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The axion-electron coupling g,, is a generic feature of nonhadronic axion models. This coupling may
induce a variety of observable signatures, particularly in astrophysical environments. Here, we revisit the
calculation of the axion-electron bremsstrahlung and provide a general formulation valid for a non-
relativistic plasma with any level of degeneracy and for any axion mass. We apply our result to the Sun, red
giant stars, and white dwarfs. In particular, we prove that the approximations used to evaluate the axion
emissivity in red giants agree with the exact result within 10%, comparable with other uncertainties in these
studies. In addition, this prescription allows the red giant and white dwarf bounds to be extended to massive

axions.
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I. INTRODUCTION

The axion-electron coupling naturally arises in non-
hadronic axion models, like the Dine-Fischler-Srednicki-
Zhitnitsky [1,2], and in more general theories, such as
grand unified theories and string theory, predicting axion-
like particles [3—7]. This coupling would give observable
signals in both astrophysical context [8,9] and laboratory
experiments [ 10—18] (see Refs. [19,20] for a recent review).
In particular, light axions, with masses lower than the
stellar temperature, can be efficiently produced in stars by
electron bremsstrahlung (on ions or electrons) e~ 4+ Ze —
e~ + Ze + a (Fig. 1), Compton scattering e~ +y — e~ +a,
and electron-positron annihilation e* + e~ — y + a. The
last two processes are important only in nondegenerate
stars [21,22]. The extra energy-loss channel associated with
axion emissivity would modify the stellar observables,
giving the possibility to constrain their properties [23-28]
or explain possible hints of extra cooling in different stellar
systems [29,30]. Stars in which electrons are more degen-
erate, such as the core of red giants (RGs) and white dwarfs
(WDs) provide the most stringent bounds on the axion
coupling with electrons. Indeed, the RG bound excludes
Gue = 1.6 x 10713 [27,28] and the WD bound constrains
Gae = 2.8 x 10713 [23,24,26]. In these environments, the
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leading axion production channel is the electron-ion
bremsstrahlung, while the electron-electron bremsstrahlung
is suppressed by the electron degeneracy [22]. Given the
relevance of bremsstrahlung processes in determining
the axion emissivity in different stellar environments, we
find it useful to revisit the previous calculation of this
process including effects so far neglected in the literature,
specifically

(1) The effects of degeneracy. In the literature, the
electron plasma is always assumed to be either
completely degenerate or completely nondegener-
ate, neglecting the cases of intermediate degeneracy.
In our work, we extend the calculation of the
bremsstrahlung presenting the rate for any degree
of degeneracy, relevant for a plethora of astrophysi-
cal environments. We will show that this improved
calculation agrees with the previous literature [22]
within a few percent in the case of completely (non)-
degenerate stars as the Sun and WDs. Conversely,
for RGs, our calculated axion emissivity results to be
~25% lower than the completely degenerate limit.
This reduction is due to the partial degeneracy of the
electron gas in the RG core, which was accounted in
Refs. [27,28] with an interpolation formula first
proposed in Ref. [9]. The interpolation formula is
not needed in WDs since the plasma in a WD is
typically more degenerate than in a RG star.

(i) The effect of the axion mass. So far, all previous
studies have assumed massless axions in the brems-
strahlung process. However, this assumption ceases
to be valid if the axion mass m, becomes compa-
rable to the stellar temperature 7. In this case, the
axion production would be Boltzmann suppressed

Published by the American Physical Society
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and, consequently, the astrophysical bounds would
be relaxed (see e.g., [31,32]). Here, we quantify this
behavior through a calculation which explicitly
takes into account the axion mass in the matrix
element of the electron-ion bremsstrahlung.

The plan of our work is as follows. In Sec. II, we discuss
our revision of the axion production mechanism via
bremsstrahlung. In Sec. III, we apply these results to
representative astrophysical environments, namely, to the
Sun, RGs, and WDs. In Sec. IV, we discuss in more detail
the impact on the RG axion bound. Finally, in Sec. V, we
conclude. Two Appendixes follow. In Appendix A, we
show the complete matrix element of the electron-ion
bremsstrahlung and in Appendix B we summarize the
results of the existing literature.

II. ELECTRON-ION BREMSSTRAHLUNG

The axion interaction with electrons is described by the
following Lagrangian [22]:

Eae = 2%:; lpeyﬂ}/sl;”eaﬂa’ (1)
where v, and a are, respectively, the electron and axion
fields, m, is the electron mass, and g,, is the dimensionless
axion-electron coupling.

In the electron-ion bremsstrahlung, an electron is
deflected by the electric field of a static ion and the final
electron emits an axion. In this context, the Lagrangian in
Eq. (1) is equivalent to

‘Cae = _igael/_/eysl//ea‘ (2)

We stress that this equivalence is not general; e.g., it ceases
to be valid when two Goldstone bosons are attached to one
fermion line.

The electron-ion bremsstrahlung matrix element is

o ganje2
T lal(laP + k)12

1 1
|5 0.0
x u(pys)|r o T o Tm

where u(p;), u(py) are the electron spinors, p;, py, and p,
are four-momentum of initial, final electrons, and axion,
P:pf+pa’ Q:pi_pa’ and q:pf+pa_pi is the
momentum transfer. The term [|q|(|q|> + k%)"/?]7! is the
Coulomb propagator in a plasma and kg is the Debye
screening scale given by [33]

2
2 :47zaZijnj
s T

: 4)

where n; the number density of ions with charge Z;e and
is the fine structure constant. The axion flux is found to be

dzna / 2d3pi 2d3pf |pa|
Ll 5,
dtdw, (2m)32E; (27)*2E; (2x)?
X (27)8(E; — E; — @) |M*f;(1 = f/)

1
= it / d cos 0;,d cos 0;rdSdE ¢

< [pillpsllpal [MIP£i(1 = £/). (5)

where w,, E;, and E are the energies of the axion, initial,
and final electrons, respectively; f;, are the electron
distribution functions; 6,,, 0;; € [0,7] are the angles
between the initial electron and the axion and the final
electron moments, respectively; 6 € [O, 27:] is the angle
between the two planes determined by the vectors p; — p,
and p; —p; and [M|*> =337 n; >0 [M;|* is the matrix
element in Eq. (3) averaged over the electron spins and
summed over all the target ions. The calculation of this
matrix element is nontrivial and we performed it with the
help of the FeynCalc package [34—36]. The complete result
is shown in Appendix A. In the limit of vanishing axion
mass, it reduces to

ME=13 0, STIMP
Jj s

_gac?® KT
2 lqf(lal*+k3)

X{zwwi-pf—m?—lf-pa Py Pa_Pi'Pa
“(pipa)(PsePa) Pi*Pa P Pa
(6)

where K = py — p;. This result agrees with the literature
[37] except for a sign in the term ~K - p,. However, this
difference is irrelevant for the results shown in Ref. [37],
where K - p, ~0.

III. APPLICATIONS TO
ASTROPHYSICAL ENVIRONMENTS

We present here some applications of our results to
different astrophysical environments. Specifically, we will
consider the Sun, RGs, and WDs. For simplicity, we
characterize these environments assuming constant repre-
sentative values for temperature 7, density p, and electron
fraction Y, [22,38]. Typical values for these quantities in
the environments we consider are given in Table I, together
with the electron degeneracy parameter

u—m,
0 e 7
n T (7)

where p is the electron chemical potential. An electron
plasma is said to be nondegenerate if 7 < 0 and degenerate
if 7 is larger than a few [22]. For each source, we calculate
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Ze

FIG. 1. Feynman diagram of the electron-ion bremsstrahlung.
Note that a second amplitude with the vertices interchanged is not
shown.

the emissivity, i.e., the energy emitted per unit mass and
time, as

1 [ d’n
— _ d _“7 8
o= [ oo, g 0

with d?n,/dtdw, from Eq. (5), taking by simplicity Z = 1
and n = pY,/my, with my =938 MeV. In Table I, we
compare the massless axion emissivity (&) with the
literature in the suitable limit [22] (g,p,). Note that we
considered Z = 1 for all the astrophysical environments.
This assumption is valid as far as we are not interested in
the absolute magnitude of the emissivity, but only in
comparing two different formulas with the same input,
as shown in Table I. As discussed in Appendix B, in
nondegenerate environments, as the Sun, we used the
approximate formula in Eq. (B1). Conversely, for strongly
or mildly degenerate environments, we compared our result
with Egs. (B2) and (B3).

In the Sun, where electrons are supposed to be non-
relativistic (T < m,) and nondegenerate (7 < 0), the axion
emissivity evaluated through Eq. (8) (e.) agrees with the
existent nondegenerate limit in Eq. (B1) (g,p,,) within 1%.
We stress that even in this case the partial degeneracy plays
a non-negligible role. In particular, if we ignore the Pauli
blocking factor in Eq. (5), the emissivity becomes ~6%
larger than the exact calculation, in agreement with
Ref. [39]. However, the approximate expression in

TABLE L

Eq. (B1) is given at the first order in %, underestimating
the full calculation in the completely nondegenerate limit.
The combination of these two effects gives a 1% discrep-
ancy with respect to the exact calculation. Thus, our result
is useful for an accurate characterization of the solar axion
flux, which needs a high level of precision [39-42].
Furthermore, it permits to extend these studies to massive
axions. Note that a high-precision evaluation of the solar
axion flux should not neglect the contribution of the
electron-electron bremsstrahlung [40].

As the density increases, electrons become more degen-
erate. In RG cores, where 1 ~ 6, we find a discrepancy of
24% with respect to the completely degenerate approxi-
mation. By increasing the temperature or lowering the
density, this discrepancy increases. This behavior suggests
that the discrepancy is related to the intermediate level of
electron degeneracy so that the complete degenerate limit is
not suitable in this situation. In particular, in the upper
panel of Fig. 2, we show the emissivity in Eq. (8) (red solid
line), the nondegenerate limit in Eq. (B1) (black dashed
line), and the degenerate one in Eq. (B2) (black dotted line)
as a function of the electron degeneracy parameter 7, for
different temperatures in the range 1 keV <7 < 10 keV. It
is apparent that the nondegenerate approximation holds for
n < 0, while the degenerate one is suitable for 7 2 10. As
depicted in the lower panel of Fig. 2, at T = 10 keV, the
discrepancy between the emissivity evaluated through
Eq. (8) and the degenerate approximation is 210% at
5 <5 <10, in agreement with the result found for the
typical RG conditions in Table I. Therefore, for 0 < 7 < 10,
the exact calculation is needed to interpolate between the
two regimes. A good strategy is proposed in Ref. [9], where
in the intermediate regime the emissivity is evaluated as

€ = Enp T €D 9)

which underestimates the axion emissivity by less than
10% with respect to the emissivity in Eq. (8), where eyp is
given by Eq. (B1) ignoring screening effects and ep by
Eq. (B2). This method is used in Refs. [27,28] in order to
evaluate the RG bound on g,,, giving a more conservative
result. We mention that in partial degenerate environments
the electron-electron bremsstrahlung could give a subdomi-
nant, but non-negligible contribution.

The emissivity per unit mass ¢, evaluated in solar, RG, and WD conditions [22,38]. For each environment, we show the
typical density p, temperature T, the electron fraction Y, the electron degeneracy parameter 7, the emissivity &,

ppr Obtained through the

approximate expressions in Ref. [22] (see Appendix B), the emissivity &, through Eq. (8), and the discrepancy between them

(€appr — €ex)/€appr- In all the cases, we take as coupling constant g,, = 1073

Condition p (g Cm_3) T (keV) Y, n Eappr (erg g_l S_l) €ox (EIg g_l S_l) (eappr - gex)/eappr (%)
Sun 1.6 x 10? 1.3 0.5 -1.72 1.60 x 1075 1.58 x 1073 1.1

RG 2% 10° 8.6 0.5 6.16 1.08 0.82 24°

WD 2 x 10° 1 0.5 2.14 x 10? 5.55x 1073 5.55 x 1073 0.02

*Using the interpolation formula in Eq. (9), this discrepancy is reduced to ~ — 10%.
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FIG. 2. Upper panel: comparison between the emissivity in
Eq. (8) (red solid line), the nondegenerate [Eq. (B1), black dashed
line], and the degenerate [Eq. (B2), black dotted line] approxi-
mation as a function of the electron degeneracy, at different
values of the temperature 7. The red curve interpolates between
the dashed line and the dotted one for O < < 10. Lower panel:
discrepancy between the emissivity in Eq. (8) (e,) and the
nondegenerate (black dashed line) and degenerate approximation
(black dotted line) as a function of the degeneracy parameter #
at T =10 keV.

In WDs, in which electrons are extremely degenerate
(n ~ 200), our calculation agrees remarkably well with the
approximated one, with a discrepancy less than 0.1%. We
mention that in these very degenerate environments brems-
strahlung would be affected by crystallization (see e.g.,
Refs. [43-45] for further details).

The emissivity in Eq. (8) can be conveniently written as

et Gae ([ ks \?
€a:4.73 erg g 1S l(w> <§>

T \3 p -1 m, m, kg
- T(nMe Me 55
* (keV) (gcm_3> <’7’ T T T)’ (10)

where m, and m, are the axion and electron mass in keV
and the function Z, evaluated using the DO1GDF function
of the NAG library, is tabulated for typical RG conditions
and available in a public repository.'

lhttps ://github.com/pierlucacarenza/Axion-Electron-Ion-
Bremsstrahlung.

IV. CONSEQUENCES ON THE RED
GIANT BOUND

As discussed in the previous section, the most important
impact of the new computation of the electron-ion brems-
strahlung would be in RGs, affecting the high-precision
axion bounds obtained in this environment. For this reason,
in the following, we apply the formula in Eq. (10) to two
RG models, computed by means of the Full Network
Stellar evolution (FuNS) code [28]. In these models, the
core mass is M = 0.82 M, the initial helium mass fraction
is Y = 0.245, and the metallicity is Z = 1.36 x 1073. The
only difference between the two models is the age, 7,4 =
1011973 yr for Model 1 and t,4 = 10'%1% yr for Model
2, close to the RGB tip, the relevant evolutionary phase for
axion bounds. In Fig. 3, we show the temperature 7 (upper
panel) and the density p (lower panel) as functions of the
radius 7 in units of solar radius Ry = 6.96 x 10° km for
our two models, which cover a large range of parameters
for typical RG conditions.

In Fig. 4, we compare the exact axion emissivity &, in
Eq. (8) (solid line) with the interpolated one ¢;,, in Eq. (9)
(dashed line) for Model 1 (left panels) and Model 2 (right
panels). In both the models, the interpolated emissivity
underestimates the exact one by <10% in the inner core
r <1072 Ry, while at larger radii the discrepancy increases
since the density drops. As shown in the lower panels of
Fig. 4, in the innermost region of Model 1 the discrepancy
is slightly larger than in Model 2 because the electron gas is
less degenerate due to the lower density (see the lower
panel in Fig. 3). In Model 2, the temperature peaks at

10

51 ~-<

T (keV)

1} — Model 1

051 ~~ Model 2

100 F—====——=—_ -
105 A
104 [
103 L
10} — Model 1
10 == Model 2

p (g cm™)

1073 102 107"
r (Rs)

FIG. 3. Profiles of the RG temperature and density for Model 1
(solid line) and Model 2 (dashed line).
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FIG. 4. Upper panels: the exact emissivity &, (solid line) and the interpolated one ¢;,, (dashed line) as functions of the radius r for
Model 1 (left panel) and Model 2 (right panel). Lower panels: the ratio &, /&, as a function of the radius r for Model 1 (left panel) and

Model 2 (right panel).

re~1.3x 1072 Ry, reducing the electron degeneracy and
causing an increase in both the emissivity and discrepancy.

Integrating the emissivity over the RG model, we obtain
the luminosity L,

L,= 47z/drr2p(r)ea. (11)

Since the emissivity is suppressed in the low-density
region, in both the models the exact luminosity is larger
than the interpolated one by ~10%, compatible with the
discrepancy in the inner core. This is comparable to the
theoretical and observational uncertainties discussed in
Refs. [27,28] (see e.g., Table 2 in [28]). Due to the larger
emissivity, our revised calculation is expected to lead to a
slightly stronger bound. However, its reevaluation, using
our complete formula, is postponed to an upcoming paper
[46]. In Fig. 5, we show the luminosity as a function of the

1.0
S 08
S
E
5 06
=
S
gé 0.4f — Model 1
-
== Model 2
0.2
1072 107" 1 10
m, (keV)
FIG. 5. The luminosity as a function of the axion mass for

Model 1 (solid line) and Model 2 (dashed line).

axion mass m, for the two models. As expected, the mass
suppression begins at larger masses in Model 2, since the
temperature is larger. In this way, a RG bound for massive
axions can be evaluated for the first time, using the
complete matrix element in Eq. (3) which takes into
account the axion mass, always neglected in previous
works. We postpone this analysis to a future work [46].

V. CONCLUSIONS

In this work, we discussed the axion emissivity via
electron-ion bremsstrahlung for any finite axion mass and
any degree of electron degeneracy in a nonrelativistic
plasma, useful for different stellar environment conditions.
This analysis follows the recent efforts in calculating
precisely the astrophysical axion fluxes, which require a
more accurate understanding of the relevant axion produc-
tion mechanisms. Our result gives an emissivity in the
massless case which agrees with the literature [22] within
~5% in the Sun and WDs. The largest difference is found in
RGs, where our result is ~25% lower than the completely
degenerate limit and this difference is due to the inter-
mediate electron degeneracy. In this regime, the interpo-
lation formula in Ref. [9], used in the evaluation of the RG
bound [27,28], underestimates the axion emissivity by less
than 10% with respect to our complete calculation, leading
to a more conservative bound. Since the uncertainties
described in Refs. [27,28] have a similar magnitude, the
impact of our revised calculation can only be assessed with
a detailed reevaluation of the RG bound, to be discussed in
a forthcoming work [46]. Besides the consequences on the
massless axion limit, our result allows the extension of the
RG and WD bounds to axion masses larger than the stellar
temperature [46]. These bounds should be compared to the
existing experimental bounds in the same axion mass
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region from EDELWEISS III [18] and GERDA [47].
Notice, however, that bounds based on stellar energy loss
are completely independent on the assumption that axions
constitute the totality of the dark matter in the universe.
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APPENDIX A: COMPLETE MATRIX ELEMENT

The complete matrix element of the electron-ion brems-
strahlung is

IM> = g2.e?
lal>(|a* + &3) 2(pa - py) + mz)*(m3

X [4((pa- r)*(4(pa - pi)* + ma(py - pi — mi + 2E;(w,

+2(pa- ps)2(m2 + w,(E; — Ef))(py - pi)* —

—2(pa- Pi)(Pa-ps)))-

APPENDIX B: SUMMARY OF
THE LITERATURE

In the following, we present and discuss the approximate
formulas used in the literature in the completely (non)-
degenerate limits. Electrons are assumed to be nondegen-
erate when the degeneracy parameter # is smaller than a few
and degenerate otherwise. In the nondegenerate limit, the
emissivity is expressed as an expansion to the first order in

ks [22],
232a%n,T2> 5k3
z e | - 72 Bl
745 m33p ( 8meT> <zj:n] j>’ (B!

where n, is the electron density and p is the stellar density.
In the degenerate limit, the emissivity can be written as [22]

END = g%e

—_ 2 71'(12 2 B2
D_gaem zj:njzj F (B2)
where the function F is
2r
16zr / dc,f/ dcm/ do
1 _ 2 1= _ 2
X ﬂ ( le) ( Cfu) ] 5 (BB)
(1= ciaP)(1 = cpaP)(1 = cif)(1 = cjf +K°)

—-2(p, - pi)?

- Ef)) - 4<pa 'pi)(mg + wa(Ei - Ef)))

(Pa - pi)’ = mg(mg — w3)(mz = py- p;)
- (Pa : Pi)(<m2 - 2w2)(Pf : Pi) + m4 - m2m2 + m2(3wa(Ei - Ef)
+mi(=(pa - Pi)*(=pg - pi +mg +2E (0, + E;)) —
+2(pa - pi) (@ = m)(ps - pi) + mz(mg — 03) +mgEs(@

- 2EfE,) + 2mza)(21) + miEi(a)a - 2Ef>)
(m2 - wz)(mg — Py Pi)
o +2E;)) = 2mszfEi)

(A1)

|
with ¢;r the cosine of the angle between p; and py,
c;s the cosine of the angle between p; and p,,

Cra = CiaCiy + /1 =i\ /1 = cjrco88, f is the electron

velocity, pp the electron Fermi momentum, and x> =
k3/2p%. As discussed in Sec. III, the exact calculation
in Eq. (8) is needed to interpolate between these two
regimes, for 0 <#xn < 10. However, a good approach
in agreement within 10% with the exact calculation is
the interpolation formula suggested in Ref. [9], ¢! =
&y D +¢€p

In add1t10n, in the case of a degenerate and nonrelativ-
istic electron plasma, Eq. (B3) is simplified by expanding
the integrand to the first order in the f, and after an
integration one obtains

2 2 2 2 2 2
Fo2m(2EE) 2, e ——ﬁ2 (B4)
3 K2 15 K2

As shown in Fig. 6, the nonrelativistic approximation
reported in Eq. (B4) (dashed line) accurately reproduces
the exact calculation in Eq. (B3) (solid line) up to
$ <0.6. In the literature, a further approximation is
employed for a relativistic plasma. Observing that the
Coulomb scattering is mostly forward, i.e., the main
contribution to the integral Eq. (B3) is from ¢;r ~ 1, ¢4, =
Ciq 1s assumed only in the denominator of Eq. (B3),
obtaining
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FIG. 6. Comparison between the function Fin Eq. (B3) (solid line)
and the nonrelativistic [Eq. (B4), dashed line] and forward [Eq. (BS),
dotted line] approximations as function of the electron velocity.
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As can be seen from Fig. 6, the forward approximation
in Eq. (B5) (dotted line) is not a good approximation
at all, especially in the relativistic limit, where it is
usually used. Indeed, as f approaches to one, Eq. (B3)
goes to zero because of the 1 — 2 term in the numerator. To
summarize, Eq. (B3) cannot be approximated in the
relativistic limit as Eq. (BS5) and the integral must be
numerically evaluated.
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