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In this paper, we systematically study gravitational waves (GWs) first produced by remote compact
astrophysical sources and then propagating in our inhomogeneous Universe through cosmic distances,
before arriving at detectors. To describe such GWs properly, we introduce three scales, λ, Lc, and L,
denoting, respectively, the typical wavelength of GWs, the scale of the cosmological perturbations, and the
size of the observable Universe. For GWs to be detected by the current and foreseeable detectors, the
condition λ ≪ Lc ≪ L holds. Then, such GWs can be approximated as high-frequency GWs and be well
separated from the background γμν by averaging the spacetime curvatures over a scale l, where
λ ≪ l ≪ Lc, and gμν ¼ γμν þ ϵhμν with hμν denoting the GWs. In order for the backreaction of the
GWs to the background spacetimes to be negligible, we must assume that jhμνj ≪ 1, in addition to the
condition ϵ ≪ 1, which are also the conditions for the linearized Einstein field equations for hμν to be valid.
Such studies can be significantly simplified by properly choosing gauges, such as the spatial, traceless, and
Lorenz gauges. We show that these three different gauge conditions can be imposed simultaneously, even
when the background is not a vacuum, as long as the high-frequency GWapproximation is valid. However,
to develop the formulas that can be applicable to as many cases as possible, in this paper we first write down
explicitly the linearized Einstein field equations by imposing only the spatial gauge. Then, applying these
formulas together with the geometrical optics approximation to such GWs, we find that they still move
along null geodesics and its polarization bivector is parallel transported, even when both the cosmological
scalar and tensor perturbations are present. In addition, we also calculate the gravitational integrated Sachs-
Wolfe effects due to these two kinds of perturbations, whereby the dependences of the amplitude, phase,
and luminosity distance of the GWs on these perturbations are read out explicitly.
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I. INTRODUCTION

The detection of the first gravitational wave (GW) from
the coalescence of two massive black holes (BHs) by
the advanced Laser Interferometer Gravitational-Wave

Observatory (LIGO) marked the beginning of a new era,
the GW astronomy [1]. Following this observation, soon
more than 50 GWs were detected by the LIGO/Virgo
scientific collaboration [2–4]. The outbreak of interest on
GWs and BHs has further gained momenta after the
detection of the shadow of the M87 BH [5–10].
One of the remarkable observational results is the dis-

covery that the mass of an individual BH in these binary
systems can be much larger than what was previously
expected, both theoretically and observationally [11–13],
leading to the proposal and refinement of various formation
scenarios, see, for example, [14–17], and references therein.
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A consequence of this discovery is that the early inspiral
phase may also be detectable by space-based observatories,
such as LISA [18], TianQin [19], Taiji [20], and DECIGO
[21], for several years prior to their coalescence [22,23].
Multiple observations with different detectors at different
frequencies of signals from the same source can provide
excellent opportunities to study the evolution of the binary in
detail. Since different detectors observe at disjoint frequency
bands, together they cover different evolutionary stages of
the same binary system. Each stage of the evolution carries
information about different physical aspects of the source.
As a result, multiband GW detections will provide an
unprecedented opportunity to test different theories of
gravity in the strong field regime [24].
Recently, someof the present authors generalized thepost-

Newtonian (PN) formalism to certain modified theories of
gravity and applied it to the quasicircular inspiral of compact
binaries. In particular, we calculated in detail thewaveforms,
GWpolarizations, response functions, and energy losses due
to gravitational radiation in Brans-Dicke (BD) theory [25],
screenedmodified gravity (SMG) [26–28], and gravitational
theories with parity violations [29–32] to the leading PN
order, with which we then considered projected constraints
from the third-generation detectors. Such studies have been
further generalized to triple systems [33,34] in Einstein-
aether (æ) theory [35–37]. When applying such formulas to
the first relativistic triple system discovered in 2014 [38], we
studied the radiation power, and found that quadrupole
emission has almost the same amplitude as that in general
relativity (GR), but the dipole emission can be as large as the
quadrupole emission. This can provide a promising window
to place severe constraints on æ theory with multiband GW
observations [39,40].
More recently, we revisited the problem of a binary

system of nonspinning bodies in a quasicircular inspiral
within the framework of æ theory [41–46], and provided
the explicit expressions for the time-domain and frequency-
domain waveforms, GW polarizations, and response func-
tions for both ground- and space-based detectors in the PN
approximation [47]. In particular, we found that, when
going beyond the leading order in the PN approximation,
the non-Einsteinian polarization modes contain terms that
depend on both the first and second harmonics of the orbital
phase. With this in mind, we calculated analytically the
corresponding parametrized post-Einsteinian parameters,
generalizing the existing framework to allow for different
propagation speeds among scalar, vector, and tensor modes,
without assuming the magnitude of its coupling parameters,
and meanwhile allowing the binary system to have relative
motions with respect to the aether field. Such results will
particularly allow for the easy construction of Einstein-
aether templates that could be used in Bayesian tests of GR
in the future.
It is remarkable to note that the space-based detectors

mentioned above, together with the current and forthcoming

ground-based ones, such as KAGRA [48], Voyager [49], the
Einstein Telescope (ET) [50], and Cosmic Explorer (CE)
[51], are able to detect GWs emitted from such systems as far
as the redshift is about z ≃ 100 [52],1 which will result in a
variety of profound scientific consequences. In particular,
GWs propagating over such long cosmic distances will carry
valuable information not only about their sources but also
about the detail of the cosmological expansion and inho-
mogeneities of the Universe, whereby a completely new
window to explore the Universe by using GWs is opened,
as so far our understanding of the Universe almost all
comes from observations of electromagnetic waves only
(possibly with the important exceptions of cosmic rays and
neutrinos) [53].
In this paper, we shall generalize our above studies to the

cases in which the GWs are first generated by remote
astrophysical sources and then propagate in the inhomo-
geneous universe through cosmic distances before arriving at
detectors, either space- and/or ground-based ones. It should
be noted that recently such studies have already attracted lots
of attention, see, for example, [56] and references therein. In
particular, using Isaacson’s high frequency GW formulas
[57,58], Laguna et al. studied the gravitational analogue of
the electromagnetic integrated Sachs-Wolf (ISW) effects in
cosmology, and found that the phase, frequency, and
amplitude of the GWs experience ISW effects, in addition
to the magnifications on the amplitude from gravitational
lensing [59]. More recently, Bertacca et al. connected the
results of Laguna et al. obtained in real space frame to the
observed frame, by using the cosmic rulers formulas [60],
whereby the corrections to the luminosity distance due to
velocity, volume, lensing, and gravitational potential effects
were calculated [61].
On the other hand, Bonvin et al. [62] studied the effects

of the Universe on the gravitational waveform, and found
that the acceleration of the Universe and the peculiar
acceleration of the binary with respect to the observer
distort the gravitational chirp signals from the simplest GR
prediction, not only a mere time independent rescaling of
the chirp mass, but also the intrinsic parameter estimations
for binaries visible by LISA. In particular, the effect due to
the peculiar acceleration can be much larger than the one
due to the Universe acceleration. Moreover, peculiar
accelerations can introduce a bias in the estimation of
parameters such as the time of coalescence and the
individual masses of the binary. An error in the estimation
of the time of coalescence made by LISA will have an
impact on the prediction of the time at which the signal will

1It must be noted that, according to structure formations, the
first stars/galaxies should be formed at z ≃ 20 [53]. However,
primordial BHs can be formed from the collapse of large
overdensities in the radiation-dominated universe, which can
explain the massive BHs observed so far from binary black holes
(BBHs) [54]. For recent reviews on this topic, see, for example,
[16,55] and references therein.
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be visible by ground based interferometers, for signals
spanning both frequency bands.
Moreover, the correlations of such GWs with lensing

fields from the cosmic microwave background and galaxies
were studied [63], whereby a new window to explore our
Universe by gravitational weak lensing was proposed.
Lately, GWs propagating in the curved universe has been

further generalized to scalar-tensor theories [64], including
Horndeski [65–67] and SMG [67] theories.
However, it should be noted that in all these studies, the

cosmological tensor perturbations have been neglected
(except [65,66], in which the background is arbitrary).
As observing the primordial GWs (the tensor perturbations)
is one of the main goals in the current and forthcoming
cosmological observations [68], in this paper we shall
consider the cosmological background that consists of both
the scalar and tensor perturbations, but restrict ourselves
only to Einstein’s theory, and leave the generalizations to
other theories of gravity to other occasions. What we are
planning to do in the current paper are the following:

(i) First, to describe the GWs propagating through the
inhomogeneous universe from cosmic distances to
observers properly, we first introduce three scales, λ,
Lc, and L, which denote, respectively, the typical
wavelength of GWs, the scale of the cosmological
perturbations, and the size of the observable Uni-
verse. For GWs to be detected by the current and
foreseeable detectors, we find that the condition

λ ≪ Lc ≪ L ð1:1Þ

always holds. Then, such GWs can be approximated
as high-frequency GWs,2 and be well separated from
the background γμν by averaging the spacetime
curvatures over a scale l, where λ ≪ l ≪ Lc, and
the total metric of the spacetime is given by

gμν ¼ γμν þ ϵhμν; ð1:2Þ

where ϵ ≃Oðλ=LÞ, and γμν denotes the background,
while hμν represents the GWs. In order for the
backreaction of the GWs to the background space-
times to be negligible, we must assume that

jhμνj ≪ 1; ð1:3Þ

in addition to the condition ϵ ≪ 1, which are also the
conditions for the linearized Einstein field equations
for hμν to be valid.

(ii) Such studies can be significantly simplified by
properly imposing gauge conditions, such as
the spatial, traceless, and Lorenz gauges, given,
respectively, by

χ0μ ¼ 0; ð1:4Þ

χ ¼ 0; ð1:5Þ

∇νχμν ¼ 0; ð1:6Þ

where

χμν ≡ hμν −
1

2
γμνh; h≡ γμνhμν; ð1:7Þ

and ∇ν denotes the covariant derivative with respect
to γμν. We show that these three different gauge
conditions can be imposed simultaneously, even
when the background is not vacuum, as longer as
the high-frequency GW approximations are valid.

(iii) However, to develop the formulas that can be
applicable to as many cases as possible, in this
paper we write down explicitly the linearized Ein-
stein field equations for χμν by imposing only the
spatial gauge. Applying these formulas together
with the geometrical optic approximations to such
GWs, we find the well-known results [71]: they still
move along null geodesics and its polarization
bivector is parallel transported, even when both
the cosmological scalar and tensor perturbations
are present. In addition, we also calculate the
gravitational ISW effects due to these two kinds
of perturbations, whereby the dependences of the
amplitude, phase, and luminosity distance of the
GWs on these perturbations are read off explicitly.

The rest of the paper is organized as follows: in Sec. II,
after introducing the three different scales, λ; Lc; L, we
show that, for the GWs to be detected by the current and
foreseeable both ground- and space-based detectors, such
GWs can be well approximated as high frequency GWs.
Then, we derive the Einstein field equations and find that,
to make the backreaction of the GWs to the background
negligible, as well as to have the linearized Einstein field
equations for hμν to be valid, the condition (1.3) must hold.
In this section, we also provide a very brief review on the
cosmological background that consists of both the cosmo-
logical and tensor perturbations. In Sec. III, we consider the
gauge freedom for GWs, and show that the three different
gauge conditions, (1.4)–(1.6), can be still imposed simul-
taneously, even when the background spacetime is not a
vacuum, as long as the high-frequency approximations are
valid. Then, by imposing only the spatial gauge condition
(1.4), we write down the linearized Einstein field equations
for the GWs, so the formulas can be applied to cases with

2It should be noted that pulsar timing arrays can detect GWs
with wavelengths ranging from an astronomical unit to a parsec
[69]. For such detections, the high-frequency approximations
might not be valid any more [70]. We wish to come back to this
subject soon.
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different choices of gauges. In Sec. IV we study the GWs
with the geometrical optics approximation, and calculate
the effects of the cosmological scalar and tensor perturba-
tions on the amplitudes and phases of such GWs, and find
the explicit expressions of the ISW effects due to both
the cosmological scalar and tensor perturbations. When
applying them to a binary system, we calculate explicitly
the effects of these two kinds of the cosmological pertur-
bations on the luminosity distance and the chirp mass
[cf. Eq. (4.51)]. Finally, we summarize our main results in
Sec. V, and present some concluding remarks.
There are also three Appendixes, A, B, and C, in which

some mathematical computations are presented. In particu-
lar, in Appendix A, we give a very brief review over the
inhomogeneous universe, when both the cosmological
scalar and tensor perturbations are present, while in
Appendix B, we present the field equations for the GWs
χμν by imposing only the spatial gauge (1.4). In AppendixC,

we first decompose χμν as χμν ¼ χð0Þμν þ ϵcχ
ð1Þ
μν and then write

down explicitly the field equations for χð1Þμν only with the
spatial gauge.
Before proceeding to the next section, we would like to

note that GWs produced by remote astrophysical sources
and then propagating through the homogeneous and
isotropic Universe have been systematical studied by
Ashtekar and his collaborators through a series of papers
[72–78], and various subtle issues related to the de Sitter
background were clarified [79–81] (see also [82–90]).
In addition, in this paper we shall adopt the following

conventions, which are different from those adopted in
[57,58], but the same as those used in [91]. In particular, in
this paper the signature of the metric is (−;þ;þ;þ), while
the Christoffel symbols, Riemann and Ricci tensors, as well
as the Ricci scalar, are defined, respectively, by

Γα
μν ≡ 1

2
gαβðgβν;μ þ gβμ;ν − gμν;βÞ;

ðDαDβ −DβDαÞXμ ¼ Rμ
ναβXν;

Rμν ≡ Rα
μαν; R≡ gμνRμν; ð1:8Þ

where Dα denotes the covariant derivative with respect to
metric gμν, gμν;λ ≡ ∂gμν=∂xλ, and

Rα
μνλ ¼ Γα

μλ;ν − Γα
μν;λ þ Γα

βνΓ
β
μλ − Γα

βλΓ
β
μν: ð1:9Þ

The Einstein field equations read

Rμν −
1

2
gμνR ¼ κTμν; ð1:10Þ

where κ ≡ 8πG=c4, with G denoting the Newtonian con-
stant, and c the speed of light. In addition toDα and∇α, we
also introduce the covariant derivative ∇̄α with respect to
the homogeneous metric γ̄μν, where

γμν ¼ γ̄μν þ ϵcγ̂μν; ð1:11Þ

with ϵc ≃OðLc=LÞ ≪ 1. We shall also adopt the conven-
tions, AðμνÞ ≡ ðAμν þ AνμÞ=2; A½μν� ≡ ðAμν − AνμÞ=2.

II. GRAVITATIONAL WAVES PROPAGATING
IN INHOMOGENEOUS UNIVERSE

In this section, we shall consider GWs first produced by
remote astrophysical sources and then propagating in
cosmic distances through the inhomogeneous Universe,
before arriving at detectors. To study such GWs, let us first
consider several characteristic lengths that are highly
relevant to their propagations and polarizations.

A. Characteristic scales of background

In this paper, we shall consider our inhomogeneous
universe as the background, which includes two parts, the
homogeneous and isotropic Universe and its inhomo-
geneous perturbations, given by γ̄μν and γ̂μν, respectively,
so the background metric γμν can be written as

γμν ¼ γ̄μν þ ϵcγ̂μν þOðϵ2cÞ;
γμν ¼ γ̄μν − ϵcγ̂

μν þOðϵ2cÞ; ð2:1Þ

where ϵc; jγ̂j ≪ 1 [cf. Eq. (A21)], and

γμλγνλ ¼ δμν þOðϵ2cÞ; γ̄μλγ̄νλ ¼ δμν þOðϵ2cÞ;
γ̂μν ≡ γ̄μαγ̂αν; γ̂μν ≡ γ̄μαγ̄νβγ̂αβ; ð2:2Þ

and so on.
The size of the observational Universe is about L ≃

8.8 × 1026 m [92]. On the other hand, in the momentum
space of the cosmological perturbations, we have
Lc ≃ 1=k, where k denotes the typical wave number of
the perturbations, and Lc the length over which the change
of the cosmological perturbations becomes appreciable.
When the modes are outside the Hubble horizon, it can be
shown that Lc=L ≃ 10−5. But, once they reenter the
horizon, these modes decay suddenly and then are
oscillating rapidly about a minimum [93]. In addition,
the current temperature anisotropy ΔT=T0 of the Universe
is of order 10−5 [94]. So, it is quite reasonable to assume
that

ϵc ≃
Lc

L
≪ 1: ð2:3Þ

B. Typical gravitational wavelengths

For the second generation of the ground-based detec-
tors, such as LIGO, Virgo, and KAGRA, the wavelength
of the detected GWs are λ ≃ 105–107 m, while the
wavelength of GWs to be detected by the space-
based detectors, such as LISA, TianQin, and Taiji, are
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λ ≃ 108–1012 m.3 Therefore, for the ground-based detec-
tors, we have ϵ ≃ λ=L ∈ ð10−22; 10−20Þ, while for the
space-based detectors, we have ϵ ∈ ð10−19; 10−15Þ.
Therefore, in this paper we shall consider only the cases

in which the following is true,

λ

Lc
¼ ϵ

ϵc
≪ 1; ð2:4Þ

so that all GWs considered in this paper can be well
approximated as high frequency GWs.

C. Einstein field equations

Following the above analyses, we find that λ, Lc, and L
denote, respectively, the characteristic length over which
hμν, γ̂μν, or γ̄μν changes significantly. Thus, their derivatives
are typically of the following orders:

∂ γ̄ ∼ γ̄

L
; ∂2γ̄ ∼

γ̄

L2
;

∂ γ̂ ∼ γ̂

Lc
; ∂2γ̂ ∼

γ̂

L2
c
;

∂h ∼
h
λ
; ∂2h ∼

h
λ2

: ð2:5Þ

To estimate orders of terms, following Isaacson [57], we
regard L as order of unity, and say that the metric (1.2)
contains a high-frequency GW, if and only if there exists a
family of coordinate systems (related by infinitesimal
coordinate transformations), in which we have

ϵ ≪ ϵc ≪ 1; ð2:6Þ

and

γ̄μν; γ̄μν;α; γ̄μν;αβ ≃Oð1Þ;
γ̂μν ≃Oðγ̂Þ; γ̂μν;α ≃Oðγ̂=ϵcÞ;
γ̂μν;αβ ≃Oðγ̂=ϵ2cÞ;
hμν ≃OðhÞ; hμν;α ≃Oðh=ϵÞ;
hμν;αβ ≃Oðh=ϵ2Þ; ð2:7Þ

where γμν;α ≡ ∂γμν=∂xα, etc. Note that, in contrast to [57],
here we do not assume hμν ≃Oð1Þ, in order to neglect the
backreaction of the GWs to the background spacetime γμν,
as to be shown below.
Expanding the Riemann and Ricci tensors RμναβðgμνÞ

and RμνðgμνÞ in terms of ϵ, we find [57,91],

RαβγδðgμνÞ ¼ Rαβγδ
ð0Þ þ ϵRαβγδ

ð1Þ þ ϵ2Rαβγδ
ð2Þ

þOðϵ3Þ;
RαβðgμνÞ ¼ Rαβ

ð0Þ þ ϵRαβ
ð1Þ þ ϵ2Rαβ

ð2Þ

þOðϵ3Þ; ð2:8Þ

where

Rαβγδ
ð0Þ ¼ RαβγδðγμνÞ;

Rαβγδ
ð1Þ ¼ 1

2
½hβγ;αδ þ hαδ;βγ − hαγ;βδ − hβδ;αγ

þRασγδ
ð0Þhσβ − Rβσγδ

ð0Þhσα�; ð2:9Þ

Rαβ
ð0Þ ¼ RαβðγμνÞ;

Rαβ
ð1Þ ¼ 1

2
γρτðhτα;βρ þ hτβ;αρ − hρτ;αβ − hαβ;ρτÞ; ð2:10Þ

Rαβ
ð2Þ ¼ 1

4
fhρτ ;βhρτ;α þ 2hρτðhτρ;αβ þ hαβ;τρ

− hτα;βρ − hτβ;αρÞ þ 2hτβ
;ρðhτα;ρ − hρα;τÞ

− ð2hρτ ;ρ − h;τÞðhτα;β þ hτβ;α − hαβ;τÞg: ð2:11Þ

Here the semicolon “;” denotes the covariant derivative
with respect to the background metric γμν. For the sake of
convenience, we shall also use ∇λ to denote the covariant
derivative with respect to γμν, so we have hμν;λ ≡∇λhμν,
etc. The background metric γμν (γμν) is also used to lower
(raise) the indices of hμν, such as

hμν ≡ γμαhαν ¼ γναhμα; h≡ hλλ ¼ γαβhαβ; ð2:12Þ

and so on.
The background curvatures Rαβγδ

ð0ÞðγÞ and Rαβ
ð0ÞðγÞ can

be further expanded in terms of ϵc, as

Rαβγδ
ð0ÞðγÞ ¼ R̄αβγδðγ̄Þ þ ϵcR̂αβγδðγ̂Þ þ ϵ2cR̂

ð2Þ
αβγδðγ̂Þ þOðϵ3cÞ;

Rαβ
ð0ÞðγÞ ¼ R̄αβðγ̄Þ þ ϵcR̂αβðγ̂Þ

þ ϵ2cR̂
ð2Þ
αβ ðγ̂Þ þOðϵ3cÞ; ð2:13Þ

where

R̂αβγδðγ̂Þ ¼
1

2
½γ̂βγjαδ þ γ̂αδjβγ − γ̂αγjβδ − γ̂βδjαγ

þR̄ασγδγ̂
σ
β − R̄βσγδγ̂

σ
α�; ð2:14Þ

R̂αβðγ̂Þ ¼
1

2
γ̄ρτðγ̂ταjβρ þ γ̂τβjαρ − γ̂ρτjαβ − γ̂αβjρτÞ; ð2:15Þ

and R̂ð2Þ
αβ ðγ̂Þ is given by Eq. (2.11) with the replacement

ðhαβ;∇μÞ → ðγ̂αβ; ∇̄μÞ. Here the vertical bar “j” denotes the
covariant derivative with respect to γ̄μν, which is also

3The frequencies of GWs detected by the second generation of
the ground-based detectors is f ≃ 20–2000 Hz, while the
frequencies of GWs to be detected by the space-based detectors
are f ≃ 1 − 10−4 Hz.

GRAVITATIONAL WAVE COSMOLOGY: HIGH FREQUENCY … PHYS. REV. D 103, 123021 (2021)

123021-5



denoted by ∇̄λ, so that γ̂ρτjα ≡ ∇̄αγ̂ρτ, etc. Taking L ≃Oð1Þ
and considering Eq. (2.7) we find

R̄α
βγδ; R̄αβ ≃Oð1Þ; ð2:16Þ

ϵcR̂
α
βγδ; ϵcR̂αβ ∼Oðγ̂=ϵcÞ;

ϵ2cR̂
ð2Þ
αβγδ; ϵ2cR̂

ð2Þ
αβ ≃Oðγ̂2Þ; ð2:17Þ

ϵRαβγδ
ð1Þ; ϵRαβ

ð1Þ ≃Oðh=ϵÞ;
ϵ2Rαβγδ

ð2Þ; ϵ2Rαβ
ð2Þ ≃Oðh2Þ: ð2:18Þ

To write down the Einstein field equations, let us first
note that

ð∇α∇β −∇β∇αÞχγδ ¼ −Rσ
γαβ

ð0Þχσδ − Rσ
δαβ

ð0Þχγσ: ð2:19Þ

Then, we find that in terms of χμν, Rαβ
ð1Þ is given by

Rαβ
ð1Þ ¼ 1

2
ð2Rγαβσ

ð0Þχγσ þ Rσ
α
ð0Þχβσ þ Rσ

β
ð0Þχασ

þ∇α∇δχβδ þ∇β∇δχαδÞ

−
1

2
□χαβ þ

1

4
γαβ□χ; ð2:20Þ

where □χαβ ≡ γμνχαβ;μν, and

χμν ≡ hμν −
1

2
γμνh; χ ≡ γμνχμν ¼ −h: ð2:21Þ

It should be noted that in [57] Isaacson considered the
vacuum case, for which we have Rαβ

ð1Þ ¼ 0, that is,

□χαβ −
1

2
γαβ□χ −∇α∇δχβδ −∇β∇δχαδ

þ 2Rαγβσ
ð0Þχγσ − Rσ

α
ð0Þχβσ − Rσ

β
ð0Þχασ ¼ 0; ð2:22Þ

which is precisely Eq. (5.7) of [57], after the difference
between the conventions used here and the ones used in
[57] is taken into account.
However, in the present paper we consider the propa-

gation of GWs through the inhomogeneous universe, which
has nonzero Riemann and Ricci tensors. So, we expect that
the corresponding Einstein field equations for hμν are
different from Eq. (2.22). To see this, we first note that

gμν ¼ γμν − ϵhμν þ ϵ2hμαhαν þOðϵ3Þ;
R≡ gμνRμν ¼ Rð0Þ þ ϵRð1Þ þ ϵ2Rð2Þ þOðϵ3Þ; ð2:23Þ

where

Rð0Þ ≡ γμνRð0Þ
μν ;

Rð1Þ ≡ γμνRð1Þ
μν − hμνRð0Þ

μν ;

¼ ∇α∇βχαβ − χαβRð0Þ
αβ þ 1

2
ð□þ Rð0ÞÞχ;

Rð2Þ ≡ γμνRð2Þ
μν − hμνRð1Þ

μν þ hμαhανR
ð0Þ
μν : ð2:24Þ

Inserting Eqs. (2.8) and (2.23) into the Einstein field
equations, we find that

Rð0Þ
μν −

1

2
γμνRð0Þ þ ϵ

�
Rð1Þ
μν −

1

2
ðγμνRð1Þ þ hμνRð0ÞÞ

�

þ ϵ2
�
Rð2Þ
μν −

1

2
ðγμνRð2Þ þ hμνRð1ÞÞ

�
þOðϵ3Þ

¼ κðTð0Þ
μν þ ϵT μνÞ; ð2:25Þ

where Tð0Þ
μν denotes the energy-momentum tensor that

produces the background, while T μν denotes the astro-
physical source that produces the GWs.

D. Separation of GWs from background

To separate GWs produced by astrophysical sources
from the inhomogeneous background, we can average the
field equations over a length scale l, which is much larger
than the typical wavelength of the GWs but much smaller
than Lc,

λ ≪ l ≪ Lc: ð2:26Þ

Then, this process will extract the slowly varying back-
ground from GWs, as the latter will vanish when averaging
over such a scale. In particular, we have

hγμνi ¼ γμν; hRμναβ
ð0Þi ¼ Rμναβ

ð0Þ;

hRμν
ð0Þi ¼ Rμν

ð0Þ; hTμν
ð0Þi ¼ Tμν

ð0Þ; ð2:27Þ

hhμνi ¼ hRμν
ð1Þi ¼ hRð1Þi ¼ 0; ð2:28Þ

hRμν
ð2Þi ¼ hRμν

ð2Þil; hRð2Þi ¼ hRð2Þil;
hhμνRð1Þi ¼ hhμνRð1Þil; hT μνi ¼ hT μνil: ð2:29Þ

Note that quadratic terms of hμν may survive such an
averaging process, if two modes are almost equal but with
different signs, although each of them represents a high
frequency mode. For example, for hμν ∝ eiω1x and
hαβ∝e−iω2x, we have hμνhαβ∝eiω12x, where ω12≡ω1−ω2.
Thus, although ω1, ω2 ≫ 1, we can have ω12 ≪ 1, if
ω1 ≃ ω2. Therefore, due to the nonlinear interactions among
different modes, low frequency modes can be produced,
which will survive with such averaging processes. If we are
only interested in the linearized Einstein field equations of
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hμν, such modes must be taken care of properly. With this in
mind, taking the average of Eq. (2.25) we find that

Rð0Þ
μν −

1

2
γμνRð0Þ þϵ2hGμν

ð2Þil¼ κðTð0Þ
μν þϵhT μνilÞ; ð2:30Þ

where

Gμν
ð2Þ ≡ Rð2Þ

μν −
1

2
ðγμνRð2Þ þ hμνRð1ÞÞ; ð2:31Þ

which is a quadratic function of hμν. Then, substituting
Eqs. (2.30) and (2.31) back into Eq. (2.25), we find that the
high-frequency part takes the form

Rð1Þ
μν −

1

2
ðγμνRð1Þ þ hμνRð0ÞÞ

þ ϵhGð2Þ
μν ihigh ¼ κhT μνihigh; ð2:32Þ

where

hGð2Þ
μν ihigh ≡ Gð2Þ

μν − hGμν
ð2Þil;

hT μνihigh ≡ T μν − hT μνil: ð2:33Þ

On the other hand, from Eqs. (2.16)–(2.18) we find that

Gð0Þ
μν ≡ Rð0Þ

μν −
1

2
γμνRð0Þ ≃Oðγ̂=ϵcÞ;

hGμν
ð2Þil ≃Oðh2=ϵ2Þ; Tð0Þ

μν ≃Oðγ̂=ϵcÞ: ð2:34Þ

Note that, after introducing the cosmological perturbation
scale Lc, the leading order of Gð0Þ

μν becomes Gð0Þ
μν ≃

ϵcR̂μν ≃Oðγ̂=ϵcÞ, instead of L−2 [64]. The same is true

for Tð0Þ
μν , as it can be seen from Appendix A. Then, from

Eq. (2.30) we find that each term has the following order,

Oðγ̂=ϵcÞ þOðh2Þ ¼ Oðγ̂=ϵcÞ þ ϵOðhT μνilÞ: ð2:35Þ

Therefore, to have the backreaction of the GWs to the
background be negligible, so that the background space-

time γμν is uniquely determined by Tð0Þ
μν , i.e.,

Rμν
ð0Þ −

1

2
γμνRð0Þ ¼ κTμν

ð0Þ; ð2:36Þ

we must assume that

h2 ≪
γ̂

ϵc
; ð2:37Þ

ϵ · jhT μνilj ≪
γ̂

ϵc
: ð2:38Þ

In addition, from Eq. (2.32) we find that

ϵhGð2Þ
μν ihigh ≃Oðh2=ϵÞ: ð2:39Þ

Therefore, in order for the quadratic terms from Gð2Þ
μν not to

affect the linear terms of the leading orders h=ϵ2 and h=ϵ1

in Eq. (2.32), we must assume that

jhj ≪ 1: ð2:40Þ

With the above conditions, we find that Eq. (2.32) can be
written as

□χαβ þ γαβ∇γ∇δχγδ −∇α∇δχβδ −∇β∇δχαδ þ 2Rαγβσ
ð0Þχγσ

¼ κðF αβ − 2hT αβihighÞ; ð2:41Þ

where

F αβ ≡ 1

κ
fRσ

α
ð0Þχβσ þ Rσ

β
ð0Þχασ − χαβRð0Þ þ γαβχ

γδRγδ
ð0Þg

¼ χβδTδ
α
ð0Þ þ χαδTδ

β
ð0Þ þ γαβχ

γδTγδ
ð0Þ

−
1

2
γαβχTð0Þ: ð2:42Þ

From the above derivations, we can see that the linearized
Einstein field equations (2.41) are valid only to the two
leading orders, ϵ−2 and ϵ−1. For orders higher than them,
these equations are not applicable. This is particularly true
for the zeroth order of ϵ.
In addition, since ϵ−1c ≪ ϵ−1, we find that in Eq. (2.41)

the terms

F αβ; 2Rαγβσ
ð0Þχγσ ≃Oðγ̂h=ϵcÞ ≪ Oðh=ϵÞ; ð2:43Þ

which can be also neglected, in comparing with terms that
are orders of ϵ−2 or ϵ−1. However, in order to compare our
results with the ones obtained in [57–59], we shall keep
them, and drop the corresponding terms only at the end of
our calculations.

E. The inhomogeneous universe

In this subsection, we shall give a very brief introduction
over the flat Friedmann–Lemaitre–Robertson–Walker
(FLRW) universe with its linear scalar and tensor pertur-
bations, described by the metric (1.11). In terms of the
conformal coordinates xμ ¼ ðη; xiÞ; (i ¼ 1, 2, 3), we have

γ̄μν ¼ a2ðηÞημν; γ̄μν ¼ a−2ðηÞημν; ð2:44Þ

with ημν ¼ diagð−1;þ1;þ1;þ1Þ. The coordinate η is
related to the cosmic time via the relation, η ¼ R

dt
aðtÞ.

Following the standard process, we decompose the linear
perturbations γ̂μν into scalar, vector, and tensor modes,
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γ̂μν ¼ a2ðηÞ
�−2ϕ ∂iB − Si
sym −2ψδij þ 2∂ijEþ 2∂ðiFjÞ þHij

�
;

ð2:45Þ

where

∂iSi ¼ ∂iFi ¼ 0; ∂iHij ¼ 0 ¼ Hi
i; ð2:46Þ

with ∂i ≡ δij∂j and Hi
j ≡ δikHkj. However, the vector

mode will decay quickly with the expansion of the
Universe, and can be safely neglected [95,96]. Then, using
the gauge transformations, as shown explicitly in
Appendix A, we can always set

B ¼ E ¼ 0; ð2:47Þ
in which the gauge is completely fixed. This is often
referred to as the Newtonian gauge, under which the gauge-
invariant quantities defined in Eq. (A11) become

Φ ¼ ϕ; Ψ ¼ ψ ; ðB ¼ E ¼ 0Þ; ð2:48Þ

that is, in the Newtonian gauge, the potentials ϕ and ψ are
equal to the gauge-invariant ones,Φ andΨ. Therefore, with
this gauge and ignoring the vector part, we have

γ̂μν ¼ a2ðηÞ
�−2ϕ 0

0 Hij − 2ψδij

�
;

γ̂μν ¼ a−2ðηÞ
�−2ϕ 0

0 Hij − 2ψδij

�
: ð2:49Þ

In the rest of this paper, we shall restrict ourselves to
this gauge.

III. LINEARIZED FIELD EQUATIONS FOR GWS
IN AN INHOMOGENEOUS UNIVERSE

In this section, we shall consider the field equations for
χμν given by Eq. (2.41) in the inhomogeneous cosmological
background of Eq. (1.11) with the Newtonian gauge (2.47),
by neglecting the vector perturbations, for which γ̂μν and
γ̂μν are given by Eq. (2.49).

A. Gauge fixings for GWs

Before writing down these linearized field equations
explicitly, let us first consider the gauge freedom for χμν. At
the end of the last section, we had considered the gauge
transformations for the cosmological perturbations, and had
already used the gauge freedom,

x̃μ ¼ xμ þ ϵcζ
μ; ð3:1Þ

to set B ¼ E ¼ 0 [cf. Eq. (2.47)], the so-called Newtonian
gauge, as shown explicitly in Appendix A. These choices

completely fix the gauge freedom for the cosmological
perturbations.
In this subsection, we shall consider another kind of

gauge transformations for the GWs, given by

x̌α ¼ xα þ ϵξα; ð3:2Þ

where4

ξα ≃OðϵhÞ; ξα;β ≃OðhÞ; ξα;β;γ ≃Oðh=ϵÞ: ð3:3Þ

Since ϵc ≫ ϵ, we can see that to the first order of ϵc, the
background metric γμν does not change under the coor-
dinate transformations (3.2), that is,

γ̌μν ¼ γμν þOðϵ2cÞ; ð3:4Þ

a property that is required for the transformations (3.2) to be
the gauge transformations only for the GWs. On the other
hand, under the coordinate transformations (3.2), we have

ǧμν ≡ γ̌μν þ ϵȟμν þOðϵ2Þ;
¼ γμν þ ϵðhμν − ξμ;ν − ξν;μÞ þOðϵ2Þ; ð3:5Þ

that is,

ȟμν ¼ hμν − 2ξðμ;νÞ: ð3:6Þ

Hence, we find

Řαβγδ
ð1Þ − Rαβγδ

ð1Þ ¼ −LξRαβγδ
ð0Þ ¼ Oðhγ̂=ϵcÞ;

Řαβ
ð1Þ − Rαβ

ð1Þ ¼ −LξRαβ
ð0Þ ¼ Oðhγ̂=ϵcÞ; ð3:7Þ

as can be seen from Eqs. (2.16)–(2.18), and (3.3), where Lξ

denotes the Lie derivative. Therefore, Eq. (2.41) is gauge
invariant only up to Oðhγ̂=ϵcÞ. However, since ϵ−1c ≪ ϵ−1,
terms that are of the order of ϵ−2 and ϵ−1 are still gauge
invariant, while the ones of order of ϵ0 are not. This is
because in the scale λ the spacetime appears locally flat,
and the curvature is locally gauge invariant. Thus, provided
that the following conditions hold,

jhj; jγ̂j ≪ 1; ϵ ≪ ϵc ≪ 1; ð3:8Þ

the GW produced by an astrophysical source can be
considered as a high-frequency GW, and their low-fre-
quency components are negligible, so that the local-flatness
behavior carries over to the case in which the background is
even curved.

4In writing down the leading order of ξα, we had set the slowly
changing part that is of order one to zero, as it is irrelevant to the
high frequency GWs considered here.
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On the other hand, from the field equations (2.41) we can
see that they will be considerably simplified, if we choose
the Lorenz gauge,

∇νχ̌μν ¼ 0; ð3:9Þ

where

χ̌μν ≡ ȟμν −
1

2
γμνȟ;

¼ χμν − 2∇ðμξνÞ þ γμν∇λξ
λ; ð3:10Þ

as it can be seen from Eq. (3.6), where ξμ ≡ γμνξ
ν. Then, we

find that the Lorenz gauge (3.9) requires

□ξμ þ Rð0Þν
μξν ¼ ∇νχμν: ð3:11Þ

Note that Rð0Þν
μξν ≃Oðhγ̂ϵ=ϵcÞ ≪ Oðh=ϵÞ, so to the order

of ϵ−1 it can be neglected. Clearly, for any given χμν (with
some proper continuous conditions [97], which are nor-
mally assumed always to exist), the above equation in
general has nontrivial solutions [57].
In addition, Eq. (3.11) does not completely fix the gauge.

In fact, the gauge residual,

ˇ̌xα ¼ x̌α þ ϵςα; ð3:12Þ

exists, for which the Lorenz gauge (3.9) still holds,

∇ν ˇ̌χμν ¼ 0; ð3:13Þ

as long as ςα satisfies the conditions

□ςμ þ Rð0Þν
μςν ¼ 0: ð3:14Þ

Again, in this equation, the term Rð0Þν
μςν ≃Oðhϵγ̂=ϵcÞ is

negligible, in comparing with the one □ςμ ≃Oðh=ϵÞ.
An interesting question is this: can we use this gauge

residual further to set

ˇ̌χ0μ ¼ 0? ð3:15Þ

To answer this question, we first note that, if this is the case,
ςμ must satisfy the additional conditions,

∇0ςν þ∇νς0 − γ0ν∇ας
α ¼ χ̌0ν: ð3:16Þ

Clearly, for any given γμν and χ̌μν (again with certain
regular conditions [97]), in general the above equation has
solutions. However, we must remember that ςν also needs
to satisfy Eq. (3.14). To see if these conditions are
consistent or not, let us take the covariant derivative ∇μ

in both sides of Eq. (3.16), which results in

∇ν∇0ς
ν þ□ς0 −∇0∇νς

ν

¼ □ς0 þ Rð0Þ
0ας

α ¼ 0 ¼ ∇νχ̌0ν: ð3:17Þ

Therefore, we conclude that it is consistent to impose the
Lorenz and spatial gauges simultaneously, even when the
background is curved [57].
Finally, we note that the traceless condition

χ ¼ 0; ð3:18Þ

was also introduced in [57]. In fact, provided that the
Lorenz gauge ∇νχμν ¼ 0 holds, from the field equa-
tions (2.41) we find

□χ þ 2Rαβ
ð0Þχαβ ¼ κγαβðF αβ − 2hT αβihighÞ: ð3:19Þ

Note that the two terms F and 2Rγσ
ð0Þχγσ are order of

hγ̂=ϵc, as shown above, and can be dropped in comparing
with terms of the order h=ϵ. Therefore, far from the source
(T αβ ¼ 0), if the Lorenz gauge holds, one can also
consistently impose the traceless gauge. Together with
the Lorenz and spatial gauges, it leads to the well-known
traceless-transverse gauge, frequently used when the back-
ground is Minkowski [91,98,99].
It should be noted that in curved backgrounds the above

three different gauge conditions can be imposed simulta-
neously only for high frequency GWs, and are valid only up
to the order of ϵ−1 [57]. In other situations, when imposing
them, one must pay great cautions, as these constraints in
general represent much more degrees than the four degrees
of the gauge freedom that the general covariance normally
allows.

B. Field equations for GWs

To write down explicitly the field equations (2.41) for
χμν, and to make our expressions as much applicable as
possible, in Appendix A, we only impose the spatial gauge,

χ0μ ¼ 0; ðμ ¼ 0; 1; 2; 3Þ; ð3:20Þ

and then calculate each term appearing in Eq. (2.41),
before putting them together to finally obtain the explicit
expressions for each component of the field equations. In
particular, the nonvanishing components of F αβ and
2Rγασβ

ð0Þχγσ are given by Eqs. (B2) and (B6), while the
ones of □χαβ are given by Eqs. (B8) and (B9). The term
γαβ∇γ∇δχγδ is given by Eqs. (B11) and (B12), while the
one ∇α∇δχβδ is given by Eq. (B14). Setting

Gαβ ≡□χαβ þ γαβ∇γ∇δχγδ −∇α∇δχβδ −∇β∇δχαδ

þ 2Rαγβσ
ð0Þχγσ; ð3:21Þ

we find that the field equations (2.41) take the form
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Gαβ ¼ κðF αβ − 2hT αβihighÞ; ð3:22Þ

where the nonvanishing components of Gαβ are given by
Eqs. (B16)–(B18).

IV. GEOMETRICAL OPTICS APPROXIMATION

To study the propagation of GWs in our inhomogeneous
universe, let us first note that, when far away from the
source that produces the GWs, we have T μν ¼ 0. Then,
Eq. (3.22) reduces to

Gαβ ¼ κF αβ; ðT μν ¼ 0Þ: ð4:1Þ
Following Isaacson [57] and Laguna et al. [59], we
consider the geometrical optics approximation, for which
we have

χαβ ¼ ReðAαβeiφ=ϵÞ ¼ ReðeαβAeiφ=ϵÞ; ð4:2Þ

where eαβ denotes the polarization tensor with

eαβe�αβ ¼ 1; ð4:3Þ
and A and φ are real and characterize, respectively, the
amplitude and phase of the GWs with eαβ ≡ γαμγβνeμν.
Note that in writing the above expression we made the
change, φI → φ=ϵ, by following Laguna et al. [59], where
φI is the quantity used by Isaacson [57]. With this in mind,
we can see that both the amplitude A and the phase φ are
slowly changing functions [57],

∂αφ ≃Oð1Þ; Aαβ
;γ ≃Oð1Þ: ð4:4Þ

With the gauge (3.20), we must set

A0β ¼ 0 ¼ e0β: ð4:5Þ

Moreover, as shown in the last section, in addition to the
spatial gauge, we can consistently impose the Lorenz and
traceless gauges,

∇νχμν ¼ 0; χ ¼ 0: ð4:6Þ

Then, from Eqs. (4.2) and (4.5) we find that the Lorenz
gauge yields,

∇νAμν þ
i
ϵ
kνAμν ¼ 0; ð4:7Þ

where kα ≡∇αφ and kα ≡ γαβkβ. Considering Eq. (4.4) we
find that, to the leading order (ϵ−1), we have

kνAμν ¼ 0 ⇒ kνeμν ¼ 0: ð4:8Þ

Therefore, the propagation direction of the GW is orthogo-
nal to its polarization plane spanned by the bivector eμν.

Note that the first term in Eq. (4.7) is of the order ϵ0, and
should be discarded. Otherwise, it will lead to inconsistent
results, as mentioned above. Therefore, in the rest of this
paper we shall ignore such terms without further notifica-
tions. See [57,59,64] for more details.
In addition, the traceless condition requires

γαβeαβ ¼ 0: ð4:9Þ

Plugging Eq. (4.2) into Eq. (3.22) and considering Eq. (4.4)
and the Lorenz gauge (4.6), we find that the field equations
to the orders of ϵ−2 and ϵ−1 are given, respectively, by

ϵ−2∶ kμkμAαβ ¼ 0; ð4:10Þ

ϵ−1∶ kμ∇μeαβ þ
�
kμ∇μ lnAþ 1

2
∇μkμ

�
eαβ ¼ 0: ð4:11Þ

Since Aμν ≠ 0, from Eq. (4.10) we find

kλkλ ¼ 0: ð4:12Þ

Then, for such a null vector kμ, we can always define a
curve xμ ¼ xμðλÞ by setting

dxμðλÞ
dλ

≡ kμ; ð4:13Þ

where λ denotes the affine parameter along the curve. It is
clear that such a defined curve is a null geodesics,

kλ∇μkλ ¼ kλ∇λkμ ¼ 0; ð4:14Þ

as now we have ∇μkλ ¼ ∇μ∇λφ ¼ ∇λ∇μφ ¼ ∇λkμ, that is,
GWs are always propagating along null geodesics in our
inhomogeneous universe, even when both the cosmological
scalar and tensor perturbations are all present, as long as the
geometrical optics approximation are valid.
On the other hand, multiplying eαβ on both sides of

Eq. (4.11) and taking Eq. (4.3) into account, we find that

d
dλ

lnAþ 1

2
∇μkμ ¼ 0; ð4:15Þ

where d=dλ≡ kν∇ν. Introducing the current Jμ ≡A2kμ of
the gravitons moving along the null geodesics, the above
equation can be written in the form

∇μJμ ¼ 0: ð4:16Þ

Therefore, the current of the gravitons moving along the
null geodesics defined by kμ is conserved, even when the
primordial GWs (or cosmological tensor perturbations) are
present (Hij ≠ 0).
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Inserting Eq. (4.15) into Eq. (4.11), we find that

kμ∇μeαβ ¼ 0: ð4:17Þ

Thus, the polarization bivector eαβ is still parallel trans-
ported along the null geodesics, even when the primordial
GWs are present.
It should be to note that Eqs. (4.7)–(4.17) hold not only

for the inhomogeneous universe but also for any curved
background, as long as the geometrical optics approxima-
tion are applicable to the high frequency GWs. For more
detail, see [71].
To study them further, we expand χμν in terms of ϵc as

χ̂μν ¼ χð0Þμν þ ϵcχ
ð1Þ
μν þOðϵ2cÞ; ð4:18Þ

and then consider them order by order.

A. GWs propagating in homogeneous
and isotropic background

To the zeroth order of ϵc, we have γμν ≃ γ̄μν ¼ a2ημν, and

χμν ≃ χð0Þμν þOðϵcÞ; ð4:19Þ

where we had set

χð0Þμν ≡ Að0Þ
μν eiφ

ð0Þ=ϵ ¼ eð0Þμν Að0Þeiφð0Þ=ϵ: ð4:20Þ

Then, from Eqs. (4.16) and (4.17) we immediately
obtain,

∇̄νðAð0Þ2kð0ÞνÞ ¼ 0; ð4:21Þ

d
dλ

eð0Þij ¼ 0; ð4:22Þ

where kð0Þμ ≡ ∇̄μφ
ð0Þ ¼ ðφð0Þ

;η;φð0Þ
;iÞ, and kð0Þμ ≡ γ̄μνkð0Þν .

B. Gravitational ISW effects

The derivation of the ISW effect in cosmology is based
crucially on the fact that the electromagnetic radiation
propagating along null geodesics in the inhomogeneous
universe. Laguna et al. [59] took the advantage of the fact that
GWs are also propagating along null geodesics and derived
the gravitational ISW effect for GWs when only the cosmo-
logical scalar perturbations are present (Hij ¼ 0). In this
subsection, we shall generalize their studies further to the
case where both the cosmological scalar and tensor pertur-
bations are present. As shown by Eq. (4.12), even when both
of them are present, the GWs produced by astrophysical
sources are still propagating along the null geodesics.
Therefore, such a generalization is straightforward.
In particular, let us first introduce the conformal metric

γ̃μν by

ds̃2 ¼ γ̃μνdxμdxν ≡ a−2γμνdxμdxν ¼ −ð1þ 2ϵcϕÞdη2
þ ½ð1 − 2ϵcψÞδij þHij�dxidxj: ð4:23Þ

Since γμν and γ̃μν are related to each other by a conformal
transformation, so the null geodesics xμðλÞ in the γμν
spacetime is the same as x̃μðλ̃Þ in the γ̃μν spacetime, where

dλ ¼ a2dλ̃; kμ ¼ 1

a2
k̃μ; ð4:24Þ

and λ̃ is the affine parameter of the null geodesics x̃μ in the
spacetime of γ̃μν.
The advantage of working with the metric γ̃μν is that the

zeroth-order spacetime now becomes the Minkowski
spacetime, and the corresponding null geodesics are the
straight lines, given by

dx̃ð0Þμðλ̃Þ
dλ̃

≡ k̃ð0Þμ: ð4:25Þ

Thus, to simplify our calculations, we shall work with γ̃μν.
In particular, to the zeroth order of ϵc, we have

k̃ð0Þμ ¼ ð1;−niÞ; ð4:26Þ

where k̃ð0Þi ≡ −ni represents the spatial direction of the
GWs from the source propagating to the observer
[cf. Fig. 1]. Then, from Eq. (4.21) we find,

d

dλ̃
ln ðaAð0ÞÞ ¼ −

1

2
k̃ð0Þν;ν ¼ 0; ð4:27Þ

which implies that the quantity defined by

Q≡RAð0Þ ð4:28Þ

is constant along the GW path, and will be determined
by the local wave-zone source solution, where R≡ ar
denotes the physical distance between the observer and the

FIG. 1. A gravitational wave is propagating along the spatial
direction k̃ð0Þi ≡ −ni to the observer located at the origin.
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source, while r denotes the comoving distance, given by
r≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxe − xrÞ2 þ ðye − yrÞ2 þ ðze − zrÞ2
p

, where xie ≡
ðxe; ye; zeÞ and xir ≡ ðxr; yr; zrÞ are the spatial locations
of the source and observer, respectively.
In the following, we shall set up the coordinates as

follows [59]: the observer is located at the origin with its
proper time denoted by τ and world line xμðτÞ. Denoting
the time to receive the GW by τr, this event will be
recorded as xμðτÞ ¼ ðτr; o⃗Þ. The emission time of the GW
by an astrophysical source corresponds to the proper time
τe of the observer with xμðτÞ ¼ ðτe; o⃗Þ. Then, the GW will
move along the null geodesics, described by x̃μðλ̃Þ ¼
x̃ð0Þμðλ̃Þ þ ϵcx̃ð1Þμðλ̃Þ, which corresponds to the wave vector
k̃μðλ̃Þ¼ k̃ð0Þμðλ̃Þþϵck̃

ð1Þμðλ̃Þ, where x̃ð0Þμðλ̃Þ¼ðλ̃;ðλ̃r−λ̃ÞniÞ,
and λ̃r is the moment when the GW arrives at the origin
with τðλ̃rÞ ¼ τr.
The effects of the scalar and tensor perturbations are

manifested from the perturbations of the null geodesics.

Considering the fact Γ̃ð0Þμ
νλ ¼ 0 in the γ̃μν spacetime, we find

that, to the first order of ϵc, k̃
ð1Þμðλ̃Þ is given by

dk̃ð1Þμ

dλ̃
þ Γ̃ð1Þμ

αβ k̃ð0Þαk̃ð0Þβ ¼ 0; ð4:29Þ

where Γ̃ð1Þμ
αβ denotes the Christoffel symbols of the first

order of ϵc. As mentioned previously, for the scalar
perturbations, we shall not assume that ψ ¼ ϕ, that is,
the trace of the anisotropic stress of the Universe does not
necessarily vanish, as shown by Eq. (A.15) in Appendix A.
Then, for μ ¼ 0 we find that

d
dλ

k̃ð1Þ0 ¼ ∂τðϕþ ψÞ − 2
dϕ
dλ

−
1

2
nknl∂τHkl; ð4:30Þ

where

dΦ
dλ

≡ ð∂τ − ni∂iÞΦ: ð4:31Þ

Thus, integrating Eq. (4.30) we find

k̃ð1Þ0 ¼ −ðϕþ ψÞjλλe þ
1

2
nknlHkljλλe

− 2ϕjλλe þ IðsÞISW −
1

2
IðtÞISW; ð4:32Þ

where IðsÞISW represents the gravitational ISW effect due to
the cosmological scalar perturbations, and was first calcu-

lated in [59]. The new term IðtÞISW is the gravitational
integrated effect due to the cosmological tensor perturba-
tions. They are given, respectively, by

IðsÞISW ≡
Z

λ

λe

∂τðϕþ ψÞdλ0; ð4:33Þ

IðtÞISW ≡ nknl
Z

λ

λe

∂τHkldλ0: ð4:34Þ

On the other hand, the spatial components of the wave
vector are given by

d
dλ

k̃ð1Þik ¼ −ni
�
∂τðϕþ ψÞ þ d

dλ
ðϕ − ψÞ

−
1

2
nknl

�
dHkl

dλ
þ ∂τHkl

��
; ð4:35Þ

d
dλ

k̃ð1Þi⊥ ¼ −⊥ij

�
∂jðϕþ ψÞ − nk

dHjk

dλ

−
1

2
nknl∂jHkl

�
; ð4:36Þ

where we had set k̃ð1Þi ¼ k̃ð1Þik þ k̃ð1Þi⊥ , with the parallel
component of the spatial wave vector being defined by

k̃ð1Þik ¼ ninjk̃
ð1Þj, and the perpendicular component by

k̃ð1Þi⊥ ¼ ⊥i
jk̃

ð1Þj. The projection operator ⊥i
j is defined by

⊥i
j ¼ δij − ninj, with ni ≡ δiknk. After integrations, the

above two equations yield

k̃ð1Þik ¼ −ni
�
ðψ − ϕÞjλλe −

1

2
nknlHkljλλe

þ IðsÞISW −
1

2
IðtÞISW

�
; ð4:37Þ

k̃ð1Þi⊥ ¼ −⊥ij

�Z
λ

λe

∂jðϕþ ψÞdλ0 − nkHjkjλλe

−
1

2
nknl

Z
λ

λe

∂jHkldλ0
�
: ð4:38Þ

The GW phase is then given by

dφ
dλ

¼ ϕþ ψ −
1

2
nknl

Z
λ

λe

Hkldλ0; ð4:39Þ

which leads to

δφ ¼ φ − φe

¼
Z

λ

λe

ðϕþ ψÞdλ0 − 1

2
nknl

Z
λ

λe

Hkldλ0: ð4:40Þ

The frequency of the GW is defined as ω ¼ −uμkμ, where
uμ is the four velocity of the fluid of the Universe, given by
Eqs. (A2)–(A4), from which we find that the ratio of
receiving and emitting frequencies is given by

ωr

ωe
¼ 1 −ϒ

1þ z
; ð4:41Þ
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where 1þ z≡ ar=ae, and

ϒ≡ϕjλrλe þviniþ
1

2
nknlHkljλrλe − IðsÞISWjλr þ

1

2
IðtÞISWjλr : ð4:42Þ

In addition, settingA ¼ Að0Þð1þ ξÞ, from Eq. (4.21) we
find

−2
dξ
dλ

¼ ∂τk̃
ð1Þ0 þ ∂ik̃

ð1Þi
k þ ∂ik̃

ð1Þi
⊥ þ Γ̃ð1Þμ

μν k̃ð0Þν; ð4:43Þ

where

∂τk̃
ð1Þ0 ¼ ∂τ

�
−2ϕþ IðsÞISW −

1

2
IðtÞISW

�
;

∂ik̃
ð1Þi
k ¼ d

dλ
ðψ − ϕþ IðsÞISWÞ − ∂τðψ − ϕþ IðsÞISWÞ

−
1

2

d
dλ

ðnknlHkl þ IðtÞISWÞ

þ 1

2
∂τðnknlHkl þ IðtÞISWÞ;

∂ik̃
ð1Þi
⊥ ¼ −⊥ij

�Z
λ

λe

∂i∂jðϕþ ψÞdλ0

− nk∂iHkj −
1

2
nknl

Z
λ

λe

∂i∂jHkldλ0
�
;

Γ̃ð1Þμ
μν k̃ð0Þν ¼ d

dλ
ðϕ − 3ψÞ: ð4:44Þ

Notice that in the last term, there are no contributions from
the tensor perturbations. Collecting all of this together,
Eq. (4.43) yields

−2
dξ
dλ

¼ −∂τðϕþ ψÞ þ d
dλ

ð−2ψ þ IðsÞISWÞ

−⊥ij

Z
λ

λe

∂i∂jðϕþ ψÞdλ0

þ 1

2
nknl∂τHkl −

1

2

d
dλ

ðnknlHkl þ IðtÞISWÞ
þ⊥ijnk∂iHjk

þ 1

2
⊥ijnknl

Z
λ

λe

∂i∂jHkldλ0; ð4:45Þ

which has the general solution

ξ ¼ −ψ jλλe þ
1

2
⊥ij

Z
λ

λe

Z
λ0

λe

∂i∂jðϕþ ψÞdλ0dλ00

−
1

2
nk
�
−
1

2
nlHkljλλe þ⊥ij

Z
λ

λe

∂iHjkdλ0

þ 1

2
⊥ijnl

Z
λ

λe

Z
λ0

λe

∂i∂jHkldλ0dλ00
�
: ð4:46Þ

In terms of the gravitational tensorial ISWeffect defined by
Eq. (4.34), the above expression can be written in the form

ξ ¼
�
ψ −

1

4
nknlHkl

�����
λ

λe

þ 1

2
IðtÞISW

−
1

4
⊥ij

Z
λ

λe

Z
λ0

λe

∂i∂j½nknlHkl − 2ðϕþ ψÞ�dλ00dλ0

−
1

2
nk

Z
λ

λe

∂lHkldλ0: ð4:47Þ

Combining all of our results together, we are at the point
to construct the gravitational waveform through Eq. (4.2),
from which we find that

hμν ¼ χμν −
1

2
χγμν ¼ eμνh̃;

h̃≡Aeiφ ¼ ð1þ zÞQ
dL

ð1þ ξÞeiðφeþδφÞ; ð4:48Þ

where δφ and ξ are given, respectively, by Eqs. (4.40) and
(4.47), and dL ≡ ð1þ zÞR is the luminosity distance. Note
that in writing the expression for the response function h̃we
had set ϵ ¼ 1.
For a binary system, we have [59,99]

Q ¼ MeðπfeMeÞ2=3;
φe ¼ φc − ðπfeMeÞ−5=3; ð4:49Þ

where Me and fe denote, respectively, the intrinsic chirp
mass and frequency of the binary, and ϕc is the value of the
phase at the merge, at which we have f ¼ ∞. Therefore,
the function h̃ for a binary system can be cast in the form,

h̃ ¼ Mr

DL
ðπfrMrÞ2=3eiðφeþδφÞ; ð4:50Þ

where the modified luminosity distance DL and the
chirp mass Mr measured by the observer are given,
respectively, by

DL ≡ dL
1 −ϒ − ξ

; Mr ≡
�
1þ z
1 −ϒ

�
Me; ð4:51Þ

where ϒ is given by Eq. (4.42).

V. CONCLUSIONS

In this paper, we have systematically studied GWs,
which are first produced by some remote compact astro-
physical sources, and then propagate in our inhomogeneous
universe through cosmic distances before arriving at the
detectors. Such GWs will carry valuable information of
both their sources and the cosmological expansion and
inhomogeneities of the universe, whereby a completely
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new window to explore our universe by using GWs is
opened. As the third generation (3G) detectors, such as the
space-based ones, LISA [18], TianQin [19], Taiji [20],
DECIGO [21], and the ground-based ones, ET [50] and CE
[51], are able to detect GWs emitted from such sources as
far as at the redshift z ≃ 100 [52] (see also footnote 1), it is
very important and timely to carry out such studies
systematically. Such studies were already initiated some
years ago [59,61,62] in the framework of Einstein’s theory,
and more recently in scalar-tensor theories [64–67].
In this paper, in order to characterize effectively such

systems, we first introduced three scales, λ, Lc, and L,
which represent, respectively, the typical wavelength of the
GWs, the scale of the cosmological perturbations, and the
size of our observable Universe. For GWs to be detected by
the current and foreseeable (both ground- and space-based)
detectors, in Sec. II we showed that the relation

λ ≪ Lc ≪ L; ð5:1Þ

is always true, that is, such GWs can be well approximated
as high frequency GWs, for which the general formulas
were already developed by Isaacson more than half century
ago [57,58].
However, Isaacson considered only the case where

the background is vacuum, while in [59,61,62] only the
cosmological scalar perturbations were considered. In this
paper, we considered the most general case in which the
background also includes the cosmological tensor pertur-
bations. The inclusion of the latter is important, as now one
of the main goals of cosmological observations is the
primordial GWs (the tensor perturbations) [68]. In the
nonvacuum case (in Sec. II), we showed explicitly that
the conditions

jhμνj ≪ 1; ϵ ≪ ϵc ≪ 1 ð5:2Þ

must hold in order for the backreaction of the GWs to the
background to be neglected and the linearized Einstein field
equations given by Eq. (2.41) to hold, where the total
metric of the spacetime is expanded as gμν ¼ γμν þ ϵhμν,
with γμνð≡γ̄μν þ ϵcγ̂μνÞ representing the background.
In Sec. III, we considered the gauge choices, and found

that the three different gauge conditions, spatial, traceless,
and Lorenz, given, respectively, by Eqs. (1.4)–(1.6), can be
still imposed simultaneously, even when both the cosmo-
logical scalar and tensor perturbations are present, as long
as the GWs can be approximated as the high-frequency
GWs. However, by imposing only the spatial gauge (1.4),
the linearized Einstein field equations (2.41) are explicitly
given in Appendix B. If χμν is decomposed into two parts,

χμν ¼ χð0Þμν þ ϵcχ
ð1Þ
μν þOðϵ2cÞ; ð5:3Þ

the field equations for χð1Þμν are given explicitly in
Appendix C.
As an application of our general formulas, developed in

Secs. II and III, in Sec. IV we studied the GWs by using the
geometrical optics approximation,

χαβ ¼ eαβAeiφ=ϵ; ð5:4Þ

where eαβ represents the polarization tensor, A and φ
denote, respectively, the amplitude and phase of the GWs.
We showed explicitly that even when both the cosmologi-
cal scalar and tensor perturbations are present, such GWs
are still propagating along null geodesics, and the current of
gravitons moving along the null geodesics is conserved,
and the polarization tensor is parallel transported, i.e.,

kλ∇λkμ ¼ 0; kλ∇λeαβ ¼ 0; ∇λJλ ¼ 0; ð5:5Þ

where kμ ≡∇μφ, Jμ ≡A2kμ. In fact, these are true for any
curved background, provided that (1) the GWs can be
considered as high-frequency GWs, and (2) the geometrical
optics approximation are valid [71].
With these remarkable features, we calculated the effects

of the cosmological scalar and tensor perturbations on the
amplitude A and phase φ, given by Eqs. (4.40), (4.47), and
(4.48). Restricting to GWs produced by a binary system,
the effects of the cosmological perturbations, both scalar
and tensor, on the luminosity distance and the chirp mass
are given explicitly by Eq. (4.51), which represent a natural
generalization of the results obtained in [59,61,62] to the
case in which the cosmological tensor perturbations are
also present.
It should be noted that in cosmology the effects of the

scalar and tensor perturbations of the homogeneous universe
on the luminosity distances were studied in [100–102].
Since in the geometrical optics approximations both GWs
and electromagnetic waves (EWs) are all moving alone the
null geodesics, the effects of the cosmological scalar
perturbations on the luminosity distance of GWs carried
out in [59] should be the same as that obtained in [100,101]
for EWs, while the ones of the cosmological tensor
perturbations carried out in this paper should be the same
as that obtained in [102] for EWs. However, the calculations
of the GW phase are new. This is mainly due to the fact that
the detection of GWs depends not only their amplitudes but
also their phases [91],while the phases of EWs in cosmology
do not play a significant role [93].
The applications of our general formulas developed in

this paper to other studies are immediate, including the
gravitational analog of the electromagnetic Faraday rota-
tions [89,90,103,104], and their detections by the space-
and ground-based detectors. We wish to return to these
important issues in other occasions soon.
It would be also very important to extend such studies

to include the relations between the GWs and their

FIER, FANG, LI, MUKOHYAMA, WANG, and ZHU PHYS. REV. D 103, 123021 (2021)

123021-14



sources, high-order corrections to the geometrical optics
approximations, and more interesting the non-high-
frequency GWs.
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APPENDIX A: DECOMPOSITIONS OF
COSMOLOGICAL PERTURBATIONS

AND GAUGE CHOICE

Following [95,96], the linear perturbations γ̂μν can be
decomposed into scalar, vector, and tensor modes, and
given explicitly by Eq. (2.45).
The energy-momentum tensor Tμν

ð0Þ of a fluid takes the
form [95]

Tμ
ν
ð0Þ ¼ ðρþ pÞuμuν þ pδμν þ πμν ; ðA1Þ

where uμ is the four velocity of the fluid, ρ and p are its
energy density and isotropic pressure, respectively, and πμν
is the anisotropic stress tensor, which has only spatial
components, i.e., πμ0 ¼ 0. Setting

ρ¼ ρ̄þ ϵcδρ; p¼ p̄þ ϵcδp; uμ ¼ ūμþ ϵcδuμ; ðA2Þ

where ūμ ¼ a−1δμη is the four velocity of the fluid of the
homogenous and isotropic universe, and ρ̄ and p̄ are its
energy density and isotropic pressure, respectively, we find
that δuμ can be decomposed as

δuμ ¼ 1

a
ð−ϕ; ∂ivþ viÞ; ðA3Þ

where ∂ivi ¼ 0. Then, from uμ ≡ γμνuν ¼ ūμ þ ϵcδuμ, we
find that

δuμ ¼ að−ϕ; ∂ivþ ∂iBþ vi − SiÞ; ðA4Þ

which leads to uμuμ ¼ −1þOðϵ2cÞ, as expected.
On the other hand, setting πji ¼ ϵcπ̂

j
i , similar to γ̂μν, the

anisotropic stress tensor π̂ji can be decomposed into scalar,
vector, and tensor modes,

π̂ji ¼
�
∂j∂i −

1

3
δji∂2

�
Πþ 1

2
ð∂iΠj þ ∂jΠiÞ þ Πj

i ; ðA5Þ

where ∂iΠi ¼ 0 ¼ Πi
i, ∂jΠ

j
i ¼ 0, Πi ≡ δikΠk;Πi

j ≡ δikΠkj,
∂2 ≡ ∂i∂i, etc. Then, we find that

T0
0
ð0Þ ¼ −ρ̄ − ϵcδρ;

T0
i
ð0Þ ¼ ϵcðρ̄þ p̄Þ½∂iðvþ BÞ þ vi − Si�;

Ti
0
ð0Þ ¼ −ϵcðρ̄þ p̄Þð∂ivþ viÞ;

Ti
j
ð0Þ ¼ p̄δij þ ϵcðδpδij þ π̂ijÞ: ðA6Þ

1. Gauge transformations
of cosmological perturbations

Considering the gauge transformations,

η̃ ¼ ηþ ϵcζ
0; x̃i ¼ xi þ ϵcð∂iζ þ ζiÞ; ðA7Þ

where ∂iζ
i ¼ 0, we find that

ϕ̃ ¼ ϕ −Hζ0 − ζ00; ψ̃ ¼ ψ þHζ0;

B̃ ¼ Bþ ζ0 − ζ0; Ẽ ¼ E − ζ;

δ̃ρ ¼ δρ − ζ0ρ̄0; δ̃P ¼ δp − ζ0p̄0;

ṽ ¼ vþ ζ0; ðA8Þ

F̃i ¼ Fi − ζi; S̃i ¼ Si þ ζ0i; ṽi ¼ vi þ ζi0; ðA9Þ

H̃ij ¼ Hij; π̃ij ¼ πij; ðA10Þ

where H≡ a0=a with a0 ≡ da=dη. From the above gauge
transformations we can see that the following quantities are
gauge invariant,

Φ≡ ϕþHðB − E0Þ þ ðB − E0Þ0;
Ψ≡ ψ −HðB − E0Þ;
Φi ≡ Si þ F0

i: ðA11Þ
On the other hand, if we choose ζ ¼ E, ζ0 ¼ E0 − B, and

ζi ¼ Fi, we have

B̃ ¼ Ẽ ¼ 0; F̃i ¼ 0; ðA12Þ

in which the gauge is completely fixed. This is often
referred to as the Newtonian gauge. Then, we are left with
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six scalars ðϕ;ψ ; v; δρ; δp;ΠÞ, two vectors ðSi; viÞ, and two
tensors ðHij;ΠijÞ. However, the vector part decreases
rapidly with the expansion of the Universe, so we can
safely set them to zero [95,96],

Si ¼ Fi ¼ vi ¼ Πi ¼ 0: ðA13Þ

Then, for the scalar perturbations, there are six inde-
pendent equations, given, respectively, by [95]

ψ 00 þ 2Hψ 0 þHϕ0 þ ð2H0 þH2Þϕ

¼ 4πGa2
�
δpþ 2

3
∇2Π

�
; ðA14Þ

ψ − ϕ ¼ 8πGa2Π; ðA15Þ

3Hðψ 0 þHϕÞ −∇2ψ ¼ −4πGa2δρ; ðA16Þ

ψ 0 þHϕ ¼ −4πGa2ðρ̄þ p̄Þv; ðA17Þ
δρ0 þ 3Hðδρþ δpÞ ¼ ðρ̄þ p̄Þð3ψ 0 −∇2vÞ; ðA18Þ

½ðρ̄þ p̄Þv�0 þδpþ2

3
∇2Π¼−ðρ̄þ p̄Þðϕþ4HvÞ: ðA19Þ

Note that Eqs. (A14) and (A15) are obtained from the
linearized (i, j) components of the Einstein field equations,
and Eqs. (A16) and (A17) are the energy and momentum
constraints, while Eqs. (A18) and (A19) are obtained from
the conservation of the energy-momentum tensor.
For the tensor perturbations, we have

Hij
00 þ 2HHij

0 −∇2Hij ¼ 16πGa2Πij; ðA20Þ

which is obtained from the equations δGð0Þi
j ¼ κδTð0Þi

j.

It must be noted that in writing the linearized field
equations, (A14)–(A20), we had implicitly assumed that
the quadratic terms ϵ2cR̂

ð2Þ
μν ðγ̂Þ ≃Oðγ̂2Þ ≪ 1, which is equiv-

alent to

γ̂ ≪ 1; ðA21Þ

where R̂ð2Þ
μν ðγ̂Þ is given by Eq. (2.11) with the replacement

ðhμν;∇αÞ → ðγ̂μν; ∇̄αÞ. Otherwise, these quadratic terms
cannot be neglected from the Einstein field equations for
the background spacetimes,

Ḡμνðγ̄Þ þ ϵcĜμνðγ̂Þ þ ϵ2cĜ
ð2Þ
μν ðγ̂Þ ¼ κTð0Þ

μν ; ðA22Þ

where

Ḡμνðγ̄Þ ≃Oð1Þ; ϵcĜμνðγ̂Þ ≃Oðγ̂=ϵcÞ;
ϵ2cĜ

ð2Þ
μν ðγ̂Þ ≃Oðγ̂2Þ; ðA23Þ

as can be seen from Eq. (2.17).

APPENDIX B: FIELD EQUATIONS FOR χ ij

In this Appendix, we shall calculate all the components
of the quantities appearing in the field equations (3.22) for
χαβ, by imposing only the spatial gauge

χ0μ ¼ 0:

In particular, to calculate the nonvanishing components of
the tensor Gαβ, we first note that

χij ≡ γiμγjνχμν ¼ γikγjlχkl ¼
1

a2
fδikδjl þ ϵc½4ψδikδjl − ðδikHjl þ δjlHikÞ�gχ̂kl;

γijχ
ij ¼ χ̂ þ ϵcð2ψχ̂ −Hklχ̂klÞ; χ ≡ γμνχμν ¼ γijχij ¼ γijχ

ij;

γijχ
ikπ̂jk ¼ ½π̂kl þ ϵcð2ψπ̂kl − π̂kmHmlÞ�χ̂kl;

χγσTγσ
ð0Þ −

1

2
χTð0Þ ¼ 1

2
ðρ̄ − p̄Þχ̂ þ 1

2
ϵc½ðρ̄ − p̄Þð2ψχ̂ −Hklχ̂klÞ þ ðδρ − δpÞχ̂ þ 2π̂klχ̂kl�; ðB1Þ

where χ̂ ≡ δijχ̂ij, χij ≡ a2χ̂ij, π̂ij ≡ δikπ̂
k
j , etc. Then, from Eq. (2.42) we find that

F 00 ¼ −
a2

2
fðρ̄ − p̄Þχ̂ þ ϵc½ðρ̄ − p̄Þð2ðψ þ ϕÞχ̂ −Hklχ̂klÞ þ ðδρ − δpÞχ̂ þ 2π̂klχ̂kl�g;

F 0i ¼ −a2ϵcðρ̄þ p̄Þχ̂ik∂kv;

F ij ¼
1

2
a2½4p̄χ̂ij þ ðρ̄ − p̄Þχ̂δij� þ

1

2
a2ϵcf½4δpχ̂ij þ ðδρ − δpÞχ̂δij� þ ðρ̄ − p̄Þðχ̂Hij −Hklχ̂klδijÞ

þ 2ðπ̂ki χ̂jk þ π̂kj χ̂ik þ π̂klχ̂klδijÞg: ðB2Þ
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In addition, the nonvanishing (independent) components of the Riemann tensor,

Rμναβ
ð0Þ ¼ R̄μναβ þ ϵcR̂μναβ; ðB3Þ

are given, respectively, by

R̄0i0j ¼ a2
�
H2 −

a00

a

�
δij; R̄minj ¼ a2H2ðδijδmn − δinδmjÞ; ðB4Þ

and

R̂0i0j ¼ a2
�
ϕ;ij þHϕ0δij þ

�
ðψ 00 þHψ 0Þ þ 2

�
a00

a
−H2

�
ψ

�
δij −

1

2

�
ðHij

00 þHHij
0Þ þ 2

�
a00

a
−H2

�
Hij

�	
;

R̂0ijk ¼ a2
�
Hðϕ;jδik − ϕ;kδijÞ þ ðψ 0

;jδik − ψ 0
;kδijÞ þ

1

2
ðH0

ij;k −H0
ik;jÞ

�
;

R̂ijkl ¼ −2a2H2ϕðδikδjl − δilδjkÞ − a2½ðδjkψ ;il þ δilψ ;jk − δikψ ;jl − δjlψ ;ikÞ þ 2Hðψ 0 þ 2HψÞðδikδjl − δilδjkÞ�

þ 1

2
a2fðHjk;il þHil;jk −Hik;jl −Hjl;ikÞ −H½δilðH0

jk þ 2HHjkÞ þ δjkðH0
il þ 2HHilÞ

− δjlðH0
ik þ 2HHikÞ − δikðH0

jl þ 2HHjlÞ�g: ðB5Þ
Hence, we find that

2R0i0j
ð0Þχij ¼ 2

�
a00

a
−H2

�
χ̂ þ ϵc

�
2ð∂i∂jϕÞχ̂ij þ 2Hϕ0χ̂ þ 2ðψ 00 þHψ 0Þχ̂ − 4

�
a00

a
−H2

�
ψχ̂

− ðHij00 þHHij0Þχ̂ij þ 2

�
a00

a
−H2

�
Hijχ̂ij

	
;

2R0jik
ð0Þχjk ¼ 2ϵc

�
H½ð∂iϕÞχ̂ − ð∂kϕÞχ̂ik� þ ð∂iψ

0Þχ̂ − ð∂kψ 0Þχ̂ik þ
1

2
½ð∂kHj

i
0Þ − ð∂iHjk0Þ�χ̂jk

	
;

2Rikjl
ð0Þχkl ¼ 2H2ðδijχ̂ − χ̂ijÞ þ ϵcf4H2ϕðχ̂ij − χ̂δijÞ þ 4Hψ 0ðχ̂ij − χ̂δijÞ

þ 2½ð∂i∂jψÞχ̂ þ ð∂k∂lψÞχ̂klδij − ð∂k∂iψÞχ̂jk − ð∂k∂jψÞχ̂ik�
− 2H2Hklχ̂klδij þ 2H2Hijχ̂ − 2HHk

ði
0χ̂jÞk þHHij

0χ̂ þHHkl0χ̂klδij

þ ð2∂ði∂lHk
jÞ − ∂k∂lHij − ∂i∂jHklÞχ̂klg: ðB6Þ

On the other hand, similar to the above expression, writing □χαβ in the form,

□χαβ ≡ □̄χαβ þ ϵc□̂χαβ; ðB7Þ

we find they are given, respectively, by

□̄χ00 ¼ 2H2χ̂; □̄χ0i ¼ −2H∂jχ̂ij; □̄χij ¼ −χ̂00ij − 2Hχ̂0ij þ ∂2χ̂ij þ 2H2χ̂ij; ðB8Þ

and

□̂χ00 ¼ −2H½2ðψ 0 −HψÞχ̂ − ðHij0 −HHijÞχ̂ij�;
□̂χ0i ¼ ð∂jϕ0Þχ̂ij þ 2ð∂jϕÞðχ̂0ij þHχ̂ijÞ þ ð∂jψ 0Þχ̂ij þ 2ðψ 0 − 2HψÞ∂jχ̂ij þ 2H½ð∂jψÞχ̂ij − ð∂iψÞχ̂�

− ðHjk0 − 2HHjkÞ∂kχ̂ij þHð∂iHjkÞχ̂jk;
□̂χij ¼ 2ϕχ̂00ij þ ðϕ0 þ 4HϕÞχ̂0ij þ ð∂kϕÞ∂kχ̂ij − 4H2ϕχ̂ij þ 2ψ∂2χ̂ij þ 4∂ðiψ∂kχ̂jÞk þ 3ð∂kψÞ∂kχ̂ij − 4ð∂kψÞ∂ðiχ̂jÞk

þ 2∂k∂ðiψχ̂jÞk þ 2ð∂2ψÞχ̂ij − 2∂ði∂kψχ̂jÞk − ψ 0χ̂0ij − 2ðψ 00 þ 4Hψ 0Þχ̂ij −Hkl∂k∂lχ̂ij − 2∂lHkði∂lχ̂jÞk

− 2∂ðiHkl∂lχ̂jÞk þ 2∂kHðil∂lχ̂jÞk þ 2Hkði0χ̂0jÞk þHkði00χ̂jÞk þ 4HHkði0χ̂jÞk − ∂2Hkðiχ̂jÞk; ðB9Þ
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where 2∂k∂ðiψχ̂jÞk ≡ ð∂k∂iψÞχ̂jk þ ð∂k∂jψÞχ̂ik, that is, the partial derivative acts only to the first function. The same is true
for other terms, for example, 2∂lHkði∂lχ̂jÞk ≡ ð∂lHk

iÞ∂lχ̂jk þ ð∂lHk
jÞ∂lχ̂ik.

On the other hand, defining

Gð1Þ
αβ ≡ γαβ∇γ∇δχγδ; ðB10Þ

we find that

Gð1Þ
00 ¼ −Gð1Þ

0 − ϵcð2ϕGð1Þ
0 þ Gð1Þ

1 Þ; Gð1Þ
0i ¼ G1

i0 ¼ 0; Gð1Þ
ij ¼ δijG

ð1Þ
0 þ ϵc½δijðGð1Þ

1 − 2ψGð1Þ
0 Þ þHijG

ð1Þ
0 �; ðB11Þ

where

Gð1Þ
0 ≡Hχ̂0 þ

�
a00

a
þH2

�
χ̂þ∂i∂jχ̂ij;

Gð1Þ
1 ≡−2Hϕχ̂0−

�
2

�
a00

a
þH2

�
ϕþHϕ0

�
χ̂þ2ð∂iϕÞð∂jχ̂ijÞþð∂i∂jϕÞχ̂ij

− ðψ 0−2HψÞχ̂0−
�
ψ 00 þ3Hψ 0−∂2ψ −2

�
a00

a
þH2

�
ψ

�
χ̂þð∂iψÞ∂iχ̂þ4ψ∂i∂jχ̂ij− ð∂i∂jψÞχ̂ij

þ1

2

�
ðHij0−2HHijÞχ̂0ijþ

�
Hij00−2

�
a00

a
þH2

�
Hij−∂2Hij

�
χ̂ij−4Hik∂k∂jχ̂ij− ð∂kHijÞð∂kχ̂ijÞ−2ð∂iHjkÞð∂kχ̂ijÞ

	
:

ðB12Þ

On the other hand, defining

Gð2Þ
αβ ≡∇α∇δχβδ; ðB13Þ

we find that it has the following nonvanishing components,

Gð2Þ
00 ¼ −

a0

a
χ̂0 −

�
a00

a
− 2H2

�
χ̂ þ ϵc

�
Hϕ0χ̂ − ð∂iϕÞ∂kχ̂ik þ ðψ 0 − 2HψÞχ̂0 þ ðψ 00 − 3Hψ 0Þχ̂ − 2

�
a00

a
− 2H2

�
ψχ̂

−
1

2
ðHij0 − 2HHijÞχ̂0ij −

1

2
ðHij00 − 3HHij0Þχ̂ij þ

�
a00

a
− 2H2

�
Hijχ̂ij

�
;

Gð2Þ
0i ¼ ∂kχ̂0ik −H∂kχ̂ik þ ϵc

�
ð∂jϕÞχ̂0ij þ ð∂jϕ0 −H∂jϕÞχ̂ij þHð∂iϕÞχ̂ þ 2ψ∂kχ̂0ik − ð∂kψÞχ̂0ik

þ ð3ψ 0 − 2HψÞ∂kχ̂ik þ ð∂iψÞχ̂0 − ð∂kψ 0 −H∂kψÞχ̂ik þ ð∂iψ
0 −H∂iψÞχ̂

−Hjk∂kχ̂
0
ij − ðHjk0 −HHjkÞ∂kχ̂ij −

1

2
Hj

i
0∂kχ̂jk −

1

2
Hjk

;iχ̂
0
jk −

1

2
ðHjk0 −HHjkÞ;iχ̂jk

�
;

Gð2Þ
i0 ¼ −Hð∂kχ̂ik þ ∂iχ̂Þ þ ϵc

�
Hð∂iϕÞχ̂ −Hð∂kϕÞχ̂ik þ ðψ 0 − 2HψÞð∂kχ̂ik þ ∂iχ̂Þ þHð∂kψÞχ̂ik þ ðψ 0 − 3HψÞ;iχ̂

−
1

2
ðHjk0 − 2HHjkÞ∂iχ̂jk −

1

2
Hj

i
0∂kχ̂jk þHHjk∂kχ̂ij −

1

2
ðHjk0 − 3HHjkÞ;iχ̂jk

�
;

Gð2Þ
ij ¼ ∂i∂kχ̂jk þH2χ̂δij þ ϵc

�
ð∂kϕÞ∂iχ̂jk þ ð∂i∂kϕÞχ̂jk − 2H2ϕχ̂δij − ∂i½ð∂kψÞχ̂jk� þ ∂i½ð∂jψÞχ̂� þ 2∂iðψ∂kχ̂jkÞ

þ ð∂iψÞ∂kχ̂jk þ ð∂jψÞ∂kχ̂ik − ð∂kψÞ∂lχ̂klδij − 2Hψ 0χ̂δij − ∂iðHkl∂lχ̂jkÞ −
1

2
∂i½ð∂jHklÞχ̂kl�

þ 1

2
ð∂kHij −Hk

i;j −Hk
j;iÞ∂lχ̂kl þ

1

2
HðHkl0 − 2HHklÞχ̂klδij þ

1

2
HðH0

ij þ 2HHijÞχ̂
�
: ðB14Þ

Note that Gð2Þ
αβ is not symmetric, Gð2Þ

αβ ≠ Gð2Þ
βα , as can be seen from its definition given by Eq. (B13).
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Finally, defining Gαβ as

Gαβ ≡□χαβ þ γαβ∇γ∇δχγδ −∇α∇δχβδ −∇β∇δχαδ þ 2Rαγβσ
ð0Þχγσ; ðB15Þ

we find that its nonvanishing components are given by

G00 ¼ Hχ̂0 −
�
a00

a
þH2

�
χ̂ − ∂i∂jχ̂ij

þ ϵc

�
Hϕ0χ̂ þ ð∂i∂jϕÞχ̂ij − 2ϕð∂i∂jχ̂ijÞ þ

�
ψ 00 þ 7Hψ 0 − 2

�
a00

a
þH2

�
ψ − ∂2ψ

�
χ̂ − ðψ 0 − 2HψÞχ̂0

þ ð∂i∂jψÞχ̂ij − 4ψð∂i∂jχ̂ijÞ − ð∂kψÞ∂kχ̂ −
1

2

�
ðHij00 − ∂2HijÞ þ 4HHij0 − 2

�
a00

a
þH2

�
Hij

�
χ̂ij

þ 1

2
ðHij0 − 2HHijÞχ̂0ij þ 2Hi

kð∂k∂jχ̂ijÞ þ
1

2
ð∂kHijÞ∂kχ̂ij þ ð∂iHjkÞ∂kχ̂ij

	
; ðB16Þ

G0i ¼ H∂iχ̂ − ∂jχ̂0ij

þ ϵc

�
ð∂jϕÞχ̂0ij þ 2Hð∂jϕÞχ̂ij − 2ψ 0ð∂jχ̂ijÞ þ 2Hð∂iψÞχ̂ − 2ψð∂jχ̂0ijÞ þ ð∂jψÞχ̂0ij − ð∂iψÞχ̂0 − ðψ 0 − 2HψÞ∂iχ̂

−Hð∂iHjkÞχ̂jk þ ð∂kHj
i
0Þχ̂jk þHj

i
0ð∂kχ̂jkÞ þHjkð∂kχ̂

0
ijÞ þ

1

2
ð∂iHjkÞχ̂0jk þ

1

2
Hjk0ð∂iχ̂jkÞ −HHjkð∂iχ̂jkÞ

	
; ðB17Þ

Gij ¼ −χ̂00ij þ ∂2χ̂ij − 2Hχ̂0ij þHδijχ̂
0 þ δij

�
a00

a
þH2

�
χ̂ þ ∂k∂lχ̂klδij − ∂i∂kχ̂jk − ∂j∂kχ̂ik

þ ϵc

�
2ϕχ̂00ij þ ðϕ0 þ 4HϕÞχ̂0ij −

�
Hϕ0 þ 2

�
a00

a
þH2

�
ϕ

�
δijχ̂ − 2Hϕδijχ̂

0

− ð∂j∂kϕÞχ̂ik − ð∂i∂kϕÞχ̂jk þ ð∂kϕÞ∂kχ̂ij þ 2ð∂kϕÞ∂lχ̂klδij − ð∂kϕÞ∂iχ̂kj − ð∂kϕÞ∂jχ̂ik þ ð∂k∂lϕÞχ̂klδij
þ 2ð∂2ψ − ψ 00 − 2Hψ 0Þχ̂ij þ ð∂2ψ − ψ 00 − 3Hψ 0Þχ̂δij − ψ 0ðχ̂0ij þ χ̂0δijÞ þ 2ψ∂2χ̂ij

þ ∂kψð3∂kχ̂ij þ ∂kχ̂δij − ∂iχ̂jk − ∂jχ̂ik þ 2∂lχ̂klδijÞ þ 2ψ∂k∂lχ̂klδij þ ð∂k∂lψÞχ̂klδij
− 4∂ðiψ∂kχ̂jÞk − 2∂ði∂kψχ̂jÞk − 4ψ∂ði∂kχ̂jÞk − 2∂ðiψ∂jÞχ̂

þ 1

2
ðHkl0 − 2HHklÞχ̂0klδij þ

�
1

2
Hkl00 −

�
a00

a
þH2

�
Hkl

�
χ̂klδij þHk

ði
00χ̂jÞk þ 2HHk

ði
0χ̂jÞk

þ 2Hk
ði
0χ̂0jÞk þ

�
Hχ̂0 þ

�
a00

a
þH2

�
χ̂ þ ∂k∂lχ̂kl

�
Hij − 2Hjk∂k∂mχ̂lmδij −

1

2
∂2Hklχ̂klδij −

1

2
∂mHkl∂mχ̂klδij

− 2∂lHk
ði∂lχ̂jÞk þ 2∂kHl

ði∂lχ̂jÞk − ∂2Hk
ðiχ̂jÞk þ ∂ðiHkl∂jÞχ̂kl þ ∂ðiHk

jÞ∂lχ̂kl þ 2∂ði∂lHk
jÞχ̂kl − ∂k∂lHijχ̂kl

− ∂kHij∂lχ̂kl þ 2Hkl∂ði∂lχ̂jÞk − ∂kHml∂mχ̂klδij −Hkl∂k∂lχ̂ij

	
: ðB18Þ

APPENDIX C: FIELD EQUATIONS TO THE FIRST ORDER OF ϵc

Following Eq. (4.18), we write χ̂αβ in the form,

χ̂αβ ≃ χ̂ð0Þαβ þ ϵcχ̂
ð1Þ
αβ þOðϵ2cÞ; ðC1Þ

where, to the zeroth order, the traceless-transverse gauge,

χ̂ð0Þ0β ¼ 0; χ̂ð0Þ ¼ 0; ∂iχ̂ð0Þij ¼ 0; ðC2Þ
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will be chosen. But, to the first order, we shall not impose the traceless and Lorenz gauge conditions. The only gauge that
now we choose is

χ̂ð1Þ0β ¼ 0: ðC3Þ

With this gauge choice, to the first order of ϵc, the nonvanishing components of the tensor Gαβ given by Eqs. (B16)–(B18)
yield

Gð1Þ
00 ¼ Hχ̂0ð1Þ −

�
a00

a
þH2

�
χ̂ð1Þ − ∂i∂jχ̂ð1Þij þ ½∂i∂jðϕþ ψÞ�χ̂ð1Þij þ Ĝð1Þ

00 ; ðC4Þ

Gð1Þ
0i ¼ H∂iχ̂

ð1Þ − ∂jχ̂0ð1Þij þ Ĝð1Þ
0i ; ðC5Þ

Gð1Þ
ij ¼ −χ̂00ð1Þij þ ∂2χ̂ð1Þij − 2Hχ̂0ð1Þij þHδijχ̂

0ð1Þ þ δij

�
a00

a
þH2

�
χ̂ð1Þ þ ∂k∂lχ̂ð1Þkl δij − ∂i∂kχ̂ð1Þjk − ∂j∂kχ̂ð1Þik þ Ĝð1Þ

ij ; ðC6Þ

where

Ĝð1Þ
00 ¼ −

1

2

�
ðHij00 − ∂2HijÞ þ 4HHij0 − 2

�
a00

a
þH2

�
Hij

�
χ̂ð0Þij

þ 1

2
ðHij0 − 2HHijÞχ̂0ð0Þij þ 1

2
ð∂kHijÞ∂kχ̂

ð0Þ
ij þ ð∂iHjkÞ∂kχ̂ð0Þij ; ðC7Þ

Ĝð1Þ
0i ¼ þð∂jϕÞχ̂0ð0Þij þ 2Hð∂jϕÞχ̂ð0Þij þ ð∂jψÞχ̂0ð0Þij

−Hð∂iHjkÞχ̂ð0Þjk þ ð∂kH0j
iÞχ̂ð0Þjk þHjkð∂kχ̂

0ð0Þ
ij Þ þ

1

2
H0jkð∂iχ̂

ð0Þ
jk Þ −HHjkð∂iχ̂

ð0Þ
jk Þ; ðC8Þ

Ĝð1Þ
ij ¼þ2ϕχ̂00ð0Þij þðϕ0 þ4HϕÞχ̂0ð0Þij − ð∂j∂kϕÞχ̂ð0Þik − ð∂i∂kϕÞχ̂ð0Þjk þð∂kϕÞ∂kχ̂

ð0Þ
ij − ð∂kϕÞ∂iχ̂

ð0Þ
kj − ð∂kϕÞ∂jχ̂

ð0Þ
ik þð∂k∂lϕÞχ̂ð0Þkl δij

þ2ð∂2ψ −ψ 00−2Hψ 0Þχ̂ð0Þij −ψ 0χ̂0ð0Þij þ2ψ∂2χ̂ð0Þij þ∂kψð3∂kχ̂
ð0Þ
ij −∂iχ̂

ð0Þ
jk −∂jχ̂

ð0Þ
ik Þþð∂k∂lψÞχ̂ð0Þkl δij

þ1

2
ðHkl0−2HHklÞχ̂0ð0Þkl δijþ

�
1

2
Hkl00−

�
a00

a
þH2

�
Hkl

�
χ̂ð0Þkl δijþHk

ði
00χ̂ð0ÞjÞkþ2HHk

ði
0χ̂ð0ÞjÞk

þ2Hk
ði
0χ̂0ð0ÞjÞk−

1

2
∂2Hklχ̂ð0Þkl δij−

1

2
∂mHkl∂mχ̂ð0Þkl δij−2∂lHk

ði∂lχ̂
ð0Þ
jÞkþ2∂kHl

ði∂lχ̂
ð0Þ
jÞk−∂2Hk

ðiχ̂
ð0Þ
jÞk

þ∂ðiHkl∂jÞχ̂
ð0Þ
kl þ2∂ði∂lHk

jÞχ̂
ð0Þ
kl −∂k∂lHijχ̂

ð0Þ
kl þ2Hkl∂ði∂lχ̂ð0ÞjÞk−∂kHml∂mχ̂

ð0Þ
kl δij: ðC9Þ
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