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theory: Dust balls, shell balls, and potential balls
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We show, by numerical calculations, that there exist three types of stationary and spherically symmetric
nontopological soliton (NTS) solutions (NTS balls) with large sizes in the coupled system consisting of a
complex matter scalar field, a U(1) gauge field, and a complex Higgs scalar field that causes spontaneously
symmetry breaking. Under the assumption of symmetries, the coupled system reduces to a dynamical
system with 3 degrees of freedom governed by an effective action. The effective potential in the action has
stationary points. The NTS balls with large sizes are described by bounce solutions that start off with an
initial stationary point and traverse to the final stationary point, the vacuum stationary point. According to
the choice of the initial stationary point, there appear three types of NTS balls: dust balls, shell balls, and
potential balls with respect to their internal structures.
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I. INTRODUCTION

A nontopological soliton (NTS) is a localized configu-
ration of fields whose stability is guaranteed by a conserved
Noether charge, and it can be interpreted as a condensation
of bosonic particles in a bound state. In the pioneering work
by Friedberg, Lee, and Sirlin [1], the NTS solutions are
constructed in a field theory that consists of a complex
scalar field and a real scalar field with a double-well
potential that causes the spontaneous symmetry breaking.
Coleman [2] constructed simplest NTSs, the so-called Q
balls, in a theory of a single complex scalar field with a
complicated self-interaction (see, e.g., reviews and a text-
book [3–5]).
Extensions of the NTS solutions have been investigated

in cosmology and astrophysics. There are lots of works
in the context that the NTS is a candidate of dark matter
[6–10] and a source for a baryogenesis [11–13] in a wide
class of field theories with a potential inspired by super-
symmetric theories [14–16].
Natural extensions of the NTSs in a theory with a gauge

field were studied in Refs. [17–19]. In their papers, it was
clarified that gauged NTSs with a large amount of charge

are unstable because of the Coulomb repulsive force
mediated by the gauge field. Then, the gauged NTSs have
an upper limit of the charge. It is also interesting to
investigate NTSs in spontaneously broken gauge theories,
which is a standard framework of the gauge theories. It was
shown that stable gauged NTS solutions with a large
amount of charge exist in a spontaneously broken gauge
theory [20–22].
In this paper, we investigate the NTS solutions in the

system that consists of a matter complex scalar field, a U(1)
gauge field, and a complex Higgs scalar field that causes
the spontaneous symmetry breaking. Under the assumption
that the solutions are stationary and spherically symmetric,
the system reduces to a theory described by an effective
action with 3 dynamical degrees of freedom. The effective
potential of the theory has stationary points, and there exist
solutions that connect the stationary points as bounce
solutions. The bounce solutions represent NTS balls with
large size. The solutions are classified into three types: balls
filled by homogeneous dust inside (dust balls), empty balls
with shells at their surfaces (shell balls), and balls filled by
the potential energy of the Higgs scalar field in the surface
shells (potential balls). The dust balls are already obtained
in Refs. [20,21].1 The appearance of the shell balls and the
potential balls in the same theory is a new finding in this
paper. In all of NTS balls, the U(1) charge carried by the
matter scalar field is compensated by the counter charge
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carried by the Higgs scalar field. Namely, all NTS balls are
totally screened [20–22].
The paper is organized as follows. In Sec. II, we present

the basic model studied in this article, and show that the
system is reduced to a dynamical system with 3 degrees of
freedom. In Sec. III, we show that the effective potential of
the system has stationary points, and the bounce solutions
that connect two of the stationary points represent NTS
balls with large sizes. In Sec. IV, we obtain three types of
the bounce solutions numerically, and study dynamical
properties of the solutions. In Sec. V, we study the internal
properties of the NTS-ball solutions, and in Sec. VI, we
discuss the stability of the balls briefly. Section VII is
devoted to summary.

II. BASIC MODEL

The action of the system we consider is

S ¼
Z

d4x

�
−ðDμψÞ�ðDμψÞ − ðDμϕÞ�ðDμϕÞ − VðϕÞ

− μψ�ψϕ�ϕ −
1

4
FμνFμν

�
; ð1Þ

where ψ is a complex matter scalar field, ϕ is a complex
Higgs scalar field with the potential

VðϕÞ ¼ λ

4
ðϕ�ϕ − η2Þ2 ð2Þ

characterized by constants λ and η, and Fμν ≔ ∂μAν − ∂νAμ

is the field strength of a U(1) gauge field Aμ. We use metric
signature ð−;þ;þ;þÞ. The parameter μ is the coupling
constant between ψ and ϕ, and the covariant derivative Dμ

in (1) is defined by

Dμψ ¼ ∂μψ − ieAμψ ; Dμϕ ¼ ∂μϕ − ieAμϕ; ð3Þ

where e is a gauge coupling constant.
The system is invariant under the Ulocalð1Þ × Uglobalð1Þ

transformations:

ψðxÞ → ψ 0ðxÞ ¼ eiðχðxÞ−γÞψðxÞ; ð4Þ

ϕðxÞ → ϕ0ðxÞ ¼ eiðχðxÞþγÞϕðxÞ; ð5Þ

AμðxÞ → A0
μðxÞ ¼ AμðxÞ þ e−1∂μχðxÞ; ð6Þ

where χðxÞ is an arbitrary function, and γ is a constant.
The conserved currents associated with the invariance
are

jνψ ¼ ieðψ�ðDνψÞ − ψðDνψÞ�Þ;
jνϕ ¼ ieðϕ�ðDνϕÞ − ϕðDνϕÞ�Þ; ð7Þ

which satisfy ∂μj
μ
ψ ¼ 0 and ∂μj

μ
ϕ ¼ 0, and the total con-

served charge of ψ and ϕ are defined by volume integra-
tions on a t ¼ const plane Σ in the form

Qψ ¼
Z

ρψdV; Qϕ ≔
Z

ρϕdV; ð8Þ

where ρψ ≔ jtψ and ρϕ ≔ jtϕ.
In the symmetry breaking vacuum where the Higgs

scalar field has the vacuum expectation value hϕi ¼ η, the
gauge field Aμ and the complex matter scalar field ψ

acquire the massmA ¼ ffiffiffi
2

p
eη andmψ ¼ ffiffiffi

μ
p

η, respectively.
Simultaneously, the real part of ϕ around η acquires the
mass mϕ ¼ ffiffiffi

λ
p

η. From the action (1), we obtain the Klein-
Gordon equations and the Maxwell equation in the form

DμDμψ − μjϕj2ψ ¼ 0; ð9Þ

DμDμϕ −
λ

2
ϕðjϕj2 − η2Þ − μϕjψ j2 ¼ 0; ð10Þ

∂μFμν ¼ jνϕ þ jνψ : ð11Þ
In order to construct stationary and spherically sym-

metric solutions, we use the following ansatz:

ψ ¼ eiωtuðrÞ; ϕ ¼ eiω
0tfðrÞ; At ¼ AtðrÞ;

and Ai ¼ 0 for i ¼ r; θ;φ; ð12Þ
in the spherical coordinates ðt; r; θ;φÞ, where ω and ω0 are
constants, and uðrÞ and fðrÞ are real functions of r. Using
the gauge transformations (4), (5), and (6), we fix the
variables as

ϕðrÞ → fðrÞ; ð13Þ

ψðt; rÞ → eiΩtuðrÞ ð14Þ

AtðrÞ → αðrÞ ≔ AtðrÞ − e−1ω0; ð15Þ

where Ω ≔ ω − ω0, and we assume it is positive without
loss of generality. Therefore, we rewrite (9), (10), and (11),
as the coupled system of nonlinear ordinary differential
equations in the form

d2u
dr2

þ 2

r
du
dr

þ ðeα −ΩÞ2u − μf2u ¼ 0; ð16Þ

d2f
dr2

þ 2

r
df
dr

þ e2fα2 −
λ

2
fðf2 − η2Þ − μfu2 ¼ 0; ð17Þ

d2α
dr2

þ 2

r
dα
dr

þ ρtotal ¼ 0; ð18Þ

where ρtotalðrÞ ≔ ρψ ðrÞ þ ρϕðrÞ, and ρψ and ρϕ are
given by

HIDEKI ISHIHARA and TATSUYA OGAWA PHYS. REV. D 103, 123029 (2021)

123029-2



ρψ ¼ −2eðeα − ΩÞu2; ρϕ ¼ −2e2αf2: ð19Þ

We require that the fields are regular at the origin of
spherical symmetry, and are in the vacuum at the infinity.
Then, we impose the conditions

du
dr

→ 0;
df
dr

→ 0;
dα
dr

→ 0 as r → 0; ð20Þ

and

u → 0; f → η; α → 0 as r → ∞: ð21Þ

III. STATIONARY POINTS OF THE SYSTEM AND
BOUNCE SOLUTIONS

The coupled system of Eqs. (16), (17), and (18) can be
derived from the effective action

Seff ¼
Z

r2dr

��
du
dr

�
2

þ
�
df
dr

�
2

−
1

2

�
dα
dr

�
2

− Ueffðu; f; αÞ
�
;

ð22Þ

where Ueff is given by

Ueffðu; f; αÞ ¼ −
λ

4
ðf2 − η2Þ2 − μf2u2

þ e2f2α2 þ ðeα − ΩÞ2u2: ð23Þ

Regarding the radius r as a “time” and amplitude of the
fields uðrÞ, fðrÞ, and αðrÞ as the position of a particle we
can understand the effective action (22) in the words of
Newtonian mechanics of 3 degrees of freedom. We note
two points: the first, the “kinetic” term of α, has the wrong
sign; the second, r, appears explicitly in the integration
measure in the effective action (22), so that the equations of
motions (16)–(18) have friction terms that are proportional
to 1=r.
The dynamical system described by the effective action

has stationary points of Ueff that satisfy

∂Ueff

∂u ¼ 0;
∂Ueff

∂f ¼ 0; and
∂Ueff

∂α ¼ 0: ð24Þ

By solving the coupled equations (24), we find two isolated
stationary points, Pv and P0, and two ridges, R1 and R2;
each ridge consists of infinite stationary points aligned on a
line. The positions of the stationary points in the region
u ≥ 0, f ≥ 0, and α ≥ 0 are

Pv∶ αv ¼ 0; fv ¼ η; uv ¼ 0; ð25Þ

P0∶ α0 ¼
1

eð4μ − λÞ
�
ðμ − λÞΩ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μð2λþ μÞΩ2 − μλð4μ − λÞη2

q �
;

f0 ¼
1ffiffiffi
μ

p ðΩ − eα0Þ; u0 ¼
1ffiffiffi
μ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eα0ðΩ − eα0Þ

p
;

ð26Þ

R1∶ α1 ¼
Ω
e
; f1 ¼ 0; u1 ¼ arbitrary constants;

ð27Þ
R2∶ α2 ¼ arbitrary constants; f2 ¼ 0; u2 ¼ 0;

ð28Þ
The point Pv is the vacuum stationary point; i.e., the
conditions (21) are satisfied there. There are copies of
the stationary points in the regions of possible alternative
signs of u, f, and α, respectively.
We concentrate on solutions that connect one of the

stationary points and the vacuum stationary point, namely,
at the initial time, r ¼ 0, a particle in the space ðu; f; αÞ
stays in a vicinity of one of the stationary points long time.
The particle leaves the stationary point and traverses
quickly toward the vacuum stationary point, Pv, and finally
stays on it. We call the solutions that connect one of the
stationary points and the vacuum stationary point bounce
solutions.
For the bounce solutions, the equations of motion have at

least one unstable direction on both the initial stationary
point and the vacuum stationary point. As is shown in
Appendix A, there are unstable directions at the stationary
points Pv, P0, and any points P1 on R1 while there is no
unstable direction at any point on R2. Then, possible
bounce solutions are in the following three types:

P0 → Pv; P1 → Pv; Pv → Pv: ð29Þ

Hereafter, these three types are denoted by (0-V), (1-V),
and (V-V), respectively.2

Inserting ðu; f; αÞ of the stationary points Pv; P0; P1
given by (25), (26), and (27) into (23), we obtain the
values of Ueff at the stationary points as

UeffðPvÞ ¼ 0; UeffðP1Þ ¼ −λη4=4; ð30Þ

and UeffðP0Þ is given by a complicated function of the
parameter Ω. It should be noted that in the limit

Ω → Ωmin ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffi
λμ

p
− λ

q
η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕð2mψ −mϕÞ

q
ð31Þ

2The solutions of P0 → Pv type are discussed in Refs. [20,21].
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we see

UeffðP0Þ → 0: ð32Þ

We can define the effective energy of solutions as the
sum of the kinetic energy and the effective potential in the
form:

Eeff ¼
�
du
dr

�
2

þ
�
df
dr

�
2

−
1

2

�
dα
dr

�
2

þUeffðu; f; αÞ: ð33Þ

We can also define the work done by the friction force
acting on a moving particle in the form:

W ¼ −2
Z

2

r

�
du
dr

�
du − 2

Z
2

r

�
df
dr

�
df þ

Z
2

r

�
dα
dr

�
dα:

ð34Þ

The value of the effective energy changes by an equal
amount ofW. Note that the equations of motion of f and u
have friction terms, while the equation of motion of α has
an antifriction term in (34) since the kinetic term of the
gauge field has the wrong sign. Therefore, as the time is
increasing, the motions of scalar fields cause a decrease of
Eeff , while the motion of the gauge field causes an increases
of Eeff .

IV. NUMERICAL CALCULATIONS

In this section, we present numerical solutions of NTS
balls described by the bounce solutions for the coupled
equations of motion: (16), (17), and (18). In order to search
solutions that satisfy the boundary conditions (20) and (21),
we should tune the parameterΩ and boundary values of the
fields. It is hard to apply the shooting method to find
numerical solutions in our system, because three shooting
parameters should be fine-tuned. Therefore, we use the
relaxation method. In numerics, hereafter, we set η as the
unit. We set λ ¼ 1 and μ ¼ 1.4, as an example, and we
consider two cases, e ¼ 1.0 and e ¼ 0.10.

A. Field configurations

In Fig. 1, we plot typical configurations of u, f, and α as
functions of r obtained by numerical calculations. In the
case of e ¼ 1.0, only (0-V) type solutions (left panel of
Fig. 1) appear as bounce solutions [20–22]. On the other
hand, in the case of e ¼ 0.10, two types, (V-V) (central
panel) and (1-V) (right panel), appear.
For solutions of two types, (0-V) and (1-V), fields

behave like step functions, namely, the functions u, f,
and α take constant values inside a characteristic radius, say
R, around which the functions decay quickly to the vacuum
values. These solutions represent homogeneous balls with
the surface radius R. The central values of u, f, and α of
(0-V) type solutions are given by (26), while for (1-V) type

solutions, f and α are given by (27), and the value of u, i.e.,
the position of the initial stationary point on the ridge R1, is
determined by the global behavior of the solutions. In the
case of (V-V) type solutions, the functions u, f, and α take
nonvacuum values only in a vicinity of a characteristic
radius, namely, the solutions represent empty balls sur-
rounded by spherical shells with this radius.3

In Fig. 2, we show the positions of stationary points, P0,
Pv, and ridges, R1, R2, of the effective potential Ueff in the
ðu; f; αÞ space. The global behavior of trajectories of
moving particles in the ðu; f; αÞ space that describes the
bounce solutions are shown in the same figure. Actually,
the trajectories connect a stationary point and the vacuum
stationary point.
At the stationary points, equisurfaces of the effective

potentialUeff in the space ðu; f; αÞ are depicted in Fig. 3. In
the same figure, segments of the trajectories in the vicinity
of the stationary points are shown. The moving particle
departs from the initial stationary point along an unstable
direction, and approaches to the terminal vacuum sta-
tionary point.

B. The effective energy and the effective potential

In this subsection, we discuss the properties of the
effective energy, Eeff , and the effective potential, Ueff ,
which characterize the numerical solutions of the dynami-
cal system (22). Physical energy given by the energy-
momentum tensor Tμν is discussed later in the next section.
Inside the ball surfaces, Eeff ¼ Ueff ¼ const holds

because the functions u, f, and α keep constant values.
The values of Ueff at the stationary points are UeffðPvÞ ¼ 0,
UeffðP1Þ ¼ −λη4=4, and UeffðP0Þ, which depend on Ω and
approach to 0 asΩ → Ωmin. We see Eeff ¼ Ueff ¼ 0 outside
the ball surfaces in all cases because u, f, α take the
vacuum values.
Figure 4 represents the values of Eeff and Ueff of the

solutions as functions of r. In the case of (0-V) type (left
panel), Eeff and Ueff keep almost zero for all value of r. By
the magnification of the figure around the ball surface, we
see that Eeff diminishes by a small amount at the ball
surface. This occurs owing to the work done by the
friction forces activated around the ball surface. The
decrease of Eeff caused by the friction forces is
equal to UeffðP0Þ − UeffðPvÞ. In the limit Ω → Ωmin,
UeffðP0Þ → UeffðPvÞ ¼ 0, then, in such a solution, the
friction forces become ineffective. This actually occurs
when the surface radius r ¼ R is large so that the friction
forces that are in proportion to 1=R are negligible. Then, in
the limitΩ → Ωmin, the radius of the NTS balls in the (0-V)
type can be infinitely large.

3Shell-like solutions were found in a system consisting of a
complex scalar field with a singular potential coupled to a U(1)
gauge field [23,24].
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In the case of (V-V) type (central panel), Ueff oscillates
with a large amplitude in the shell region, and Eeff does
with a small amplitude. In this type, both initial and final
stationary points are Pv, then the values of Ueff inside and
outside are exactly same. One suspects that there would be
no bounce solution that connects the same stationary
points under the existence of the friction force. The
numerical calculations show that Eeff increases, decreases,
and increases again around the shell. This occurs by the
friction forces of u and f and the antifriction force of α.
The works done by these forces compensate, then the
initial value of Eeff is recovered during the evolution.
Therefore, the bounce solutions that connect the same
stationary points Pv can exist in the system. Keeping the
cancellation, the friction and antifriction forces, whose
magnitudes are in proportion to 1=R, can become negli-
gibly small if the shell radius becomes large. Then, the
radius of the NTS balls in the (V-V) type can also be
infinitely large.
In the case of (1-V) type (right panel), the difference of

the effective potential between the initial and final sta-
tionary points given by

UeffðP1Þ −UeffðPvÞ ¼ −
λ

4
η4 ð35Þ

and is finite for finite λ and η. The effective energy rises up
across the ball surface by a finite amount of work done by
the antifriction force of α. Thus, the radius of the (1-V) type
NTS ball should be finite4 for the finite antifriction force.
The solutions of the (0-V) type are found in a variety of

field theories. However, it should be noted that the
solutions of the (V-V) and (1-V) types appear for
the system including the gauge field whose kinetic term
in the effective action (22) has the wrong sign so that the
equation of motion has the antifriction term.

V. INTERNAL PROPERTIES OF THE NTS BALLS

In this section, we study internal properties of the NTS
balls for three types. We explicitly show energy density,
pressure, and charge densities of the solutions of (0-V),
(V-V), and (1-V) types.

A. Energy density and pressure

The energy density and the pressure inside the ball
solutions are defined by energy-momentum tensor Tμν,
whose expression is given in Appendix B. Using the ansatz
(13), (14), and (15), we see that the energy density ϵ, the
radial pressure pr, and the tangential pressure pθð¼ pφÞ of
the system can be written by

ϵ ¼ ϵψKin þ ϵϕKin þ ϵψElast þ ϵψElast þ ϵInt þ ϵPot þ ϵES;

ð36Þ

pr ¼ ϵψKin þ ϵϕKin þ ϵψElast þ ϵψElast − ϵInt − ϵPot − ϵES;

ð37Þ

pθ ¼ ϵψKin þ ϵϕKin − ϵψElast − ϵψElast − ϵInt − ϵPot þ ϵES;

ð38Þ

FIG. 2. Trajectories of the moving particle that connect the
stationary points: P0 → Pv (blue), Pv → Pv (green), and P1 → Pv
(orange). The dotted lines R1 and R2 are the ridges that consist of
infinite numbers of stationary points.

FIG. 1. Typical numerical solutions f, u, and α are shown as functions of r for (0-V) type (left panel), (V-V) type (central panel), and
(1-V) type (right panel).

4In the limit λ → 0 or η → 0, the maximum radius would be
infinitely large.
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FIG. 3. Equisurfaces of the effective potential,Ueff , around the stationary points in the three-dimensional space ðu; f; αÞ: (i) P0 and Pv,
(ii) Pv for both the start point and the end points, (iii) P1 and Pv. The blue surface denotes the values at the stationary points UeffðP0Þ,
UeffðP1Þ, and UeffðPvÞ, respectively. The orange surfaces denote larger and the green surfaces denote smaller values than the blue ones.
The motion of the particle from and toward the stationary points is shown by arrows.
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where

ϵψKin ≔ jDtψ j2 ¼ ðeα −ΩÞ2u2; ϵϕKin ≔ jDtϕj2 ¼ e2f2α2;

ϵψElast ≔ ðDiψÞ�ðDiψÞ ¼
�
du
dr

�
2

; ϵψElast ≔ ðDiϕÞ�ðDiϕÞ ¼
�
df
dr

�
2

;

ϵPot ≔ VðϕÞ ¼ λ

4
ðf2 − ηÞ2; ϵInt ≔ μjϕj2jψ j2 ¼ μf2u2; ϵES ≔

1

2
EiEi ¼ 1

2

�
dα
dr

�
2

; ð39Þ

are densities of the kinetic energy of ψ and ϕ, the elastic energy of ψ and ϕ, the potential energy of ϕ, the interaction energy
between ψ and ϕ, and the electrostatic energy, respectively. In Fig. 5 we show ϵ, pr, and pθ for three types of NTS-ball
solutions.
In the (0-V) type case, the energy density and the pressure can be represented approximately by

ϵ ≃ ϵψKin þ ϵϕKin þ ϵInt þ ϵPot ¼
2

μ
eα0ðΩ − eα0Þ3 þ

1

μ
ðeα0Þ2ðΩ − eα0Þ2 þ

λ

μ2
ððΩ − eα0Þ2 − η2Þ2;

pr ≃ pθ ≃ ϵψKin þ ϵϕKin − ϵInt − ϵPot ¼
1

μ
ðeα0Þ2ðΩ − eα0Þ2 þ

λ

μ2
ððΩ − eα0Þ2 − η2Þ2: ð40Þ

We see from Fig. 5 that the pressure is considerably small
compare to the energy density for a (0-V) type solution.
Thus, the equation of state is like nonrelativistic fluid. In
the limit Ω → Ωmin, the pressure of the ball vanishes;
namely, the ball consists of dust fluid [21]. Therefore, we
refer to (0-V) type solutions as dust balls.
For a (V-V) type solution, since the regions both inside

and outside the ball are in the vacuum state, ϵ ¼ 0 and
p ¼ 0, and the energy density and the pressure are

nonvanishing only in the shell region. Then, we call (V-
V) type solutions shell balls. The radial pressure, pr, is
rather small compared to the energy density, while the
tangential pressure, pθ, takes negative non-negligible
values; i.e., the (V-V) type solution has a shell with
tangential tension.
For a (1-V) type solution, using (27), we find that ϵPot,

supplied by the potential of ϕ, is the only nonvanishing
component inside the ball, where we see

FIG. 4. The values of the effective potential and the effective energy, defined by (23) and (33), are shown for the (0-V) type (left panel),
(V-V) type (central panel), and (1-V) type (right panel) as functions of r.

FIG. 5. Energy density and pressure normalized by the maximum value of the total energy density ϵMax are drawn for the (0-V) type
(left panel), (V-V) type (central panel), and (1-V) type (right panel) as functions of r.
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ϵ ¼ −pr ¼ −pθ ¼ −pφ ¼ 1

4
λη4: ð41Þ

Hence, we refer (1-V) type solutions as potential balls,
where a cosmological constant appears effectively inside
the ball. In the vicinity of the surface, a shell structure
appears, where the energy density and the pressure have
some peaks. In contrast to the shell balls, the tangential
pressure is positive, and the radial pressure is small, which
is the as same as the shell balls.

B. Charge density

The charge densities ρψ and ρϕ, and the total charge
density ρtotal ¼ ρψ þ ρϕ are plotted in Fig. 6 as functions of
r. In the case of the dust ball, the charge density ρψ is
compensated by the counter charge density ρϕ; then ρtotal
vanishes almost everywhere, namely, perfectly screening
occurs [25,26]. On the other hand, in the cases of the shell
ball and the potential ball, the charge densities are induced
in the vicinity of the shell region. For the potential balls, an
electric double layer emerges at the surface, while for the
shell balls, an electric triple layer does (see Fig. 6). The
total charge given by integration of the density is screened,
i.e., Qψ þQϕ ¼ 0. As a result, the NTS balls are observed
as uncharged balls by a distant observer.

VI. MASS, RADIUS, AND STABILITY OF
THE NTS BALLS

In this section, we inspect the total mass, MNTS, and the
total charge of ψ , Qψ , for the numerical NTS-ball solutions
in three types. We discuss howMNTS andQψ depend on the
ball radius R.
We define the total mass of the NTS balls by

MNTS ¼ 4π

Z
∞

0

ϵðrÞr2dr; ð42Þ

and the total charge of ψ as

Qψ ¼ 4π

Z
∞

0

ρψ ðrÞr2dr: ð43Þ

Furthermore, we define the ball radius R for a numerical
solution of the NTS ball by

4π

Z
R

0

ϵðrÞr2dr ¼ 0.99MNTS; ð44Þ

so that 99% of the total mass of the NTS ball is included
within the radius R.
From Figs. 5 and 6, we see ϵ and ρψ are constant inside

a dust ball. Then both of the dust balls, MNTS and Qψ , are
proportional to their volume. In contrast, for a shell ball, ϵ
and ρψ concentrate on the shell region, then both MNTS

and Qψ are proportional to the surface area of the shell
balls. For a potential ball, ϵ takes a constant value inside,
and it has a peak on the shell region, while ρψ is
nonvanishing only in the shell region. Then, MNTS
depends on the surface area and the volume of the
potential balls, while Qψ is proportional to only the
surface area. Therefore, MNTS and Qψ depend on the
radius R as follows:

MNTS∝R3; Qψ ∝R3 for dust balls

MNTS∝R2; Qψ ∝R2 for shell balls

MNTS∼αR2þβR3; Qψ ∝R2 for potential balls ð45Þ

where α and β are some constants.
Defining the number of ψ particles contained in a NTS

ball with Qψ by

Nψ ≔
Qψ

e
; ð46Þ

we can define the summation of the mass energy for Nψ

free particles of ψ that carry totally the same charge Qψ of
the NTS ball by

Mfree ¼ Nψmψ ¼ Qψ

e
mψ : ð47Þ

If MNTS=Mfree < 1 for a NTS ball, it has negative binding
energy. Then, the NTS ball does not break up sponta-
neously into free particles, namely, the NTS ball is stable.

FIG. 6. The charge densities of scalar fields, ρψ , ρϕ, and the total charge density ρtotal normalized by the maximum value of ρψ are
shown for the (0-V) type (left panel), (V-V) type (central panel), and (1-V) type (right panel).
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In Fig. 7, we plot the ratio MNTS=Mfree as a function of
Nψ . The ratios MNTS=Mfree for both the dust balls and the
shell balls are constant, since both MNTS and Qψ have the
same dependence on the radius, ∝ R3 for the dust balls and
∝ R2 for the shell balls. By the numerical calculations, we
find MNTS=Mfree are smaller than unity for both the dust
balls and the shell balls, and then these two types are stable
without regard to their sizes. In the case of the potential
balls, MNTS and Qψ depend differently on R. As shown in
Fig. 7, the potential balls are stable in the range studied in
this article; however, it is suspected that larger potential
balls become unstable.

VII. SUMMARY

We found numerically that three types of stationary and
spherically symmetric nontopological soliton solutions,
NTS balls, with a large size in the coupled system consist
of a complex matter scalar field, a U(1) gauge field, and a
complex Higgs scalar field with a potential that causes
spontaneous symmetry breaking. By the assumption of the
symmetries, the system is reduced to a dynamical system of
a particle described by an effective action with 3 degrees of
freedom where the radial coordinate plays the role of the
fictitious time. The effective potential of the system has
stationary points. The vacuum stationary point, one of
them, denotes the broken symmetry vacuum state. There
exist bounce solutions that connect one of the stationary
points and the vacuum stationary point. They describe NTS
balls with a large size.
The effective action that describes the spherically sym-

metric system depends on the fictitious time r explicitly.
Then friction forces, in addition to the potential forces, act
on the moving particle. The kinetic term of the gauge field
has opposite sign to the kinetic terms of the scalar fields.
Therefore, the friction forces work when the scalar fields
change in their values, while the antifriction force works
when the gauge field does. This fact makes the system have
a variety of solutions.
There exist three types of solutions named dust balls,

shell balls, and potential balls. The dust ball, which

appears in the case where the gauge coupling constant
e ¼ 1.0 has homogeneous energy density and negligibly
small internal pressure inside the ball. The shell ball,
which appears in the case e ¼ 0.10, is a hollow sphere
consisting of a vacuum region surrounded by a shell with
tangential tension. The potential ball, which appears also
in the case e ¼ 0.10, has a shell that encloses the region
filled by the potential energy of the Higgs scalar field. The
value of the effective potential at the initial stationary
point is lower than the vacuum stationary point for the
potential ball solutions. Then, the antifriction force that
raises the effective energy plays the essential role for the
existence of the potential balls.
The friction force and antifriction force are in proportion

to the ball radius; then in the cases that the effective
potential at the initial stationary point can take the same
value at the vacuum stationary point, the cases of dust balls
and shell balls, the friction forces can be negligibly small,
namely the radius of the ball, can be infinitely large. In
contrast, in the case that the effective potentials take
different values at the initial and vacuum stationary
points, the case of potential balls, the friction and anti-
friction forces should yield work of the same amount of
potential difference, and then the ball radius should be
finite.
All these NTS balls have a common property, i.e., the

charge of the complex matter scalar field is always totally
screened by the counter charge of the complex Higgs scalar
field [20–22,25,26]. Then, in a viewpoint of a distant
observer, all NTS balls are electrically neutral objects. It
would be a desirable property as a dark matter. If the theory
considered in this paper is embedded in a realistic theory,
NTS-ball solutions in the theory would be a dark matter
candidate. In order to apply such NTS balls to the dark
matter, it is important in our next work to estimate the
amount of NTS balls in the evolution of the Universe
[27–32].
We showed that the mass of NTS balls obtained in this

article are smaller than the total mass of free particles
condensed in the balls, which is in proportion to the
charge of the balls, i.e., the NTS balls have negative
binding energy. This means that the NTS balls do not
disperse into free particles. For the dust balls and shell
balls, the ratios of the mass and charge of the NTS
balls are not depend on their radii, while for the potential
balls, the ratio is in proportion to the ball radius. Then, the
binding energy is negative for the dust balls and shell
balls independently of their sizes, while the potential
balls could have positive binding energy if their sizes
become large. Various analyses of stability including
perturbative analysis [33–38] are also important
future works.
The study of the gravitational fields of the NTS balls is

an interesting and important issue [39–46]. The geometries
outside the NTS balls are described by the Schwarzschild

FIG. 7. The mass ratioMNTS=Mfree as functions of Nψ for three
types of NTS balls.
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metrics because the regions are commonly spherically
symmetric vacua. In contrast, the internal geometry of
the NTS balls depends on the internal properties for three
types. Then, an observation of the geometry inside the balls
distinguishes the types of solutions. Furthermore, it is also
interesting whether the NTS balls can be exotic compact
objects; namely, NTS balls could have ISCOs and
photon spheres and so on. A relativistic compact NTS ball
would be expected as an alternative or a seed of a
black hole.
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APPENDIX A: LINEAR ANALYSIS AT THE
STATIONARY POINTS

We linearize the equations of motion (16), (17), and (18)
at the stationary points in the form

d2X
dr2

þ 2

r
dX
dr

þ AX ¼ 0; ðA1Þ

where X denotes deviation from a stationary point as

X ≔

0
B@

u − ust
f − fst
α − αst

1
CA; ðA2Þ

where ðust; fst; αstÞ denotes the position of one of the
stationary points listed in (25)–(28). The matrix A is
given by

A ≔

0
BB@

ðeαst −ΩÞ2 − μf2st −2μfstust 2eustðeαst −ΩÞ
−2μfstust e2α2st − λ

2
ð3f2st − η2Þ − μu2st 2e2fstαst

−4eustðeαst − ΩÞ −4e2fstαst −2e2ðf2st þ u2stÞ

1
CCA: ðA3Þ

At large r, the second term, the friction term, in (A1) can be
negligible. If the matrix A has a real negative eigenvalue or
a complex eigenvalue, there exists an unstable linear
solution of X that grows or decays exponentially. The
decaying solutions are necessary for the bounce solutions.
In this appendix, we show that there exist unstable
directions of the equations of motion at the stationary
points, PV , P0, and P1 on R1, while no unstable directions
exist at any point on R2.

1. The vacuum stationary point Pv

Substituting ðust; fst;αstÞ ¼ ðuv; fv; αvÞ into (A3), we
get

A ¼

0
BB@

−μη2 þ Ω2 0 0

0 −λη2 0

0 0 −2e2η2

1
CCA: ðA4Þ

Two eigenvalues are negative, and the rest is also negative if
Ω2

max ≔ μη2 > Ω2. In the case Ω2
max > Ω2, all fields can

decay exponentially toward the vacuum stationary
point PV .

2. The stationary point P0

For large NTS-ball solutions, where the friction terms in
(22) are negligible, the effective energy defined by (33) is
conserved for the (0-V)-type solutions. Then, we require

UeffðP0Þ ≃ UeffðPvÞ. The equality holds for Ω ¼ Ωmin,
which is defined in (31). Then, we inspect the eigenvalues
of A for Ω ¼ Ωmin.
The characteristic equation of A is in the form

FðκÞ ≔ κ3 þ ακ2 þ βκ þ γ ¼ 0; ðA5Þ

where κ is an eigenvalue of A; α, β are complicated
functions of f0, u0, and α0; and γ is explicitly given by

γ ≔ 32e2f20u
2
0ð−2e2α20 þ 8eα0f0 þ ð3λ − 2Þf20 − λη2Þ:

ðA6Þ

It can be shown that if μ > λ,

Fð0Þ ¼ γ ¼ 64
e2

μ

�
λ

μ

�
3=2

�
1 −

ffiffiffiffiffiffiffiffi
λ=μ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − λ=μ

p
�2

η6 > 0; ðA7Þ

then A has a real negative eigenvalue, at least.

3. The stationary point P1 on the ridge R1

Setting ðust; fst; αstÞ ¼ ðu1; f1; α1Þ, we obtain

A ¼

0
BB@

0 0 0

0 Ω2 þ λ
2
η2 − μu21 0

0 0 −2e2u21

1
CCA; ðA8Þ
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where u1 is an arbitrary constant. One of the eigenvalues
is zero because the stationary point P1 is on a ridge R1.
If u1 ≠ 0, one eigenvalue is negative at least, and
if μu21 > Ω2 þ λ

2
η2, the rest of eigenvalue is also

negative.

4. The stationary point P2 on the ridge R2

Setting ðust; fst; αstÞ ¼ ðu2; f2; α2Þ, the matrix A is
reduced to

A ¼

0
BB@

ðeα2 −ΩÞ2 0 0

0 e2α22 þ λ
2
η2 0

0 0 0

1
CA; ðA9Þ

where α2 is an arbitrary constant. In this case, one
eigenvalue is zero because P2 is on the ridge R2, and
the remaining two are non-negative. Thus, there is no
unstable direction at the stationary point P2.

APPENDIX B: ENERGY-MOMENTUM TENSOR
OF THE SYSTEM

The energy-momentum tensor Tμν of the present system
is given by

Tμν ¼ 2ðDμψÞ�ðDνψÞ − gμνðDαψÞ�ðDαψÞ
þ 2ðDμϕÞ�ðDνϕÞ − gμνðDαϕÞ�ðDαϕÞ
− gμνðVðϕÞ þ μψ�ψϕ�ϕÞ

þ
�
FμαFα

ν −
1

4
gμνFαβFαβ

�
: ðB1Þ

Energy density and pressure components are given by

ϵ ¼ −Tt
t

¼ jDtψ j2 þ ðDiψÞ�ðDiψÞ þ jDtϕj2 þ ðDiϕÞ�ðDiϕÞ

þ VðϕÞ þ μjψ j2jϕj2 þ 1

2
ðEiEi þ BiBiÞ; ðB2Þ

pr¼Tr
r

¼ðDrψÞ�ðDrψÞþjDtψ j2−ðDθψÞ�ðDθψÞ
−ðDφψÞ�ðDφψÞþðDrϕÞ�ðDrϕÞþjDtϕj2
−ðDθϕÞ�ðDθϕÞ−ðDφϕÞ�ðDφϕÞ−VðϕÞ−μjψ j2jϕj2

þ1

2
ð−ErErþEθEθþEφEφ−BrBrþBθBθþBφBφÞ;

ðB3Þ

pθ¼Tθ
θ

¼ðDθψÞ�ðDθψÞþjDtψ j2−ðDrψÞ�ðDrψÞ
−ðDφψÞ�ðDφψÞþðDθϕÞ�ðDθϕÞþjDtϕj2
−ðDrϕÞ�ðDrϕÞ−ðDφϕÞ�ðDφϕÞ−VðϕÞ−μjψ j2jϕj2

þ1

2
ð−EθEθþErErþEφEφ−BθBθþBrBrþBφBφÞ;

ðB4Þ
pφ¼Tφ

φ

¼ðDφψÞ�ðDφψÞþjDtψ j2−ðDrψÞ�ðDrψÞ
−ðDθψÞ�ðDθψÞþðDφϕÞ�ðDφϕÞþjDtϕj2
−ðDrϕÞ�ðDrϕÞ−ðDθϕÞ�ðDθϕÞ−VðϕÞ−μjψ j2jϕj2

þ1

2
ð−EφEφþErErþEθEθ−BφBφþBrBrþBθBθÞ:

ðB5Þ

APPENDIX C: ESTIMATION OF THE MAXIMUM
RADIUS OF THE POTENTIAL BALLS

In the case of the potential balls, the (1-V)-type, we have

UeffðPvÞ ¼ 0; UeffðP1Þ ¼ −
λ

4
η4: ðC1Þ

Therefore, the difference of Ueff must be compensated by
the work defined by (34). In this section, we estimate the
radius of the potential balls by calculating the work done by
the friction forces.
We roughly estimate the work (34) by

W ∼
2

R

��
Ω=2e
2ru

�
2

2ru þ
�
Ω=2e
2rA

�
2

2rA

�

−
4

R

��
η

4rϕ

�
2

4rϕ þ
�
u1
4rψ

�
2

4rψ

�
; ðC2Þ

where rψ ≔ m−1
ψ ¼ ð ffiffiffi

μ
p

ηÞ−1; rϕ ≔ m−1
ϕ ¼ ð ffiffiffi

λ
p

ηÞ−1 and
rA ≔ m−1

A ¼ ð ffiffiffi
2

p
eηÞ−1 are Compton lengths of the gauge

field, the complex matter scalar field, and the complex
Higgs scalar field, respectively.
Requiring W ¼ λη4=4, we obtain that the radius of the

potential balls as

R ∼
2

ffiffiffi
2

p
Ω2

λeη3

�
u1 þ η

2η

�
−

4e
λeη3

ð
ffiffiffi
λ

p
η2 þ ffiffiffi

μ
p

u21Þ: ðC3Þ

The radius obtained above depends on the parameters of the
system and u1, the central value of the function uðrÞ.
Numerically, u1 is the same order of magnitude of the
symmetry breaking scale η. Then, we can estimate the
radius as
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R ∼
2

ffiffiffi
2

p
Ω2

λeη3
−

4e
λeη3

ð
ffiffiffi
λ

p
η2 þ ffiffiffi

μ
p

η2Þ

¼ 4Ω2ðr2ϕrAÞ − 4r2ϕ

�
1

rϕ
þ 1

rψ

�
: ðC4Þ

This estimation is in accord with the numerical calculations
that show that the radius of the potential balls increases as

the parameter Ω increases. As mentioned in Appendix A,
Ω < Ωmax in order that the function uðrÞ decays exponen-
tially toward PV . Using Ωmax, we see that the maximum
radius for the potential balls is given by

Rmax ∼ 4rϕ

�
rϕrA
r2ψ

þ rϕ
rψ

− 1

�
: ðC5Þ
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