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We review the effect that the choice of a uniform or logarithmic prior has on the Bayesian evidence
and hence on Bayesian model comparisons when data provide only a one-sided bound on a parameter.
We investigate two particular examples: the tensor-to-scalar ratio r of primordial perturbations and the mass
of individual neutrinos mν, using the cosmic microwave background temperature and polarization data from
Planck 2018 and the NuFIT 5.0 data from neutrino oscillation experiments. We argue that the Kullback–
Leibler divergence, also called the relative entropy, mathematically quantifies the Occam penalty. We further
show how the Bayesian evidence stays invariant upon changing the lower prior bound of an upper constrained
parameter. While a uniform prior on the tensor-to-scalar ratio disfavors the r extension compared to the base
ΛCDM model with odds of about 1∶20, switching to a logarithmic prior renders both models essentially
equally likely. ΛCDM with a single massive neutrino is favored over an extension with variable neutrino
masses with odds of 20∶1 in case of a uniform prior on the lightest neutrino mass, which decreases to roughly
2∶1 for a logarithmic prior. For both prior options we get only a very slight preference for the normal over the
inverted neutrino hierarchy with Bayesian odds of about 3∶2 at most.
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I. INTRODUCTION

The “principle of insufficient reason” (Bernoulli [1]) or
“principal of indifference” (renamed by Keynes [2]) states
that, in the event of multiple, mutually exclusive, possible
outcomes and in the absence of any relevant evidence, we
should assign the same probability to all outcomes [3]. In a
Bayesian analysis, this is generalized to continuous param-
eters in the form of uninformative priors. Complete prior
ignorance about a location parameter is represented by
assigning a uniform distribution to the prior. Ignorance
about a scale parameter on the other hand is represented by
assigning a logarithmic prior, i.e., a uniform distribution on
the logarithm of the parameter [3]. However, it is not
always clear whether a parameter should be treated as a
location or scale parameter. This is quite commonly
discussed when faced with a strictly positive parameter
such as a mass or an amplitude that is very small, yet still
unconstrained. In general, the decision whether to use a
uniform or logarithmic prior has effects on credibility
bounds and on the Bayesian evidence, i.e., on both levels
of Bayesian inference: parameter estimation and model

comparison. Under the reasoning that you can set the lower
bound to zero and thus incorporate all possible small
values, the uniform prior is often preferred, whereas the
logarithmic prior is criticized for a lack of an unambiguous
lower bound, and because the ultimate choice of the lower
bound might affect a 95% credibility bound and the
Bayesian evidence.
In this paper we show that the very last statement is

typically not true and that the choice of a lower bound for
such a logarithmic prior is less problematic than commonly
assumed. To that end we will look at two cosmological
examples in particular: the tensor-to-scalar ratio r of
primordial perturbations as well as the neutrino masses
mν, where both uniform and logarithmic priors have been
applied historically (for the tensor-to-scalar ratio, see, e.g.,
[4–9]; and for the neutrino masses see, e.g., [7,10–18]).
The best constraints on the tensor-to-scalar ratio r0.05 ≲

0.06 come from joint analyses of cosmic microwave
background (CMB) data, CMB lensing, and baryon acous-
tic oscillations (BAO) [7,8], where a uniform prior on rwas
adopted. A common goal of upcoming CMB experiments
such as the Simons Observatory [19], the LiteBIRD
satellite [20] and the next-generation “Stage-4” ground-
based CMB experiment (CMB-S4) [21] is to push to a
tensor-to-scalar ratio of r ∼ 10−3. In pushing to such small
values of r, the question of whether to adopt a uniform or
logarithmic prior in one’s analysis becomes more pertinent.
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Since neutrino oscillation experiments measure nonzero
mass differences, we can conclude that two or more
neutrinos must have mass. However, the absolute scale
of the individual neutrino massesmi cannot be measured by
the oscillation experiments, but only the mass-squared
splittings Δm2

ij ¼ m2
i −m2

j . The strongest bound on the
absolute neutrino mass scales is currently provided again
by combined CMB and BAO data, limiting the sum of the
neutrino masses to

P
mν ≲ 0.12 eV at 95% confidence

[17] (see also [15,18] for other recent analyses).
When investigating the three discrete neutrino mass

eigenstates, the question of uniform vs logarithmic priors
arises again. Note, however, that given the known mass
splittings from oscillation experiments, the three neutrino
mass scales are linked. If one mass scale is known, then the
others can be inferred from the mass squared splittings.
Hence, only one mass scale is truly unknown and assuming
scale invariant (i.e., logarithmic) priors on all three neutrino
masses simultaneously would unduly favor smaller neu-
trino masses and thus a normal neutrino hierarchy (NH)
with m1 < m2 ≪ m3 compared to an inverted neutrino
hierarchy (IH) with m3 ≪ m1 < m2 (for more on this see
also discussions in [10,11]).
This paper is structured as follows: in Sec. II we will start

by giving a brief description of our Bayesian analysis
framework, including the data and base cosmological
model used, as well as the means of computing the
Bayesian evidence. In Sec. III we apply this to the
tensor-to-scalar ratio r and compare to a theoretical mock
example. In Sec. IV we perform the equivalent analysis for
the neutrino masses and contrast the results for the two
neutrino hierarchies. We conclude in Sec. V.

II. METHODS

A. Bayesian inference

There are two levels to Bayesian inference: parameter
estimation and model comparison (see, e.g., [3,22]). Both
these levels are based on Bayes’s theorem, which relates
inference inputs (likelihood and prior) to yielded outputs
(posterior and evidence):

PrðθjD;MÞ × PrðDjMÞ ¼ PrðDjθ;MÞ × PrðθjMÞ;
Posterior × Evidence ¼ Likelihood × Prior;

PMðθÞ × ZM ¼ LMðθÞ × πMðθÞ: ð1Þ

The posterior P is the main quantity of interest in a
parameter estimation, representing our state of knowledge
about the parameters θ in a given model M, inferred from
our prior information π and the likelihood L of the
parameters under the data D. The evidence Z is pivotal
for model comparisons.
Were we interested only in parameter estimation, then it

would be sufficient to care only about the proportionality of

the posterior to the product of likelihood and prior and the
Bayesian evidence could be neglected as a mere normali-
zation factor. However, for the comparison of say two
models A and B the evidence becomes important with the
posterior odds ratio of the two models given by

PrðBjDÞ
PrðAjDÞ ¼

PrðBÞ
PrðAÞ ×

ZB

ZA
: ð2Þ

Typically models are assigned the same prior preference
such that the first term on the right-hand side becomes
unity, leaving simply the evidence ratio ZB=ZA, which can
be interpreted as betting odds for the two models. We
typically quote this in terms of the log-difference of
evidences between two models Δ lnZ ¼ lnðZB=ZAÞ.
The evidence is the marginal likelihood

ZM ¼
Z

LMðθÞπMðθÞdθ ¼ hLMiπ; ð3Þ

and can be numerically approximated with Laplace’s
method [23], estimated from a posterior distribution
attained e.g., from a Monte Carlo Markov Chain via the
Savage–Dickey density ratio [24–27] or via a nearest-
neighbor approach [28,29] or computed more directly with
nested sampling, which can additionally estimate the
corresponding numerical uncertainty [30–36].
If the posterior distribution and the evidence have both

been determined, then as a byproduct one can also compute
the Kullback–Leibler (KL) divergence, also called the
relative entropy:

DKL;M ¼
Z

PMðθÞ ln
�
PMðθÞ
πMðθÞ

�
dθ ¼

�
ln
PM

πM

�
P
; ð4Þ

which quantifies the overall compression from prior to
posterior distribution.

B. Kullback–Leibler divergence and Occam’s razor

It should be noted that the Bayesian evidence naturally
incorporates the so-called Occam’s razor that penalizes
models for unnecessary complexity. It can be formulated as
the principle to “Accept the simplest explanation that fits
the data” [22]. This can be neatly demonstrated using a
Gaussian likelihood with mean μ and variance σ2 having a
single parameter x ∈ ½xmin; xmax� with a uniform prior (see,
e.g., [22,37]). The Bayesian evidence decomposes into two
terms:

Z ¼ LðμÞ × σ
ffiffiffiffiffiffi
2π

p

xmax − xmin
: ð5Þ

The first term on the right-hand side is the maximum
likelihood point. With additional parameters, this term
would only increase and therefore can only favor the given
model. The second term incorporates the ratio of posterior
to prior uncertainty. Since the posterior uncertainty σ is
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generally smaller than the prior uncertainty ðxmax − xminÞ,
this term penalizes the given model for each of its
parameters and thus embodies its Occam penalty. Note
that the posterior and prior uncertainties appear inversely in
the normalization factor of the actual distributions.
More generally, the KL divergence can actually be used

as an estimator of the Occam penalty, which becomes
clearer when rewriting the log-evidence according to1:

ln

�Z
LMπMdθ

�
¼

Z
PM lnLMdθ −

Z
PM ln

�
PM

πM

�
dθ;

ðlog-Þevidence ¼ parameter fit − Occam penalty;

lnZM ¼ hlnLMiP −DKL;M; ð6Þ

where we have dropped the dependence on θ to save space.
Analogous to the example from Eq. (5), the first term on the
right-hand side encapsulates the fit of the model, while the
KL divergence is the average log-ratio of posterior to prior
distribution [see also the last equality in Eq. (4)], thus
identifying it as the Occam penalty. This equation appears
in passing in the Appendix of [38] in the calculation of
tension metrics and it has been intuitively applied, e.g., in
the third figure in [39], but as far as the authors are aware
Eq. (6) is the first time this analytical form is explicitly
connected to the trade-off between parameter fit and model
complexity.
While known to experts, a widely unappreciated fact is

that the evidence stays unaffected by an unconstrained
parameter, i.e., when the data provide no information for
that parameter [40]. In terms of Eq. (6) this is reflected in an
invariant likelihood hlnLiP and a zero KL divergence
DKLðπ ¼ PÞ ¼ 0. Using the alternative labeling we can
rephrase this: adding an unconstrained parameter does not
affect the fit, but it also does not incur an additional Occam
penalty and hence also leaves the evidence unaffected.
A popular measure for an effective number of con-

strained parameters is the Bayesian model complexity [41].
However, this quantity relies on the use of a point estimator
such as the posterior mean or mode, which is why we prefer
using the Bayesian model dimensionality d in the following
sections (see [42] for a more detailed discussion on
Bayesian complexities/dimensionalities). The Bayesian
model dimensionality can be computed straightforwardly
from the posterior distribution as the posterior variance of
the log-likelihood:

dM
2

¼
Z

PMðθÞ
�
ln
PMðθÞ
πMðθÞ

−DKL;M

�
2

dθ; ð7Þ

¼ hðlnLMÞ2iP − hlnLMi2P : ð8Þ

Note the connection to Eq. (6), where we used the posterior
average of the log-likelihood. As such, these two quantities
provide an interesting additional perspective to that of the
ðlnZ;DKLÞ pair. The posterior average of the log-likelihood
informs us about the parameter fit and the posterior variance
of the log-likelihoodmeasures themodels’ complexity in the
form of the number of constrained parameters.

C. Cosmological models

In the following sections we perform Bayesian model
comparisons on one-parameter extensions to the ΛCDM
model (Universe dominated today by a cosmological
constant Λ and by cold dark matter), which we parametrize
with the standard six cosmological parameters listed in
Table I with their corresponding prior ranges.
In Sec. III we extend the ΛCDM model by the tensor-to-

scalar ratio r of primordial perturbations, which is set to
r ¼ 0 in ΛCDM. In Sec. IV we extend the base model by
allowing for three distinct neutrino masses. In the ΛCDM
model these are typically fixed to two massless neutrinos
and a single massive neutrino with mν ¼ 0.06 eV.

D. Data

We use the 2018 temperature and polarization data
from the Planck satellite [43], which we abbreviate as
“TT;TE;EEþ lowE”. Note that this is the same abbrevia-
tion as in the corresponding Planck publication itself. The
specific use of “lowE” but lack of “lowT” might lead to the
conclusion that only E-mode and no temperature data were
used at low multipoles. However, this is not the case. Both
high-l and low-l temperature autocorrelation data are
implied in that abbreviation.
In Sec. IV we additionally use the NuFIT 5.0 (2020)

data from neutrino oscillation experiments [44–46] to set
Gaussian priors on the mass squared splittings δm2 andΔ2

m.

E. Statistical and cosmological software

We explore the posterior distributions of cosmological
and nuisance parameters using COBAYA [47], which

TABLE I. Cosmological parameters of the base ΛCDM cos-
mology the way they are sampled in our Bayesian analysis. The
second column shows their corresponding prior ranges. The third
column lists their mean and 68% limits from our base ΛCDM
nested sampling run with TT;TE;EEþ lowE data from Planck
2018 and is in almost perfect agreement with Table 2 in [7].

Parameter Prior range 68% limits

ωb ¼ h2Ωb [0.019, 0.025] 0.02236� 0.00015
ωc ¼ h2Ωc [0.025, 0.471] 0.1199� 0.0014
100θs [1.03, 1.05] 1.04191� 0.00029
τreio [0.01, 0.40] 0.0540þ0.0073

−0.0084
lnð1010AsÞ [2.5, 3.7] 3.043þ0.015

−0.016
ns [0.885, 1.040] 0.9641� 0.0042

1Note that proving Eq. (6) becomes surprisingly straightfor-
ward when going from right to left and making use of Bayes’s
theorem (1).
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provides both the Monte Carlo Markov Chain sampler
developed for COSMOMC [48,49] with a “fast dragging”
procedure described in [50] and also the nested sampling
code POLYCHORD [35,36], tailored for high-dimensional
parameter spaces, which can simultaneously determine the
Bayesian evidence alongside its numerical uncertainty.
Both samplers are interfaced with the cosmological
Boltzmann code CLASS [51–53], which computes the
theoretical CMB power spectra for temperature and polari-
zation modes.
We use GETDIST [54] to generate the data tables of

marginalized parameter values. The postprocessing of the
nested sampling output for the computation of Bayesian
evidence, KL divergence, and Bayesian model dimension-
ality, aswell as the plotting functionality for posterior contours
is performed using the PYTHON module ANESTHETIC [55].
All inference products required to compute the results

presented in this paper are available for download from
ZENODO [56].

III. TENSOR-TO-SCALAR RATIO

The tensor-to-scalar ratio r quantifies what fraction of
primordial perturbations is in the form of gravitational
waves, produced, e.g., during cosmic inflation and poten-
tially detectable in their contribution to CMB B-modes.
So far, the major experiments probing the contribution of

tensor modes to the CMB power spectrum have adopted a
uniform prior on r [7,8]. However, the common target of
r ∼ 10−3 for many upcoming CMB experiments, such as
the Simons Observatory, the LiteBIRD satellite, or CMB-
S4, warrants the question as to whether a scale invariant
prior might be better to handle such low values. This
question frequently brings up arguments of the ambiguity
of the lower bound to a logarithmic prior and its potential
effect on the Bayesian evidence.

A. Tensor-to-scalar ratio: Posteriors

Figure 1 gives an overview of the stability of the
cosmological base parameters across different priors for
r and compares them to the ΛCDM base model by showing
their mean and 68% ranges. In addition to the ΛCDM base
run, we have taken nested sampling runs with both a

uniform prior on the tensor-to-scalar ratio r ∼ Uð0; 1Þ and
with two logarithmic priors with different lower bounds,
log10 r ∼ Uð−5; 0Þ and log10 r ∼ Uð−10; 0Þ. The near per-
fect alignment across different setups reflects how little the
tensor-to-scalar ratio correlates with the other parameters.
In Fig. 2 we focus on the spectral index ns and the tensor-

to-scalar ratio r (or log10 r) in particular by showing their
one-dimensional marginalized posterior distributions.
Figure 3 shows the corresponding two-dimensional joint
probability contours of the 68% and 95% levels for ns and r
(or log10 r). We have included shaded histograms in the 1D
plots and scatter points in the 2D plots to give a notion of
the prior distributions.
As already expected from Fig. 1, the marginalized

posterior for the spectral index is near identical, irrespective
of the prior on r. The tensor-to-scalar ratio in the right panel

FIG. 1. Stability of the cosmological parameters for the tensor-to-scalar ratio extension of the base ΛCDM cosmology with different
priors on r: uniform in blue, logarithmic with lower bound −5 in orange and logarithmic with lower bound −10 in red. For each
parameter we show the mean and the extent from quantile 0.16 to 0.84, i.e., the inner 68% limits.

FIG. 2. Normalized one-dimensional posterior distributions for
Planck 2018 TT;TE;EEþ lowE data for the spectral index ns
and the tensor-to-scalar ratio r of primordial perturbations,
contrasting the difference between using a uniform (blue) or
logarithmic (orange and red) prior on r. The shaded histograms
illustrate the prior distributions. Note that the dotted lines show
the inferred parameters r and log10 r in the respective opposite
domain. This is done only to provide a more direct visual
comparison. However, these dotted contours are not data-driven
parameter constraints. In particular the blue dotted line results
purely from a lack of small prior samples when sampling
uniformly over r, and does not in fact constitute a lower bound
on the tensor-to-scalar ratio.
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of Fig. 2 drops off exponentially from r ¼ 0 to larger
values, thereby significantly compressing the prior, which
spans up to unity. When sampling logarithmically the
posterior levels off towards small scales and shows a
steplike behavior at the upper bound.
We have included the kernel density estimate from the

uniform r samples in the log10 r plot and vice versa (dotted
lines). This allows us to compare more directly what sort of
numerical values were actually used in those two cases. At
a first naïve glance one might be concerned that the dotted
blue line actually indicates a lower bound, however,
looking at the blue shaded histogram in the 1D plot or
the blue scatter points in the 2D plot it becomes clear that

this is entirely prior driven and reflects that uniform
sampling of r does not reach such low values (see also
[57] on a related discussion about the importance of
adjusting the density when setting the x scale to “log”).
With a target of r ∼ 10−3 this highlights how the parameter
space is sampled rather inefficiently at those low values of
interest when applying a uniform prior, which would be an
argument for adopting a logarithmic prior in the future.
One problem to be aware of with the unconstrained

posteriors from a logarithmic prior is that upper bounds in
form of, e.g., 95% limits will change with the lower bound
on the logarithmic parameter: the smaller the lower prior
bound, the smaller also the upper posterior bound. This
lack of a stable posterior bound is a result of the definition
via percentiles, a notion inspired by a normal distribution.
For other types of distributions, such as the steplike
posteriors seen in the middle panel of Fig. 2, percentiles
of that sort are not the ideal measure for an upper bound.
For such a steplike posterior a better alternative would be to
quantify the position of the step directly, e.g., where the
posterior drops to some fraction of its plateau value. In the
case that an exponential distribution provides a good fit
to the nonlogarithmic parameter (see the mock example in
the following Sec. III C), the parameter value where the
posterior is 1=e times its maximum turns out to be a stable
choice, which corresponds to the mean of the exponential
distribution. Indeed, using that 1=e measure for the step
position we get roughly the same upper bound on the
tensor-to-scalar ratio for all prior options:

r < 0.06;

log10r < −1.2: ð9Þ

Note, that these are not the habitually quoted 95% upper
bounds on the tensor-to-scalar ratio. For the uniform
sampling run of r, this limit in this case is closer to roughly
an 80% upper bound. Note further that the choice of the 1=e
fraction provides a particularly stable bound, because of the
connection to the mean of the exponential distribution.

B. Tensor-to-scalar ratio: Evidence
and Kullback–Leibler divergence

Nested sampling provides us with distributions for log-
evidence lnZ, KL divergence DKL and Bayesian model
dimensionality d in the same way as for the posterior of free
model parameters, which can be calculated straightforwardly
using ANESTHETIC’s analysis tools for nested sampling
output [55]. Figure 4 shows the contours for those quantities
in a triangle plot. We have normalized all quantities with
respect to the base ΛCDM model, such that, e.g., for the
log-evidence we have

Δ lnZ ¼ lnZ − lnZΛCDM: ð10Þ

FIG. 3. Two-dimensional version of Fig. 2 showing the 68%
and 95% levels of the posterior contours for Planck 2018
TT;TE;EEþ lowE data for spectral index ns and tensor-to-scalar
ratio r, where again a uniform (blue) or logarithmic (orange) prior
on r was used. The scattered dots give a notion of that prior
distribution. Note that the dotted lines are not true constraints as
explained in Fig. 2. The thin black line divides the ns-r parameter
space into regions of convex and concave inflationary potentials.

BAYESIAN EVIDENCE FOR THE TENSOR-TO-SCALAR RATIO … PHYS. REV. D 103, 123511 (2021)

123511-5



Table II lists the summary statistics for the quantities
from Fig. 4.
The marginalized plot for the difference in log-evidence

(topmost panel) with Δ lnZ ¼ −3.10� 0.23 for the r
extension of ΛCDM shows that it is considerably disfa-
vored when applying a uniform prior. However, switching
from a uniform to a logarithmic prior negates the difference
in log-evidence completely, such that the log r extension
ends up almost on par with the base ΛCDM model.
Changing the lower bound for the logarithmic prior, on

the other hand, barely affects the evidence value at all. We
have performed a run with a lower bound of log10 r ¼ −5
and another with log10 r ¼ −10, i.e., five orders of magni-
tude difference in r. Despite this large difference in the
lower bound the corresponding log-evidence lnZ changes

only very little such that the distributions significantly
overlap one another. As explained in Sec. II A, this is due to
log r being unconstrained below a certain threshold and the
Bayesian evidence picking up only on constrained param-
eters. This can seem counterintuitive, since the Bayesian
evidence is generally understood to automatically penalize
additional parameters. The key point is that the Occam
penalty essentially enters into the Bayesian evidence in the
form of the ratio of posterior to prior volume. If both
volumes are the same, then they divide out and do not
contribute to the Occam penalty.
The last point becomes clearer by also taking into account

the KL divergence and recalling Eq. (6), wherewe identified
DKL as a measure for the Occam penalty. Looking at the
correlation plot between log-evidence and KL divergence

FIG. 4. Effect of uniform vs logarithmic priors on Bayesian model comparison for the tensor-to-scalar ratio r: log-evidence Δ lnZ,
Kullback–Leibler divergence DKL (in nats), Bayesian model dimensionality d, and posterior average of the log-likelihood
hlnLiP ¼ lnZ þDKL. The probability distributions represent errors arising from the nested sampling process. In the limit of infinite
life points these distributions would become point statistics, in contrast to posterior distributions. We normalize with respect to the
ΛCDMmodel without r (i.e., with r ¼ 0). Note, how switching from uniform to logarithmic sampling of r (i.e., from blue to orange/red)
moves the contours along their lnZ, DKL degeneracy line, i.e., relative entropy is traded in for evidence. Note further by comparison of
the orange and red lines, how changing the lower bound of the logarithmic sampling interval (by five log-units) barely affects the
contours (bar some expected statistical fluctuation due to the sampling error).
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makes it clear that there is a trade-off happening between
those two quantities when switching between uniform and
logarithmic priors. While the evidence increases for the
logarithmic prior, the KL divergence decreases, as expected
from the posterior plots in Fig. 2, which shows how the
change from prior to posterior happens only at about
log10 r≳ −2. This is further reflected in the Bayesian model
dimensionality d, which shows a clear growing trend from
aboutd ¼ 17 for the baseΛCDMmodel via a log r extension
to about d ¼ 18 for the r extension reflecting the one
additional sampling parameter. Note that the total number
of sampled parameters consists of six base cosmological
parameters (þ1 for the r extension) and 21 nuisance
parameters from the Planck likelihood.
Because of the trade-off between log-evidence and KL

divergence it is interesting also to look at their sum, which
from Eq. (6) we know turns out to be the posterior average
of the log-likelihood:

lnZ þDKL ¼ hlnLiP: ð11Þ

This makes for an interesting pairing with the Bayesian
model dimensionality, since d=2 is the posterior variance
of the log-likelihood. As such, these two quantities provide
an alternative perspective to that of the evidence and KL
divergence. The posterior average and variance of the
log-likelihood are a measure of the fit and complexity,
respectively. hlnLiP is shown in the last panel in Fig. 4,
where we indeed see that the line for uniform sampling of r
has moved much closer to the other lines, which is to be
expected, since r and log r are fundamentally the same
parameter and therefore lead to a similar goodness of fit.
This behavior can also be understood analytically, which

we explore in the following section in a one-dimensional
mock example, simulating the r vs log r result.

C. Mock example

To illustrate further the role of a uniform vs a logarithmic
prior on a Bayesian model comparison, we propose the
following mock example, which is loosely based on the
pedagogical example by Sivia and Skilling [37] explaining
the effect of an additional (although in that case con-
strained) parameter, which we already outlined in Sec. II A.
Here, we will not assume a Gaussian likelihood that

ultimately fully constrains a parameter, but rather we will

assume an exponential distribution as our likelihood on a
strictly positive parameter (which is the maximum-entropy
distribution when only a mean is known):

LðaÞ ¼ P0e−a=μ; ð12Þ

where P0 ¼ PrðDja ¼ 0Þ is the maximum likelihood value
for the data D at a ¼ 0 and where μ is the mean of the
likelihood distribution describing the data. Thus, the like-
lihood is constrained only on one side, providing an upper
bound, as shown in the left panel of Fig. 5.
Wewill assume amodelA, wherewe sample the parameter

a uniformly in the interval ½a1; a2�. Furthermore, we will
assume amodelB, whereweuniformly sample the parameter
b ¼ log10 a in the interval ½b1; b2�, corresponding to loga-
rithmically sampling the parameter a. Since both models are
fundamentally governed by the same quantity and will use
the same likelihood, any difference in Bayesian inference
quantities will be purely prior driven.
We will make the following assumptions on the ordering

of the prior limits:

0 ¼ a1 < 10b1 ≪ μ ≪ 10b2 ¼ a2 ¼ 1: ð13Þ
This ordering is motivated as follows: for the upper limit we
require that the likelihood has essentially dropped to zero.
Hence, without loss of generality, we can set the upper limit
to one and require μ ≪ 1. The lower limit for the positive
parameter a can be explicitly set to zero when sampling
uniformly. However, when sampling logarithmically we
need to pick some finite lower limit, which we require to be
in the region 10b1 ≪ μ, where the likelihood has essentially
saturated with respect to b (see right panel in Fig. 5). The
dependence of Bayesian quantities such as the evidence Z
or the Kullback–Leibler divergenceDKL on the prior choice
on the one hand and on this lower limit b1 on the other is the
goal of this mock example.
The corresponding priors for models A and B can thus be

written as

πAðaÞ ¼
1

a2 − a1
Θða − a1ÞΘða2 − aÞ; ð14Þ

πBðbÞ ¼
1

b2 − b1
Θðb − b1ÞΘðb2 − bÞ; ð15Þ

where ΘðxÞ is the Heaviside step function.

TABLE II. Mean and standard deviation of the log-evidence lnZ, Kullback–Leibler divergence DKL and Bayesian model
dimensionality d of the base ΛCDM cosmology and its r extension from Planck 2018 TT;TE;EEþ lowE data [43]. The Δ indicates
normalization with respect to the base ΛCDM model.

Model lnZ DKL d Δ lnZ ΔDKL Δd

ΛCDM −1431.05� 0.20 38.57� 0.20 17.10� 0.40 −0.00� 0.20 0.00� 0.20 0.00� 0.40
ΛCDMþ r ∼ Uð0; 1Þ −1434.15� 0.23 40.94� 0.23 18.05� 0.48 −3.10� 0.23 2.37� 0.23 0.95� 0.48
ΛCDMþ log10 r ∼ Uð−5; 0Þ −1431.76� 0.23 39.29� 0.23 17.47� 0.47 −0.71� 0.23 0.72� 0.23 0.37� 0.47
ΛCDMþ log10 r ∼ Uð−10; 0Þ −1431.22� 0.23 38.76� 0.22 17.57� 0.48 −0.17� 0.23 0.19� 0.22 0.47� 0.48
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We can compute the evidence and Kullback–Leibler divergence for models A and B as

ZA ¼
Z

LðaÞπAðaÞda ¼ P0μ

a2 − a1
ðe−a1=μ − e−a2=μÞ; ð16Þ

ZB ¼
Z

Lð10bÞπBðbÞdb ¼ P0

b2 − b1

1

lnð10Þ
�
Ei

�
−
10b2

μ

�
− Ei

�
−
10b1

μ

��
; ð17Þ

DKL;A ¼
Z

LðaÞπAðaÞ
ZA

ln

�
LðaÞ
ZA

�
da ¼ ln

P0

ZA
− 1 −

P0

ZA

1

a2 − a1

�
a1 exp

�
−
a1
μ

�
− a2 exp

�
−
a2
μ

��
; ð18Þ

DKL;B ¼
Z

Lð10bÞπBðbÞ
ZB

ln

�
Lð10bÞ
ZB

�
db ¼ ln

P0

ZB
−

P0

ZB

1

b2 − b1

1

lnð10Þ
�
exp

�
−
10b1

μ

�
− exp

�
−
10b2

μ

��
; ð19Þ

where Ei refers to the exponential integral. For reasons of
brevity and readability, we omit the similar but lengthier
terms for the Bayesian model dimensionality here. With the
ordering from Eq. (13), i.e., for small μ and for a
sufficiently low lower bound of the logarithmic prior b1,
we can then approximate these terms to give:

Δ lnZA ≈ ln μ ∼ −3; ð20Þ

Δ lnZB ≈ ln

�
1þ γ − ln μ

b1 ln 10

�
∼ 0; ð21Þ

ΔDKL;A ≈ −1 − ln μ ∼ 2; ð22Þ

ΔDKL;B≈
1

γ− lnμþb1 ln10
− ln

�
1þ γ− lnμ

b1 ln10

�
∼0; ð23Þ

ΔdA ≈ 2þ 1

μ2ð1 − cosh 1
μÞ
∼ 2; ð24Þ

ΔdB ≈ −
2

γ − ln μþ b1 ln 10
−

2

ðγ − ln μþ b1 ln 10Þ2
∼ 0;

ð25Þ

where γ is Euler’s constant and where the Δ indicates
normalization with respect to a base model O with a ¼
10b ¼ 0 fixed, such that ZO ¼ P0 and DKL;O ¼ 0.
The approximate numerical results for the Bayesian

model dimensionality can be compared to Fig. 3 in [42]
which links posterior shapes to values for the model
dimensionality and lists d ¼ 0 for a top hat (matching
model B), d ¼ 1 for a Gaussian, and d ¼ 2 for a Laplace
distribution (matching model A).
The approximate numerical values assume μ ∼ 0.06,

which is roughly the posterior mean of the tensor-to-scalar
ratio under uniform sampling in the preceding section.
Hence, we can compare these zeroth-order numerical
approximations to the results in Fig. 4 and Table II, which
indeed match. Figure 6 makes this comparison more
thoroughly, comparing the results from our one-dimensional
mock example in Eqs. (16) and (17)with the nested sampling
results from Table II for a variable lower bound bmin of the
logarithmic prior. The mean lnZ of the base model with
r ¼ 0 for both the mock example and for the base ΛCDM
nested sampling run are zero by definition of our normali-
zation. They serve only as calibration for the models with

FIG. 5. Exponential likelihood distribution from our mock example in Eq. (12) compared to Planck 2018 temperature and polarization
data (TT;TE;EEþ lowE) on the tensor-to-scalar ratio r with uniform sampling of r on the left and logarithmic sampling of r on the
right. Note how the mean μr fulfills the ordering required by Eq. (13) and how the lower limit on log10 r is well into the saturation plateau
of posterior/likelihood.
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uniform (blue) and logarithmic (orange) priors. All three
nested sampling runs agree well with the prediction from the
mock example within their margins of errors.
Figure 6 illustrates how the evidence levels off with

regards to the choice of the lower bound of the logarithmic
prior (orange line) also reflected in the near equal evidences
of the nested sampling runs with lower prior bounds of −5
and −10, respectively. Note that the good agreement
between mock example and data in Fig. 6 is due to the
fact that the tensor-to-scalar ratio is almost completely
uncorrelated with the other cosmological parameters, with
the biggest (yet still small) correlation coming from the
spectral index ns (cf. Fig. 3).

IV. NEUTRINO MASSES

In Planck’s baseline cosmology, the neutrinos are
assumed to be comprised of two massless neutrinos and
one massive neutrino with mass mν ¼ 0.06 eV with the
effective number of neutrino species set slightly larger than
three to Neff ¼ 3.046 [7,58,59].
Upcoming CMB experiments such as the Simons

Observatory, LiteBIRD, or CMB-S4 and large scale struc-
ture experiments such as Euclid will allow us to fully
constrain the sum of neutrino masses

P
mν. However, even

under the most optimistic assumptions, it will not be
possible to disentangle the individual contributions of
the three neutrino flavors with cosmological data alone
[16]. To achieve that, we need additional data from solar,
atmospheric, reactor, and accelerator experiments as

summarized in NuFIT 5.0 (2020) [45,46] that provide us
with the mass square splittings:

δm2 ¼ 7.42þ0.21
−0.20 × 10−5 eV2 ðNH& IHÞ; ð26Þ

Δm2 ¼
	
2.517þ0.026

−0.028 × 10−3 eV2 ðNHÞ;
2.498þ0.028

−0.028 × 10−3 eV2 ðIHÞ; ð27Þ

where δm2 is the smaller squared mass splitting between the
light and the medium neutrino mass for the normal neutrino
hierarchy (NH) and between the medium and the heavy
neutrino mass for the inverted neutrino hierarchy (IH), and
Δm2 is the larger squaredmass splitting between the light and
the heavy neutrino mass in both cases.
With the knowledge of the two squared mass splittings,

the remaining uncertainty lies mostly with the scale of the
lightest neutrino. In the following Bayesian analysis we
therefore apply Gaussian priors according to Eqs. (26)
and (27) and vary over the lightest neutrino mass.

A. Neutrino masses: Posteriors

We have taken nested sampling runs for an extension of
the base ΛCDM cosmology with three individual neutrino
masses, where we have used both a uniform prior mlight ∼
Uð0; 1Þ and logarithmic priors with different lower bounds,
log10mlight ∼ Uð−5; 0Þ and log10mlight ∼ Uð−10; 0Þ, on the
lightest neutrino mass. The other two neutrino masses are
then derived from mlight together with δm2 and Δm2 from
Eqs. (26) and (27):

m2
medium ¼

	m2
light þ δm2 ðNHÞ;

m2
light þ Δm2 − δm2 ðIHÞ; ð28Þ

m2
heavy ¼ m2

light þ Δm2: ð29Þ

Figure 7 gives an overview of the stability of the
cosmological base parameters across the different priors
for mlight and compares them to the ΛCDM base model by
showing their mean and 68% ranges. Compared to Fig. 1
for the tensor-to-scalar ratio there are some small parameter
shifts visible in relation to the base ΛCDM model, but all
shifts stay well within the 68% bounds.
Figure 8 shows the one-dimensional marginalized pos-

terior distributions for the three individual neutrino masses
mlight, mmedium, and mheavy, as well as the sum of all threeP

mν for both the normal and the inverted hierarchy. We
have included shaded histograms to give a notion of the prior
distributions. The vertical black dotted lines indicate roughly
the lower bound for the medium and heavy neutrino mass as
determined from the mass squared splittings under the
assumption where the light neutrino mass is zero.
When looking at the lightest neutrino mass in the

first row, the picture is very similar to that for the

FIG. 6. Dependence of the log-evidence on the lower prior
bound bmin. Comparison of the results in Eqs. (16) and (17) for
the one-dimensional mock example (solid lines) to the nested
sampling results from Table II (dots with error bars). The vertical
dotted line corresponds to the mean used in the mock likelihood
distribution (cf. Fig. 5).
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tensor-to-scalar ratio before, and most of what we have said
in Sec. III A applies here, too. One has an almost expo-
nential dropoff from zero when sampling uniformly over
the mass (left column), significantly compressing the prior,
which turns into a more steplike behavior with respect to
the logarithm of the mass when sampling the mass
logarithmically (right column).
Note that the medium and heavy mass from rows 2 and 3

as well as the sum of all masses in the bottom row are
derived quantities and therefore do not show the same prior
behavior visible for the light neutrino mass. This is not so
apparent for the derived masses, when sampling uniformly
over the light neutrino mass, although one can see a slight
step in the histogram of the prior for the heavy mass in the
NH case and for both medium and heavy mass in the IH
case. However, when sampling logarithmically over the
light neutrino mass, then the picture is much clearer. The
probability density for medium and heavy neutrino mass
bulks up around their rough lower minimum set by the
smaller and larger mass square splitting, respectively.
There are two perspectives that one can adopt here. On

one hand, one could criticize the choice of a logarithmic
prior for being ultimately too prior (or theory) driven and
not reflective of the data. On the other hand, one could say
that this is the natural result of our state of knowledge of the
mass square splittings and our true ignorance about the
scale of the lightest neutrino mass.
We wonder whether this very last statement could be

contested, e.g., could we say that we would expect the
lightest neutrino mass to be of a magnitude similar to that of
the medium neutrino mass in the NH? However, this is not
the case, when checking for precedence by looking at the
other set of leptons, the electron, muon, and tauon, where
we have roughly around two orders of magnitude between
their masses [60].
Comparing the two hierarchies with one another, we can

see that the major difference lies in the medium neutrino

mass (and therefore also the sum of all neutrino masses),
which is restricted to larger masses in the inverted hierarchy
compared to the normal hierarchy, as expected from the
mass square splitting (black dotted lines).

B. Neutrino masses: Evidence and Kullback–Leibler
divergence

In Fig. 9 we show the results from our nested sampling
runs for the log-evidence lnZ, KL divergence DKL,
Bayesian model dimensionality d and posterior average
of the log-likelihood hlnLi. We again normalize with
respect to the base ΛCDM model. Table III lists the
summary statistics for these quantities. As already the case
for the posterior, the picture here is again similar to the one
for the tensor-to-scalar ratio in Sec. III B.
Looking at the distributions for the log-evidence (top-

most diagonal panel) shows that the addition of the neutrino
parameters with uniform sampling over the light neutrino
mass (either hierarchy) is disfavored with over three log-
units compared to the base ΛCDM model with a single
massive neutrino of fixed mass (and two massless). Since
the mass square splittings enter on the prior level in our
analysis and remain essentially unconstrained by the
cosmological data, any change to the evidence is almost
entirely driven by the light neutrino mass parameter. Hence,
it is not surprising that upon switching to a logarithmic
prior on mlight the log-evidence increases again while the
KL divergence drops close to the level of the ΛCDM
model. We need to keep in mind that since this is an
extension to the ΛCDM model, it has in principle a better
chance of fitting the data, such that any difference in the
Bayesian evidence can be attributed to an Occam penalty,
which the shift between uniform and logarithmic sampling
confirms.
As expected from our investigations for the tensor-to-

scalar ratio and especially with regards to our mock
example from Sec. III C, changing the lower bound for

FIG. 7. Stability of the cosmological parameters for the three-neutrino extension of the base ΛCDM cosmology for different priors on
mlight: uniform in blues, logarithmic with lower bound of −5 in oranges and logarithmic with lower bound of −10 in reds. The darker set
of colors corresponds to the normal normal neutrino hierarchy (NH) and the lighter set to the inverted hierarchy (IH). For each parameter
we show the mean and the extent from quantile 0.16 to 0.84, i.e., the inner 68% limits.
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FIG. 8. One-dimensional posterior distributions of neutrino masses with normal neutrino hierarchy (NH) in the top panel and with
inverted hierarchy (IH) in the bottom panel for TT;TE;EEþ lowE data from Planck 2018 and neutrino oscillation data on the mass
squared splittings from NuFIT 5.0 (2020). The vertical black dotted lines give the rough lower limit on medium and heavy mass that is
set by the mass squared splittings δm2 and Δm2. For the inverted hierarchy these dotted lines appear almost on top of each other. The
rows show the posteriors for the light, medium, and heavy neutrino mass and sum of all neutrino masses, respectively. The columns
contrast the difference between using a uniform (blue, left) or logarithmic (orange and red, right) prior on the light neutrino mass mlight.
The shaded histograms give a notion of that prior distribution.
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the logarithmic prior does not affect the Bayesian evidence.
We have again performed runs with two different lower
bounds of logmlight ¼ −5 and logmlight ¼ −10, i.e., five
orders of magnitude apart. With both of these bounds well
into the area of the posterior (see top right panel of Fig. 8)
where it has leveled off, we do not expect much change to
the evidence value. This is clearly confirmed in Table III
and Fig. 9 for the normal hierarchy. For the inverted

hierarchy it is not as clear but still reasonable in light of
the uncertainties.
Looking at the normalized posterior average of the

log-likelihood hlnLiP ¼ lnZ þDKL we again roughly
confirm

Δ lnZuni þ ΔDKL;uni ≈ −1; ð30Þ

FIG. 9. Effect of uniform vs logarithmic priors on the light neutrino mass mlight for Bayesian model comparison: log-evidence
Δ lnZ, Kullback–Leibler divergence DKL, Bayesian model dimensionality d, and posterior average of the log-likelihood
hlnLiP ¼ lnZ þDKL. The probability distributions represent errors arising from the nested sampling process. In the limit of infinite
life points these distributions would become point statistics, in contrast to posterior distributions. We normalize with respect to the
ΛCDM model with two massless and only one massive neutrino with mν ¼ 0.06 eV. Note how switching from uniform to logarithmic
sampling of mlight moves the contours along their lnZ, DKL degeneracy line, i.e., relative entropy is traded in for evidence. Note further
by comparison of the orange and red lines, how changing the lower bound of the logarithmic sampling interval (by five log-units!) barely
affects the contours (bar some expected statistical fluctuation due to the sampling error).
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Δ lnZlog þ ΔDKL;log ≈ 0; ð31Þ

matching our mock results from Eqs. (20) to (23), inde-
pendent from the mock parameter μ.

C. Neutrino hierarchy

A Bayesian model comparison of the normal vs the
inverted neutrino hierarchy is beyond the scope of this
paper and has been done before with more stringent data
[17,61,62]. However, with posteriors and evidences at
hand, we shall briefly discuss the situation here.
There have been claims to a strong preference of the

normal over the inverted neutrino hierarchy [10], however,
such strong evidence can typically be traced back to prior
volume effects [11], i.e., the effect of a reduced sampling
space for the inverted hierarchy. In other words, we need to
watch out and properly distinguish to what extent any
Bayesian preference is assigned already on the prior level
and to what extent is that preference indeed driven by
the data.
In our analysis both hierarchies start out on an equal

footing. With the same prior on the light neutrino mass and
equivalent Gaussian priors on the mass squared splittings
from neutrino oscillation experiments, the prior volume for
both hierarchies is essentially the same. Note that although
the means for the larger mass squared splitting Δm2 are
slightly different in the two hierarchies, its standard
deviations are essentially the same.
There is a slight tendency for all prior options of a better

fit of the normal compared to the inverted neutrino
hierarchy. However, with an evidence difference of less
than one log-unit (odds of maximally 2∶1) any preference
for the normal hierarchy is meager at best, especially
when also accounting for the sampling error (see Fig. 9). It
should be noted, though, that we have used only CMB
temperature and polarization data here. Adding data from
CMB lensing or baryon acoustic oscillations would have
further shrunk the constraints on the sum of neutrino

masses and thereby possibly strengthened the case for the
normal hierarchy.

V. DISCUSSION

We demonstrate how switching between a uniform and
a logarithmic prior on some single-bounded model
parameter results in a trade-off between Bayesian evi-
dence and Kullback–Leibler divergence (or relative
entropy). The common scenario is that of insufficient
data sensitivity, leading to a one-sided bound on a
parameter. For a location parameter this typically causes
an exponential dropoff, which translates to a steplike
behavior when turned into the corresponding scale param-
eter. We show that the ambiguity of the lower bound of the
scale parameter does not affect a Bayesian model com-
parison, provided the lower bound is chosen sufficiently
far into the likelihood plateau.
We demonstrate this behavior for two cases of param-

eter extensions to the ΛCDM model of cosmology,
namely for the tensor-to-scalar ratio of primordial per-
turbations and for the case of three nondegenerate neu-
trino masses. In both cases we confirm that switching
from a uniform prior to a logarithmic prior will get rid of
(most of) the Occam penalty associated with that param-
eter, since unconstrained parameters do not affect the
Bayesian evidence. Thus the Bayesian evidence is roughly
on par with the unextended (base) model, with the only
difference in the form of an uninformative parameter.
Furthermore and for the same reason, the exact choice of
the lower bound for the logarithmic prior does not change
the Bayesian evidence. When the likelihood levels off,
e.g., due to insufficient sensitivity in the data, then so does
the Bayesian evidence.
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