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The waveform templates of the matched filtering-based gravitational-wave search ought to cover wide
range of parameters for the prosperous detection. Numerical relativity (NR) has been widely accepted as
the most accurate method for modeling the waveforms. Still, it is well known that NR typically requires a
tremendous amount of computational costs. In this paper, we demonstrate a proof-of-concept of a
novel deterministic deep learning (DL) architecture that can generate gravitational waveforms from
the merger and ringdown phases of the non-spinning binary black hole coalescence. Our model
takes Oð1Þ seconds for generating approximately 1500 waveforms with a 99.9% match on average to
one of the state-of-the-art waveform approximants, the effective-one-body. We also perform matched
filtering with the DL-waveforms and find that the waveforms can recover the event time of the injected
gravitational-wave signals.
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I. INTRODUCTION

Since the first detection of gravitational waves
(GW)[1], numerous GW events have been captured by
ground-based GW detectors, the Advanced Laser
Interferometer Gravitational-wave Observatory (aLIGO)
[2] and Virgo [3]. The sources of all events turned out to
be compact binary coalescences (CBCs), the collision of
two dense objects such as black holes (BH) or neutron
stars (NS)—mostly from binary black holes (BBH),
47 out of 50, and partially from binaries containing at
least one neutron star [4].
For the type of GW progenitors, template-based GW

search is one of the most efficient approaches because the
gravitational waveforms from binary mergers can be
modeled precisely by multiple methods, e.g., post-
Newtonian (PN) for the inspiral phase, numerical relativity
for the merger phase, and perturbation theory for the
ringdown phase. The template-based search utilizes the
matched filtering method [5], which essentially computes
the cross-correlation between template waveforms and real
GW signal buried in noisy data.

The successful implementation of the matched-filtering-
based search relies on the precomputed waveform tem-
plates. Numerical relativity (NR) has been considered as
the most accurate method for computing gravitational
waveforms. However, obtaining a large number of tem-
plates that cover parameter space densely enough for the
precise matched filtering search and parameter estimation
with NR is not feasible because of too heavy computational
requirements. For example, NR simulation of the first
GW event GW150914 [1] takes 1–2 weeks using tens to
hundreds of CPU cores [6]. In contrast, it takes less than
Oð1Þ seconds to generate inspiral waveforms using post-
Newtonian approximations.
Several waveform models approximating NR waveforms

have been proposed to reduce the computational cost with
reasonable accuracy NR [7–14]. Nonetheless, the physical
parameter spaces where each approximant exactly covers
are different from each other [12,15]. Therefore, reserving
plural waveform models, complementing each other for
various configurations, and saving computing time are
crucial for a more elaborate template-based search. It
justifies the further study of new waveform approximants.
We present a proof-of-concept demonstration of a

deep learning (DL) model for generating gravitational
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waveforms from the CBC events covering the late phase of
inspiral to final ringdown phases. For this purpose, we only
consider nonspinning BBH systems for simplicity. Chua
et al. [16] utilize deep artificial neural networks to map the
physical parameters to coefficients of reduced-order bases
waveforms. Williams et al. [17] use Gaussian process
regression to approximate the inspiral-merger-ringdown
waveforms from the BBH. However, the capability of a
fully DL-based deterministic approach has not been
explored so far for the generation of the merger-ringdown
waveform of CBC.1 Hence, we examine the viability of the
deterministic DL model as a merger-ringdown gravitational
waveform model throughout this paper.
While DL models show remarkable performances in a

wide variety of fields such as natural language processing
(NLP) [18,19], autonomous driving [20], and image clas-
sification [21], most of the models are only capable of
handling fixed-size data once they are trained. However, the
model we shall adopt for this study should be able to cope
with differently-sized data because the length of the wave-
forms observable by GW detectors depends on the two
factors: (1) lower-frequency limit of the detector’s sensi-
tivity (around 10 Hz for ground-based detectors) and (2) the
masses of the compact binary system [2,4].
The recurrent neural network (RNN) encoder-decoder-

based sequence-to-sequence (seq2seq) model [22,23]
designed for NLP is one of the DL models that can handle
variable input/output sizes. This model also has shown
outstanding performances in many NLP studies [24–27].
The property of gravitational waveforms is similar to that of
language type data containing time-ordered words in
sentences with different lengths. In that sense, we consider
seq2seq as the experimental method to generate waveforms
and slightly modify the structure of the model for our
purpose.
This paper is organized as follows. Section II provides

detailed explanations on the data preparation. In Sec III,
the original seq2seq model, our modified version, and an
evaluation metric for the model performance are elaborated.
Section IV presents the results of the DL-waveform
analysis with GW data and additional dataset-size-associ-
ated experiments. Finally, we discuss our results and future
research directions in Sec. V.

II. DATA

Since RNN is well-suited to time-series data, we
compute nonspinning BBH waveforms in time-domain
for training dataset using PyCBC [28], a software package
for GW data analysis. For this, we use a variant of effective-
one-body (EOB) approximants, SEOBNRv4 [29], one of

the most accurate versions of the approximants used in the
GW searches.
For the training of the DL model, adopting waveforms

obtained by NR is more beneficial than using approximants
in the sense of accuracy. However, we find that the number
of publicly available NR-waveforms of BBHs is only
Oð103Þ [30–33]. In specific, the number of non-spinning
BBH waveforms reduces to Oð102Þ [30], so small that it
might cause overfitting of the DL model [34], which infects
the general performance of the model. Thus we use EOB-
waveforms to get a sufficient amount of training samples.
With the software and the approximant, we configure

two datasets whose mass ranges of single black holes are
[10 M⊙, 40 M⊙] (dataset-1) and [40 M⊙, 100 M⊙] (data-
set-2) to divide search regions into low- and high-mass
regions. Each dataset is consist of training, validation, and
test subdatasets with respective sample number ratio of 0.8,
0.1, and 0.1. The mass ratios of the subdatasets are set
differently.2 For the training and validation samples, we use
fixed mass ratios with an interval of 0.1 (0.05) within
the range of [1, 4] ([1, 2.5]) for dataset-1 (dataset-2). On the

FIG. 1. The component masses of training (left) and test (right)
sub-datasets in dataset-1 (upper) and dataset-2 (bottom) with the
color-coded chirp mass. While we use a set of fixed mass ratios,
m1=m2, for the training sub-dataset, m1 and m2 are randomly
chosen for the test subdataset with the restriction that m1 ≥ m2.
The mass ratios range from 1 to 4 for the dataset-1 and from 1 to
2.5 for dataset-2.

1It is known that deterministic models generally show higher
accuracy and performance than stochastic methods as the training
data is sufficient.

2The mass ratio is defined as m1=m2, and m1 ≥ m2 is assumed
by convention.
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other hand, we randomly sample m1 and m2 in the
corresponding parameter space for the test subdataset. In
this manner, we can prove that the model trained with a
limited mass ratio samples can be applied to the ones
residing in any regions of the parameter space. Figure 1
shows the scatter plots of m1 and m2 of training subdataset
in dataset-1 and -2 with color-coded chirp masses defined
as Mch ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5. We use the sampling
rate, distance, and inclination angle of 4096 Hz, 100 Mpc,
and 30°, respectively. The parameters employed for data
preparation are tabulated in Table I.
Following the data generation, the waveforms in dataset-

1 and -2 are normalized with the maximum strain amplitude
of each dataset. Since the diverse range of samples may
cause biased results [35], data normalization for the differ-
ently ranged dataset is necessary. By normalizing the
dataset, the sample values can be restricted in a comparable
range and contribute equally to the DL model optimization
at the beginning of the training.
In turn, we divide each waveform into input and target

waveforms: the input with the inspiral phase and target with

merger and ringdown phases, respectively. For the division,
we consider the point that the GW frequency reaches the
innermost stable circular orbit (ISCO) frequency [36] as the
termination point of the inspiral phase [37]. The final data
point of the input waveform and the initial data point of the
target waveform are intentionally superposed to check
whether the DL-waveform and given inspiral waveform
are smoothly connected. Figure 2 illustrates examples of
input and target waveforms with different chirp masses. For
the training of our DL model, we feed the input waveform
to the DL model and let the model recover target waveform.
For divided target waveforms, we illustrate the number

density distributions of waveform lengths in Fig. 3
(denoted by Lt). As shown in the figure, the distributions
are not uniform. We reckon that this non-uniformity causes
Lt-dependent accuracy of the DL model, which will be
discussed in Sec. IVA.

III. METHODS

Since the duration of the GW emission within the
detector’s sensitive frequency band varies depending on

TABLE I. Parameters of the waveform in each dataset. Dataset-1 and-2 have different mass ranges, mass ratios, and numbers of
samples, as shown in the table. All the other parameters of both datasets are set to be the same. Note that the waveforms in the datasets
are generated in the time domain with PyCBC and SEOBNRv4.

Variable Dataset-1 Dataset-2

Mass [min, max] [10 M⊙, 40 M⊙] [40 M⊙, 100 M⊙]
Mass ratio [min, max] [1, 4] [1, 2.5]
Number of waveforms(training, validation, test) (12469, 1533, 1512) (12447, 1530, 1523)
Sampling rate 4096 Hz 4096 Hz
Distance 100 Mpc 100 Mpc
Spin 0 0
Inclination angle 30° 30°

FIG. 2. Examples of input (green dashed; inspiral) and target
(blue solid; merger-ringdown) waveforms drawn with different
chirp masses of the compact binary system. They are computed by
using SEOBNRv4. The upper and lower waveforms depictMch ¼
12.87 M⊙ andMch ¼ 16.15 M⊙, respectively. Note that the length
of the generated waveforms changes depending on the mass.

FIG. 3. Target waveform length (Lt) distribution of the training
subdataset in dataset-1 (thick red) and dataset-2 (thin blue). Note
that the non-uniform distributions are caused by the parameter
sampling and input-target split method described in Sec. II.
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the component masses or chirp mass of the binary system,
we need a DL model capable of handling different size
data. For this, we design a DL model with a novel
architecture based on seq2seq, which is built for NLP. In
this section, we briefly overview the original seq2seq
model3 and elaborate on our model below.

A. Original sequence-to-sequence model

DL models for NLP take a batch of sentences as inputs
and output transformed sentences. For that, each word in
the sentences should be digitized since machine learning
models work numerically. With the linguistic property that
the number of vocabularies in a specific language is limited
to a finite number, each distinct word can be represented as
a vector by word embedding [38]. Thus, the sentence
prediction problem can be regarded as selecting words from
a given dictionary. The vectorized sentences, however, have
different sizes because every sentence is composed of a
different number of words.
To resolve the issue, the encoder, mapping the variable

size input sequence into a fixed-size vector, is employed in
the seq2seq model. Afterward, the transformed vectors,
so-called representations, by the encoder are transmitted to
the decoder, and it sequentially recovers the variable size
target sentences. In the decoder calculation process, the
output at the previous computing-step is taken as the input
of the next step. Each sentence is required to end with the
end-of-sequence token (hEOSi), and the decoder starts and
finishes its computation by taking and outputting hEOSi.

The conditional vector hEOSi can be defined differently
depending on the user’s preference.

B. Dual-decoder sequence-to-sequence model

In the work of the original model, Sutskever et al. [23]
were able to construct the hEOSi, the interrupting condition
of the decoder computation, using the linguistic property
that the number of vocabularies is limited. Since the words
in the dictionary can be discretely distinguished, it is clear
to set the condition.
Regarding the GW-data, however, it becomes hazy to

establish a criterion for interrupting the computing-step
because the strain amplitudes of GWs are continuous real
numbers: the number of possible cases is infinite, unlike the
words in a dictionary. Thus, we cannot expect the model to
produce an output that exactly matches a specific number
by all digits. For example, when we set hEOSi ¼ 0, the
model is unlikely to obtain the exactly matching value in
machine precision.
As a strategy for learning this continuous sequence,

we design a modified seq2seq model (DDS2S, Fig. 4) with
one encoder and dual-decoder, GW- and GO-decoder: the
encoder encrypts input waveforms, GW-decoder recovers
target waveforms, and GO-decoder predicts the length of
the target waveforms. While the computational mecha-
nisms of the encoder and decoders are identical to the ones
in the original model, the approach for handling input and
target data is different.
First, the input and target waveforms are divided into the

number of S and T vectors withR elements. WhenR > 1,
the ends of the waveform elements are zero-padded before
division to match the component numbers with the

FIG. 4. The schematic workflow of the DDS2S model. The solid black boxes indicate RNN cells. The model sequentially takes S
vectors as input waveforms and attempts to regenerate target waveforms and GO-function, G. The decoders start computation when
input hSOSi and retrieve T vectors as output waveforms until the GO-decoder yields a value under 0.5, marked by hEOSi. Note that the
decoders use the output of the previous computing-step as the input at the next computing-step. The detailed structural information of the
model is tabulated in Table. II.

3For more details of the original model, we refer to [22,23].
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multiples ofR. The zero-padded lengths of input and target
waveforms can be computed via Ls ¼ SR and Lt ¼ T R.4

Then, the encoder sequentially takes R elements of input
waveforms S times and encrypts them into fixed-size
vectors. The encoder outputs are transmitted to GW- and
GO-decoders.
Subsequently, the GW-decoder regenerates R elements

of target waveforms at every computing-step throughout
the T step.5 The generated waveforms are stacked in the
order of computing-step and compared with the target
waveforms to calculate the error function. As the error
function of the GW-decoder, I , we use the sum of mean-
squared error and negative cosine similarity;

Iðg; tÞ ¼ 1

T
Σiðgi − tiÞ2 −

g · t
jjgjjjjtjj ; ð1Þ

where g and t are respectively the generated and target
waveforms; T is the number of vectors for the given target
waveform; jj · jj is L2 norm.
Lastly, we establish the GO-function to endow the GO-

decoder the capability to estimate the length of the target
waveform. When the given target waveform consists of T
vectors, we can set the integer condition, C, for progressing
from computing-step τ to τ þ 1 as follows: 1 for proceeding
and 0 for breaking.

Cτ ¼
(
1; if 1 ≤ τ < T − 1

0; if τ ≥ T :
ð2Þ

We may use the set of Cτ to train GO-decoder, but the
discrete values and rapid decrease of C from τ ¼ T − 1 to
τ ¼ T are inappropriate for the training of the DL model.
Thereby, we define GO-function, G, approximating the
integer C values with a smooth decreasing pattern near
τ ¼ T and use the function to compute the mean-squared
error with the GO-decoder outputs. The GO-function and the
error function, J , of the GO-decoder are described below.

Gτ ¼
�
1 − 0.5ðτ=T Þα; if 1 ≤ τ ≤ T − 1

0; if τ ≥ T ;
ð3Þ

J ðo;GÞ ¼ 1

T
Σiðoi − GiÞ2; ð4Þ

where oi is the output of GO-decoder. Figure 5 presents
how the curve of the G varies according to different αs.
As the α is getting bigger, the GO-function approximates

the C values more accurately. On the contrary, we find that
the rapid decrease of G near τ ¼ T hinders the training
of the DL model when the α is too high. We empirically
determine α of 5 for the training of the model.
The final loss for the training is the sum of the error

function of GW- and GO-decoders, namely I þ J . The
model is trained by adjusting its parameters in such a way
the error is minimized.
We apply the Sigmoid to the output layer of the

GO-decoder since the GO-function should output values
from 0 to 1. Then, we have given output values rounded to
either 0 or 1. The computation continues when the rounded
value is 1 and stops otherwise. Hence, the GO-decoder
output below 0.5 serves as hEOSi in our case. For this
reason,we defineG to have a slightly higher value than 0.5 at
τ ¼ T − 1 because we expect the model to stop calculating
at τ ¼ T . For the DDS2S model, we newly define zero
vectors with R elements as a start-of-sequence token
(hSOSi), which is input at the start of decoder computation.
Among the prominent RNN cells, we choose gated

recurrent unit (GRU) [22] for the encoder and both decoders
because the setting with GRU showed higher accuracy and
faster training than long-short termmemory [39,40], another
well-known RNN cell. A fully connected layer is placed at
the end of the decoders’ hidden layers to convert hidden
states to vectorized outputs withR components. We use the
hyperbolic tangent as the activation function for hidden
layers of each RNN cell of encoder and decoders.
For the model structure, we find an empirically optimal

model configuration varying the number of neurons in
hidden layers (hereafter, hidden neurons) based on the
overlap to a reference waveform, which we will discuss in

FIG. 5. The GO-function, G, with several values of α in gray
scale. The red dashed-line depicts how the integer condition, C,
changes according to the computing-step. As the value of the α
increases, the function approximates the C values more accu-
rately. We also draw the horizontal blue dotted-line at 0.5, the
condition of interrupting decoders’ computation.

4Note that Ls and Lt are the lengths of input and target
waveforms without zero-padding as R ¼ 1.

5The total computing-step multiplied by R and waveform
length are compatible concepts, and one can convert them into the
duration of GW by multiplying the inverse of the sampling rate,
4096 Hz.
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the following subsection. The information on the network
configurations and hyperparameters of the optimal model is
summarized in Table II.

C. Overlap

We use overlap to assess the DL-waveforms’ accuracy.
The normalized overlap,M, of the DL-waveform g and the
target t can be computed as

M≡ ðgjtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðgjgÞðtjtÞp ; ð5Þ

where ðgjtÞ ¼ R∞
−∞ g̃ðfÞt̃�ðfÞdf. g̃ and t̃ are the Fourier

transform of g and t, respectively, and asterisk mark (*) is

complex conjugate. Note thatM becomes 1 for the perfect
match and 0 for the perfect mismatch between g and t.
From the grid-search described in the Appendix A, we

choose an empirically optimal model configuration, maxi-
mizing the minimum overlap of the model’s output wave-
forms. Providing accuracy, we use the setup with 256 hidden
neurons andR ¼ 1. Henceforward, we shall only discuss the
results of themodelwith 256 hidden neurons andR ¼ 1. The
detailed explanation can be found in Appendixes A and B.

IV. RESULTS

A. Waveform validation

The Fig. 6 depicts the overlap density heatmap between the
DL-waveforms and corresponding target EOB-waveforms of

TABLE II. Detailed structure of the DDS2S model.

Encoder GW-Decoder GO-Decoder

RNN cells GRU GRU GRU
The number of RNN cells S T T
The number of input layers 1 1 1
The number of hidden layers 4 4 4
The number of output layers … 1 1
The number of input neurons R R 1
The number of hidden neurons 256 256 256
The number of output neurons … R 1
Activation function of input layers Tanh Tanh Tanh
Activation function of hidden layers Tanh Tanh Tanh
Activation function of output layers … … Sigmoid

FIG. 6. Density heat map of overlap according to target waveform lengths, Lt, for the dataset-1 (left) and 2 (right). We draw the vertical
axes of the two plots in the same range and scale. For clear contrast, we leave the regions with no samples empty at the bottom of the
plots. As shown in the plots, overlaps of all the DL-waveforms are higher than 0.990. Besides, the averages of the waveforms from both
datasets are over 0.999. However, a few shortest and longest samples have smaller overlap values. Considering the relatively small
number of the shortest and longest waveforms in the training sub-dataset (Fig. 3), it implies that the non-uniformity of the sub-dataset is
related to the locally different accuracy of the DL model.
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the dataset-1 and 2. All of the DL-waveforms are in excellent
agreement with their target waveforms in both cases as the
minimum value of overlaps is higher than 0.990.6

Furthermore, the mean overlaps of waveforms from both
datasets are higher than 0.999, indicating less than 0.1%
average error.
However, as we can see from the figure there are several

outliers whose overlaps are substantially smaller than the
majority. We explore the dependence of the overlap on the
target waveform length to track down possible reasons for
relatively poor overlap cases. The heat map shows the

distribution of the overlaps concerning the length of the
target waveforms. The overlap of dataset-1 (dataset-2)
tends to decrease at the short-end and long-end of the
target waveform length, i.e., Lt ≲ 100 or Lt ≳ 250
(Lt ≲ 400 or Lt ≳ 600). As shown in Fig. 3, the training
samples in the range of 100≲ Lt ≲ 250 of dataset-1 and
400≲ Lt ≲ 600 of dataset-2 dominate the number distri-
bution of the target waveform length. It can be attributed to
the fact that the model is more likely to weigh the majority
of the training subdataset.
We also visually inspect the agreement between the

DL-waveforms and target waveforms. Figure 7 shows the
best and worst overlap cases of the DL-waveforms. The
overlaps of the best cases for both datasets areM ¼ 0.999.
The time series of the DL-waveforms matches well with the
target waveforms. For the worst cases, the overlaps of the

FIG. 7. The input (green dashed), target (blue solid line with dots), and DL- (red solid) waveforms from dataset-1 (left column) and
dataset-2 (right column) with the amplified images of connection points. The horizontal and vertical axes indicate the length of the
waveforms in sampling unit and the normalized strain amplitude of the GWs, respectively. We only show a hundred sampling units of
input waveforms in the plots for clear visualization. The top and bottom panels are the waveforms with the highest and lowest overlap
cases, respectively.

6For comparison, the authors of Ref. [41] have shown that the
overlap between numerical and their phenomenological wave-
forms ranges from 0.95 to 0.99. On the other hand, Ref. [42] have
shown their model results in the overlap ≥ 0.99.
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two datasets are both 0.991 [Fig. 7(c) and (d)]. We see that
there exist small discontinuities between the DL- and input
waveforms as shown in the lower panel of the figure. We
may resolve the discontinuity by post-processing or letting
the DL model generate the whole waveform in the inspiral-
merger-ringdown phase at once. We leave this issue to
future work.

B. Injection test

Next, we attempt to use the DL-waveform templates
in simplistic search of parameters, i.e., m1, m2, and the
event time of the simulated GW signals. To replicate
practically used waveform templates, we hybridize
inspiral SEOBNRv4-waveform and merger-ringdown DL-
waveform by simply concatenating the two waveforms.
One may implement sophisticate hybridization of
waveforms, but it is beyond the scope of this work. We
perform parameter grid-search instead of Markov Chain
Monte Carlo, typically executed for the parameter estima-
tion ofGWs [43], due to the practical difficulty of plugging a
new waveform model in the existing parameter estimation
code [44]. For the computation of SNR and the search of the
events, the matched filtering engine of PyCBC [45] is used.
To simulate the observation data embracing a GW signal,

we use the LIGO-Hanford O1 data provided by GW Open
Science Center [46]. We randomly select a 32-second
segment from the data without any known GW signals
and inject a SEOBNRv4-waveform into the center. While
we use five sets of different injection parameters and
distances, we fix the inclination angle to 30° for simplicity.
The configuration setups of the tests are tabulated in the
first three columns of Table III.
By performing the parameter grid-search for multiple

injection waveforms, we retrieve injection parameters in all
examinations within the 90% confidence interval. We first
define the search parameter sets, (m1, m2) on regularly-
spaced grid of the parameter space. Then, we construct the
full IMR waveform templates by hybridizing the inspiral
waveform and the merger-ringdown DL-waveform using
SEOBNRv4 and DDS2S, respectively, for the parameter
sets. Across the parameter sets, we compute SNR by
matched filtering with each waveform template using

PyCBC on the simulated data. Assuming the likelihoods of
the parameter sets are proportional to the SNR, we estimate
the probability density function (PDF) of the parameters.
Then, we marginalize the PDF with respect to each param-
eter and acquire the median as the best-fit parameters with
their 90% confidence interval. Subsequently, we repeat the
entire process with different combinations of injection
masses and distances. The best-fit parameters with con-
fidence intervals and their SNRs are summarized in the last
two columns of Table III.
The best-fit parameters and the high SNR region emerge

around the chirp mass contour line of the injected signal.
Since the chirp mass of GW is governed by the frequency
and frequency derivative [47], and its SNR depends on
frequency evolution [48], the SNR of GWagain relies on the
chirpmass. It is well reflected in the example contourmap of
the signal with m1 ¼ 35 M⊙ and m2 ¼ 20 M⊙ (Fig. 8).

TABLE III. Summarized results of the injection tests. The best-fit parameters and their SNR for the injected signals are computed by
PyCBC matched filtering engine with DL waveform templates. We establish template waveforms by hybridizing inspiral SEOBNRv4 and
merger-ringdown DL waveforms. The m1 and m2 are given in the unit of the solar mass. I, M, and R indicate inspiral, merger, and
ringdown phases, respectively.

Template approximant Distance (Gpc) Injection (m1, m2) Best-fit (m1, m2) SNR

EOB (I) + DL (MR) 1.6 80.0, 65.0 80.1þ13.7
−14.5 , 61.7

þ18.3
−16.4 14.5

1.5 70.0, 60.0 73.9þ16.5
−16.9 , 58.6

þ16.6
−14.4 13.0

0.8 35.0, 20.0 33.1þ5.6
−6.8 , 21.5

þ9.0
−8.4 12.7

0.7 30.0, 25.0 31.6þ6.3
−7.0 , 22.7

þ8.6
−8.3 15.3

0.6 25.0, 20.0 28.3þ8.0
−8.4 , 18.9

þ7.1
−6.6 15.7

FIG. 8. Filled contour map of SNR in the parameter space for
the injection signal with m1 ¼ 35 M⊙ and m2 ¼ 20 M⊙. Each of
the red star and blue plus markers indicates injection and best-fit
parameters. The black dashed line is a contour with the level of
injection chirp mass. The best-fit parameters and the high SNR
region arise in the vicinity of the contour line. Although our
parameter space is restricted with the condition m1 ≥ m2, the
filled contour map is reflected on the slope of 1 line for aesthetic
visualization.
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Using the best-fit parameters found from the grid search,
we perform event time searches and find the SNR peak at
where we inject the signals. We illustrate SNR time series
of the above example case in Fig. 9. As can be seen in the
figure, the peak SNR occurs at the center of the data
segment, where we have injected the simulated signal.
It is known that the systematic error from waveform

approximants is independent of SNR, while the statistical
error due to noise roughly scales as 1=SNR. One can
readily expect that the systematic error could dominate in
higher SNR signals. Cutler and Vallisneri [49] have
presented rigorous computation of the systematic errors
in parameter estimation using 3.5PN (post-Newtonian
approximation of order 3.5) waveforms for inspiral signals
of massive black hole binaries. They have shown that the
magnitude of the systematic errors from 3.5PN waveforms
with M > 0.9999 commensurate with the SNR ∼ 1000
statistical errors. Motivated by this, we roughly estimate the
impact of systematic error of our DL-based waveform on
the parameter estimation by repeating the grid-search of
parameters as described above with varying SNR of the
injected signal. By comparing the systematic error with
the statistical errors of the same parameter as increasing
the SNR of the injected signal, we find that the magnitude
of the systematic error becomes comparable to the 1-σ
statistical error at SNR ∼Oð10Þ in our DL-based waveform
approximant.7

C. Performance dependence on the dataset size

We inspect the dependence between the accuracy of the
DL model and the number of waveforms in the training
subdataset. The test is performed to explore the viability of
applying the proposed model to NR-waveforms, in which
only a few thousands exist [30–33]. We generate four
reduced datasets with half and the tenth number of wave-
forms in the original training data of dataset-1 and -2,
maintaining the number of waveforms in the validation and
test data.
We find that one-tenth of the original size is enough to

reach the required accuracy of M ≥ 0.99. The model is
trained more than five times with each reduced training
data. It turns out that the minimum and average values of
overlap are higher than 0.990 and 0.999, equivalent to 1.0%
and 0.1% error, respectively, for all DL-waveforms of the
trained model from each run. The mean values for the
averaged overlaps and minimum overlaps from more than
five individual runs are tabulated in Table IV. We also
present the results of Sec. IVA for comparison in the last
column. The relative dataset size in the table means the
ratio of the number of waveforms in the training data to
the number of waveforms in the original training data. The
result shows that reducing the number of waveforms down
to 1000 for the training hardly affects obtaining the desired
accuracy. Hence, we advocate that the application of the
DDS2S model to NR-waveforms is feasible.

V. SUMMARY AND DISCUSSION

The efficiency of matched filtering for searching GW
signals buried in noisy GW data has been proved by recent
successful detections of GW signals. Although NR can
increase the accuracy of template waveforms, expensive
computational costs of running NR limit the use of it for
the generation of a sufficiently large number of template
waveforms. This drawback of NR eventually led to the use
of approximate waveforms for the matched filtering
instead. Motivated by such difficulties, we have examined
the DL method for the generation of template waveforms

FIG. 9. SNR time series computed by matched filtering engine
of PyCBC and best-fit DL-waveform template of Fig. 8. The
injected signal is the SEOBNRv4-waveform (m1 ¼ 35 M⊙ and
m2 ¼ 20 M⊙). Here, we initialize the start time of the injected
signal to 0, marked by the red dashed line. Note that the SNR
peak occurs at the injection time.

TABLE IV. Accuracy variation of the DL model according to
dataset size. We also show the results of Sec. IVA in the last
column of the table for comparison. The mean values for the
minimum and average overlaps from more than five individual
runs for each dataset are summarized in the table. The value of the
relative dataset size is the ratio of the number of waveforms
between the reduced training subdataset and the subdataset
introduced in Sec. II.

Relative dataset size 0.1 0.5 1

Minimum overlap (dataset-1) 0.991 0.990 0.991
Minimum overlap (dataset-2) 0.990 0.990 0.991
Average overlap (dataset-1) 0.999 0.999 0.999
Average overlap (dataset-2) 0.999 0.999 0.999

7Note that our approach for finding the SNR level where the
two errors become similar is not rigorous. For a more in-depth
exploration of the systematic errors, refer to [49].
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with much smaller computational costs but comparable
accuracy to NR.
To study the feasibility of this consideration, we have

implemented the DDS2S model. The encoder-decoder
structure is capable of handling the variable sizes of different
waveforms, and the dual-decoder structure enables the
model to control the continuous real-numbered sequences.
We also have examined the applicability of the wave-

forms by computing the overlap with EOBNR-based
waveforms and performing the injection test. The accuracy
of the DL-based waveforms is found to be better than
99.9% in most combinations of the masses, while a small
number of outliers with overlap as small as 0.99 exists. In
the injection test, we have recovered the event time of
waveforms injected into real noise data with the conven-
tional matched filtering engine of PyCBC.
We have found that the method generating merger-

ringdown waveforms using the inspiral waveforms needs
to be improved. For example, we have seen that disconti-
nuities occurred between input and output waveforms, as
shown in Fig. 7, although the minimum overlap of DL-
waveforms to the EOB-waveform was higher than 0.990.
To avoid this issue, we may take a new strategy of
generating a full IMR waveform. However, the main goal
of this paper is to demonstrate the feasibility of adopting
DL to model the merger-ringdown waveforms. Hence, we
leave the implementation of a DL model generating the full
waveforms to future work.
Regarding the speed of waveform generation, the DDS2S

model has an advantage over other waveform approximants
when computing a batch of multiple waveforms simulta-
neously. For computing a single waveform, EOB is faster
than the DDS2S model, typically taking Oð10−2Þ seconds
using a modern CPU core. However, the DDS2S model
generates ∼1500 waveforms using pre-generated inspiral
waveforms in Oð1Þ seconds using NVIDIA GeForce GTX
1080, while EOB took Oð10Þ seconds. The disparity arises
since the DLmodels are specialized for batch computations,
which process multiple data at once.
The DDS2S model has been built to learn how to predict

the output waveforms only from the given input waveforms
without any specific physical information of the source
binary system. Thus, we can readily extend this work to
various systems of interest.
For a more precise description of realistic physical binary

systems,weneed to havewaveformmodels formore complex
binaries: a wider range of the mass ratios, the spin of each
component, eccentricity of the orbits. GWs from unbound
orbit such as hyperbolic and parabolic encounters are also of
great interest. Lastly, it is worthwhile to mention that
recalibration of full IMR waveforms to increased amounts
of NR waveform data is in progress in the community. [50].
Our approach described in this paper can potentially be

applied to more complex systems described above because
DDS2S only depends on training data, not any assumptions
or approximations on which other waveform models are

based. Moreover, we have observed that ∼1000 training
waveforms are sufficient for the model to reach the
expected level of accuracy in Sec. IV C. Thus, as long
as there is a sufficiently large number of training waveform
samples for any systems or NR are given, DDS2S can be
trained to generate accurate waveforms in principle.
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APPENDIX A: EMPIRICALLY OPTIMAL
NUMBER OF HIDDEN NEURONS

We investigate the influence of the hidden neurons on the
accuracy of the models; 64, 128, and 256 hidden neurons.
Accuracy-wisely, we find that the model with 256 hidden

neurons is most suitable amid the tested cases. To compare
model accuracy according to the number of hidden neurons,
minimum and average overlap between DL-waveforms and
corresponding target waveforms are computed. Table V
summarizes the minimum and average overlaps of the
models for dataset-1 and -2. The minimum overlap values
of each model from dataset-1 (dataset-2) are 0.984, 0.990,
and 0.991 (0.977, 0.989, and 0.991) in the increasing order
of the model size. All of the average overlaps are the same as
0.999, except the case of the smallest model with dataset-2,
whose overlap is 0.998 (overlaps of 0.999 and 0.998 are
equivalent to 0.1% and 0.2% errors). Namely, the model
with 256 hidden neurons shows the highest accuracy.
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APPENDIX B: COMPUTING TIME AND
ACCURACY VARIATION OF THE MODEL

ACCORDING TO R

We examine how the number of elements R in an RNN
cell affects the model in the aspects of computing time and

accuracy. Table VI tabulates the typical elapsed time with a
minimum overlap of each case on dataset-1 and -2.
Although the model can speed up by increasing R, the
accuracy expense renders the model inapplicable for
practical use.
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[29] A. Bohé, L. Shao, A. Taracchini, A. Buonanno, S. Babak,

I. W. Harry, I. Hinder, S. Ossokine, M. Pürrer, V. Raymond,
T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A.
Hemberger, L. E. Kidder, G. Lovelace, M. A. Scheel, and B.
Szilágyi, Phys. Rev. D 95, 044028 (2017).

[30] M. Boyle et al., Classical Quantum Gravity 36, 195006
(2019).

[31] J. Healy, C. O. Lousto, J. Lange, R. O’Shaughnessy, Y.
Zlochower, and M. Campanelli, Phys. Rev. D 100, 024021
(2019).

[32] K. Jani, J. Healy, J. A. Clark, L. London, P. Laguna,
and D. Shoemaker, Classical Quantum Gravity 33,
204001 (2016).

TABLE V. Minimum and average overlap values of the test
subdataset in dataset-1 and -2 according to models with the
different number of hidden neurons.

The number of hidden neurons 64 128 256

Minimum overlap (dataset-1) 0.984 0.990 0.991
Minimum overlap (dataset-2) 0.977 0.989 0.991
Average overlap (dataset-1) 0.999 0.999 0.999
Average overlap (dataset-2) 0.998 0.999 0.999

TABLE VI. Computation time and overlap variation with
respect to the number of elements, R, in a RNN cell.

Minimum overlap

R T1 T1500 Dataset-1 Dataset-2

1 Oð10−1Þ Oð1Þ 0.991 0.991
10 Oð10−2Þ Oð10−1Þ 0.913 0.910
100 Oð10−3Þ Oð10−2Þ 0.823 0.805

DEEP LEARNING MODEL ON GRAVITATIONAL WAVEFORMS IN … PHYS. REV. D 103, 123023 (2021)

123023-11

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1109/TIT.1960.1057571
https://doi.org/10.1088/0264-9381/33/24/244002
https://doi.org/10.1088/0264-9381/33/24/244002
https://doi.org/10.1103/PhysRevLett.74.3515
https://doi.org/10.1103/PhysRevD.59.124016
https://doi.org/10.1103/PhysRevD.59.124016
https://doi.org/10.1103/PhysRevD.62.064015
https://doi.org/10.1103/PhysRevD.62.064015
https://doi.org/10.1103/PhysRevLett.93.091101
https://doi.org/10.1088/0264-9381/31/19/195010
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.93.064041
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.93.104050
https://doi.org/10.1103/PhysRevLett.122.211101
https://doi.org/10.1103/PhysRevLett.122.211101
https://doi.org/10.1103/PhysRevD.101.063011
https://arXiv.org/abs/2005.14165
https://arXiv.org/abs/1706.03762
https://arXiv.org/abs/1706.03762
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://arXiv.org/abs/1406.1078
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.1109/ICCV.2015.515
https://doi.org/10.1109/ICCV.2015.515
https://doi.org/10.1109/ICCV.2015.515
https://doi.org/10.1109/ICCV.2015.515
https://doi.org/10.1109/ICCV.2015.515
https://arXiv.org/abs/1511.06114
https://arXiv.org/abs/1602.06023
https://arXiv.org/abs/1602.06023
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1103/PhysRevD.100.024021
https://doi.org/10.1103/PhysRevD.100.024021
https://doi.org/10.1088/0264-9381/33/20/204001
https://doi.org/10.1088/0264-9381/33/20/204001


[33] J. Healy, C. O. Lousto, Y. Zlochower, and M. Campanelli,
Classical Quantum Gravity 34, 224001 (2017).
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