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Variety of nontopological solitons in a spontaneously broken U(1) gauge
theory: Dust balls, shell balls, and potential balls
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We show, by numerical calculations, that there exist three types of stationary and spherically symmetric
nontopological soliton (NTS) solutions (NTS balls) with large sizes in the coupled system consisting of a
complex matter scalar field, a U(1) gauge field, and a complex Higgs scalar field that causes spontaneously
symmetry breaking. Under the assumption of symmetries, the coupled system reduces to a dynamical
system with 3 degrees of freedom governed by an effective action. The effective potential in the action has
stationary points. The NTS balls with large sizes are described by bounce solutions that start off with an
initial stationary point and traverse to the final stationary point, the vacuum stationary point. According to
the choice of the initial stationary point, there appear three types of NTS balls: dust balls, shell balls, and

potential balls with respect to their internal structures.
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I. INTRODUCTION

A nontopological soliton (NTS) is a localized configu-
ration of fields whose stability is guaranteed by a conserved
Noether charge, and it can be interpreted as a condensation
of bosonic particles in a bound state. In the pioneering work
by Friedberg, Lee, and Sirlin [1], the NTS solutions are
constructed in a field theory that consists of a complex
scalar field and a real scalar field with a double-well
potential that causes the spontaneous symmetry breaking.
Coleman [2] constructed simplest NTSs, the so-called O
balls, in a theory of a single complex scalar field with a
complicated self-interaction (see, e.g., reviews and a text-
book [3-5]).

Extensions of the NTS solutions have been investigated
in cosmology and astrophysics. There are lots of works
in the context that the NTS is a candidate of dark matter
[6-10] and a source for a baryogenesis [11-13] in a wide
class of field theories with a potential inspired by super-
symmetric theories [14—16].

Natural extensions of the NTSs in a theory with a gauge
field were studied in Refs. [17-19]. In their papers, it was
clarified that gauged NTSs with a large amount of charge
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are unstable because of the Coulomb repulsive force
mediated by the gauge field. Then, the gauged NTSs have
an upper limit of the charge. It is also interesting to
investigate NTSs in spontaneously broken gauge theories,
which is a standard framework of the gauge theories. It was
shown that stable gauged NTS solutions with a large
amount of charge exist in a spontaneously broken gauge
theory [20-22].

In this paper, we investigate the NTS solutions in the
system that consists of a matter complex scalar field, a U(1)
gauge field, and a complex Higgs scalar field that causes
the spontaneous symmetry breaking. Under the assumption
that the solutions are stationary and spherically symmetric,
the system reduces to a theory described by an effective
action with 3 dynamical degrees of freedom. The effective
potential of the theory has stationary points, and there exist
solutions that connect the stationary points as bounce
solutions. The bounce solutions represent NTS balls with
large size. The solutions are classified into three types: balls
filled by homogeneous dust inside (dust balls), empty balls
with shells at their surfaces (shell balls), and balls filled by
the potential energy of the Higgs scalar field in the surface
shells (potential balls). The dust balls are already obtained
in Refs. [20,21]." The appearance of the shell balls and the
potential balls in the same theory is a new finding in this
paper. In all of NTS balls, the U(1) charge carried by the
matter scalar field is compensated by the counter charge

'"The NTS solutions in a generalized model are discussed in
(22]
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carried by the Higgs scalar field. Namely, all NTS balls are
totally screened [20-22].

The paper is organized as follows. In Sec. II, we present
the basic model studied in this article, and show that the
system is reduced to a dynamical system with 3 degrees of
freedom. In Sec. III, we show that the effective potential of
the system has stationary points, and the bounce solutions
that connect two of the stationary points represent NTS
balls with large sizes. In Sec. IV, we obtain three types of
the bounce solutions numerically, and study dynamical
properties of the solutions. In Sec. V, we study the internal
properties of the NTS-ball solutions, and in Sec. VI, we
discuss the stability of the balls briefly. Section VII is
devoted to summary.

II. BASIC MODEL

The action of the system we consider is
5= [ ax(~u o) - 0,0 D) - Vg
* * 1 v
Y = FuF ) (1)

where y is a complex matter scalar field, ¢ is a complex
Higgs scalar field with the potential

Vi) =@ - ) @

characterized by constants 4 and 5, and F,, :== 9,A, — 0,4,
is the field strength of a U(1) gauge field A,,. We use metric
signature (—, 4+, +, +). The parameter y is the coupling
constant between y and ¢, and the covariant derivative D,
in (1) is defined by

D,y = 0,y — ieA,y D,p = 0,0 —ieA,p, (3)
where e is a gauge coupling constant.

The system is invariant under the Uy (1) X Ugiopar(1)
transformations:

w(x) = v/ (x) = Wy (x), 4)
P(x) = ¢/ (x) = W (x), (5)
A (x) = AL (x) = A, (x) + e‘laﬂ;((x), (6)

where y(x) is an arbitrary function, and y is a constant.
The conserved currents associated with the invariance
are

Juy = ie(w*(D*y) —w(D"w)"),
Jo = ie(¢"(D"¢) — (D)),

which satisfy 9,,j,, = 0 and 9,,ji; = 0, and the total con-

served charge of y and ¢ are defined by volume integra-
tions on a ¢ = const plane X in the form

0y = / PydV.

where p,, == j;, and p,, = jy.

In the symmetry breaking vacuum where the Higgs
scalar field has the vacuum expectation value (¢) = 7, the
gauge field A, and the complex matter scalar field y
acquire the mass m, = v/2en and m,, = \/un, respectively.
Simultaneously, the real part of ¢ around 5 acquires the

%=/%w, (8)

mass mg = \//—1;7. From the action (1), we obtain the Klein-
Gordon equations and the Maxwell equation in the form

D,D"y — u|p|*y =0, 9)

A
DD =3 ¢(1¢* =n*) —ulwl> =0, (10)
0, " = j4 + b, (11)

In order to construct stationary and spherically sym-
metric solutions, we use the following ansatz:

w=e"u(r), ¢=e"f(r). A =A(r),
and A, =0 fori=r0, 0, (12)

in the spherical coordinates (¢, r, 0, @), where @ and o’ are
constants, and u(r) and f(r) are real functions of r. Using
the gauge transformations (4), (5), and (6), we fix the
variables as

¢(r) = f(r), (13)
w(t,r) — e®u(r) (14)
A (r) = a(r)=A,(r) — e '@, (15)

where Q = w — @', and we assume it is positive without
loss of generality. Therefore, we rewrite (9), (10), and (11),
as the coupled system of nonlinear ordinary differential
equations in the form

d*u  2du
Jatoo ot (ea=QPu—pfu=0,  (16)
dzf 2df
R e ff(fz—ff)—ﬂfuzzoﬁ (17)
d*a 2da
d—+rd +pt0lal 0 (18)

where i (r) = py (F) + pg(r), and p, and p, are
given by
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py = —2e(ea—Q)u?, py = —2e%af*.  (19)

We require that the fields are regular at the origin of
spherical symmetry, and are in the vacuum at the infinity.
Then, we impose the conditions

d d d
diz_)o’ d—{—>0, d—(:—>0 asr—0, (20)
and
u— 0, f—n, a—0 asr—oo. (21)

III. STATIONARY POINTS OF THE SYSTEM AND
BOUNCE SOLUTIONS

The coupled system of Egs. (16), (17), and (18) can be
derived from the effective action

du\2  [df\?
Seff:/rzdr<<dr> + <di">

1 [da\?
_§<d_f> _Ueff(u’f’a)>’

where Uy is given by

(22)

A
Ueit(u, f.@) = =7 (f* =1)* = uf*u?

+ 2f2a? + (ea — Q)*u*.  (23)

Regarding the radius r as a “time” and amplitude of the
fields u(r), f(r), and a(r) as the position of a particle we
can understand the effective action (22) in the words of
Newtonian mechanics of 3 degrees of freedom. We note
two points: the first, the “kinetic” term of «, has the wrong
sign; the second, r, appears explicitly in the integration
measure in the effective action (22), so that the equations of
motions (16)—(18) have friction terms that are proportional
to 1/r.

The dynamical system described by the effective action
has stationary points of U that satisfy

OU ¢ _

’ OUg 0. and et _
ou

of Oa

0. (24)

By solving the coupled equations (24), we find two isolated
stationary points, P, and Py, and two ridges, R; and Ry;
each ridge consists of infinite stationary points aligned on a
line. The positions of the stationary points in the region
u>0, f>0,and a >0 are

P,: a, =0,

fv:rlv Mv:07 (25)

1
Po: [eN) :m ((ﬂ—ﬂ)g
+ \/ﬂ(2/1 + u)Q* — pd(4u — l)ff) :
1 1
fozﬁ(ﬂ—eao), ”02\7;7 ea(Q — ea).
(26)
Q .
Ri:a =—, fi1=0, u; = arbitrary constants,
e
(27)
R,: a, = arbitrary constants, fr=0, u, =0,
(28)

The point P, is the vacuum stationary point; i.e., the
conditions (21) are satisfied there. There are copies of
the stationary points in the regions of possible alternative
signs of u, f, and a, respectively.

We concentrate on solutions that connect one of the
stationary points and the vacuum stationary point, namely,
at the initial time, r = 0, a particle in the space (u, f,a)
stays in a vicinity of one of the stationary points long time.
The particle leaves the stationary point and traverses
quickly toward the vacuum stationary point, P, and finally
stays on it. We call the solutions that connect one of the
stationary points and the vacuum stationary point bounce
solutions.

For the bounce solutions, the equations of motion have at
least one unstable direction on both the initial stationary
point and the vacuum stationary point. As is shown in
Appendix A, there are unstable directions at the stationary
points Py, Py, and any points P; on R; while there is no
unstable direction at any point on R,. Then, possible
bounce solutions are in the following three types:

P, - P,, P, - P,, P, — P,. (29)
Hereafter, these three types are denoted by (0-V), (1-V),
and (V-V), respectively.”

Inserting (u, f,a) of the stationary points P,,Pg,P;
given by (25), (26), and (27) into (23), we obtain the
values of U, at the stationary points as

Ue(Py) =0, Uee(Py) = —2n* /4, (30)
and U (Py) is given by a complicated function of the
parameter Q. It should be noted that in the limit

Q = Quiy = \/ 2/ Ay — A = \/my(2m,, —my) (31)

*The solutions of Py, — P, type are discussed in Refs. [20,21].
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WwWe See
Uett(Py) — 0. (32)

We can define the effective energy of solutions as the
sum of the kinetic energy and the effective potential in the
form:

du\? df\?2 1 /da\?
Ee = (d—b:) +<d_]:> _§<d_0r{> + Uesr(u, f, @). (33)

We can also define the work done by the friction force
acting on a moving particle in the form:

e [2 (5= 2 (D)ar [ (%)
(34)

The value of the effective energy changes by an equal
amount of W. Note that the equations of motion of f and u
have friction terms, while the equation of motion of « has
an antifriction term in (34) since the kinetic term of the
gauge field has the wrong sign. Therefore, as the time is
increasing, the motions of scalar fields cause a decrease of
E.¢+, while the motion of the gauge field causes an increases
of Eeff'

IV. NUMERICAL CALCULATIONS

In this section, we present numerical solutions of NTS
balls described by the bounce solutions for the coupled
equations of motion: (16), (17), and (18). In order to search
solutions that satisfy the boundary conditions (20) and (21),
we should tune the parameter Q and boundary values of the
fields. It is hard to apply the shooting method to find
numerical solutions in our system, because three shooting
parameters should be fine-tuned. Therefore, we use the
relaxation method. In numerics, hereafter, we set 5 as the
unit. We set A =1 and ¢ = 1.4, as an example, and we
consider two cases, ¢ = 1.0 and ¢ = 0.10.

A. Field configurations

In Fig. 1, we plot typical configurations of u, f, and a as
functions of r obtained by numerical calculations. In the
case of e = 1.0, only (0-V) type solutions (left panel of
Fig. 1) appear as bounce solutions [20-22]. On the other
hand, in the case of e = 0.10, two types, (V-V) (central
panel) and (1-V) (right panel), appear.

For solutions of two types, (0-V) and (1-V), fields
behave like step functions, namely, the functions u, f,
and « take constant values inside a characteristic radius, say
R, around which the functions decay quickly to the vacuum
values. These solutions represent homogeneous balls with
the surface radius R. The central values of u, f, and a of
(0-V) type solutions are given by (26), while for (1-V) type

solutions, f and « are given by (27), and the value of u, i.e.,
the position of the initial stationary point on the ridge R, is
determined by the global behavior of the solutions. In the
case of (V-V) type solutions, the functions u, f, and « take
nonvacuum values only in a vicinity of a characteristic
radius, namely, the solutions represent empty balls sur-
rounded by spherical shells with this radius.’

In Fig. 2, we show the positions of stationary points, P,
P,, and ridges, Ry, R,, of the effective potential U in the
(u, f,a) space. The global behavior of trajectories of
moving particles in the (u, f, @) space that describes the
bounce solutions are shown in the same figure. Actually,
the trajectories connect a stationary point and the vacuum
stationary point.

At the stationary points, equisurfaces of the effective
potential U, in the space (u, f, @) are depicted in Fig. 3. In
the same figure, segments of the trajectories in the vicinity
of the stationary points are shown. The moving particle
departs from the initial stationary point along an unstable
direction, and approaches to the terminal vacuum sta-
tionary point.

B. The effective energy and the effective potential

In this subsection, we discuss the properties of the
effective energy, E.y, and the effective potential, Uy,
which characterize the numerical solutions of the dynami-
cal system (22). Physical energy given by the energy-
momentum tensor 7', is discussed later in the next section.

Inside the ball surfaces, E. = Ug = const holds
because the functions u, f, and o keep constant values.
The values of U, at the stationary points are U (P,) = 0,
Ugs(Py) = —=An* /4, and U, (Py), which depend on Q and
approachto 0 as Q — Q ;.. We see E.iy = U = 0 outside
the ball surfaces in all cases because u, f, a take the
vacuum values.

Figure 4 represents the values of E.; and Ugy of the
solutions as functions of 7. In the case of (0-V) type (left
panel), E. and U keep almost zero for all value of r. By
the magnification of the figure around the ball surface, we
see that E.; diminishes by a small amount at the ball
surface. This occurs owing to the work done by the
friction forces activated around the ball surface. The
decrease of E s caused by the friction forces is
equal to Ug(Py) — Ug(Py). In the limit Q — Q. \,
Ut (Py) = Uggr(Py) =0, then, in such a solution, the
friction forces become ineffective. This actually occurs
when the surface radius r = R is large so that the friction
forces that are in proportion to 1/R are negligible. Then, in
the limit Q — Q_;,, the radius of the NTS balls in the (0-V)
type can be infinitely large.

*Shell-like solutions were found in a system consisting of a
complex scalar field with a singular potential coupled to a U(1)
gauge field [23,24].
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FIG. 1.
(1-V) type (right panel).

‘v‘.|.‘ry“x

0.0 0.5
ea/n

FIG. 2. Trajectories of the moving particle that connect the
stationary points: Py — P, (blue), P, — P, (green), and P; — P,
(orange). The dotted lines R; and R, are the ridges that consist of
infinite numbers of stationary points.

In the case of (V-V) type (central panel), U, oscillates
with a large amplitude in the shell region, and E ¢ does
with a small amplitude. In this type, both initial and final
stationary points are P, then the values of U inside and
outside are exactly same. One suspects that there would be
no bounce solution that connects the same stationary
points under the existence of the friction force. The
numerical calculations show that E.; increases, decreases,
and increases again around the shell. This occurs by the
friction forces of u and f and the antifriction force of a.
The works done by these forces compensate, then the
initial value of E.y is recovered during the evolution.
Therefore, the bounce solutions that connect the same
stationary points P, can exist in the system. Keeping the
cancellation, the friction and antifriction forces, whose
magnitudes are in proportion to 1/R, can become negli-
gibly small if the shell radius becomes large. Then, the
radius of the NTS balls in the (V-V) type can also be
infinitely large.

In the case of (1-V) type (right panel), the difference of
the effective potential between the initial and final sta-
tionary points given by

Typical numerical solutions f, u, and a are shown as functions of r for (0-V) type (left panel), (V-V) type (central panel), and

Uea(P1) ~ Ue(P,) = ~o1' (59)
and is finite for finite 4 and 7. The effective energy rises up
across the ball surface by a finite amount of work done by
the antifriction force of a. Thus, the radius of the (1-V) type
NTS ball should be finite* for the finite antifriction force.

The solutions of the (0-V) type are found in a variety of
field theories. However, it should be noted that the
solutions of the (V-V) and (1-V) types appear for
the system including the gauge field whose kinetic term
in the effective action (22) has the wrong sign so that the
equation of motion has the antifriction term.

V. INTERNAL PROPERTIES OF THE NTS BALLS

In this section, we study internal properties of the NTS
balls for three types. We explicitly show energy density,
pressure, and charge densities of the solutions of (0-V),
(V-V), and (1-V) types.

A. Energy density and pressure

The energy density and the pressure inside the ball
solutions are defined by energy-momentum tensor 7,
whose expression is given in Appendix B. Using the ansatz
(13), (14), and (15), we see that the energy density e, the
radial pressure p,, and the tangential pressure p,(= p,,) of

the system can be written by

€ = €yKin T €gKin T €yElast T €yElast T €Int T €por + €ES>

(36)

Dr = €yKin T €gKin T €yElast T EyElast — €Int — €Pot — €ES»
(37)

Do = €yKin T €pKin — €yElast — €yElast — €Int — Epot T €ES>
(38)

*“In the limit 1 — 0 or n — 0, the maximum radius would be
infinitely large.
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(i) Po—= Py : (e=1.0, Q=1.170)

1.000.f/17

~ v S 0010
4 ~0.005
0.000
0.000 - 0.005
0.010

(ii) Py = Py : (e=0.10, Q = 0.8109)

0.0 ’ ea/n

(iii) Py = Py : (e=0.10, Q = 1.183)

FIG. 3. Equisurfaces of the effective potential, U, around the stationary points in the three-dimensional space (u, f, a): (i) Py and P,
(ii) P, for both the start point and the end points, (iii) P; and P,. The blue surface denotes the values at the stationary points U (Py),
U.i:(Py), and U (P, ), respectively. The orange surfaces denote larger and the green surfaces denote smaller values than the blue ones.
The motion of the particle from and toward the stationary points is shown by arrows.
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FIG.4. The values of the effective potential and the effective energy, defined by (23) and (33), are shown for the (0-V) type (left panel),
(V-V) type (central panel), and (1-V) type (right panel) as functions of r.

where
€yKin = |D,z;/|2 = (ea— 9)2”2’ €4Kin = \Dz¢|2 = fra,
cpas = (D) (09) = () Gurn = (D) 0') = (1)
= VD) =4 (P=0P, =P =, as=3EE =3 (%) @

are densities of the kinetic energy of y and ¢, the elastic energy of y and ¢, the potential energy of ¢, the interaction energy
between y and ¢, and the electrostatic energy, respectively. In Fig. 5 we show €, p,, and py for three types of NTS-ball
solutions.

In the (0-V) type case, the energy density and the pressure can be represented approximately by

2 1 A
€ = €yKin + €¢Kin T €t T Epor = ;e%(g —eap)® + ; (ea)*(Q — eay)* + ;7 ((Q —eap)* —n*)%,

1 A
Pr = Po = €yKin + €¢Kin — €Int — €pot = /; (eao)z(Q - ea())z + /7 ((Q - ea0)2 - ’72)2' (40)

|

We see from Fig. 5 that the pressure is considerably small ~ nonvanishing only in the shell region. Then, we call (V-
compare to the energy density for a (0-V) type solution. V) type solutions shell balls. The radial pressure, p,, is
Thus, the equation of state is like nonrelativistic fluid. In  rather small compared to the energy density, while the
the limit Q — € ;,, the pressure of the ball vanishes;  tangential pressure, py, takes negative non-negligible
namely, the ball consists of dust fluid [21]. Therefore, we values; i.e., the (V-V) type solution has a shell with
refer to (0-V) type solutions as dust balls. tangential tension.

For a (V-V) type solution, since the regions both inside For a (1-V) type solution, using (27), we find that ep,,
and outside the ball are in the vacuum state, ¢ =0 and  supplied by the potential of ¢, is the only nonvanishing
p =0, and the energy density and the pressure are  component inside the ball, where we see

1.0 e=1.0, 0=1.170 1.0f ¢=0.10, 0=0.8109 e=0.10, 0=1.183
0.8 0.8
0.6f €/€Max 0.6f €/€Max €/€Max
o4 | == pr/eMax 04 || == pr/eMax """ pr/EMax
02 e Pol€Max 02 L e DPolemax | 020 Ji\ e Po/€Max
0.0f T 0.0

-0.2} —0.2} i

-0.4 : ‘ ‘ -0.4 L ‘ ‘ ‘ ‘

0 50 100 150 200 0 50 100 150 200 100 150 200
nr nr nr

FIG. 5. Energy density and pressure normalized by the maximum value of the total energy density €)y,, are drawn for the (0-V) type
(left panel), (V-V) type (central panel), and (1-V) type (right panel) as functions of r.

123029-7



HIDEKI ISHIHARA and TATSUYA OGAWA

PHYS. REV. D 103, 123029 (2021)

1
€==pr==pPy==p, =" (41)

Hence, we refer (1-V) type solutions as potential balls,
where a cosmological constant appears effectively inside
the ball. In the vicinity of the surface, a shell structure
appears, where the energy density and the pressure have
some peaks. In contrast to the shell balls, the tangential
pressure is positive, and the radial pressure is small, which
is the as same as the shell balls.

B. Charge density

The charge densities p,, and py, and the total charge
density pio1 = py, + py are plotted in Fig. 6 as functions of
r. In the case of the dust ball, the charge density p,, is
compensated by the counter charge density p,; then py
vanishes almost everywhere, namely, perfectly screening
occurs [25,26]. On the other hand, in the cases of the shell
ball and the potential ball, the charge densities are induced
in the vicinity of the shell region. For the potential balls, an
electric double layer emerges at the surface, while for the
shell balls, an electric triple layer does (see Fig. 6). The
total charge given by integration of the density is screened,
ie., Q, + Q4 = 0. As aresult, the NTS balls are observed
as uncharged balls by a distant observer.

VI. MASS, RADIUS, AND STABILITY OF
THE NTS BALLS

In this section, we inspect the total mass, Myts, and the
total charge of y, Q,,, for the numerical NTS-ball solutions
in three types. We discuss how Myrg and Q,, depend on the
ball radius R.

We define the total mass of the NTS balls by

Myrs = 47/7/00 e(r)ridr, (42)
0
and the total charge of y as
0, = 47r/wpl,,(r)r2dr. (43)
0

Furthermore, we define the ball radius R for a numerical
solution of the NTS ball by

4 /R e(r)r*dr = 0.99Myrs, (44)
0
so that 99% of the total mass of the NTS ball is included
within the radius R.
From Figs. 5 and 6, we see € and p,, are constant inside
a dust ball. Then both of the dust balls, Myrs and Q,,, are
proportional to their volume. In contrast, for a shell ball, ¢
and p,, concentrate on the shell region, then both Myrg
and Q,, are proportional to the surface area of the shell
balls. For a potential ball, e takes a constant value inside,
and it has a peak on the shell region, while p, is
nonvanishing only in the shell region. Then, Mytg
depends on the surface area and the volume of the
potential balls, while Q,, is proportional to only the
surface area. Therefore, Myrs and Q, depend on the
radius R as follows:

Myts <R3, Q, xR fordustballs
Myrs xR?, 0, xR? for shell balls
Myrs~aR?*+pR?,  Q, «R?* forpotential balls  (45)

where a and f are some constants.
Defining the number of y particles contained in a NTS
ball with Q,, by

(46)

we can define the summation of the mass energy for N,
free particles of y that carry totally the same charge Q,, of
the NTS ball by

9y
N,I,ml,, = 7”’1 .

Mo = (47)
If Myrs/Miee < 1 for a NTS ball, it has negative binding
energy. Then, the NTS ball does not break up sponta-
neously into free particles, namely, the NTS ball is stable.

1.0f =5 \ e=1.0,0-1170 1.0¢ ¢=0.10, 0=0.8109 1.0 €=0.10, 1=1.183
i \ 08 pulpymax 1 b e PulPy Max
0.5 \ 0.6}
\ .4 A N 1 N — PolPyMax 050 e PolPumax
0.0 > 0. ptotal/ptp Max ptotal/pll/ Max
i Pylpy(0) 0.2} 0.0
-0.5 joo Polpu(0) 0.0 \F -
¥ Protal/Pu(0) -0.2¢ N
=1.0h- e N ‘ s -0.4L ‘ s ; ‘ -0.5L : : : :
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
nr nr nr

FIG. 6. The charge densities of scalar fields, p,,, p;, and the total charge density py,, normalized by the maximum value of p,, are
shown for the (0-V) type (left panel), (V-V) type (central panel), and (1-V) type (right panel).
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FIG.7. The mass ratio Mnrs/M . as functions of N,, for three
types of NTS balls.

In Fig. 7, we plot the ratio Myys/ M. as a function of
N,,. The ratios Mnrs/M. for both the dust balls and the
shell balls are constant, since both Myrs and Q,, have the
same dependence on the radius, o< R? for the dust balls and
« R? for the shell balls. By the numerical calculations, we
find Myts/ M. are smaller than unity for both the dust
balls and the shell balls, and then these two types are stable
without regard to their sizes. In the case of the potential
balls, Myts and Q,, depend differently on R. As shown in
Fig. 7, the potential balls are stable in the range studied in
this article; however, it is suspected that larger potential
balls become unstable.

VII. SUMMARY

We found numerically that three types of stationary and
spherically symmetric nontopological soliton solutions,
NTS balls, with a large size in the coupled system consist
of a complex matter scalar field, a U(1) gauge field, and a
complex Higgs scalar field with a potential that causes
spontaneous symmetry breaking. By the assumption of the
symmetries, the system is reduced to a dynamical system of
a particle described by an effective action with 3 degrees of
freedom where the radial coordinate plays the role of the
fictitious time. The effective potential of the system has
stationary points. The vacuum stationary point, one of
them, denotes the broken symmetry vacuum state. There
exist bounce solutions that connect one of the stationary
points and the vacuum stationary point. They describe NTS
balls with a large size.

The effective action that describes the spherically sym-
metric system depends on the fictitious time r explicitly.
Then friction forces, in addition to the potential forces, act
on the moving particle. The kinetic term of the gauge field
has opposite sign to the kinetic terms of the scalar fields.
Therefore, the friction forces work when the scalar fields
change in their values, while the antifriction force works
when the gauge field does. This fact makes the system have
a variety of solutions.

There exist three types of solutions named dust balls,
shell balls, and potential balls. The dust ball, which

appears in the case where the gauge coupling constant
e = 1.0 has homogeneous energy density and negligibly
small internal pressure inside the ball. The shell ball,
which appears in the case ¢ = 0.10, is a hollow sphere
consisting of a vacuum region surrounded by a shell with
tangential tension. The potential ball, which appears also
in the case e = 0.10, has a shell that encloses the region
filled by the potential energy of the Higgs scalar field. The
value of the effective potential at the initial stationary
point is lower than the vacuum stationary point for the
potential ball solutions. Then, the antifriction force that
raises the effective energy plays the essential role for the
existence of the potential balls.

The friction force and antifriction force are in proportion
to the ball radius; then in the cases that the effective
potential at the initial stationary point can take the same
value at the vacuum stationary point, the cases of dust balls
and shell balls, the friction forces can be negligibly small,
namely the radius of the ball, can be infinitely large. In
contrast, in the case that the effective potentials take
different values at the initial and vacuum stationary
points, the case of potential balls, the friction and anti-
friction forces should yield work of the same amount of
potential difference, and then the ball radius should be
finite.

All these NTS balls have a common property, i.e., the
charge of the complex matter scalar field is always totally
screened by the counter charge of the complex Higgs scalar
field [20-22,25,26]. Then, in a viewpoint of a distant
observer, all NTS balls are electrically neutral objects. It
would be a desirable property as a dark matter. If the theory
considered in this paper is embedded in a realistic theory,
NTS-ball solutions in the theory would be a dark matter
candidate. In order to apply such NTS balls to the dark
matter, it is important in our next work to estimate the
amount of NTS balls in the evolution of the Universe
[27-32].

We showed that the mass of NTS balls obtained in this
article are smaller than the total mass of free particles
condensed in the balls, which is in proportion to the
charge of the balls, i.e., the NTS balls have negative
binding energy. This means that the NTS balls do not
disperse into free particles. For the dust balls and shell
balls, the ratios of the mass and charge of the NTS
balls are not depend on their radii, while for the potential
balls, the ratio is in proportion to the ball radius. Then, the
binding energy is negative for the dust balls and shell
balls independently of their sizes, while the potential
balls could have positive binding energy if their sizes
become large. Various analyses of stability including
perturbative analysis [33-38] are also important
future works.

The study of the gravitational fields of the NTS balls is
an interesting and important issue [39-46]. The geometries
outside the NTS balls are described by the Schwarzschild
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metrics because the regions are commonly spherically
symmetric vacua. In contrast, the internal geometry of
the NTS balls depends on the internal properties for three
types. Then, an observation of the geometry inside the balls
distinguishes the types of solutions. Furthermore, it is also
interesting whether the NTS balls can be exotic compact
objects; namely, NTS balls could have ISCOs and
photon spheres and so on. A relativistic compact NTS ball
would be expected as an alternative or a seed of a
black hole.
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APPENDIX A: LINEAR ANALYSIS AT THE
STATIONARY POINTS

We linearize the equations of motion (16), (17), and (18)
at the stationary points in the form

X 2dx
— S +=—+AX =0,
dr

rdr (A1)

where X denotes deviation from a stationary point as

U— Ug
X = f - fst ’ (AZ)
a— ast

where (ug, fg,ay) denotes the position of one of the
stationary points listed in (25)—(28). The matrix A is
given by

(eay — 9)2 - :“fgt —2pf gy 2eug(eay — Q)
A= =2pf gy ezagt - % (3f§t - 772) - /’”’tgt 2€2fstast (A3)
—deugy(eay — Q) _4ezfstast _292( gt + ”gt)

At large r, the second term, the friction term, in (A1) can be
negligible. If the matrix A has a real negative eigenvalue or
a complex eigenvalue, there exists an unstable linear
solution of X that grows or decays exponentially. The
decaying solutions are necessary for the bounce solutions.
In this appendix, we show that there exist unstable
directions of the equations of motion at the stationary
points, Py, Py, and P; on R;, while no unstable directions
exist at any point on R,.

1. The vacuum stationary point P,

Substituting (ug, fy, ag) = (uy, fy,@,) into (A3), we
get

> +Q> 0 0
A= 0 0 (A4)
0 0 —2e%?

Two eigenvalues are negative, and the rest is also negative if
Q2. = un? > Q2. In the case Q2,, > Q?, all fields can
decay exponentially toward the vacuum stationary
point Py,.

2. The stationary point P,

For large NTS-ball solutions, where the friction terms in
(22) are negligible, the effective energy defined by (33) is
conserved for the (0-V)-type solutions. Then, we require

|
Uit (Py) = Ueir(Py). The equality holds for Q = Q;,,
which is defined in (31). Then, we inspect the eigenvalues
of A for Q = Q..
The characteristic equation of A is in the form
F(k) =&+ ax® + px+y =0, (AS)

where « is an eigenvalue of A; @, f are complicated
functions of f, ug, and ay; and y is explicitly given by

y =32 fiud(—2e*a} + Beapfo + (34— 2) 3 — Anp?).
(A6)

It can be shown that if y > 4,

F0)=y= 64%2 (g) v (%) 2;76 >0, (A7)

then A has a real negative eigenvalue, at least.

3. The stationary point P, on the ridge R,

Setting (ug, fg, @) = (uy, f1, @), we obtain

0 0 0
A=10 Q+i—ud 0 [, (A8
0 0 —2e%u?
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where u; is an arbitrary constant. One of the eigenvalues
is zero because the stationary point P; is on a ridge R;.
If u; #0, one eigenvalue is negative at least, and
it pu? > Q2 + %112, the rest of eigenvalue is also
negative.

4. The stationary point P, on the ridge R,

Setting  (uy, fo, @) = (4o, f2,®), the matrix A is

reduced to
(ea, — Q)? 0 0
A= 0 el +4ir 0. (A9)
0 0 0

where «, is an arbitrary constant. In this case, one
eigenvalue is zero because P, is on the ridge R,, and
the remaining two are non-negative. Thus, there is no
unstable direction at the stationary point P,.

APPENDIX B: ENERGY-MOMENTUM TENSOR
OF THE SYSTEM

The energy-momentum tensor 7', of the present system
is given by

T;w = 2(Dﬂll/)* (DDW) ~ G (Dal//)* (DaW)
+ Z(Dﬂ¢)*(Dv¢> - gﬂv<Da¢)* (Da¢)

1
+ (FWF,? - —gﬂ,,FaﬂF“/’).

) (B1)

Energy density and pressure components are given by

e=-T!
= D> + (Diw)"(D'y) + |D,g* + (Dig)"(D'¢)

1 . .
V() + ulwPIOP + 3 (EE + BB, (B2)

pr=T;
= (D))" (D"y) + D> = (Do) (D%)
—(D,y)"(D?y)+(D,¢)"(D"$) +|D.p|*
—(Dy$)* (D) — (D )" (D) =V (¢) —ulw *|p?
+%(—E,E’ +EyE° +E,E’—B,B"+ ByB’ +B,,B"),
(B3)

Po= Tz
= (Dow)* (D) + Dy |* — (D))" (D"y)
— (D) (D?w) + (Dyp)* (D’¢) + D,
~(D,¢)"(D"$) = (Dyp)* (D?$) =V () — ulw*|#]*
+%(—E9E9 +E,E"+E,E’—ByB’+B,B"+B,B"),
(B4)
Py=T4
= (D))" (D?y) + Dy >~ (Dy)*(D"y)
—(Dow)* (D) + (D, )" (D) + DI
—(D,$)(D"¢) — (Dgp)* (D°¢) =V (#) — ulw |9
+%(—E¢E‘/’ +E,E"+EyE°—B,B?+B,B"+ B,B%).

(BS)

APPENDIX C: ESTIMATION OF THE MAXIMUM
RADIUS OF THE POTENTIAL BALLS

In the case of the potential balls, the (1-V)-type, we have

A
Ues(Py) =0, Ueii(P1) = —1774- (C1)
Therefore, the difference of U ; must be compensated by
the work defined by (34). In this section, we estimate the
radius of the potential balls by calculating the work done by
the friction forces.

We roughly estimate the work (34) by
2 [ (Q)2e\2 Q/2e\?2
v () e (50) )
4 n\? up \?
——|(—) 4 — | 4r, |, C2
R ((41*,,,) ot <4r,,,> " (€2)

where 1, =m,! = (/). ry = mz' = (V)" and
ry = m;" = (v/2en)~" are Compton lengths of the gauge
field, the complex matter scalar field, and the complex
Higgs scalar field, respectively.

Requiring W = An*/4, we obtain that the radius of the
potential balls as

2202 4e

— A .
2o ( o ) Tor (Van? + \Juu?)

R

(C3)

The radius obtained above depends on the parameters of the
system and u;, the central value of the function u(r).
Numerically, u; is the same order of magnitude of the
symmetry breaking scale . Then, we can estimate the
radius as
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2202 4e
R~ Y/ /12 2
pys i e (Var? + /)
11
:492(7‘35VA)—47”§,<F¢+FW> (C4)

This estimation is in accord with the numerical calculations
that show that the radius of the potential balls increases as

the parameter Q increases. As mentioned in Appendix A,
Q < Q. in order that the function u(r) decays exponen-
tially toward Py. Using Q.«, we see that the maximum
radius for the potential balls is given by

ryt, r,
RmaxN4r¢<q:_2A+r¢—1>.

W w

(C5)
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