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We develop a scenario for the emergence of a nonsingular generic cosmological solution based on the
WKB characterization of one of the two anisotropy degrees of freedom. We investigate the dynamics of the
so-called inhomogeneous mixmaster in the “corner” configuration and inferring that one of the two
anisotropic variables becomes small enough to explore the uncertainty principle. Then, we apply a standard
WKB approximation to the dynamics of the Universe which has macroscopic volume, one macroscopic
anisotropy and one microscopic quantum degree of freedom. Our study demonstrates the possibility that
the Universe acquires a nonsingular classical behavior, retaining the quantum degree of freedom as a small
oscillating ripple on a stationary Universe. The role of the so-called fragmentation process is also taken into
account in outlining the generality of such a behavior in independent local space regions.
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I. INTRODUCTION

One of the most important contributions of the Landau
school to theoretical cosmology consisted of the dynamical
characterization of the generic cosmological solution in the
vicinity of the primordial singularity [1–3]. These studies,
together with the general theorem derived by Hawking and
Penrose [4], allowed us to understand that the presence of a
singular point in the past of our actual Universe should be
regarded as a general feature of the Einsteinian cosmology,
not induced by the high symmetry of the isotropic Universe
geometry.
In 1963, Khalatanikov and Lifshitz published a paper [5]

which, apart from the Lifshitz investigations on the isotropic
Universe stability, contains a relevant analysis about rela-
tivistic cosmology in a general framework.
In particular, they derived the so-called generalizedKasner

solution, i.e., the inhomogeneous extension of the Kasner
solution, which describes the dynamics of the Bianchi I
model [3,6,7]. They concluded that the asymptotic behavior
of a generic inhomogeneous Universe toward the singularity
is Kasner-like. However this conclusion was only partially
correct. In fact, if on one hand the generalized Kasner
solution could possess the right number of four physically
independent space functions, which are required for dealing
in vacuum in the general case; on the other hand, in order to
survive up to the initial singularity, an inhomogeneous
Kasner regime needs the imposition of an additional restric-
tion, therefore loosing its general character.
The subsequent studies in [1] (for a detailed review see

[3,8]), about the Bianchi VIII and IX models, clarified how
the asymptotic regime to the singularity requires an infinite

sequence of Kasner regimes (called Kasner epochs), in
which parameters are related by a map having stochastic
properties. This picture was translated into an Hamiltonian
formulation by Misner in [9]. For a detailed discussion of
the link existing between the Belinskii-Khalatanikov-
Lifshitz (BKL) map between two Kasner epochs and the
Hamiltonian formulation in the so-called Misner-Chitré-
like variables, see [10]. Misner called this Hamiltonian
formulation of the original oscillatory regime, presented in
[1], the “mixmaster universe” (for a covariant characteri-
zation of the mixmaster chaos see [11]).
This idea of an infinite sequence of Kasner regimes

toward the cosmological singularity was then implemented
to the asymptotic dynamics of a generic inhomogeneous
model in [2], see also [3] for a detailed reanalysis of this
scenario. This work completed the investigation in [5], by
precising the original statement: the generic inhomo-
geneous cosmological solution approaches the cosmologi-
cal singularity via an infinite sequence of Kasner regimes
related, point by point in space, via a stochastic map.
However, in [2], the inhomogeneous dynamics was

described assuming the existence of a single relevant
spatial scale of inhomogeneity and the standard time
evolution, associated to the oscillatory regime, was recov-
ered on a smaller spatial scale, roughly identified with the
average horizon size. However in [12,13] it was shown that
the coupling between the space and time dependence of the
metric tensor implies that smaller and smaller inhomo-
geneous scales are generated approaching the singularity,
see [14] for a discussion of the impact that such a
phenomenon can have on the primordial Universe turbu-
lence, see also [15].

PHYSICAL REVIEW D 103, 123516 (2021)

2470-0010=2021=103(12)=123516(8) 123516-1 © 2021 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.123516&domain=pdf&date_stamp=2021-06-09
https://doi.org/10.1103/PhysRevD.103.123516
https://doi.org/10.1103/PhysRevD.103.123516
https://doi.org/10.1103/PhysRevD.103.123516
https://doi.org/10.1103/PhysRevD.103.123516


In [16] it was demonstrated (see [3] for a simplified
discussion) that the spatial gradients growth cannot destroy
the standard oscillatory regime because they grow slowly
(in a logarithmic way) with respect to the terms which
induce the instability of a Kasner regime and the transition
to a new one.
However, more recent studies, see [17,18], demon-

strated, mainly on a numerical ground, the emergence of
real spikes in the spatial gradients, which put doubts on the
nature of the generic inhomogeneous mixmaster, as the
inhomogeneous extension of the oscillatory regime is
commonly dubbed.
On how to reconcile the generic mixmaster universe with

the highly symmetric isotropic model, at least on a local
spatial regime, see [19] where the role of an inflationary
regime is modeled via the effect of a massless scalar field
plus a cosmological constant.
All these studies seem however to claim that the

cosmological singularity is clearly present in the generic
inhomogeneous solution, as described in the Einsteinian
picture. Canonical quantum gravity in the metric approach
seems unable to significantly change this situation, see the
original work of Misner [20] or the more recent analysis in
[21]. The situation is different if the canonical quantization
scheme is reformulated in loop quantum cosmology, see for
instance the discussion in [22]. A singularity-free generic
cosmological solution has been constructed in [23], where
the semiclassical Polymer dynamics (to be thought as the
quasiclassical behavior of loop quantum cosmology) is
considered for the evolution toward the singularity. For
other approaches in extended theories of gravity, able to
induce a bounce cosmology, see [24–26].
Here, the possibility for a singularity-free inhomo-

geneous mixmaster is based on a different scenario, in
which the behavior of the Universe during the so-called
long era is examined.1 We investigate the possibility that,
when such a configuration is addressed (according to the
analysis in [27], see also [28] where the analysis was
generalized and partially corrected), one of the two aniso-
tropic degrees of freedom is small enough to approach a
quantum behavior since it can explore the uncertainty
principle in its own phase space. Then, we apply the
WKB scenario proposed in [29] and we demonstrate that
the resulting Universe is a classical nonsingular one, plus a
small oscillating quantum anisotropy.
Using the language of the standard Hamiltonian formu-

lation we outline how, when the Universe performs a long
era in the corner of the potential term, a separation takes
place between classical macroscopic components of the
inhomogeneous mixmaster and a small quantum subset,
made up of one of the two anisotropic degrees of freedom.

The assessment of this scenario will relay on two main
well-known results:

(i) In [27,28] it has been shown that, studying the
statistical properties of the BKL map, there always
exists a significant probability that the parameter u,
characterizing a Kasner regime, acquires values
large enough for the system dynamics to be deeply
trapped in a corner configuration (where one of the
two anisotropy degrees of freedom is very small, and
when the Universe dynamics involve two close
potential walls of the space curvature only).

(ii) The existence of the fragmentation process dis-
cussed in [13]. According to this, rational values
taken by the function uðxiÞ2 across space cannot be
excluded from the evolution of the BKL map,
therefore even a few steps of the BKL map ensure
the existence of large values of u in the neighbor-
hood of certain space surface.

We observe how, while the result (i) has a statistical
character, being associated to the asymptotic iteration of the
BKL map, the result in (ii) can also be guaranteed by a
finite deterministic implementation of the BKL map across
the space.
Our analysis is developed toward the singularity, but we

can consider a time reversed picture which is able to
connect the standard inhomogeneous mixmaster to a
primordial nonsingular generic solution as soon as the
small quantum anisotropy degree of freedom is able to
become a classical variable, i.e., as soon as the Universe
escapes the corner.

II. INHOMOGENEOUS MIXMASTER

In the ADM formalism, the line element of a generic
inhomogeneous cosmological model, described by Misner
variables α, βþ and β−, reads as

ds2 ¼ N2dt2 − hijðdxi þ NidtÞðdxj þ NjdtÞ; ð1Þ

with

hij ¼ e2αðe2βÞabla
i l

b
j ;

β ¼ diagfβþ þ
ffiffiffi
3

p
β−; βþ −

ffiffiffi
3

p
β−;−2βþg: ð2Þ

Here, N denotes the lapse function and Ni the shift
vector (these, together with the Misner variables, are space-
time functions), while the vectors ⃗la (a ¼ 1, 2, 3) are
linearly independent and they have generic space-depen-
dent components. It has been shown in [2] that the time
dependence of the vectors ⃗la is dynamically of higher order

1The “long era” is intended as the Kasner era that the Universe
undergoes when it is in the corner configuration.

2Actually, the Kasner metric scale factors are, in the synchro-
nous time, power laws, which three exponents are constrained by
two conditions and hence expressed by a single parameter u (here
being a function of the space coordinates, due to inhomogeneity).
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and it is associated with their rotation in space. In the
following we assume 8πG ¼ 1.
The action associated to this generic model takes the

following Hamiltonian representation [3,16]:

SG¼
Z

dtd3xfpα∂tαþpþ∂tβþþp−∂tβ−−NH−NiHig;

ð3Þ
pα, pþ and p− are the conjugate momenta to α, βþ and

β−, respectively. The super-Hamiltonian H admits the
simplified expression:

H ¼ 1

12
e−3αf−p2

α þ p2þ þ p2
− þ e4αVGðβþ; β−Þg; ð4Þ

where the potential term VG is obtained neglecting all the
spatial gradients of the Misner variables in the spatial
curvature. On a classical level, this approximation is
justified a posteriori by demonstrating that such gradients
increase slowly towards the singularity with respect to the
time derivatives of the configurational variables [16]. This
scenario leads to the so-called inhomogeneous mixmaster
model, i.e., within each smooth spatial scale (roughly the
horizon scale), the dynamics is isomorphic to that one of a
homogeneous mixmaster [1,20]. However in [12,13,16], it
has been shown that, in the inhomogeneous mixmaster, the
chaotic time evolution couples to the spatial dependence and
increasingly small scales aregenerated for the spacevariation
of theMisner variables, butwithout destroying thedynamical
scheme of infinite sequence of Kasner regimes.
The classical dynamics of a generic cosmological

models is described by the Hamilton equations associated
to the Misner variables and by the constraints obtained
variating the action SG respect to N and Ni, namely:

H ¼ Hi ¼ 0: ð5Þ

In the inhomogeneous mixmaster approximation, the
supermomentum constraint reduces to the following dom-
inant contribution:

pα∂iαþ pþ∂iβþ þ p−∂iβ− ¼ 0: ð6Þ

This constraint is consistent with the scalar nature of the
Misner variables under reparametrization of the spatial
coordinates, which acts on the vectors ⃗la only.
We conclude this dynamical picture assigning the

explicit expression for the potential term VG, namely:

VG¼
1

4
ðC2

1e
4βþþ4

ffiffi
3

p
β−þC2

2e
4βþ−4

ffiffi
3

p
β−þC2

3e
−8βþÞ

−
1

2
ðC1C2e4βþ−C1C3e−2βþþ2

ffiffi
3

p
β− −C2C3e−2βþ−2

ffiffi
3

p
β−Þ:
ð7Þ

Above, the generic functions CaðxiÞ defining the inho-
mogeneity character of the cosmological model, can be
expressed via the vectors ⃗la as Ca ≡ ⃗la · rot⃗la (expressions
to be intended in Euclidean sense with respect to the
coordinates xi and the vector components lai ).
The equipotential lines associated to this potential form,

in each space point a curvilinear equilateral triangle
(Fig. 1), having three open corners reaching infinity.
Here, we will focus our analysis on the system dynamics
when the interior of one of these corners is considered.
The three corners are equivalent, this can be shown

simply rotating the coordinate plane fβþ; β−g by π=3 to
map one corner into another. Therefore without loss of
generality we consider the corner along the axis β− ¼ 0.
From a geometrical point of view, the corner configu-

ration corresponds to deal with two space directions scaling
essentially with the same oscillating time law, while the
remaining one decays monotonically toward the singular-
ity. It is worth noticing that, on a classical level, an
inhomogeoneous mixmaster scheme is well established
[13,14,16], apart from the emergence of spikes in the
spatial gradients [17,18], while, on a quantum level, it
stands as an ansatz to be validated a posteriori and it is
commonly referred as the BKL conjecture.

A. Generalized Kasner solution

If the initial singularity is identified with the instant of
time when the spatial volume of the Universe (i.e., the
three-metric determinant) vanishes, then we can fix that
singularity with the limiting value α → −∞.
In such a limit the potential VG tends to become an

infinite well, in which center βþ ∼ β− ∼ 0 (actually for an
increasing region as the singularity is approached) the

FIG. 1. Equilateral triangle formed by the equipotential lines in
each space point. The segment Δβ− is in green, while the angle θ
is represented in red.

SCENARIO FOR A SINGULARITY-FREE GENERIC … PHYS. REV. D 103, 123516 (2021)

123516-3



potential term can be neglected and the generic inhomo-
geneous Universe is described by the so-called generalized
Kasner solution [5].
It is immediate to recognize that, when VG is negligible,

the momenta pα and the two p� are all constant in time and
the following relations, obtained making use of the first
Hamilton equations, hold

dβ�
dα

¼p�
pα

≡π�ðxiÞ; ⇒β�¼π�ðxiÞαþ β̄�ðxiÞ; ð8Þ

where β̄� denote generic space functions.
Since the functions π� must satisfy, by definition, the

relation π2þ þ π2− ¼ 1, we can set πþ ¼ cos θ and
π− ¼ sin θ. The function θðxiÞ changes at each bounce
against the potential walls and it acquires a random
behavior. Therefore the system can reach a configuration
deeply in the corner β− ¼ 0, if sin θ ≃ θ ≃ ϵ ≪ 1.

III. QUANTUM SMALL OSCILLATIONS

Let us now investigate more in detail the structure of the
generic inhomogeneous model Hamiltonian in the corner
configuration.
If we choose a space coordinate system x̄i, such that

C1ðx̄iÞ ¼ C2ðx̄iÞ≡ Cðx̄iÞ, then, the super-Hamiltonian
constraint reads, inside the corner (fβþ ≫ 1; β− ≪ 1g), as

−p2
α þ p2þ þH− ¼ 0; ð9Þ

where H− is a small contribution and is defined as

H− ≡ p2
− þ 6C2e4ðαþβþÞβ2−: ð10Þ

At a fixed α value, the coordinate interval for the variable
β− in the corner is of the order Δβ− ∼ 2βþθ ¼ βþϵ. as
shown in Fig. 1. Furthermore, according to the generalized
Kasner solution (i.e., comparing the kinetic and the
potential term in H−), we get

H−

p2
α
∼
H−

p2þ
∼ π2− ∼ θ2 ¼ ϵ2; ð11Þ

where, in the first part we used that, from the super-
Hamiltonian constraint applied to the semiclassical Misner
variables, p2

α ¼ p2þ.
If the BKL map generates a small value of ϵ of order

ffiffiffi
ℏ

p
(here we disregard the physical dimensions of ℏ to avoid
the use of two small parameters, one physical and one
dimesionless), then the Hamiltonian constraint (9) can be
decoupled, according to the analysis in [29], into a classical
part, associated to the variables α and βþ plus a quantum
small subsystem, constituted by the anisotropy degree of
freedom β−, which lives in space-time defined by the
classical components. By other words, we are inferring that
the variable β− is enough small to explore the uncertainty

principle with Δβ− ≤ 2
ffiffiffi
ℏ

p
βþ and Δp− ≥ 2

ffiffiffi
ℏ

p
=βþ. The

quantum subsystem shows to possess the “smallness”
requirement postulated in [29] and precised in [30].
Under the hypotheses above, the Universe state functional
can be written as follows

Ψ ¼ expfiΣðα; βþÞ=ℏgΦðα; βþ; β−Þ; ð12Þ

where Σ is associated to the classical system, while Φ
describes the quantum subcomponent. According to the
scheme developed by [29], the functional derivative of Φ
with respect to the space field β−ðxiÞ are of order of 1=

ffiffiffi
ℏ

p
,

therefore H−Φ ∝ OðℏÞ.
To obtain the dynamical implications of the state

function (12), we need to apply the canonical operator
version of the constraint (9) and of the super-momentum
constraint (6), i.e.,

�
ℏ2

δ2

δα2
− ℏ2

δ2

δβ2þ
þ Ĥ−

�
Ψ ¼ 0; ð13Þ

iℏ

�
∂iα

δ

δα
þ ∂iβþ

δ

δβþ
þ ∂iβ−

δ

δβ−

�
Ψ ¼ 0; ð14Þ

where the symbol δ denotes functional derivatives.
At the zero approximation order in ℏ we get the classical

Hamilton-Jacobi super-Hamiltonian and supermomentum
equations for the variables α and βþ: i.e., the following
system of functional differential equations

−
�
δΣ
δα

�
2

þ
�
δΣ
δβþ

�
2

¼ 0; ð15Þ

δΣ
δα

∂iαþ δΣ
δβþ

∂iβþ ¼ 0: ð16Þ

In other words, the classical component is associated to
the reduced action

SClass ¼
Z

dtd3x

�
pα∂tαþ pþ∂tβþ −

N
12

e−3αð−p2
α þ p2þÞ

− Niðpα∂iαþ pþ∂iβþÞ
�
: ð17Þ

By a simple algebra, it is possible to show that the
quantum functional Φ obeys the equation

iℏ∂tΦ ¼
�Z

d3x
N
12

e−3α
�
Ĥ−Φþ iℏ

�
δ2Σ
δα2

−
δ2Σ
δβ2þ

�
Φ
��

;

ð18Þ

where
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∂tΦ≡
Z

d3x

��
∂tα

δ

δα
þ ∂tβþ

δ

δβþ

�
Φ
�
; ð19Þ

∂tα and ∂tβþ being calculated from the action (17) and
via the identification of the momenta with the correspond-
ing functional derivatives of Σ. To derive (18), we made
also use of the semiclassical part of the order ℏ of the
supermomentum constraint (14), i.e.,

∂iα
δΦ
δα

þ ∂iβþ
δΦ
δβþ

¼ 0; ð20Þ

which states the invariance of the wave functional Φ with
respect to the space coordinates in the classical line
element.
The present analysis differs from the approach presented

in [29] (see also [31–33]) because we are dealing with a
functional formalism, due to the inhomogeneity of the
considered model, and we are taking the variables α and βþ
as strictly classical. This last difference results in the last
term in parentheses of Eq. (18).
It is immediate to check that Eq. (15) admits the

following solution:

Σ ¼
Z

d3xKðxiÞðαþ βþÞ; ð21Þ

which, according to the Hamilton-Jacobi method, yields the
classical relation

αþ βþ ¼ β0ðxiÞ; ð22Þ

which, substituted in (10), leads to

Ĥ− ¼ p2
− þ 6C2e4β0β2−: ð23Þ

In order for the solution (21) to satisfy the supermomentum
equation (16), it is enough to require β0 ¼ const.
From the classical action (17), we recognize the follow-

ing relation between the variable α and the synchronous
time T:

α ¼ 1

3
ln

T
T0

; ð24Þ

where T0 is a generic instant.
Choosing, without loss of generality, the vector ⃗l3 along

the coordinate x3, the classical solution above makes the
line element (1) of the form

ds2 ¼ dT2 −
�
T
T0

�
2

e−4β0ðdx3Þ2 − ðdl2Þ2; ð25Þ

where ðdl2Þ2 is a static two-dimensional line element on the
plane fx1; x2g. As is well known [1,2], the line element

above is associated to a nonsingular cosmological model,
and it becomes static as soon as we pass to new coordinates
T 0 ¼ ðT=T0Þ cosh x3 and x3

0 ¼ ðT=T0Þ sinh x3. Actually,
when u is an integer, the BKL map induces the value
“u ¼ ∞,” corresponding to β− ≡ 0, de facto a nonsingular
Taub model in the homogeneous sector. Here β− is zero on
the nonsingular classical metric, surviving as a negligible
quantum fluctuation only.
Using the expression (21) of Σ and introducing the time

variable τ defined via the lapse function N ¼ 12e3α, the
quantum functional equation (18) reduces to the form

iℏ∂τΦ ¼
Z

d3xĤ−Φ; ð26Þ

with Ĥ− defined in (23).
The dynamical decoupling of the space points, i.e., of

each space region sufficiently smooth (so that spatial
gradients are negligible), allows to reduce the superspace
to the collection of local minisuperspace, each for each
point xi. Thus, we can write:

Φ ¼ Πxiϕxiðτ; β−Þ; ð27Þ

where the local wave functions ϕxi satisfy the equations

iℏ∂τϕxi ¼ f−ℏ2∂2
β−

þ 6C2ðxiÞe4β0β2−gϕxi : ð28Þ

The functional Φ must also satisfy the quantum compo-
nent of the supermomentum constraint, i.e.:

−iℏ
δΦ
δβ−

∂iβ− ¼ 0: ð29Þ

However, when we take the functional Φ in the factor-
ized form (27), we are inferring that it is naturally satisfying
Eq. (29), simply because that approximation corresponds to
deal locally with the condition ∂iβ− ≃ 0. Here, we are
implementing the BKL conjecture, based on the idea that
the scale of spatial gradients is larger than the quantum
correlation length. In this sense, we are reintroducing the
concept of “quantum causality”: space regions that evolve
independently are not in causal contact.
Equation (27) has the morphology of quantum harmonic

oscillators in each space point and it is well known that
localized nonspreading states can be always constructed.
We expect that the variable β− can be represented by
localized state because when it enters the corner is a
classical degree of freedom and its available domain
remains of the order ℏβþ in that configuration.
Thus, we can conclude that, if our scheme is reliably

applicable to the Universe dynamics deeply entering the
corner, the cosmological singularity is removed because we
get a classical nonsingular space-time on which very small
quantum fluctuations of the variable β− live. Such an
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intriguing picture is well-established when it is referred to
in a given spatial point (causal region), but to understand
how it works in the Universe as a whole, we need to
develop some considerations on the BKL map [1,2] and on
the so-called fragmentation process [13] (see also [12]).
We conclude this section by emphasizing that the picture

proposed above can be reversed in time and we could start
with a nonsingular classical Universe with a small quantum
anisotropy and, as the space volume increases (i.e., α
increases), this degree of freedom becomes classical, so that
the dynamics comes out of the corner configuration and the
full configurational domain is restored. By other words, in
this scenario, the generic inhomogeneous cosmological
solution can emerge from a nonsingular initial configura-
tion and then evolves toward the standard oscillatory
regime discussed in [1,2].

IV. INHOMOGENEOUS BKL MAP

If we introduce the parameter uðxiÞ [2], then the
quantities πþðxiÞ and π−ðxiÞ take the following explicit
form:

πþ ¼ u2 þ u − 1=2
u2 þ uþ 1

; π− ¼
ffiffiffi
3

p

2

2uþ 1

1þ uþ u2
: ð30Þ

In the present context, we can restrict these expressions
to u ≫ 1 since the considered corner corresponds to very
large values of u (note that θ ≃

ffiffiffi
3

p
=u). To understand when

such large values appear, we have to consider the BKL map
[1] which provides the value u0 generated from the initial
value u via the effect of the potential wall in the standard
oscillatory regime, i.e.:

for u > 1u0 ¼ u − 1; for u ≤ 1u0 ¼ 1

u − 1
: ð31Þ

All the initial rational values of the parameter u ¼ u0 are
evolved for a finite number of the BKL map steps, after
which the value u → ∞ (i.e., θ ¼ 0) is recovered. Instead,
the irrational values of the initial parameter u0 evolve
indefinitely and the BKL map outlines a strong (exponen-
tial) instability with respect to the initial condition: if we
modify the value u0 by a very small amount, the sequence
of values generated by the map iteration becomes uncorre-
lated with respect to the sequence associated to u0 after a
few steps. We stress that the rational values of u were
excluded in the original analysis in [1,2], because, being of
zero measure on the real axis, they turn out to be a
nongeneral initial condition. However, if we assign, over
the inhomogeneous space, the initial condition u ¼ u0ðxiÞ,
the rational values cannot clearly be excluded simply for
continuity reasons. Thus, each spatial region containing
surfaces on which u is rational enters deeply into the corner
after a certain number of iterations of the map and our

scenario can be implemented close enough to one of such
regions.
Actually, when the parameter u is thought as a physical

parameter, we have to assign its values with a given
uncertainty, even because the Kasner solution to which it
is associated is an approximate regime obtained by neglect-
ing the potential walls. This consideration, together with
the instability of the BKL map, leads to think of u as a
statistically distributed variable and it can be shown that it
admits the following steady probability density [13]

wðuÞ ¼ 1

ln 2
1

uðuþ 1Þ : ð32Þ

In [27,28] it has been shown that, starting from a generic
initial value u0, the situation of a very large u is always
reached, at least one time, as the BKL map is iterated for a
sufficiently long time. Actually, the BKL map has (espe-
cially when expressed in terms of the fractional part of the
parameter u, see [34]) “strong mixing” properties, and
therefore, starting from a generic irrational value of u, all
the other irrational ones (including very large values) are,
sooner or later, generated. This result ensures that, also
from a statistical point of view, in each point of the space
(enough smooth space region), the conditions for the
system to deeply entering the corner are reached.
However, in [13] it has been argued how the iteration of

the BKL map in two close space points gives uncorrelated
values of the parameter u after some steps and thus is at the
ground of the progressive increasing of the spatial gradients
towards the initial singularity. As a consequence of this
result, the proposed scenario takes place in different instant
of time in dynamical independent space regions.
Nevertheless, once the system enters the corner, the
BKL map is no longer applicable, because two potential
walls are simultaneously relevant. Furthermore, once our
paradigm is implemented, the increasing behavior of the
spatial gradients is naturally stopped. Each smooth space
region is characterized by a nonsingular static space-time
and the statistical properties of the BKL map are reflected
only on the specific initial condition at which the corner
dynamics is implemented.

V. CONCLUSIONS

We investigated the possibility to obtain a nonsingular
generic cosmological solution as result of a quantum
behavior of the small anisotropy β− within a deep corner
configuration. In other words, we separated the Universe
dynamics into a classical nonsingular one, plus a quantum
effect which manifests in a simple small oscillation of
β− according to a time-independent frequency.
In order to establish this configuration, we inferred that,

for a sufficiently large value of the parameter u, the variable
β− is extremely small well inside the corner of the potential,
so that it explores the uncertainty principle.
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To characterize the generality of the proposed scheme,
we made use of two complementary effects:

(i) In each assigned space point, the iteration of the
BKL map is associated to a significant probability
for a very long era, i.e., a trapping of the system
dynamics deeply in the corner, see [27,28].

(ii) The existence of the so-called fragmentation proc-
ess, i.e., the impossibility to exclude rational values
of u in a continuous function representation uðxiÞ,
which generates on all the corresponding space
surfaces exactly the limit β− ≡ 0, with associated
neighborhoods where a long era must take
place [13].

This analysis completes and generalizes the consider-
ation made in [33] about the WKB approach to the
homogeneous case, see also [31,32] for related topics.
The basic motivation for such a generalization consists in
the natural character that the corner configuration acquires
in the inhomogeneous picture, as effect of the fragmenta-
tion process. This means that few iterations of the map can
be enough to generate very high values of u in correspon-
dence of all the rational values of the initially assigned
function u0ðxiÞ.
In [35] it has been argued the possibility for a synchro-

nization of the dynamics of different spatial regions of the

inhomogeneous mixmaster. Without entering in the dis-
cussion of such a proposal and its validity, we observe that
such a synchronization would reduce the relevance of the
spatial gradients, in favor of an homogeneouslike picture.
The proposed feature would likely reduce the impact of the
fragmentation process, but it would not prevent the reali-
zation of the present scenario, according to the point
(i) above. The transition of the inhomogeneous mixmaster
to a new regime of gravitational turbulence could instead be
of different impact on the present scenario, as inferred in
[14], see also [15]. In this case it would be clearly the
applicability of the potential representation in a fully
turbulent Universe. Finally, about the possible implications
of the rotation of the vectors ⃗la in the presence of a matter
source, like a perfect fluid (a question not yet fully explored
in the inhomogeneous sector), see [36].
In conclusion, the present analysis revives, on a slightly

different level, the original (pre-“BKL map”) Lifshit and
Khalatnikov idea that the anisotropy of the Universe could
resolve its singularity.
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