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Recently, Barrow argued that quantum-gravitational effects may introduce intricate, fractal features on
the black hole horizon [J. D. Barrow, , The area of a rough black hole, Phys. Lett. B 808, 135643 (2020)].
In this viewpoint, black hole entropy no longer obeys the area law and instead it can be given by S ∼ A1þδ=2,
where the exponent δ ranges 0 ≤ δ ≤ 1, and indicates the amount of the quantum-gravitational deformation
effects. Based on this, and using the deep connection between gravity and thermodynamics, we disclose the
effects of Barrow entropy on the cosmological equations. For this purpose, we start from the first law of
thermodynamics, dE ¼ TdSþWdV, on the apparent horizon of the Friedmann-Robertson-Walker
universe, and derive the corresponding modified Friedmann equations by assuming that the entropy
associated with the apparent horizon has the form of Barrow entropy. We also examine the validity of the
generalized second law of thermodynamics for the Universe enclosed by the apparent horizon. Finally, we
employ the emergence scenario of gravity and extract the modified Friedmann equation in the presence of
Barrow entropy which coincides with one obtained from the first law of thermodynamics. When δ ¼ 0, the
results of standard cosmology are deduced.
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I. INTRODUCTION

The fast spreading of Covid-19 virus around the world in
2020 and its continuation until now in 2021 provide strong
motivations for many scientists to consider the structure of
this virus from different perspectives. Inspired by the fractal
illustrations of this virus, recently Barrow proposed a new
structure for the horizon geometry of black holes [1].
Assuming a infinite diminishing hierarchy of touching
spheres around the event horizon, he suggested that black
hole horizons might have intricate geometry down to
arbitrary small scales. This fractal structure for the horizon
geometry, leads to finite volume and infinite (or finite) area.
Based on this modification to the area of the horizon, the
entropy of the black holes no longer obeys the area law and
will be increased due to the possible quantum-gravitational
effects of spacetime foam. The modified entropy of the
black hole is given by [1]

Sh ¼
�
A
A0

�
1þδ=2

; ð1Þ

where A is the black hole horizon area and A0 is the Planck
area. The exponent δ ranges as 0 ≤ δ ≤ 1 and stands for the
amount of the quantum-gravitational deformation effects
[1–3]. When δ ¼ 0, the area law is restored and A0 → 4G,
while δ ¼ 1 represents the most intricate and fractal

structure of the horizon. Although the corrected entropy
expression (1) resembles Tsallis entropy in the nonexten-
sive statistical thermodynamics [4–8]; however, the origin
and motivation of the correction, as well as the physical
principles are completely different. In order to remind the
origin of Tsallis entropy, let us note that for large-scale
gravitational systems the usual Boltzmann-Gibbs additive
entropy must be generalized to the nonadditive (nonex-
tensive) entropy [4–6]. In this regards, Tsallis generalized
standard thermodynamics to a nonextensive one, which can
be applied in all cases, and still possessing the standard
Boltzmann-Gibbs theory as a limit [4]. Based on this and
using the statistical arguments, Tsallis and Cirto argued that
the entropy of a black hole does not obey the area law and
can be modified as S ∼ Aβ, where β is known as a
nonextensive parameter [7]. Therefore, Tsallis entropy
originates from the nonextensive thermodynamics, while
the Barrow correction to entropy comes from the intricate
and fractal geometry of the horizon due to the quantum-
gravitational effects.
Some efforts have been done to disclose the influences of

Barrow entropy in the cosmological setups. A holographic
dark energy model based on entropy (1) was formulated in
[9]. It was argued that this scenario can describe the history
of the Universe, with the sequence of matter and dark
energy eras. Observational constraints on Barrow holo-
graphic dark energy were performed in [10]. A modified
cosmological scenario based on Barrow entropy was
presented in [11], which modifies the cosmological field*asheykhi@shirazu.ac.ir
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equations in such a way that contains new extra terms
acting as the role of an effective dark-energy sector. The
generalized second law of thermodynamics, when the
entropy of the Universe is in the form of Barrow entropy,
was investigated in [12]. Other cosmological consequences
of the Barrow entropy can be followed in [13–20].
The profound connection between gravitational field

equations and laws of thermodynamics has now been well
established (see, e.g., [21–34] and references therein). It has
been confirmed that gravity has a thermodynamical predis-
position and the Einstein field equation of general relativity
is just an equation of state for the spacetime. Considering the
spacetime as a thermodynamic system, the laws of thermo-
dynamics on the large scales, can be translated as the laws of
gravity. According to “gravity-thermodynamics” conjec-
ture, one can rewrite the Friedmann equations in the form of
the first law of themodynamics on the apparent horizon and
vice versa [35–38]. When the entropy associated with the
apparent horizon is in the formof theTsallis entropy,S ∼ Aβ,
one can reproduce the modified Friedmann equations by
starting from the first law on the apparent horizon [39]. It
was shown that, in the relativistic regime and for β < 1=2,
the obtained modified Friedmann equation can reproduce
the late time cosmic acceleration without invoking any kind
of dark energy [40]. In the nonrelativistic regime, however,
themodifiedNewton’s law of gravitation can explain the flat
galactic rotation curves without invoking particle dark
matter provided β ≲ 1=2 [40]. In line with studies to
understand the nature of gravity, Padmanabhan [41] argued
that the spacial expansion of our Universe can be understood
as the consequence of emergence of space. Equating the
difference between the number of degrees of freedom in the
bulk and on the boundary with the volume change, he
extracted the Friedmann equation describing the evolution
of the Universe [41]. The idea of emergence spacetime was
also extended to Gauss-Bonnet, Lovelock, and braneworld
scenarios [42–46].
In the present work, we are going to construct

the cosmological field equations of the Friedmann-
Robertson-Walker (FRW) universe with any special curva-
ture, when the entropy associated with the apparent horizon
is in the form of (1). Our work differs from [11] in that the
author of [11] derived the modified Friedmann equations
by applying the first law of thermodynamics, TdS ¼ −dE,
to the apparent horizon of a FRW universe with the
assumption that the entropy is given by (1). Note that
−dE in [11] is just the energy flux crossing the apparent
horizon, and the apparent horizon radius is kept fixed
during an infinitesimal internal of time dt. However, in the
present work, we assume the first law of thermodynamics
on the apparent horizon in the form, dE ¼ TdSþWdV,
where dE is now the change in the energy inside the
apparent horizon due to the volume change dV of the
expanding Universe. This is consistent with the fact that in
thermodynamics the work is done when the volume of the

system is changed. Besides, in [11], the author focuses on a
flat FRW universe and modifies the total energy density in
the Friedmann equations by considering the contribution of
the Barrow entropy in the field equations as a dark-energy
component. Here, we consider the FRW universe with any
special curvature and modify the geometry (gravity) part
(left-hand side) of the cosmological field equations based
on Barrow entropy. The approach we present here is more
reasonable, since the entropy expression basically depends
on the geometry (gravity). For example, the entropy
expressions differ in Einstein, Gauss-Bonnet, or fðRÞ
gravities. Any modifications to the entropy should change
the gravity (geometry) sector of the field equations and vice
versa. We shall also employ the emergence idea of [41] to
derive the modified cosmological equations based on
Barrow entropy. Again, we assume that the energy density
(and hence the number of degrees of freedom in the bulk) is
not affected by the Barrow entropy, while the horizon area
(and hence the number of degrees of freedom on the
boundary) get modified due to the change in the entropy
expression. Throughout this paper we set κB ¼ 1 ¼ c ¼ ℏ,
for simplicity.
This paper is outlined as follows. In the next section, we

derive the modified Friedmann equations, based on Barrow
entropy, by applying the first law of thermodynamics of the
apparent horizon. In Sec. III, we examine the validity of the
generalized second law of thermodynamics for the universe
filled with Barrow entropy. In Sec. IV, we derive the
modified Friedmann equations by applying the emergence
scenario for the cosmic space. We finish with conclusions
in the last section.

II. MODIFIED FRIEDMAN EQUATIONS BASED
ON BARROW ENTROPY

Our starting point is a spatially homogeneous and
isotropic universe with the metric

ds2 ¼ hμνdxμdxν þ r̃2ðdθ2 þ sin2θdϕ2Þ; ð2Þ

where r̃¼ aðtÞr, x0 ¼ t;x1 ¼ r, and hμν ¼ diagð−1;a2=ð1−
kr2ÞÞ represents the two-dimensional metric. The open,
flat, and closed universes correspond to k ¼ −1, 0, 1,
respectively. The boundary of the Universe is assumed to
be the apparent horizon with radius [31]

r̃A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ k=a2

p : ð3Þ

From the thermodynamical viewpoint the apparent horizon
is a suitable horizon consistent with first and second law of
thermodynamics. Also, using the definition of the surface
gravity, κ, on the apparent horizon [36], we can associate
with the apparent horizon a temperature, which is defied
as [36,44]
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Th ¼
κ

2π
¼ −

1

2πr̃A

�
1 −

_̃rA
2Hr̃A

�
: ð4Þ

For _̃rA ≤ 2Hr̃A, the temperature becomes T ≤ 0. The
negative temperature is not physically acceptable and hence
we define T ¼ jκj=2π. Also, within an infinitesimal internal
of time dt one may assume _̃rA ≪ 2Hr̃A, which physically
means that the apparent horizon radius is fixed. Thus there
is no volume change in it and one may define T ¼
1=ð2πr̃AÞ [35]. The profound connection between temper-
ature on the apparent horizon and the Hawking radiation
has been disclosed in [47], which further confirms the
existence of the temperature associated with the apparent
horizon.
The matter and energy content of the Universe is

assumed to be in the form of perfect fluid with energy-
momentum tensor

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð5Þ

where ρ and p are the energy density and pressure,
respectively. Independent of the dynamical field equations,
we propose the total energy content of the Universe
satisfies the conservation equation, namely, ∇μTμν ¼ 0.
This implies that

_ρþ 3Hðρþ pÞ ¼ 0; ð6Þ

where H ¼ _a=a is the Hubble parameter. Since our
Universe is expanding, thus we have volume change.
The work density associated with this volume change is
defined as [48]

W ¼ −
1

2
Tμνhμν: ð7Þ

For FRW background with a stress-energy tensor (5), the
work density is calculated,

W ¼ 1

2
ðρ − pÞ: ð8Þ

We further assume the first law of thermodynamics on the
apparent horizon is satisfied and has the form

dE ¼ ThdSh þWdV; ð9Þ

where E ¼ ρV is the total energy of the Universe enclosed
by the apparent horizon, and Th and Sh are, respectively,
the temperature and entropy associated with the apparent
horizon. The last term in the first law is the work term due
to change in the apparent horizon radius. Comparing with
the usual first law of thermodynamics, dE ¼ TdS − pdV,
we see that the work term −pdV is replaced by WdV,

unless for a pure de Sitter space where ρ ¼ −p, where the
work term WdV reduces to the standard −pdV.
Taking differential form of the total matter and energy

inside a three-dimensional sphere of radius r̃A, we find

dE ¼ 4πr̃2Aρdr̃A þ 4π

3
r̃3A _ρdt: ð10Þ

where we have assumed that V ¼ 4π
3
r̃3A is the volume

enveloped by a three-dimensional sphere with the area
of apparent horizon A ¼ 4πr̃2A. Combining with the con-
servation equation (6), we arrive at

dE ¼ 4πr̃2Aρdr̃A − 4πHr̃3Aðρþ pÞdt: ð11Þ

The key assumption here is to take the entropy associated
with the apparent horizon in the form of Barrow entropy
(1). The only change needed is to replace the black hole
horizon radius with the apparent horizon radius, rþ → r̃A.
If we take the differential form of the Barrow entropy (1),
we get

dSh ¼ d

�
A
A0

�
1þδ=2

¼
�
4π

A0

�
1þδ=2

dðr̃2þδ
A Þ

¼ ð2þ δÞ
�
4π

A0

�
1þδ=2

r̃A1þδ _̃rAdt: ð12Þ

Inserting relation (8), (11), and (12) in the first law of
thermodynamics (9) and using definition (4) for the
temperature, after some calculations, we find the differ-
ential form of the Friedmann equation as

2þ δ

2πA0

�
4π

A0

�
δ=2 dr̃A

r̃3−δA

¼ Hðρþ pÞdt: ð13Þ

Combining with the continuity equation (6), we arrive at

−
2þ δ

2πA0

�
4π

A0

�
δ=2 dr̃A

r̃3−δA

¼ 1

3
dρ: ð14Þ

Integration yields

−
2þ δ

2πA0

�
4π

A0

�
δ=2

Z
dr̃A
r̃3−δA

¼ ρ

3
; ð15Þ

which results

2þ δ

2 − δ

�
4π

A0

�
δ=2 1

2πA0

1

r̃2−δA

¼ ρ

3
; ð16Þ

where we have set the integration constant equal to zero.
The integration constant may be also regarded as the energy
density of the cosmological constant and hence it can be
absorbed in the total energy density ρ. Substituting r̃A from
Eq. (3) we immediately arrive at

BARROW ENTROPY CORRECTIONS TO FRIEDMANN EQUATIONS PHYS. REV. D 103, 123503 (2021)

123503-3



2þ δ

2 − δ

�
4π

A0

�
δ=2 1

2πA0

�
H2 þ k

a2

�
1−δ=2

¼ ρ

3
: ð17Þ

The above equation can be further rewritten as

�
H2 þ k

a2

�
1−δ=2

¼ 8πGeff

3
ρ; ð18Þ

where we have defined the effective Newtonian gravita-
tional constant as

Geff ≡ A0

4

�
2 − δ

2þ δ

��
A0

4π

�
δ=2

: ð19Þ

Equation (18) is the modified Friedmann equation based on
the Barrow entropy. Thus, starting from the first law of
thermodynamics at the apparent horizon of a FRW uni-
verse, and assuming that the apparent horizon area has
fractal features, due to the quantum-gravitational effects,
we derive the corresponding modified Friedmann equation
of a FRW universe with any spatial curvature. It is
important to note that in this case, there is no dark energy
component emerged from the Barrow entropy that was
derived in Ref. [11]. In the limiting case where δ ¼ 0, the
area law of entropy is recovered and we have A0 → 4G. In
this case, Geff → G, and Eq. (18) reduces to the standard
Friedmann equation in Einstein gravity.
We can also derive the second Friedmann equation by

combining the first Friedmann equation (18) with the
continuity equation (6). If we take the derivative of the
first Friedmann equation (18), we arrive at

2H

�
1 −

δ

2

��
_H −

k
a2

��
H2 þ k

a2

�
−δ=2

¼ 8πGeff

3
_ρ: ð20Þ

Using the continuity equation (6), we arrive at

�
1 −

δ

2

��
_H −

k
a2

��
H2 þ k

a2

�
−δ=2

¼ −4πGeffðρþ pÞ: ð21Þ

Now using the fact that _H ¼ ä=a −H2, and replacing ρ
from the first Friedmann equation (18), we can rewrite the
above equation as

�
1 −

δ

2

��
ä
a
−H2 −

k
a2

��
H2 þ k

a2

�
−δ=2

¼ −4πGeffp −
3

2

�
H2 þ k

a2

�
1−δ=2

: ð22Þ

After some simplification and rearranging terms,
we find

ð2 − δÞ ä
a

�
H2 þ k

a2

�
−δ=2

þ ð1þ δÞ
�
H2 þ k

a2

�
1−δ=2

¼ −8πGeffp: ð23Þ

This is the second modified Friedmann equation governing
the evolution of the Universe based on Barrow entropy.
For δ ¼ 0 (Geff → G), Eq. (23) reproduces the second
Friedmann equation in standard cosmology

2
ä
a
þH2 þ k

a2
¼ −8πGp: ð24Þ

If we combine the first and second modified Friedmann
equations (18) and (23), then we can obtain the equation for
the second time derivative of the scale factor. We find

ð2−δÞ ä
a

�
H2þ k

a2

�
−δ=2

¼−
8πGeff

3
½ð1þδÞρþ3p�

¼−
8πGeff

3
ρ½ð1þδÞþ3w�; ð25Þ

where w ¼ p=ρ is the equation of state parameter. Taking
into account the fact that 0 ≤ δ ≤ 1, the condition for the
cosmic accelerated expansion (ä > 0), implies

ð1þ δÞ þ 3w < 0 → w < −
ð1þ δÞ

3
: ð26Þ

When δ ¼ 0, which corresponds to the simplest horizon
structure with area law of entropy, we arrive at the well-
known inequality w < −1=3 in Friedmann cosmology,
while for δ ¼ 1, which implies the most intricate and
fractal structure, we find w < −2=3. This implies that, in
an accelerating universe, the fractal structure of the appar-
ent horizon enforces the equation of state parameter to
become more negative.
In summary, in this section we derived the modified

cosmological equations given by Eqs. (18) and (25) in
Barrow cosmology. These equations describe the evolution
of the Universe with any spacial curvature, when the
entropy associated with the apparent horizon get modified
due to the quantum-gravitational effects. We leave the
cosmological consequences of the obtained Friedmann
equations for future studies, and in the remanning part
of this paper, we focus on the generalized second law of
thermodynamics as well as a derivation of the Friedmann
equation (18) from an emergence perspective.

III. GENERALIZED SECOND LAW OF
THERMODYNAMICS

Our aim here is to investigate another law of thermo-
dynamics, when the horizon area of the Universe has a
fractal structure and the associated entropy is given by
Barrow entropy (1). To do this, we consider the generalized
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second law of thermodynamics for the Universe enclosed
by the apparent horizon. Our approach here differs from the
one presented in [12]. Indeed the authors of [12] modified
the total energy density in the Friedmann equations based
on Barrow entropy. The cosmological field equations given
in relations (3) and (4) of [12] are nothing but the standard
Friedmann equations, in a flat universe, with an additional
energy component that acts as a dark energy sector [49].
However, as we mentioned in the introduction, here the
effects of the Barrow entropy enter the gravity (geometry)
part of the cosmological field equations. Thus, we assume
the energy component of the Universe is not affected by the
Barrow entropy. Besides we consider the FRW universe
with any special curvature, while the authors of [12] only
considered a flat universe. In the context of the accelerating
Universe, the generalized second law of thermodynamics
has been explored in [50–52].
Combining Eq. (14) with Eq. (6) and using (19), we get

1

r̃3−δA

ð2 − δÞ _̃rA ¼ 8πGeffHðρþ pÞ: ð27Þ

Solving for _̃rA, we find

_̃rA ¼ 8πGeff

2 − δ
Hr̃3−δA ðρþ pÞ: ð28Þ

Since δ ≤ 1, thus the sign of ρþ p determines the sign of
_̃rA. In case where the dominant energy condition holds,
ρþ p ≥ 0, we have _̃rA ≥ 0. Our next step is to calculate
Th

_Sh,

Th
_Sh ¼

1

2πr̃A

�
1 −

_̃rA
2Hr̃A

�
d
dt

�
A
A0

�
1þδ=2

;

¼ 2þ δ

2π

�
1 −

_̃rA
2Hr̃A

��
4π

A0

�
1þδ=2

r̃Aδ _̃rA: ð29Þ

Substituting _̃rA from Eq. (28) and using definition (19), we
reach

Th
_Sh ¼ 4πHr̃3Aðρþ pÞ

�
1 −

_̃rA
2Hr̃A

�
: ð30Þ

For an accelerating universe, the equation of state param-
eter can cross the phantom line (w ¼ p=ρ < −1), which
means that the dominant energy condition may violate
ρþ p < 0. As a result, the second law of thermodynamics,
_Sh ≥ 0, no longer valid. In this case, one can consider the
total entropy of the Universe as S ¼ Sh þ Sm, where Sm is
the entropy of the matter field inside the apparent horizon.
Therefore, one should study the time evolution of the total
entropy S. If the generalized second law of thermodynamics
holds, then we should have _Sh þ _Sm ≥ 0 for the total
entropy.

From the Gibbs equation we have [53]

TmdSm ¼ dðρVÞ þ pdV ¼ Vdρþ ðρþ pÞdV; ð31Þ

where Tm stands for the temperature of the matter fields
inside the apparent horizon. We further propose the thermal
system bounded by the apparent horizon remains in
equilibrium with the matter inside the Universe. This is
indeed the local equilibrium hypothesis, which yields the
temperature of the matter field inside the Universe must be
uniform and the same as the temperature of its boundary,
Tm ¼ Th [53]. One may expect that, under thermal equi-
librium condition, the temperature of the matter field inside
the universe is estimated as the temperature of the cosmic
microwave background radiation. In the absence of local
equilibrium hypothesis, there will be spontaneous heat flow
between the horizon and the bulk fluid that is not physically
acceptable for our Universe. Thus, from the Gibbs equa-
tion (31) we have

Th
_Sm ¼ 4πr̃2A _̃rAðρþ pÞ − 4πr̃3AHðρþ pÞ: ð32Þ

Next, we examine the generalized second law of thermo-
dynamics, namely, we study the time evolution of the total
entropy Sh þ Sm. Adding Eqs. (30) and (32), we get

Thð _Sh þ _SmÞ ¼ 2πr̃A2ðρþ pÞ _̃rA: ð33Þ

Substituting _̃rA from Eq. (28) into (33) we reach

Thð _Sh þ _SmÞ ¼
16π2

2 − δ
GeffHr̃A5−δðρþ pÞ2 ≥ 0; ð34Þ

which is clearly a non-negative function during the history
of the Universe. This confirms the validity of the gener-
alized second law of thermodynamics for a universe with a
fractal boundary, namely when the associated entropy with
the apparent horizon of the Universe is in the form of
Barrow entropy (1).

IV. EMERGENCE OF MODIFIED
FRIEDMANN EQUATION

In his proposal [41], Padmanabhan argued that gravity is
an emergence phenomenon and that the cosmic space is
emergent as the cosmic time progressed. He argued that the
difference between the number of degrees of freedom on
the holographic surface and the one in the emerged bulk, is
proportional to the cosmic volume change. In this regards,
he extracted successfully the Friedmann equation gov-
erning the evolution of the Universe with zero spacial
curvature [41]. In this perspective the spatial expansion of
our Universe can be regarded as the consequence of
emergence of space and the cosmic space is emergent,
following the progressing in the cosmic time. According to
Padmanabhan’s proposal, in an infinitesimal interval dt of

BARROW ENTROPY CORRECTIONS TO FRIEDMANN EQUATIONS PHYS. REV. D 103, 123503 (2021)

123503-5



cosmic time, the increase dV of the cosmic volume is given
by [41]

dV
dt

¼ GðNsur − NbulkÞ; ð35Þ

where G is the Newtonian gravitational constant. Here Nsur
and Nbulk stand for the number of degrees of freedom on
the boundary and in the bulk, respectively. Following
Padmanabhan, the studies were generalized to Gauss-
Bonnet and Lovelock gravity [42]. While the authors of
[42] were able to derive the Friedmann equations with any
spacial curvature in Einstein gravity, they failed to extract
the Firedmann equations of a nonflat FRW universe in
higher order gravity theories [42]. In [44], we modified
Padmanabhan’s proposal in such a way that it could
produce the Friedmann equations in higher order gravity
theories, such as Gauss-Bonnet and Lovelock gravities,
with any spacial curvature. The modified version of relation
(35) is given by [44]

dV
dt

¼ G
r̃A
H−1 ðNsur − NbulkÞ: ð36Þ

Comparing with the original proposal of Padmanabhan in
Eq. (35), we see that in a nonflat universe, the volume
increase is still proportional to the difference between the
number of degrees of freedom on the apparent horizon and
in the bulk, but the function of proportionality is not just a
constant, it is equal to the ratio of the apparent horizon and
Hubble radius. For a flat universe, r̃A ¼ H−1, and one
recovers the proposal (35).
Our aim here is to derive the modified Friedmann

equation based on Barrow entropy from emergence pro-
posal of cosmic space. Inspired by Barrow entropy expres-
sion (1), let us define the effective area of the apparent
horizon, which is our holographic screen, as

Ã ¼ 4πr̃2þδ
A : ð37Þ

In order to choose the correct expression for the number of
degrees of freedom on the apparent horizon, Nsur, we note
that Nsur on a holographic screen should be proportional to
the effective area. Hence we write down

Nsur ¼
Ã
Geff

¼ 4πr̃A2þδ

Geff
; ð38Þ

Next, we calculate the increasing in the effective volume as

dṼ
dt

¼ r̃A
2

dÃ
dt

¼ 2πð2þ δÞr̃2þδ
A

_̃rA: ð39Þ

We also assume the temperature associated with the
apparent horizon is the Hawking temperature, which is
given by [42]

T ¼ 1

2πr̃A
: ð40Þ

The reason for taking this expression for the temperature
instead of relation (4) comes from the fact that here we
would like to consider an equilibrium system, thus within
an infinitesimal internal of time dtwe propose _̃rA ≪ 2Hr̃A,
which physically means that the apparent horizon radius is
fixed during an infinitesimal internal of time dt, similar to
the de Sitter universe. Note that, in Sec. II, one can also
consider the temperature associated with the apparent
horizon in the form of (40); however, in this case one
should apply the first law as −dE ¼ TdS, where −dE is the
energy flux crossing the horizon [36]. The energy con-
tained inside the sphere with volume V ¼ 4πr̃3A=3 is the
Komar energy

EKomar ¼ jðρþ 3pÞjV: ð41Þ

We further assume the matter inside the universe remains in
thermal equilibrium with the apparent horizon. This implies
that the temperature of the matter and energy inside the
bulk is equal to the temperature associated with the
boundary. Under the equilibrium condition the equiparti-
tion law of energy for the matter and energy inside the
Universe holds. Considering the equipartition law of
energy, we can define the bulk degrees of freedom as

Nbulk ¼
2jEKomarj

T
: ð42Þ

In order to have Nbulk > 0, we take ρþ 3p < 0, consistent
with the condition of an accelerated universe [41]. Thus the
number of degrees of freedom in the bulk is obtained as

Nbulk ¼ −
16π2

3
r̃4Aðρþ 3pÞ: ð43Þ

The key assumption here is to take the correct form of
expression (36). To write the correct proposal, we make
replacement G → Geff and V → Ṽ in the proposal (36) and
rewrite it as

α
dṼ
dt

¼ Geff
r̃A
H−1 ðNsur − NbulkÞ: ð44Þ

Note that for latter convenience, we introduce a factor α on
the left-hand side of Eq. (44). One may regard the
assumption (44), and in particular the coefficient α, to
the status of a postulate and verify whether it can lead to the
correct Friedmann equation describing the evolution of the
Universe. As we shall see below, this assumption allows us
to extract the Friedmann equations from emergence
scenario.
Substituting relations (38), (39), and (43) in Eq. (44), we

arrive at
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α

2
ð2þδÞr̃A2þδ _̃rA ¼

Geff r̃A
H−1

�
r̃A2þδ

Geff
þ4π

3
r̃4Aðρþ3pÞ

�
: ð45Þ

Simplifying yields

αð2þ δÞr̃Aδ−3
_̃rA
H

− 2r̃Aδ−2 ¼
8πGeff

3
ðρþ 3pÞ: ð46Þ

If we multiply the both sides of Eq. (46) by factor _aa, after
using the continuity equation (6), we arrive at

−αð2þ δÞa2 _̃rAr̃Aδ−3 þ 2_aar̃Aδ−2 ¼
8πGeff

3

d
dt

ðρa2Þ: ð47Þ

If we take α ¼ ð2 − δÞ=ð2þ δÞ, then the above equation
can be written in the differential form of the Friedmann
equation

d
dt

ða2r̃δ−2A Þ ¼ 8πGeff

3

d
dt

ðρa2Þ: ð48Þ

Integrating, yields

�
H2 þ k

a2

�
1−δ=2

¼ 8πGeff

3
ρ; ð49Þ

where in the last step we have used relation (3), and set the
integration constant equal to zero. This is indeed the
modified Friedmann equation derived from emergence of
the cosmic space when the entropy associated with the
apparent horizon is in the form of Barrow entropy (1). The
result obtained here from the emergence approach coin-
cides with the obtained modified Friedmann equation from
the first law of thermodynamics in Sec. II. Our study
indicates that the approach presented here is powerful
enough and further supports the viability of the
Padmanabhan’s perspective of emergence gravity and its
modification given by Eq. (44).
Let us note that without taking into account the coef-

ficient α, one cannot arrive at the correct form of the
Friedmann equation. Thus, in order to reproduce the
desired result we need to take into account α in
Eq. (44). When δ ¼ 0, we have α ¼ 1 and our assumption
(44) restores the one given in (36). One may also argue that
in the presence of Barrow entropy, the effective area should
be defined as Ã ¼ ð4πr̃2AÞ1þδ=2, which differs from (37) by
a factor of ð4πÞδ=2. However, one can easily check that, in
this case, even by taking α into account, a coefficient
ð4πÞ−δ=2 appears on the right-hand side of Friedmann
equation (49). As a result, the obtained Friedmann equation
from emergence approach does not coincide with the one
obtained from the first law of thermodynamics in Sec. II.
This may justify the correctness of our assumption in (37)
for the effective area.

V. CONCLUSIONS

Recently, and motivated by the Covid-19 virus struc-
ture, Barrow proposed a new expression for the black
hole entropy [1]. He demonstrated that taking into
account the quantum-gravitational effects may lead to
intricate, fractal features of the black hole horizon. This
complex structure implies a finite volume for the black
hole but with an infinite/finite area for the horizon. In this
viewpoint, the deformed entropy associated with the
black hole horizon no longer obeys the area law and
increases compared to the area law due to fractal structure
of the horizon. The amount of increase in entropy
depends on the amount of quantum-gravitational defor-
mation of the horizon which is characterized by an
exponent δ.
Based on Barrow’s proposal for black hole entropy and

assuming the entropy associated with the apparent horizon
of the Universe has the same expression as black hole
entropy, we investigated the corrections to the Firedmann
equations of a FRW universe, with any spacial curvature.
These corrections come due to the quantum-gravitational
fractal intricate structure of the apparent horizon. To do
this, and motivated by the “gravity-thermodynamics” con-
jecture, we proposed the first law of thermodynamics,
dE ¼ ThdSh þWdV, holds on the apparent horizon of
FRW universe and the entropy associated with the apparent
horizon is given by Barrow entropy (1). Starting from the
first law of thermodynamics and taking the entropy in the
form of Barrow entropy (1), we extracted modified
Friedmann equations describing the evolution of the
Universe. Then, we checked the validity of the generalized
second law of thermodynamics by considering the time
evolution of the matter entropy together with the Barrow
entropy associated with the apparent horizon. We also
employed the idea of emergence gravity suggested by
Padmanabhan [41] and calculated the number of degrees of
freedom in the bulk and on the boundary of the Universe.
Then, we propose the number of degrees of freedom on the
holographic surface get modified, due to the fractal
structure of the horizon, and is given by (38). We revised
the assumption (36) by replacing G → Geff and write down
it as Eq. (44). We also find out that one can deduce the
Friedmann equation from this proposal provided a factor
α ¼ ð2 − δÞ=ð2þ δÞ is taken into account. Clearly for
δ ¼ 0, we have α ¼ 1, Geff → G, and proposal (36) is
restored. Under this assumption, the obtained Firedmann
equation coincides with the one obtained from the first
law of thermodynamics in Sec. II. Our studies further
support the viability of the emergence gravity proposed
in [41,44].
Many interesting topics remain for future considerations.

The cosmological implications of the modified Friedmann
equations and the evolution of the Universe can be
addressed. The influences of the modified Friedmann
equations on the gravitational collapse, structure formation
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and galaxies evolution can be investigated. The effects of
the fractal parameter δ on the thermal history of the
Universe, as well as anisotropy of cosmic microwave
background are also of great interest and deserve explora-
tion. These studies belong beyond the scope of the present
work and we leave them for the future projects.
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