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We analyze the early stage of evolution of a universe with two scale factors proposed in Falomir et al.
[Phys. Rev. D 96, 083534 (2017)]. when matter is present. The scale factors describe two causally
disconnected patches of the universe interacting trough a nontrivial Poisson bracket structure in the
momentum sector characterized by one parameter κ. We studied two scenarios in which one of the patches
is always filled with relativistic matter while the other contains relativistic matter in one case, and
nonrelativistic matter in the second case. By solving numerically the set of equations governing the
dynamics, we found that the energy content of one sector drains to the other and from here it is possible to
constrain the deformation parameter κ by supposing that the decay of the energy density happens, at most,
at the Big Bang Nucleosynthesis temperature in order to return to the usual behavior of radiation.
The relation with nonstandard cosmologies is also addressed.
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I. INTRODUCTION

Our present description of the universe rests on the
cosmological principle—the hypotheses of spatial homo-
geneity and isotropy at large scales—described by a
Friedman-Lemaitre-Robertson-Walker (FLRW) metric
[1,2]. Observations of rotational curves of galaxies [3,4]
(for a review see [5,6]) as well as the observed accelerated
cosmic expansion [7,8], made it necessary to complete the
model with two extra hypotheses: the existence of dark
matter and dark energy (cosmological constant term Λ),
respectively. Thus, our present model of the universe,
according to observations [9], contains 68.3% of dark
energy, 26.8% of cold (nonrelativistic) dark matter, and
4.9% of baryonic matter.
On the other hand, possible traces of inhomogeneities1

have been smoothed out during the exponentially accel-
erated period of expansion known as inflation [14,15], a
new hypothesis which also solves the flatness and horizon
problems, explains the origin of large-scale structures in the
universe, and restores homogeneity inside the cosmological
horizon.
In this regard, in a recent set of papers [16–18] a model

for a universe with two metrics was considered. In such
model, two regions (patches) causally disconnected after
the inflation era, are described with metrics of FLRW type
with different scale factors for each patch, and a sort of

interaction was introduced through a deformation of
the Poisson bracket structure in the space of fields. It
was shown that, in absence of matter, this sort of inter-
action emulates the presence of cosmological constant on
each patch.
Two comments are in order here. First, one should note

that, in general, theories with two metrics develop ghost
instabilities [19] since they contain a massive graviton (see
for example [20]). However, for a class of massive gravity
such inconsistencies can be avoided [21,22] even if the
background metric is dynamic, as it was proved in [23,24].
The model we study in this work, on the other hand,
introduces the interaction through a deformation of the
algebra of canonical variables, and, then, the consistency
problem might not be present. The complete analysis of the
problem, in any case, goes beyond the scope of the present
work and will be reported elsewhere in the future.
It should also be noted that the Poisson bracket structure

deformation has been also previously considered [25–28],
and, recently, in the context of closed strings on a flat
background [29,30], which are the starting points for the
recently proposed idea of metaparticles [31], that is,
particles (as a world-line) defined in a doubled phase
space with a nonstandard symplectic structure.2 The impli-
cations for cosmology of this noncommutativity inspired
from the string theory analysis have been discussed in [35].
In the present paper we extend the model in [16], in order

to incorporate matter assuming that matter evolves inde-
pendently on each sector and it can be modeled as a
barotropic perfect fluid. We will show that this model
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1The possibility of formation of cosmic strings, monopoles, or

domain walls can not be discarded from a theoretical point of
view [10–13]. 2For a general discussion on modular spacetime see [32–34].
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can be understood as a sort of nonstandard cosmology
(NSC) [36–42], for different values of the parameter
controlling the Poisson’s bracket deformation.
In order to do that, in the next section we will show the

main features of the model with two metrics and the NSC
scenario. Section III is devoted to the discussion of how to
incorporate matter into the model. In Sec. IV two cases will
be addressed: a) one patch filled with relativistic matter
while the second one contains a nonrelativistic fluid and
b) both patches containing relativistic matter. In the final
section we present the conclusions and discuss possible
extensions of the model.

II. THE TWO-METRIC UNIVERSE

The model discussed in [16] (see also [17,18]) describes
two patches of the universe through scale factors aðtÞ and
bðtÞ, and a Hamiltonian

H ¼ NG
2

�
π2a
a
þ 1

G2

�
aka −

Λa

3
a3
��

þ NG
2

�
π2b
b
þ 1

G2

�
bkb −

Λb

3
b3
��

; ð1Þ

≡Ha þHb; ð2Þ
where πa, πb are the conjugate momenta of a and b,
respectively. Scale factors are chosen with canonical
dimension −1, and then momenta have dimension þ1.3

N is an auxiliary field that guarantees the time reparamet-
rization invariance. Patches a, b have spatial curvature ka,
kb and cosmological constant Λa, Λb, respectively.
The Poisson bracket structure, on the other hand, is

defined through the following relations:

faα; aβg ¼ 0; faα; πβg ¼ δαβ; fπα; πβg ¼ θϵαβ;

ð3Þ

with θ a constant parameter and index fα; βg ∈ fa; bg.
Scale factors notation is aa ¼ a, ab ¼ b. It is convenient to
redefine the parameter θ as θ ¼ κG−1 with κ a dimension-
less parameter.
Equations of motion derived from Hamiltonian (1) with

Poisson brackets (3) are

_a ¼ G
πa
a
; _b ¼ G

πb
b
; ð4Þ

_πa ¼ G
π2a
2a2

þ 1

2G
ða2Λa − kaÞ þ κ

πb
b
; ð5Þ

_πb ¼ G
π2b
2b2

þ 1

2G
ðb2Λb − kbÞ þ κ

πa
a
; ð6Þ

while the constraint _πN ¼ 0 reads

π2a
a
þ π2b

b
þG−2

�
aka þ bkb −

Λa

3
a3 −

Λb

3
b3
�

¼ 0: ð7Þ

Note that we have written the equations in the usual gauge
N ¼ 1 (equivalently, we have redefined the time varia-
ble dt0 ¼ NðtÞdt).
Equations (4) to (7) can be recast as the following set of

second order differential equations:

2aäþ _a2 ¼ Λaa2 − ka þ 2κ _b; ð8Þ

2bb̈þ _b2 ¼ Λbb2 − kb − 2κ _a; ð9Þ

a _a2 þ b _b2 ¼ Λa

3
a3 − kaaþ Λb

3
b3 − kbb: ð10Þ

The model presents several interesting properties as, for
example, the existence of solutions containing both accel-
erated and decelerated periods or the presence of an
inflationary epoch in a patch with a negligible cosmological
constant (for example, for Λa ≪ Λb). Note also that the
equations are symmetric under the simultaneous change
a → b, b → a, and κ → −κ.
The effect of matter in the model, on the other hand, has

not been explored and it is the main purpose of the present
work to investigate this scenario. We will show that this
two-metric model with matter has similar features com-
pared with the nonstandard cosmologies (NSCs) scenarios.
Indeed, the study of the effects of different cosmological

histories at early stages of the universe, such as matter
domination (H ∝ T3=2) [38], kination domination (H ∝ T6)
[43], or even a field with a general state of equation
(H ∝ T3ðωþ1Þ=2) [40–42], whereH is the Hubble parameter,
is a very active field of research.
A particular scenario relevant to the present work

considers the introduction of a field (ϕ) whose only effect
is to modify the expansion rate of the universe, making it
faster or slower (and also can decay into Standard Model
particles). These kind of different cosmological histories
are usually called nonstandard cosmologies (NSCs) and the
only restriction for this new field is to decay before the
epoch of Big Bang Nucleosynthesis (BBN), in order to not
be in conflict with astrophysical measures [44,45].
For a general NSC model, the evolution equations read

_ρSM þ 4HρSM ¼ Γρϕ ð11Þ

_ρϕ þ 3ðωþ 1ÞHρϕ ¼ −Γρϕ; ð12Þ

where ρSM is the energy density of the Standard Model
(SM) content, ρϕ is the energy density of the new field, ω is
the constant for the barotropic fluid, Γ the decay constant
for the ϕ field, and H is the Hubble parameter.

3The canonical dimensions of fields are chosen in this way just
because of a matter of convenience.
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The decay constant Γ can be expressed in terms of the
reheating temperature TRH (sometimes called Tend depend-
ing on the behavior of the ϕ field), by demanding

Γ ¼ π

3

ffiffiffiffiffi
g⋆
10

r
T2
RH; ð13Þ

that is, Γ is equal to the value of the Hubble parameter at the
time when universe is dominated by radiation again. Here,
g� is the degrees of freedom of radiation that we will
consider as a constant with value g⋆ ≈ 10, which corre-
sponds to a temperature for TRH (or Tend) of
T ¼ 4 × 10−3 GeV. This value is imposed by the BBN
epoch and corresponds to the lowest value of the temper-
ature at which this new field must decay [46,47].
The ϕ field has interesting features. It acts like an

inflaton when the initial energy density ρSM is zero and
then generates a new epoch of reheating due to the decay
term which transfers energy to the SM content until TRH is
reached [38,40]. At this temperature the ϕ field decays
completely. This effect is shown in Fig. 1.
For a less restrictive scenario, one assumes a nonzero

ratio between the energy density of ϕ and the energy
density of the SM, at some initial scale factor ai. That is, a
nonzero value for the quantity

δ ¼ ρϕ
ρSM

����
ai

:

In this case, this new field does not act like an inflaton
anymore, but we can observe a similar behavior growing up

the energy density for the SM content meanwhile the ϕ
field is decaying until Tend, which is the temperature when
total decay occurs [42].
It is interesting to note that the two-metric model in

absence of matter also shows an inflatonlike behavior [16],
but there the interaction provided by the deformation of the
Poisson bracket structure is responsible for such effect. We
will show that for the matter case, it is possible to reproduce
also the behavior shown in Fig. 2.

III. THE MATTER CONTENT

We are interested in the study of energy density evolution
under the hypothesis that the evolution of matter in one
patch is independent from the other and particularized to
barotropic perfect fluids characterized by the pressure p
and the energy density ρ.
Note that the lhs of (8) and (9) are proportional to the

spatial component of the Einstein tensor. Indeed, for a
FLRW metric with scale factor a and spatial curvature ka
(in the gauge N ¼ 1) the Einstein tensor reads

Gij ¼ −gijð2aäþ _a2 þ kaÞ; G00 ¼
3

a2
ð _a2 þ κaÞ;

ð14Þ

and then, under the hypothesis previously explained, we
propose the following modification of the equations of
motion in order to include matter effects:

2aäþ _a2 ¼ Λaa2 − ka þ 2κ _b − a2pa; ð15Þ

(a) (b)

(c)

FIG. 1. Panel (a) shows the ϕ field acting like an inflaton. The
SM sector starts to grow with the evolution of ϕ until TRH ¼
4 × 10−3 GeV is reached and ϕ decays. In panel (b) the temper-
ature as a function of a=ai is shown. The change of slope at TRH is
due to the decay of the ϕ field. Energy density as function of T is
shown in (c), with T0 ¼ 2.33 × 10−13 GeV.

(a) (b)

(c)

FIG. 2. Panel (a) shows the evolution of energy density of ϕ
field and the SM bath for δ ¼ 10−1. Γ is chosen so that ϕ decays
at TRH ¼ 4 × 10−3 GeV. Panel (b) exhibits the temperature as a
function of a=ai. The slope changes due to the effect of the ϕ
field which is decaying. Panel (c) shows the relationship
between the energy densities and the temperature, with T0 ¼
2.33 × 10−13 GeV the current temperature.
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2bb̈þ _b2 ¼ Λbb2 − kb − 2κ _a − b2pb; ð16Þ

a _a2 þ b _b2 ¼ Λa

3
a3 − kaaþ a3

3
ρa

þ Λb

3
b3 − kbbþ b3

3
ρb; ð17Þ

where p and ρ are the pressure and energy density of the
fluid (in MPl ¼ ð8πGÞ−1=2 units), respectively, and index
a, b denotes the patch where they are defined.
A comment is in order here. While the pressure terms in

(15) and (16) trivially satisfy the hypothesis of local matter
content, modifications of the constraint equation—the term
a3ρa þ b3ρb in (17)—do not have a unique form. The most
general term modifying (17) must be a function ρðabÞ which
satisfies also the separability condition ρðabÞ ¼ ρðaÞ þ ρðbÞ,
since the constraint in the present model turns out to be
the addition of the usual ones on each patch. Indeed, for
the FLRW metric with scale factor a, the constraint reads
Ca ¼ a _a2 − Λa

3
a3 þ kaa − a3

3
ρa ¼ 0, while for the present

two-metric model, the constraint reads Ca þ Cb ¼ 0.
The previous characteristic is a consequence of the fact

that there is only one time for both patches (and then only
one lapse function N) ensuring the time reparametrization
invariance. Then, our choice of energy density term
respects the separability condition and it reproduces also
the standard cosmological scenario if both patches are not
connected, that is, κ ¼ 0.
The conservation law is obtained by taking the time

derivative of the constraint and replacing the second
derivatives of the scale factors from (15) and (16). For a
general energy-density term ρðabÞ the continuity equation
reads4

_ρðabÞ þ _aa2pa þ _bb2pb ¼ 0: ð18Þ

Once we specify the function ρðabÞ to our choice in (17), the
previous equation turns out to be

a3½_ρa þ 3H2
aðρa þ paÞ� þ b3½_ρb þ 3H2

bðρb þ pbÞ� ¼ 0;

ð19Þ

with Ha ¼ _a=a and Hb ¼ _b=b the Hubble parameters on
each patch.
To summarize, in the present approach where matter on

patches a and b are characterized by their pressure and
energy density (on each patch), the evolution of the scale
factors are given by equations (15) to (17) from which the
conservation equation (19) follows.

IV. BAROTROPIC MATTER IN THE
EARLY UNIVERSE

We will analyze the effects of the matter presence for the
case in which fluids on a and b satisfy the barotropic
condition

pa ¼ ωaρa; pb ¼ ωbρb: ð20Þ

In the forthcoming analysis, the contributions from cos-
mological constant will be neglected since we are interested
in the early stage of the evolution of the universe, which is
an interesting scenario for different physical phenomena
like dark matter production [38,40–42] or gravitational
waves [48], among others. Also, we set ka ¼ 0 ¼ kb, the
favored scenario consistent with cosmological data [9].
Note also that, in spite of the choice Λa ¼ 0 ¼ Λb, a sort of
cosmological constant term is always present due to the
effects of a nonzero value of κ [16]. The equations of
evolution, with previous choices, turn out to be

2
ä
a
þH2

a þ ωaρa ¼ 2κ
_b
a2

; ð21Þ

2
b̈
b
þH2

b þ ωbρb ¼ −2κ
_a
b2

; ð22Þ

a3
�
H2

a −
1

3
ρa

�
þ b3

�
H2

b −
1

3
ρb

�
¼ 0; ð23Þ

while the continuity equation reads

a3½_ρa þ 3ρaH2
aðωa þ 1Þ�

þ b3½_ρb þ 3ρbH2
bðωb þ 1Þ� ¼ 0: ð24Þ

In the present model, we will look for solutions of (23),
respecting the separability hypothesis, and then we look for
solutions which are also the solutions of

H2
a −

ρa
3
¼ 0; ð25Þ

H2
b −

ρb
3
¼ 0: ð26Þ

The time derivative of previous equations give rise to the
following conditions:

a3ð_ρa þ 3Haðωa þ 1ÞρaÞ ¼ 6κ _a _b; ð27Þ

b3ð_ρb þ 3Hbðωb þ 1ÞρbÞ ¼ −6κ _a _b; ð28Þ

which, when added, turn out to be (24).
Comparing (27) and (28) with (11) and (12) for the case

of NSC, we observe the similar source-sink behavior due to
the κ term in the two-metric model. However, the decaying

4This is a notation abuse since ρðabÞ does not have the
dimensions of energy density.
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constant Γ is now time dependent. Moreover, one can
rewrite (27) and (28) as

_ρa þ 3Haðωa þ 1Þρa ¼ Γaρb; ð29Þ
_ρb þ 3Hbðωb þ 1Þρb ¼ −Γbρb; ð30Þ

with

Γa ¼ 2κ
b
a2

δ−1=2; Γb ¼ 2κ
a
b2

δ−1=2; ð31Þ
and δ ¼ ρb=ρa. The decay functions Γ satisfy
a3Γa − b3Γb ¼ 0. In this sense, the two-metric model with
matter can be understood as an extension of NSC.
In the following sections we will study the numerical

solutions of the set of equations (25) to (28) in two cases.
For both scenario the energy density in a patch will have a
radiationlike barotropic equation so that we can compare
with with NSC (we will refer this content as relativistic),
while the patch b contains relativistic matter in one case and
nonrelativistic in the other. Even though the numerical
solutions found are functions of time, it is convenient to
express results in terms of temperatures.
The temperature dependence is incorporated by noticing

that in patch a, where relativistic matter dominates, the
following relation holds:

ρa ¼
π2

30
g�T4; ð32Þ

with g� the number of massless degrees of freedom.

A. Patch b filled with nonrelativistic matter

In this case, as we previously discussed, patch a is filled
with relativistic matter while the energy content of b is
nonrelativistic. Then we set ωa ¼ 1=3 and ωb ¼ 0 and
therefore the set of equations (25) to (28) turn out to be

_a ¼
ffiffiffiffiffiffiffiffiffiffi
ρa
3M2

p

r
a;

_b ¼
ffiffiffiffiffiffiffiffiffiffi
ρb
3M2

p

r
b;

_ρa ¼ −
4ffiffiffiffiffiffiffiffiffiffi
3M2

p

q ðρaÞ3=2 þ 2κMp
ffiffiffiffiffiffiffiffiffi
ρaρb

p b
a2

;

_ρb ¼ −
1ffiffiffiffiffiffiffiffiffiffi
3M2

p

q ðρbÞ3=2 − 2κMp
ffiffiffiffiffiffiffiffiffi
ρaρb

p a
b2

; ð33Þ

where we have restored the Planck mass constant.
Numerical results for the energy density evolution as

function of temperature are shown in Figs. 3–5. The
quantities of interest, as function of temperature, are
ρ × ðscale factorÞl, for some power l.
In all cases with κ ≠ 0 we observe a drain effect, namely,

the energy density of sector b decreases until it vanishes,
while the energy density in a increases. The temperature at

which the total drain occurs depends on the value of κ as
well as the ratio δ at initial time. This is consistent with the
interpretation of source-sink system given by (29).
The dashed line marks the ratio TBBN=T0 at which the

drain of the energy content of b should end. That is the
drain must happen, at most, at the temperatures of the order
of the temperature of Big Bang Nucleosynthesis (TBBN) or
higher than TBBN.

(a) (b)

(c) (d)

(e)

FIG. 3. Evolution of energy density for relativistic matter
in a and nonrelativistic matter in b as function of the tem-
perature T=T0. T0 is the CMB temperature at present
(T0 ¼ 2.33 × 10−13 GeV). The dashed line indicates the Big
Bang Nucleosynthesis temperature at which ρb should vanish.
For all cases the initial density ρa ¼ 1020 GeV. Panel (a) shows
the case κ ¼ 0. Panels (b) and (c) are the solutions for δ ¼ 1 and
different values of κ. The panels (d) and (e) show the evolution for
δ ≠ 1 and same value of κ.

(a) (b)

FIG. 4. Evolution of energy density for different values of κ and
initial condition ρa ¼ 1010 GeV with δ ¼ 1.
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The panel (a) in Fig. 3 shows the situation for κ ¼ 0 in
order to check that the systems are decoupled in such cases
and the energy densities evolve as it is expected for
radiation and nonrelativistic matter. That is, ρa ∝ a−4 and
ρb ∝ b−3.
Panels (b) and (c) of Fig. 3 show the case of initial ratio

δ ¼ 1 and it is possible to observe that the decay of b
happens at higher temperatures (compared with TBBN) as κ
increases. Indeed, it is enough to have κ ≳ 10−32 in order to
have a complete decay of energy content of b sector at
TBBN. This is consistent with the fact that Γa in (29) is
proportional to κ.
Let us take now the value of κ so that the total drain

occurs at the desired temperature for a symmetric initial
density condition (δ ¼ 1), situation shown in panel (c). The
effect of initial condition δ > 1 and δ < 1 can be observed
in panels (d) and (e) in the same figure. We observe in panel
(e) that when b patch has more energy to drain (compared
with the energy of a patch) at the initial time, the complete
process takes a longer time, so that the total decay of energy
in patch b happens at temperatures smaller than TBBN,
which is an unfavorable scenario.
In all previous cases the initial value of energy density in

a is ρa ¼ 1020 GeV. The effect of a different initial
condition for ρa has been also addressed and the results
are shown in Figs. 4 and 5. In the first, the initial value
of energy density is ρa ¼ 1010 GeV while it is ρa ¼
1030 GeV in the second. For both cases we have chosen
δ ¼ 1. We conclude that the value of κ for which the total
drain happens at the desired temperature TBBN decreases as
the initial density ρa decreases, which is consistent with our
previous result in Fig. 3, panels (b) and (c).
To summarize, the temperature at which the energy

density of sector b vanishes, producing an increment of the
energy content in sector a (a source-sink effect) depends on
the values of κ, the initial value of the energy density in
sector a,5 and δ. Large values of κ produce a fast decay of
ρb while large values of initial ρa slow down the decay rate.
For a fixed κ, instead, large values of initial ρb also slow
down the decay rate.

In the following section we will analyze the case in
which the sector b has relativistic matter also and we will
show that previous conclusions are also valid for such
a case.

B. Patch b filled with relativistic matter

In this case, the patches a and b contain relativistic
matter (ωa ¼ ωb ¼ 1=3). The set of equations (25) to (28)
to determine time evolution of scale factors and the energy
density (with the Planck mass restored) are

_a ¼
ffiffiffiffiffiffiffiffiffiffi
ρa
3M2

p

r
a;

_b ¼
ffiffiffiffiffiffiffiffiffiffi
ρb
3M2

p

r
b;

_ρa ¼ −
4ffiffiffiffiffiffiffiffiffiffi
3M2

p

q ðρaÞ3=2 þ 2κMp
ffiffiffiffiffiffiffiffiffi
ρaρb

p b
a2

;

_ρb ¼ −
4ffiffiffiffiffiffiffiffiffiffi
3M2

p

q ðρbÞ3=2 − 2κMp
ffiffiffiffiffiffiffiffiffi
ρaρb

p a
b2

: ð34Þ

The evolution of energy densities as functions of temper-
atures is shown in Figs. 6–8 for different values of initial ρa
and δ ¼ 1.
We observe for all cases how the energy density of

relativistic matter in sector a increases at expenses of
the energy content of sector b until the energy on this
sector is completely drained. For the initial condition ρa ¼
1010 GeV we can compare the relativistic–relativistic case
depicted in Fig. 6 with the relativistic–nonrelativistic case
in Fig. 4. Again, for large values of κ, the total drain occurs
for temperatures greater than the BBN temperature. The
value of κ at which the total drain happens near TBBN is
slightly smaller compared with the radiation-matter case.
The effects of a larger initial value of ρa (with δ ¼ 1)

are shown in Figs. 7 and 8 which should be compared
with Figs. 3 [panels (b) and (c)] and 5, respectively. The
general features previously discussed are observed here
and, additionally, a small value of κ, compared with the
relativistic–nonrelativistic case, is necessary in order to
reach the total drain at TBBN. In other words, for a fixed

(a) (b)

FIG. 5. Evolution of energy density for different values of κ and
initial condition ρa ¼ 1030 GeV with δ ¼ 1.

(a) (b)

FIG. 6. Evolution of radiation content in patches a and b as
function of the temperature. Panels (a) and (b) show the energy
densities evolution for an initial condition ρa ¼ 1010 GeV and
δ ¼ 1 and different values of κ.5Naturally, it depends on the initial value of ρb through δ.
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value of κ and initial δ ¼ 1, the drain of energy from b to a
happens faster if b contains radiation compared with the
case in which b contains nonrelativistic matter.

V. DISCUSSION AND CONCLUSIONS

In this work we have presented an extension of a
cosmologicalmodelwith two scale factors in order to include
matter. The two scale factors might represent two sectors of a
universe (two patches) [49], or even two different universes
in a multiverse scenario [50] which are causally connected
only through a deformation of the Poisson bracket structure.
In this sense, this model is a sort of a noncommutative
cosmology. The model is analogous of the Landau problem
in the space of metrics [17].
The evolution of matter in such universe has been

addressed, and, in order to do that, we have assumed a)
the matter content on each patch do not interact—our
matter-independent hypothesis—and b) the modification of
equations of motion is minimal and it reduces to the usual
equations of motion of General Relativity when the
deformation parameter κ ¼ 0.
Under such hypotheses, the equations of the evolution of

the energy density have been solved numerically for two
cases. In both, one of the patches contains relativistic matter
while the content of the other is relativistic in one case and
nonrelativistic in the second one.
The cases analyzed show an energy transfer from patch b

to patch a in a sort of source-sink effect. The energy content

of b drains completely to a at some temperature Tdrain
which can be chosen to be equal to TBBN in order to restrict
the possible values of the deformation parameter κ. Note
that the process is not symmetric under the change a ↔ b,
since equations of motion do not have this symmetry. The
system is symmetric under the previous change of scale
factors and κ → −κ.
This source-sink effect is also present in the context of

string theory formulated in a generalized noncommutative
space [51–53] in the low energy limit. There, the effective
action has contributions from both sectors of the doubled
phase space, and dark matter and dark energy arise as
matter degrees of freedom and the curvature of the dual
space, respectively.
The rate at which the drain occurs [the function Γ defined

in (31)] depends on time through the scale factors and δ,
and it depends linearly on the deformation parameter κ. In
spite of this time (temperature) dependence, it is always
possible to choose κ so that the total drain happens at the
desired temperature TBBN and this value of κ will depend on
the initial energy content of a and b.
It is instructive to compare the behavior of the functions

Γ−1 [with dimensions of ðtimeÞ−1] for the radiation-
radiation and radiation-matter cases. In Fig. 9—where
blue lines correspond to the radiation-matter (Sec. IVA)
and red lines to radiation-radiation (Sec. IV B)—this
behavior is shown. Here Γ−1

a appears in a solid line while
a dashed line is Γ−1

b .
For fixed value of κ and initial δ ¼ 1, we observe that

radiation decays faster than matter in patch b, or, in other
words, the energy drain of relativistic matter happens faster
than the nonrelativistic one.
Previous effect suggests that the present model can be

understood as a different type of nonstandard cosmology
and it also suggests to include dark matter in one of the
patches. This analysis will be presented in forthcoming
works.

(a) (b)

FIG. 7. Evolution of radiation content in patches a and b as
function of the temperature. In the y axes we have plotted ρa × a4

and ρb × b4. Panels (a) and (b) show the energy densities
evolution for an initial condition ρa ¼ 1020 GeV and δ ¼ 1
and different values of κ.

(a) (b)

FIG. 8. Radiation content in patches a and b as function of
the temperature. Panels (a) and (b) show the energy densities
evolution for an initial condition ρa ¼ 1030 GeV and δ ¼ 1.

FIG. 9. Evolution of Γ−1 in terms of the temperature. Solid lines
represent Γa and the dashed lines Γb. In blue appears the
radiation-matter case (Sec. IVA) while the radiation-radiation
(Sec. IV B) is shown in red. It can be observed that for the same
value of κ the decay of radiation from b to a is faster than the case
of matter.
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