systems to
investigate the solutions of Eqs. (12)–(15), covering now
the entire parameter space (α, β).
To conclude this section, let us point out that the two-

scalar-field cosmological model under consideration
admits a direct transfer of energy between dark energy
and dark matter, mediated by the term

Q ¼ κ

2
ðα − βÞρξ _ϕ; ð17Þ

as results from Eqs. (12) and (13).
Cosmological models with an interaction term Q ∝ ρ _ϕ,

where ϕ is a scalar field with an exponential potential and ρ
is the energy density of a perfect fluid with an equation of
state p ¼ wρ, have been investigated by several authors
[27–36] (for other interaction terms considered in dark-
matter and dark-energy interaction models, see the review
articles [37,38]). Although the present paper is focused on
the background dynamics of the cosmological model given
by Eqs. (12)–(15) and on its capability to reproduce the
late-time evolution of the Universe, it is worth emphasizing
that such interaction models have also been studied at the
perturbative level (linear and nonlinear), with the conclu-
sion that they are compatible with observations of the

microwave background radiation and cosmic structure
formation [30,39–48].
What is rather interesting in the interaction term Q given

by Eq. (17) is that it vanishes for α ¼ β. This means that the
transfer of energy between two scalar fields directly
coupled via an exponential potential can be canceled due
to the presence of a nonstandard kinetic term. In this case,
the energy density of dark matter ρξ evolves as a−3 [see
Eq. (16)], i.e., exactly as ordinary baryonic matter, while
dark energy evolves subject only to the potential Vae−κβϕ.
For α ≠ β there is a direct energy exchange between the
two scalar fields, implying that dark matter, although
pressureless, does not scale simply as a−3; it depends also
on the dark-energy field ϕ. Such dependence has conse-
quences on the cosmic evolution, more specifically, the
energy density of dark energy becomes a non-negligible
fraction of the total energy density throughout the matter-
dominated era and the transition from radiation to matter
domination occurs earlier in the cosmic history. As shown
in Ref. [15], resorting to numerical simulations, to avoid
a conflict with primordial nucleosynthesis, the condition
jα − βj≲ 1 must be imposed on the parameters of the
model (we will return to this issue in Sec. IV).

III. DYNAMICAL-SYSTEM ANALYSIS

Let us now turn to the analysis of the system of
differential equations (12)–(15) using methods of qualita-
tive analysis of dynamical systems (for a recent review on
dynamical systems applied to cosmology and, in particular,
to dark-energy models, see Ref. [49]).
Following Ref. [50], we introduce the dimensionless

variables,

x ¼ κffiffiffi
6

p
H

_ϕ and y ¼ κffiffiffi
3

p
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vae−βκϕ

q
; ð18Þ

as well as a new time variable τ, defined as

τ ¼ ln a;
dτ
dt

¼ H: ð19Þ

In these new variables, the system of equations (12)–(15)
can be written as

x0 ¼ −3xþ
ffiffiffi
6

p

2
βy2 þ 3

2
xð1þ x2 − y2Þ

−
ffiffiffi
6

p

4
ðα − βÞð1 − x2 − y2Þ; ð20aÞ

y0 ¼ −
ffiffiffi
6

p

2
βxyþ 3

2
yð1þ x2 − y2Þ; ð20bÞ

where the prime denotes a derivative with respect to the
logarithmic time τ. Notice that the Friedmann constraint,
given by

4In the specific case α ¼ ffiffiffi
6

p
=3 and arbitrary β, corresponding

to a generalized hybrid metric-Palatini theory of gravity, a unified
description of dark matter and dark energy—but not inflation—
was proposed in Ref. [24]. For other cosmological solutions and
the weak-field limit of this theory, see Refs. [25,26].
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x2 þ y2 þ Ωξ ¼ 1; Ωξ ≡ ρξ
κ2

3H2
; ð21Þ

was used in Eqs. (20) to eliminate the explicit dependence
on the variable ρξ, thus reducing the dynamical system to
just two dimensions, a circumstance that considerably
simplifies the analysis.
Because the density parameter Ωξ is, by definition, non-

negative and we are assuming a flat universe, it follows
from the Friedmann constraint (21) that the variables x
and y should satisfy the condition x2 þ y2 ≤ 1, i.e., the

physically relevant orbits of the dynamical system (20) are
confined to the unit circle. Furthermore, since we are
interested in expanding cosmologies, the analysis should
be restricted to the upper semicircle, for which y ≥ 0. In
summary, the phase space of the dynamical system (20) is
the upper half of the unit circle centered at the origin.
The dynamical system (20) contains two dimensionless

constants α and β, which parametrize the nonstandard
kinetic term of the scalar field ξ and the interaction potential
between the scalar fields ϕ and ξ, respectively [see action
(1)]. Without any loss of generality, we can assume that α is

TABLE I. Properties of the critical points of the dynamical system (20): existence, stability, and acceleration.

Point x y Existence Stability Acceleration

A 1 0 ∀α; β β ≥ αþ ffiffiffi
6

p
Never

B −1 0 ∀α; β β ≤ −
ffiffiffi
6

p
Never

C β−αffiffi
6

p 0 jα − βj ≤ ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
≤ β ≤ αþ ffiffiffi

6
p

Never

D βffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − β2

6

q jβj ≤ ffiffiffi
6

p
−

ffiffiffi
6

p
≤ β ≤ −αþ

ffiffiffiffiffiffiffiffiffiffi
α2þ24

p
2

jβj < ffiffiffi
2

p

E
ffiffi
6

p
αþβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þα2−β2

p
αþβ

−αþ
ffiffiffiffiffiffiffiffiffiffi
α2þ24

p
2

≤ β ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p −αþ
ffiffiffiffiffiffiffiffiffiffi
α2þ24

p
2

≤ β ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p β < α
2

6

6

0

6

a s

r

(a) Critical Point A

6

6

0

6

a

sr

(b) Critical Point B

6

6

0

6

a

s

(c) Critical Point C

6

6

0

6

a

s

(d) Critical Point D

6

6

0

6
a

(e) Critical Point E

6

6

2

0

2

6

A C
E

D

B

(f) Stability and acceleration

FIG. 1. Panels (a) to (e) show the regions of existence and stability of the critical points of the dynamical system (20) in the parameter
space ðα; βÞ—the open half-plane α > 0. In white regions, critical points do not exist. In blue (dark shaded) regions they exist and are
stable (attractors), while in orange (medium shaded) and yellow (lightly shaded) regions they exist, but are unstable (saddles and
repellers, respectively). The regions in which the critical points are attractors, saddles, and repellers, are also denoted by the letters “a,”
“s,” and “r,” respectively. Panel (f) shows the parameter space divided into five regions, in each of which one and only one of the critical
points A, B, C, D, and E is an attractor. The part of the parameter space in which critical point D (or critical point E) is an attractor and,
simultaneously, corresponds to a state of accelerated expansion is highlighted in green color (shaded).
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non-negative.5 Furthermore, the case α ¼ 0, corresponding
to an action with a standard kinetic term for the scalar field
ξ, has been extensively studied in the literature [49] and,
therefore, will not be considered in this article. In what
concerns β, we allow it to take any value, including the
value zero, for which the direct coupling in the potential
between the two scalar fields vanishes. In summary, the
parameters α and β span the open half-plane α > 0.
Depending on the values of α and β, the dynamical

system (20) has up to five critical points. Table I and Fig. 1
summarize, in both analytical and graphical form, the
conditions for their existence and stability, as well as the
conditions for the existence of accelerated solutions.
For most values of α and β, the stability of the critical

points can be assessed simply by using the linear theory,
since, for those values, both eigenvalues of the Jacobian
matrix of the dynamical system (20) have a nonzero real part.
However, for certain values of α and β, namely, β ¼ α� ffiffiffi

6
p

,
β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
, β ¼ � ffiffiffi

6
p

, and β ¼ ð−αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
Þ=2,

corresponding to the lines delimiting the different regions
of the plots of Fig. 1, one of the eigenvalues becomes zero,

forcing us to go beyond the linear theory and use other
methods to study the stability properties of the critical points,
such as center manifold theory and Lyapunov’s method. In
Appendixwe present a full analysis of the stability of the five
critical points for all values of α and β belonging to the
parameter space.
Note that each of the critical points is stable for specific

values of α and β and that to each point of the parameter
space ðα; βÞ corresponds one and only one stable critical
point (see Fig. 1).
The existence and stability conditions for the critical

points allow for a division of the parameter space ðα; βÞ into
nine regions (see Fig. 2 and Table II), each of which
corresponds to a qualitatively different phase portrait. Nine
phase portraits, representative of the behavior of the
dynamical system (20) in each of these regions, are shown
in Fig. 3.
Since there is only one attracting critical point in each

region, all orbits of the corresponding phase portraits
(except the heteroclinic ones connecting the other critical
points) asymptotically converge to this unique attractor,
which, therefore, represents the final stage of evolution of
the Universe. The phase portraits corresponding to regions
II to VIII always contain at least one saddle point (see
Table II). The repellers are always critical points A and/or
B. The exception is the phase portrait of region IV, which
has no repellers at all; for τ → −∞, all orbits approach the
heteroclinic one connecting critical points A and B through
the x-axis and the upper half of the circumference
x2 þ y2 ¼ 1. In regions V and VII, the phase portraits
have two repellers, critical points A and B. In this case, the
phase space is divided into two parts by the heteroclinic
orbit connecting points C, D, and E (region V) and points C
and D (region VII); orbits on the right part of the phase
space originate at critical point A, while on the left they
have their origin at critical point B.
Before proceeding to the physical interpretation of the

results obtained in this section, let us point out that, in the
variables x and y, the density parameter for the scalar field
ϕ, the effective equation-of-state parameter, and the decel-
eration parameter, are given by

TABLE II. Division of the parameter space ðα; βÞ into nine
regions, labeled with Roman numerals. For each such region, the
critical points are classified using the letters “a,” “s,” and “r,”
denoting attractor, saddle, and repeller, respectively. The absence
of a letter means that the corresponding critical point does not
exist in that region.

Point I II III IV V VI VII VIII IX

A a s s s r r r r r
B r r r s r s r s a
C a s s s
D s s a a
E a a a a

6 2 6 3 6

6

2

0

2

6

I II III IV

V VI

VII

VIII

IX

FIG. 2. The existence and stability conditions of the critical
points allow for a division of the parameter space ðα; βÞ into nine
regions, labeled with Roman numerals, each of which corre-
sponds to a qualitatively different phase portrait of the dynamical
system (20). In green color (shaded) it is indicated the regions or
part of them in which critical point D (or critical point E) is an
attractor and, simultaneously, corresponds to a state of accel-
erated expansion.

5Indeed, since the dynamical system (20) is invariant under the
transformation x → −x, α → −α, and β → −β, solutions for
negative values of α (β) can be obtained straightforwardly from
solutions for positive values of α (β), provided a reflection over x
is performed, as well as a change of sign of the parameter β (α).
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Ωϕ ≡ ρϕ
κ2

3H2
¼ x2 þ y2; ð22Þ

weff ≡ pξ þ pϕ

ρξ þ ρϕ
¼ x2 − y2; ð23Þ

and

q≡ −
H0

H
− 1 ¼ 1

2
ð1þ 3x2 − 3y2Þ; ð24Þ

respectively.
For certain values of α and β, critical points D and E

correspond to a state in which the deceleration parameter q
is negative. In the phase space ðx; yÞ, this region of negative
q lies above the curve y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1=3

p
(see Fig. 3); orbits

inside this region correspond to a state of accelerated
expansion of the Universe. The regions of the parameter
space ðα; βÞ in which critical points D and E are attractors

and, simultaneously, correspond to a state of accelerated
expansion are shown in panel (f) of Fig. 1 and in Fig. 2.

IV. COSMOLOGICAL SOLUTIONS

Let us now proceed to the physical interpretation of the
results obtained in Sec. III.
Critical points A and B correspond to a state of the

Universe in which the total energy density ρ ¼ ρξ þ ρϕ is
dominated by the kinetic term of the scalar field ϕ
(Ωϕ ¼ 1), which, therefore, behaves as a stiff-matter fluid
(weff ¼ 1). The density parameter Ωξ vanishes, meaning
that the influence of the scalar field ξ on the dynamics of the
Universe is negligible in the vicinity of these critical points
(see Table III).
At critical point C, the state of the Universe depends

crucially on the values of the parameters α and β. For
α ¼ β, the dark-matter field ξ dominates the evolution of
the Universe (Ωξ ¼ 1). For β ¼ α� ffiffiffi

6
p

, corresponding to
the lines delimiting the region of existence of this critical
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1
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y
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(b) Region II
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E

(c) Region III
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6
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E

(d) Region IV
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(f) Region VI
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0.5
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1
1
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D

(g) Region VII
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4
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(h) Region VIII
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y
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FIG. 3. Phase portraits of the dynamical system (20) for different values of the parameters α and β. Each of these phase portraits
corresponds to one of the nine regions of the parameter space shown in Fig. 2 (see also Table II). In the green (shaded) region of phase
space the expansion of the Universe is accelerated.
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point, it is the kinetic term of the scalar field ϕ that
dominates (Ωϕ ¼ 1), leading to a stiff-matter behavior. For
intermediate values of the difference α − β, neither ξ nor ϕ
entirely dominate the evolution of the Universe, and,
consequently, the effective equation-of-state parameter
weff can take any value in the range 0 to 1, depending
on the relative preponderance of the scalar fields. Of
particular relevance is the case in which critical point C
is a saddle and ξ is the dominant field (such behavior may
occur in regions III, V, and VII of the parameter space); it
corresponds to a transitory period of matter domination in
the history of the Universe, needed for structure formation.
Although of lesser relevance, let us note that critical point C
can also be an attractor (in region II of the parameter space),
in which case the ratio Ωϕ=Ωξ between the density
parameters of the scalar fields becomes locked, asymptoti-
cally, at a constant value determined by α and β (see
Table III).
At critical point D, which exists for jβj ≤ ffiffiffi

6
p

, the
evolution of the Universe is dominated by the scalar field
ϕ (Ωϕ ¼ 1). The effective equation-of-state parameter weff

depends just on β and can take any value from −1 to 1,
reflecting the relative preponderance of the potential and
kinetic energies of the field ϕ on the total energy density of
the Universe. More specifically, for β ¼ 0 the potential
term Vae−βκϕ is preponderant and the scalar field ϕ behaves
like a cosmological constant (weff ¼ −1), giving rise to a
period of accelerated expansion of the Universe; for
β ¼ � ffiffiffi

6
p

, it is the kinetic term _ϕ2=2 that dominates and
the scalar field behaves as a stiff-matter fluid (weff ¼ 1).
Here, the most interesting situation is the one in which
critical point D corresponds to a state of accelerated
expansion (weff < −1=3), occurring for jβj < ffiffiffi

2
p

.
At critical point E, which is always an attractor, the

evolution of the Universe can be dominated by either ϕ or ξ,
depending on the values of α and β. For β ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
−

αÞ=2 [lower boundary of the region of existence of critical
point E, see panel (e) of Fig. 1], the evolution of the
Universe is dominated by the potential term of the scalar
field ϕ as α tends to infinity (Ωϕ ¼ 1, weff ¼ −1). For β ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
(upper boundary), it is the scalar field ξ that

dominates the evolution for α → þ∞ (Ωξ ¼ 1, weff ¼ 0).

As one approaches the point of intersection of these two
curves, at ð0; ffiffiffi

6
p Þ, the evolution becomes dominated by the

kinetic term of ϕ (Ωϕ ¼ 1, weff ¼ 1). Here, again, the most
interesting case is the one for which critical point E
corresponds to a state of accelerated expansion
(weff < −1=3), occurring for values of α and β lying in
the region of the parameter space defined by the conditions
β < α=2 and β > ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ=2 [see panel (f) of

Fig. 1]. Once this critical point is reached, the ratio between
the density parameters of the scalar fields is locked at a
constant value which depends on α and β, namely,

Ωϕ

Ωξ
¼ 12þ α2 − β2

2ðαβ þ β2 − 6Þ : ð25Þ

This is the so-called scaling solution, first discussed in
Ref. [51] and often used to try to solve the coincidence
problem. Note that, for certain values of the parameters
α and β, more specifically, for β < α=2 and β >
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 18

p
− αÞ=3 (α > 4

ffiffiffi
2

p
), the critical point E corre-

sponds to an accelerated solution (weff < −1=3) and,
simultaneously, the dynamics of the Universe is dominated
by the scalar field ξ (Ωξ > Ωϕ). Therefore, in this case, the
scalar field ξ behaves as a dark-energy component, driving
accelerated expansion together with the scalar field ϕ.
However, as already mentioned [see discussion after
Eq. (17)], the condition jα − βj≲ 1 must be satisfied in
order to avoid conflict with primordial nucleosynthesis,
implying that the relevant solutions for the critical point E
correspond to values of α and β for which the scalar field ξ
does not behave as dark energy.
Having identified the physical nature of the critical

points of the dynamical system (20), let us now proceed
to the description of the phase portraits shown in Fig. 3,
which are representative of each of the nine regions of the
parameter space.
In region I of the parameter space ðα; βÞ, the dynamical

system (20) has only two critical points, A and B, which are
an attractor and a repeller, respectively. All orbits start on B
and end on A, some of them passing through the zone of the
phase space in which the Universe expansion is accelerated
[see panel (a) of Fig. 3]. Therefore, the initial and final
states of the Universe are of stiff-matter domination with a
possible intermediate stage of accelerated expansion.
In region II, all orbits originate at critical point B and end

at critical point C (except for the orbits connecting the B to
A and A to C through the boundaries of the phase space),
some of them passing in the acceleration zone and near the
saddle point A [see panel (b) of Fig. 3]. Therefore, the
Universe goes from a stiff-matter initial state—sometimes
through an intermediate stage of accelerated expansion—to
a final state dominated by a scalar field which, depending
on the values of α and β, has a behavior ranging from dust
to stiff matter.

TABLE III. Density parameters for dark energy and dark matter
and the effective equation-of-state parameter for the critical
points of the dynamical system (20).

Point Ωϕ Ωξ weff

A 1 0 1
B 1 0 1
C ðα−βÞ2

6
1 − ðα−βÞ2

6

ðα−βÞ2
6

D 1 0 −1þ β2

3
E 12þα2−β2

ðαþβÞ2
2ðαβþβ2−6Þ

ðαþβÞ2
−αþβ
αþβ
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In region III, the attractor is now critical point E, while
point B is a repeller and both A and C are saddle points.
Some of the orbits approach C (which may correspond to a
matter-dominated state for certain values of α and β), before
heading to the attractor E [see panel (c) of Fig. 3]. Although
critical point E is always located outside the acceleration
zone, some orbits approaching this point may pass through
this zone, giving rise to a temporary period of accelerated
expansion.
In region IV, the phase space has no repelling critical

points; for τ → −∞, all orbits approach the heteroclinic one
connecting critical points A and B through the boundaries
of the phase space. An orbit originating, for instance, near
critical point A, heads to the vicinity of point B, before
spiraling to the attractor E [see panel (d) of Fig. 3], which
may correspond to an accelerated solution if 2β < α.
Region V is the only region of the parameter space for

which the correspondingphaseportrait has five critical points
(see Table II). Critical point E is again the attractor, which
corresponds to a scaling solution. Critical points A and B are
repellers, near which the dominant scalar field ϕ behaves as
stiff matter. Critical points C and D are both saddle points. In
the vicinity of C, the scalar field ξ may be preponderant,
giving rise to a matter-dominated era. In what concerns
critical point D, it may correspond to a state of (temporary)
accelerated expansion,with−1=2<weff <−1=3, ifβ <

ffiffiffi
2

p
.

Some orbits, originating at points A or B, first approach C
and then head to E through the accelerating zone [see panel
(e) of Fig. 3]. If critical point E lies inside this zone,
accelerated expansion is the final state of the Universe;
otherwise, accelerated expansion is just a temporary stage,
before the Universe evolves to a final state in which
−1=3 < weff < 1.
In region VI, critical point E is again the attractor, which

always corresponds to an accelerated scaling solution. The
repelling critical point is A, while B and D are saddles.
Orbits originating near point A, first approach B, before
heading to E [see panel (f) of Fig. 3]. Note that critical point
C does not exist in this region of the parameter space;
therefore, the Universe cannot experience an intermediate
era of matter domination.
In region VII, the attractor is critical point D, which

corresponds to a state of everlasting accelerated expansion
for jβj < ffiffiffi

2
p

. Point C is a saddle, near which the dynamics
may be dominated by the scalar field ξ. All orbits
originating in repelling points A and B (except for the
heteroclinic orbits connecting points A and B to C) end up
at critical point D [see panel (g) of Fig. 3]. Of particular
interest are those orbits that, before heading to D, closely
approach point C. In this case, the final state of accelerated
expansion may be preceded by a long period of dark-matter
domination.
In region VIII, the final stage of evolution of the

Universe corresponds to critical point D, which, for
β > −

ffiffiffi
2

p
, is again an accelerated solution. The repeller

is critical point A, from which all orbits originate (except
for the heteroclinic orbit connecting points B and D through
the boundary of the phase space). Some of the orbits
leaving critical point A first approach B, before heading to
D [see panel (h) of Fig. 3].
Finally, in region IX, the situation is similar to that of

region I, but with critical points A and B reversing their
roles [see panel (i) of Fig. 3].
At this point a comment is in order. For clarity of

presentation and easier interpretation of the roles played by
each of the two scalar fields in the cosmic evolution, we
have chosen not to overload the equations of motion with
radiation and ordinary baryonic matter. In particular, the
inclusion of these two components would increase the
number of equations of the dynamical system describing
our cosmological model, and, consequently, would make
its analysis and interpretation technically more demanding
and conceptually less clear. But since the Universe has had
a radiation-dominated era in the past and contains, in
addition to dark matter, ordinary baryonic matter, we
should, when further analyzing the phase portraits corre-
sponding to the different regions of the parameter space,
focus our attention on the later phases of the cosmic
evolution and ignore the early phases, which, as we have
seen, correspond to a stiff-matter state (reflecting the fact
that the repellers are always the critical points A and B,
for which weff ¼ 1). Therefore, in what follows, we assume
that the Universe has undergone an inflationary period,
followed by a long enough radiation-dominated era encom-
passing the nucleosynthesis period, and that the subsequent
evolution is described by the later stages of our two-scalar-
field cosmological model, in which the scalar field ξ
accounts for all (dark and baryonic) matter content (yield-
ing Ωξ;0 ≈ 0.31) and the scalar field ϕ accounts for dark
energy (with Ωϕ;0 ≈ 0.69).
For our model to reproduce the main features of the

evolution of the observed Universe, we should search for
solutions of the dynamical system (20) having an inter-
mediate matter-dominated era, long enough to allow for
structure formation, followed by a present era of (ever-
lasting or temporary) accelerated expansion. Such solutions
must have the critical point C as a saddle point (the only
one capable of reproducing a long enough intermediate
era of matter domination) and the critical point D or E as a
final attractor (the only ones allowing for accelerated
expansion).
Let us start by noting that, at critical point C, the density

parameter of the scalar field ξ is given by

Ωξ ¼ 1 −
ðα − βÞ2

6
; ð26Þ

implying that this critical point corresponds to a state of
matter domination only if the difference between the
parameters α and β is small enough. In Ref. [15] it has
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been shown, resorting to numerical simulations, that α and
β should satisfy the condition jα − βj≲ 1 to ensure that the
transition between the radiation- and matter-dominated eras
does not occur too early in the cosmic history, thus avoiding
a conflict with primordial nucleosynthesis. In what follows,
we adopt this upper limit, which implies Ωξ ≳ 5=6 and
weff ≲ 1=6 at critical point C. This choice restricts the
relevant solutions to regions III, V, and VII of the parameter
space, the only ones that overlap, even if only partially, with
the strip defined by jα − βj≲ 1.
In these three regions of the parameter space, for an

appropriate choice of α and β, the matter-dominated era
may be followed by a period of accelerated expansion.
In region III, the attractor E is always located outside the

acceleration zone (defined by the condition β < α=2, see
Table I), implying that accelerated expansion can only be
temporary (corresponding to phase-space orbits that, before
heading to point E, pass through the acceleration zone, see
Fig. 3). These temporary accelerated solutions only exist
for points of the parameter space ðα; βÞ sufficiently close to
the line β ¼ α=2. This condition, together with the con-
dition jα − βj≲ 1, severely restricts the values of α and β
for which the Universe experiences a (temporary) period of
accelerated expansion.
In region V, the attractor E could be chosen to lie inside

the acceleration zone, but the corresponding values of α and
β would then not satisfy the condition jα − βj≲ 1; there-
fore, this attractor should lie outside the acceleration zone
and, again, the state of accelerated expansion can only be
temporary. However, in this case, the restriction to the
allowed values of α and β is not as strong as in region III.
Finally, in region VII, the attractor D corresponds to a

state of everlasting accelerated expansion for jβj < ffiffiffi
2

p
.

This condition, conjugated with jα − βj ≲ 1, allows for a
wide choice of values of α and β giving rise to cosmological
solutions with the required features. In this region of the

parameter space, temporary accelerated solutions can also
be found for values of β slightly above

ffiffiffi
2

p
(attractor D

slightly outside the acceleration zone).
In summary, among the multitude of cosmological

solutions of our two-scalar-field model, those reproducing
the main features of the Universe’s evolution lie in regions
III, V, and VII of the parameter space. There, for an
appropriate choice of α and β, the scalar field ξ, which
behaves as cold dark matter, dominates the evolution of the
Universe for enough time to allow for structure formation;
this stage of evolution is then followed by an era of
accelerated expansion—temporary or permanent—driven
by the scalar field ϕ, which, therefore, behaves like dark
energy.
The evolution of the density parameters Ωϕ and Ωξ, as

well as the evolution of the effective equation-of-state
parameter weff, for different values of α and β belonging to
regions III, V, and VII of the space parameter, is shown in
Fig. 4. In all cases, we choose initial conditions guarantee-
ing that the transition from matter to dark-energy domi-
nation occurs in a recent past, namely, for τ ≈ −0.5, and
also that, at the present time τ ¼ 0, the value of the density
parameter of the scalar field ϕ is in agreement with
cosmological measurements [3], namely, Ωϕ;0 ≈ 0.69. In
regions III and V, because the attractor is critical point E,
the ratioΩϕ=Ωξ tends, in the future, to a constant value, that
depends on α and β. On the contrary, in region VII, where
the attractor is critical point D, the energy density of the
dark-matter field rapidly approaches zero, independently of
the values of α and β; consequently, in the future, the
Universe becomes entirely dominated by the dark-energy
field. In all the cases considered in Fig. 4, the effective
equation-of-state parameter at present is smaller than −1=3,
signaling an accelerated growth of the scale factor of the
Universe. In regions III and V, this accelerated expansion is
only temporary; in the future, weff approaches the quantity

6 4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

weff

3.5

2.5

(a) Region III

6 4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

weff2.5

1.8

(b) Region V

6 4 2 0 2 4
1.0

0.5

0.0

0.5

1.0

weff

0.5

0.5

(c) Region VII

FIG. 4. Evolution of Ωϕ, Ωξ, and weff for values of α and β belonging to regions III, V, and VII of the parameter space. At the present
time, τ ¼ 0, the density parameters are Ωϕ;0 ≈ 0.69 and Ωξ;0 ≈ 0.31 in all cases, while the effective equation-of-state parameter is
weff;0 ≈ −0.34, −0.52, and −0.66 for the cases shown in panels (a), (b), and (c), respectively. In regions III and V, the attractor is critical
point E, implying that, for τ → þ∞, the ratio between the density parameters approaches a constant value [Ωϕ=Ωξ ¼ 1 and 4.3 for the
cases shown in panels (a) and (b), respectively]. In region VII, where the attractor is critical point D, the energy density of the dark-
matter field ξ quickly approaches zero for τ > 0 and, consequently, the evolution of the Universe becomes entirely dominated by the
dark-energy field ϕ.
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ðβ − αÞ=ðαþ βÞ, which, for the chosen values of α and β, is
always greater than −1=3. On the contrary, in region VII,
the asymptotic value of the effective equation-of-state
parameter depends only on β, namely, w ¼ −1þ β2=3,
implying that, for jβj < ffiffiffi

2
p

, the accelerated expansion of
the Universe lasts forever.

V. CONCLUSIONS

In this article, we have investigated the late-time evolution
of the Universe within a cosmological model in which dark
matter and dark energy are identified with two interacting
scalar fields. More specifically, we assume that one of the
scalar fields, ξ, oscillates rapidly around the minimum of its
quadratic potential, thus behaving like a dark-matter fluid,
while the other scalar field,ϕ, evolving under an exponential
potential, gives rise to the current era of accelerated cosmic
expansion, thus behaving like dark energy.
As shown in Ref. [15], this two-scalar-field cosmological

model admits viable scenarios for the evolution of the
Universe. More specifically, upon certain assumptions and
an appropriate choice of the parameters α and β, it is
possible to obtain a correct sequence of eras in the
evolution of the Universe, namely, an inflationary era
driven by the scalar field ξ, a radiation-dominated era
encompassing the primordial nucleosynthesis period, an
era dominated by the dark-matter field ξ and, to a lesser
extent, by ordinary baryonic matter, long enough to allow
for structure formation, and, finally, a current era of
accelerated expansion driven by the dark-energy field ϕ.
Our previous investigations of this two-scalar-field

cosmological model [15,24] resorted to numerical methods
to solve the evolution equations and, consequently, have
not covered the entire parameter space. To fill this gap, we
have now turned to the powerful methods of qualitative
analysis of dynamical systems, applied with great success
to astrophysical and cosmological problems for several
decades. With such methods, it is possible to cover the
entire parameter space ðα; βÞ and, therefore, ensure that all
cosmological solutions of interest are identified.
Because of the symmetries of action (1), the parameter

space can be restricted, without any loss of generality, to
either the half-plane β ≥ 0 or the half-plane α ≥ 0. We have
chosen the latter possibility and, in addition, opted not to
consider the case α ¼ 0, corresponding to an action with a
standard kinetic term for the scalar field ξ, since this case
has been extensively studied in the literature. Therefore, in
our dynamical-system analysis, the parameters α and β
span the open half-plane α > 0.
In this work, we have chosen not to overload the

evolution equations (12)–(15) with radiation and ordinary
baryonic matter, in order to better highlight the roles played
by the scalar fields ξ and ϕ as dark matter and dark energy.
Having made this choice, we focused our attention on the
later phases of cosmic evolution—the eras dominated by
dark matter and dark energy—assuming that previously the

Universe has undergone an inflationary period and a
radiation-dominated era.
The two-dimensional dynamical system (20), arising

from the evolution equations (12)–(15), admits five critical
points, whose stability properties were investigated within
the linear theory and, when this was not feasible, resorting
to the center manifold theory and Lyapunov’s method. This
stability analysis, carried out for all possible values of α and
β, has shown that the parameter space is naturally divided
into nine regions (see Fig. 2 and Table II), each of which
corresponds to a qualitatively different phase portrait of the
dynamical system.
We have shown that viable solutions—in the sense that

they correspond to a cosmic evolution in which a long
enough matter-dominated era is followed by a current era of
accelerated expansion—can be found in regions III, V, and
VII of the parameter space.
Two distinct possibilities have been identified. First, in

region VII, the Universe, after a matter-dominated era,
evolves to a state of everlasting accelerated expansion, in
which the energy density of the dark-matter field rapidly
approaches zero and, consequently, the evolution becomes
entirely dominated by the dark-energy field [see panel (c) of
Fig. 4]. Second, in regions III and V, the stage of accelerated
expansion following the matter-dominated era is always
temporary and, for τ → þ∞, the ratio between the energy
densities of dark energy and dark matter, given by Eq. (25),
tends to a nonzero value [see panels (a) and (b) of Fig. 4].
In both cases, the values of α and β should satisfy the

condition jα − βj≲ 1 to ensure that the transition between
the radiation- and matter-dominated eras does not occur too
early in the cosmic history, thus avoiding a conflict with
primordial nucleosynthesis [15]. In region VII, this con-
dition, conjugated with the condition jβj < ffiffiffi

2
p

for the
existence of a final state of accelerated expansion, allows
for a wide choice of values of the parameters α and β giving
rise to solutions with the required features. In regions III
and V, on the contrary, this condition is more restrictive,
limiting to a small set the allowed values of α and β.
The two-scalar-field cosmological model given by action

(1), arising in a great variety of theories of gravity, like the
Jordan-Brans-Dicke theory, Kaluza-Klein theories, fðRÞ-
gravity, string theories, and hybrid metric-Palatini theories,
seems to be quite promising. It allows for a unified
description of inflation, dark energy, and dark matter,
which is able to reproduce, at least qualitatively, the main
features of the evolution of the observed Universe. The
results obtained so far within this cosmological model
constitute a first step that needs to be taken further; we
expect to do so in future publications.

APPENDIX: STABILITY
OF THE CRITICAL POINTS

For most values of α and β, linear theory suffices to
assess the stability of the critical points of the dynamical
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system (20). However, for certain values of these param-
eters, this is not enough and one has to resort to other
methods, such as the center manifold theory and
Lyapunov’s method. For more details on the methods used
in this Appendix, the reader is referred to the specialized
literature [52–54] and to a recent review on dynamical
systems applied to cosmology [49].

1. Critical point A

At critical point A, with coordinates x ¼ 1 and y ¼ 0, the
eigenvalues of the Jacobian matrix of the dynamical system
(20) are

λ1 ¼ 3þ
ffiffiffi
6

p

2
ðα − βÞ and λ2 ¼ 3 −

ffiffiffi
6

p

2
β; ðA1Þ

implying that for β>αþ ffiffiffi
6

p
,

ffiffiffi
6

p
<β<αþ ffiffiffi

6
p

, and β <
ffiffiffi
6

p
the critical point is an attractor, a saddle, and a repeller,
respectively [see panel (a) of Fig. 1 and Table II].
For β ¼ αþ ffiffiffi

6
p

and β ¼ ffiffiffi
6

p
one of the eigenvalues

vanishes, forcing us to go beyond the linear theory.
Let us start with the case β ¼ αþ ffiffiffi

6
p

, using Lyapunov’s
method to study the stability of the critical point. Consider
the function Vðx; yÞ ¼ ðx − 1Þ2 þ y2, defined in the phase
space of the dynamical system (20), i.e., in the upper half of
the unit circle centered at the origin (x2 þ y2 ≤ 1; y ≥ 0).
This function is equal to zero at critical point A and positive
elsewhere. Furthermore, its derivative,

V 0 ¼ −3ð1þ xÞð1 − xÞ3 −
ffiffiffi
6

p
αy2 − 3y4; ðA2Þ

is negative in the neighborhood of A (recall that the
parameter space is the open half-plane α > 0).
Therefore, we arrive at the conclusion that the critical
point is asymptotically stable and the phase-space orbits
near it are similar to the ones shown in panel (a) of Fig. 3.
Let us now turn to the case β ¼ ffiffiffi

6
p

. Since the eigenvalue
λ1 ¼

ffiffiffi
6

p
α=2 is positive, the critical point cannot be an

attractor. It is either a saddle or a repeller, depending on the
behavior of the dynamical system on the center manifold,
which we now proceed to investigate. In new variables u ¼
x − 1 and v ¼ y, which shift the critical point to the origin,
the dynamical system (20) becomes

u0 ¼ λ1uþ fðu; vÞ; ðA3aÞ

v0 ¼ gðu; vÞ; ðA3bÞ

where the nonlinear functions f and g are given by

fðu;vÞ¼
�
3þ

ffiffiffi
6

p

4
α

�
u2þ

ffiffiffi
6

p

4
αv2þ3

2
u3−

3

2
uv2; ðA4Þ

gðu; vÞ ¼ 3

2
u2v −

3

2
v3: ðA5Þ

The center manifold, obtained as a Taylor series expan-
sion from the equation

dhðvÞ
dv

g½hðvÞ; v� − λ1hðvÞ − f½hðvÞ; v� ¼ 0; ðA6Þ

is given by

u ¼ hðvÞ ¼ −
1

2
v2 −

1

8
v4 þOðv6Þ ðA7Þ

and the flow on it is governed by the differential equation

v0 ¼ 3

2
v½h2ðvÞ − v2� ¼ −

3

2
v3 þOðv5Þ: ðA8Þ

Therefore, along the v direction the orbits approach the
origin, implying that critical point A is a saddle for β ¼ ffiffiffi

6
p

(recall that along the u direction the orbits move away from
critical point A). In the neighborhood of this point, the
orbits are similar to the ones shown in panels (b), (c),
and (d) of Fig. 3.
In summary, critical point A is an attractor for

β ≥ αþ ffiffiffi
6

p
, a saddle for

ffiffiffi
6

p
≤ β < αþ ffiffiffi

6
p

, and a repeller
for β <

ffiffiffi
6

p
.

2. Critical point B

At critical point B, with coordinates x ¼ −1 and y ¼ 0,
the eigenvalues of the Jacobian matrix of the dynamical
system (20) are

λ1 ¼ 3þ
ffiffiffi
6

p

2
β and λ2 ¼ 3 −

ffiffiffi
6

p

2
ðα − βÞ; ðA9Þ

implying that for β > α −
ffiffiffi
6

p
, −

ffiffiffi
6

p
< β < α −

ffiffiffi
6

p
, and

β < −
ffiffiffi
6

p
the critical point is a repeller, a saddle, and an

attractor, respectively [see panel (b) of Fig. 1 and Table II].
For β ¼ α −

ffiffiffi
6

p
, one of the eigenvalues, λ2, is zero and

the other, λ1 ¼
ffiffiffi
6

p
α=2, is positive, implying that the critical

point cannot be an attractor. Let us use again the center
manifold theory to determine the behavior of the orbits of
the dynamical system in the vicinity of the critical point. In
new variables u ¼ xþ 1 and v ¼ y, which shift the critical
point to the origin, the dynamical system (20) becomes

u0 ¼ fðu; vÞ; ðA10aÞ

v0 ¼ λ1vþ gðu; vÞ; ðA10bÞ

where the nonlinear functions f and g are given by
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fðu; vÞ ¼ −3u2 þ
ffiffiffi
6

p

2
αv2 þ 3

2
u3 −

3

2
uv2; ðA11Þ

gðu; vÞ ¼ −
ffiffiffi
6

p

2
αuvþ 3

2
u2v −

3

2
v3: ðA12Þ

For this system, the center manifold, determined from the
equation

dhðuÞ
du

f½u; hðuÞ� − λ1hðuÞ − g½u; hðuÞ� ¼ 0 ðA13Þ

is v ¼ hðuÞ ¼ 0. The flow in this manifold is governed by
the equation

u0 ¼ −3u2 þ 3

2
u3; ðA14Þ

from which one concludes that the critical point is a saddle
node, i.e., along the u direction the orbits approach critical
point B for positive u and move away from it for negative u.
However, one should take into account that in coordinates u
and v the phase space lies entirely on the half-plane u ≥ 0;
therefore, along the u direction all physically relevant orbits
approach the critical point, while along the v direction all
orbits move away from it, meaning that, from the physical
point of view, the critical point can be considered a saddle.
In the neighborhood of critical point B, the orbits are
similar to the ones shown in panels (d), (f), and (h) of Fig. 3.
For β ¼ −

ffiffiffi
6

p
, one of the eigenvalues, λ1, is zero and the

other, λ2 ¼ −
ffiffiffi
6

p
α=2, is negative, implying that critical

point B can be either an attractor or a saddle. Let us use
Lyapunov’s method to show that it is an attractor. Consider
the function Vðx; yÞ ¼ ðxþ 1Þ2 þ y2 defined on the phase
space of the dynamical system (20). This function is equal
to zero at critical point B and positive elsewhere.
Furthermore, its derivative,

V 0 ¼ −3ð1 − xÞð1þ xÞ3 − 3y4

−
ffiffiffi
6

p

2
αð1þ xÞð1 − x2 − y2Þ; ðA15Þ

is negative in the neighborhood of B. Therefore, we arrive
at the conclusion that the critical point is asymptotically
stable and the orbits in its vicinity are similar to the ones
shown in panel (i) of Fig. 3.
In summary, critical point B is a repeller for β > α −

ffiffiffi
6

p
,

a saddle for −
ffiffiffi
6

p
< β ≤ α −

ffiffiffi
6

p
, and an attractor for

β ≤ −
ffiffiffi
6

p
.

3. Critical point C

Critical point C, with coordinates x ¼ ðβ − αÞ= ffiffiffi
6

p
and

y ¼ 0, exists for α −
ffiffiffi
6

p
≤ β ≤ αþ ffiffiffi

6
p

. The correspond-
ing eigenvalues,

λ1 ¼
α2 − β2 þ 6

4
and λ2 ¼

ðα − βÞ2 − 6

4
; ðA16Þ

imply that for
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
< β < αþ ffiffiffi

6
p

and α −
ffiffiffi
6

p
< β <ffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ 6
p

critical point C is an attractor and a saddle,
respectively [see panel (c) of Fig. 1 and Table II].
For β ¼ αþ ffiffiffi

6
p

, critical point C coincides with A and,
therefore, the conclusions drawn above apply here, i.e., the
critical point is asymptotically stable, attracting all orbits of
the phase space, similarly to the situation depicted in panel
(a) of Fig. 3.
For β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
, the eigenvalue λ1 becomes zero and

λ2 ¼ −
α

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
− αÞ ðA17Þ

is negative. To determine whether the critical point is an
attractor or a saddle, let us analyze the flow on the center
manifold. In variables u and v, for which the critical point is
shifted to the origin, the dynamical system (20) is given by

u0 ¼ λ2uþ fðu; vÞ; ðA18aÞ

v0 ¼ gðu; vÞ; ðA18bÞ

where the nonlinear functions f and g are given by

fðu; vÞ ¼
ffiffiffi
6

p

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
− αÞu2 þ

ffiffiffi
6

p

2
αv2

þ 3

2
u3 −

3

2
uv2; ðA19Þ

gðu; vÞ ¼ −
ffiffiffi
6

p

2
αuvþ 3

2
u2v −

3

2
v3: ðA20Þ

For this system, the center manifold is approximated by the
Taylor series expansion

u ¼ hðvÞ ¼
ffiffiffi
6

pffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
− α

v2 þOðv4Þ ðA21Þ

and the flow on it is governed by the equation

v0 ¼ −
3

2

�
1þ 2αffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ 6
p

− α

�
v3 þOðv5Þ: ðA22Þ

Since the quantity in parentheses is always positive, we
conclude that critical point C is an attractor for
β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
. In the neighborhood of this point, the orbits

are similar to the ones shown in panel (b) of Fig. 3.
Finally, for β ¼ α −

ffiffiffi
6

p
, critical point C coincides with

B and, therefore, the conclusions drawn above apply here,
i.e., the critical point is a saddle and, in its neighborhood,
the orbits are similar to the ones shown in panels (d), (f),
and (h) of Fig. 3.
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In summary, critical point C is an attractor for
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
≤

β ≤ αþ ffiffiffi
6

p
and a saddle for α −

ffiffiffi
6

p
≤ β <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
.

4. Critical point D

Critical point D, with coordinates x ¼ β=
ffiffiffi
6

p
and

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2=6

p
, exists for −

ffiffiffi
6

p
≤ β ≤

ffiffiffi
6

p
. The eigenval-

ues of the Jacobian matrix of the dynamical system (20) are

λ1 ¼ −3þ ðαþ βÞβ
2

and λ2 ¼ −3þ β2

2
; ðA23Þ

implying that for ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ=2 < β <

ffiffiffi
6

p
and

−
ffiffiffi
6

p
< β < ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ=2 the critical point is a

saddle and an attractor, respectively [see panel (d) of Fig. 1
and Table II].
For β ¼ ffiffiffi

6
p

, critical point D coincides with A and,
therefore, the conclusions drawn above apply here, i.e., the
critical point is a saddle and in the neighborhood of this
point the orbits are similar to the ones shown in panels (b),
(c), and (d) of Fig. 3.
For β ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ=2, the eigenvalue λ1 becomes

zero and

λ2 ¼ −
α

4
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ ðA24Þ

is negative, implying that critical point D is either an
attractor or a saddle. Let us use here the central manifold
theory to analyze the stability of the critical point. In the
variables u ¼ x − β=

ffiffiffi
6

p
and v ¼ y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2=6

p
, which

shift the critical point to the origin, the dynamical system
(20) becomes

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
α2 − λ22

r
vþ fðu; vÞ; ðA25aÞ

v0 ¼ λ2vþ gðu; vÞ; ðA25bÞ

where the nonlinear functions f and g are given by

fðu; vÞ ¼
ffiffiffi
6

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
u2 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2λ22
3α2

s
uv

þ
ffiffiffi
6

p

4
αv2 þ 3

2
u3 −

3

2
uv2; ðA26Þ

gðu; vÞ ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2λ22
3α2

s
u2 −

9

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2λ22
3α2

s
v2

þ 3

2
u2v −

3

2
v3: ðA27Þ

In order to apply the center manifold theorem, the
differential equation for the variable u should not contain
linear terms. Therefore, we perform a new change of
variables,

w ¼ uþ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α2

2λ22
− 1

s
and z ¼ v; ðA28Þ

that brings the dynamical system (A25) to the required
form, namely,

w0 ¼ Fðw; zÞ; ðA29aÞ

z0 ¼ λ2zþGðw; zÞ; ðA29bÞ

where the nonlinear functions F and G are given by

Fðw; zÞ ¼ −
3

ffiffiffi
6

p
α

2λ2
w2 þ

ffiffiffiffiffiffiffiffi
3

−λ2

s
ð3λ2 − α2Þwz

−
ffiffiffi
6

p
α

4λ2
ðα2 − 2λ2Þz2 þ

3

2
w3 −

3αffiffiffiffiffiffiffiffiffiffi
−2λ2

p w2z

−
3

4λ2
ð2λ2 þ α2Þwz2; ðA30Þ

Gðw; zÞ ¼
ffiffiffiffiffiffiffiffiffiffi
−3λ2

p
2

w2 −
ffiffiffi
6

p
α

2
wzþ 1

4

ffiffiffiffiffiffiffiffi
3

−λ2

s
ð6λ2 þ α2Þz2

þ 3

2
w2z −

3αffiffiffiffiffiffiffiffiffiffi
−2λ2

p wz2 −
3

4λ2
ðα2 þ 2λ2Þz3:

ðA31Þ

In these new variables, the center manifold is given by

z ¼ hðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

αð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ

s
w2 þOðw3Þ ðA32Þ

and the flow on it is determined by

w0 ¼ 6
ffiffiffi
6

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− α

w2 þOðw3Þ: ðA33Þ

From the above equation, we conclude that along the w
direction the orbits approach critical point D for negative w
and move way from it for positive w, meaning that D is a
saddle node. However, one should take into account that in
coordinates w and z the phase space is the upper part of an
ellipse lying entirely on the half-plane w ≤ 0; therefore, all
physically relevant orbits approach critical point D, which
is then, from this point of view, an attractor. In the
neighborhood of this point, the orbits are similar to the
ones shown in panels (g) and (h) of Fig. 3.
For β ¼ −

ffiffiffi
6

p
, critical point D coincides with B and,

therefore, the conclusions drawn above apply here, i.e., the
critical point is asymptotically stable, attracting all the
orbits of the phase space, similarly to the situation depicted
in panel (i) of Fig. 3.
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In summary, critical point D is a saddle for ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
−

αÞ=2 < β ≤
ffiffiffi
6

p
and an attractor for −

ffiffiffi
6

p
≤ β ≤

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ=2.

5. Critical point E

Critical point E, with coordinates x ¼ ffiffiffi
6

p
=ðαþ βÞ and

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ α2 − β2

p
=ðαþ βÞ, exists for ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ=

2 ≤ β ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
. The eigenvalues of the Jacobian matrix

of the dynamical system (20) are

λ1;2 ¼ −
3α

2ðαþ βÞ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

p Þ; ðA34Þ

where

K ¼ 2ðβ2 þ αβ − 6Þðβ2 − α2 − 6Þ
3α2

: ðA35Þ

For ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ=2 < β <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
, K is negative and,

therefore, the real parts of the eigenvalues λ1 and λ2 are also
negative, implying that point E is an attractor [see panel (e) of
Fig. 1 and Table II]. If−1 ≤ K < 0, the attractor is a node; if
K < −1, it is a spiral. Since the former condition corresponds
to two thin regions of the parameter space adjacent to the
curves β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
and β ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ=2, in most

cases critical point E is a spiral attractor, as shown in
panels (c), (d), (e), and (f) of Fig. 3.
For β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 6

p
, critical point E coincides with C and,

therefore, the conclusions drawn above apply here, i.e., the
critical point is an attractor and, in its neighborhood, the
orbits are similar to the ones shown in panel (b) of Fig. 3.
Finally, for β ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 24

p
− αÞ=2, critical point E

coincides with D and, thus, all physically relevant orbits
approach it. In the neighborhood of this point, the orbits are
similar to the ones shown in panels (g) and (h) of Fig. 3.
In summary, whenever critical point E exists, it is an

attractor.
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