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Gravitational wave cosmology: High frequency approximation
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In this paper, we systematically study gravitational waves (GWs) first produced by remote compact
astrophysical sources and then propagating in our inhomogeneous Universe through cosmic distances,
before arriving at detectors. To describe such GWs properly, we introduce three scales, 4, L., and L,
denoting, respectively, the typical wavelength of GWs, the scale of the cosmological perturbations, and the
size of the observable Universe. For GWs to be detected by the current and foreseeable detectors, the
condition 1 <« L. < L holds. Then, such GWs can be approximated as high-frequency GWs and be well
separated from the background y,, by averaging the spacetime curvatures over a scale ¢, where
A<t <KL, and g, =y, +¢€h, with h, denoting the GWs. In order for the backreaction of the
GWs to the background spacetimes to be negligible, we must assume that |/, | < 1, in addition to the
condition € < 1, which are also the conditions for the linearized Einstein field equations for % w10 be valid.
Such studies can be significantly simplified by properly choosing gauges, such as the spatial, traceless, and
Lorenz gauges. We show that these three different gauge conditions can be imposed simultaneously, even
when the background is not a vacuum, as long as the high-frequency GW approximation is valid. However,
to develop the formulas that can be applicable to as many cases as possible, in this paper we first write down
explicitly the linearized Einstein field equations by imposing only the spatial gauge. Then, applying these
formulas together with the geometrical optics approximation to such GWs, we find that they still move
along null geodesics and its polarization bivector is parallel transported, even when both the cosmological
scalar and tensor perturbations are present. In addition, we also calculate the gravitational integrated Sachs-
Wolfe effects due to these two kinds of perturbations, whereby the dependences of the amplitude, phase,
and luminosity distance of the GWs on these perturbations are read out explicitly.
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I. INTRODUCTION

The detection of the first gravitational wave (GW) from
the coalescence of two massive black holes (BHs) by
the advanced Laser Interferometer Gravitational-Wave
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Observatory (LIGO) marked the beginning of a new era,
the GW astronomy [1]. Following this observation, soon
more than 50 GWs were detected by the LIGO/Virgo
scientific collaboration [2—4]. The outbreak of interest on
GWs and BHs has further gained momenta after the
detection of the shadow of the M87 BH [5-10].

One of the remarkable observational results is the dis-
covery that the mass of an individual BH in these binary
systems can be much larger than what was previously
expected, both theoretically and observationally [11-13],
leading to the proposal and refinement of various formation
scenarios, see, for example, [14—17], and references therein.
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A consequence of this discovery is that the early inspiral
phase may also be detectable by space-based observatories,
such as LISA [18], TianQin [19], Taiji [20], and DECIGO
[21], for several years prior to their coalescence [22,23].
Multiple observations with different detectors at different
frequencies of signals from the same source can provide
excellent opportunities to study the evolution of the binary in
detail. Since different detectors observe at disjoint frequency
bands, together they cover different evolutionary stages of
the same binary system. Each stage of the evolution carries
information about different physical aspects of the source.
As a result, multiband GW detections will provide an
unprecedented opportunity to test different theories of
gravity in the strong field regime [24].

Recently, some of the present authors generalized the post-
Newtonian (PN) formalism to certain modified theories of
gravity and applied it to the quasicircular inspiral of compact
binaries. In particular, we calculated in detail the waveforms,
GW polarizations, response functions, and energy losses due
to gravitational radiation in Brans-Dicke (BD) theory [25],
screened modified gravity (SMG) [26-28], and gravitational
theories with parity violations [29-32] to the leading PN
order, with which we then considered projected constraints
from the third-generation detectors. Such studies have been
further generalized to triple systems [33,34] in Einstein-
aether (&) theory [35-37]. When applying such formulas to
the first relativistic triple system discovered in 2014 [38], we
studied the radiation power, and found that quadrupole
emission has almost the same amplitude as that in general
relativity (GR), but the dipole emission can be as large as the
quadrupole emission. This can provide a promising window
to place severe constraints on & theory with multiband GW
observations [39,40].

More recently, we revisited the problem of a binary
system of nonspinning bodies in a quasicircular inspiral
within the framework of @& theory [41-46], and provided
the explicit expressions for the time-domain and frequency-
domain waveforms, GW polarizations, and response func-
tions for both ground- and space-based detectors in the PN
approximation [47]. In particular, we found that, when
going beyond the leading order in the PN approximation,
the non-Einsteinian polarization modes contain terms that
depend on both the first and second harmonics of the orbital
phase. With this in mind, we calculated analytically the
corresponding parametrized post-Einsteinian parameters,
generalizing the existing framework to allow for different
propagation speeds among scalar, vector, and tensor modes,
without assuming the magnitude of its coupling parameters,
and meanwhile allowing the binary system to have relative
motions with respect to the aether field. Such results will
particularly allow for the easy construction of Einstein-
aether templates that could be used in Bayesian tests of GR
in the future.

It is remarkable to note that the space-based detectors
mentioned above, together with the current and forthcoming

ground-based ones, such as KAGRA [48], Voyager [49], the
Einstein Telescope (ET) [50], and Cosmic Explorer (CE)
[51], are able to detect GW's emitted from such systems as far
as the redshift is about z ~ 100 [52]," which will result in a
variety of profound scientific consequences. In particular,
GWs propagating over such long cosmic distances will carry
valuable information not only about their sources but also
about the detail of the cosmological expansion and inho-
mogeneities of the Universe, whereby a completely new
window to explore the Universe by using GWs is opened,
as so far our understanding of the Universe almost all
comes from observations of electromagnetic waves only
(possibly with the important exceptions of cosmic rays and
neutrinos) [53].

In this paper, we shall generalize our above studies to the
cases in which the GWs are first generated by remote
astrophysical sources and then propagate in the inhomo-
geneous universe through cosmic distances before arriving at
detectors, either space- and/or ground-based ones. It should
be noted that recently such studies have already attracted lots
of attention, see, for example, [56] and references therein. In
particular, using Isaacson’s high frequency GW formulas
[57,58], Laguna et al. studied the gravitational analogue of
the electromagnetic integrated Sachs-Wolf (ISW) effects in
cosmology, and found that the phase, frequency, and
amplitude of the GWs experience ISW effects, in addition
to the magnifications on the amplitude from gravitational
lensing [59]. More recently, Bertacca et al. connected the
results of Laguna et al. obtained in real space frame to the
observed frame, by using the cosmic rulers formulas [60],
whereby the corrections to the luminosity distance due to
velocity, volume, lensing, and gravitational potential effects
were calculated [61].

On the other hand, Bonvin ef al. [62] studied the effects
of the Universe on the gravitational waveform, and found
that the acceleration of the Universe and the peculiar
acceleration of the binary with respect to the observer
distort the gravitational chirp signals from the simplest GR
prediction, not only a mere time independent rescaling of
the chirp mass, but also the intrinsic parameter estimations
for binaries visible by LISA. In particular, the effect due to
the peculiar acceleration can be much larger than the one
due to the Universe acceleration. Moreover, peculiar
accelerations can introduce a bias in the estimation of
parameters such as the time of coalescence and the
individual masses of the binary. An error in the estimation
of the time of coalescence made by LISA will have an
impact on the prediction of the time at which the signal will

Tt must be noted that, according to structure formations, the
first stars/galaxies should be formed at z ~20 [53]. However,
primordial BHs can be formed from the collapse of large
overdensities in the radiation-dominated universe, which can
explain the massive BHs observed so far from binary black holes
(BBHs) [54]. For recent reviews on this topic, see, for example,
[16,55] and references therein.
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be visible by ground based interferometers, for signals
spanning both frequency bands.

Moreover, the correlations of such GWs with lensing
fields from the cosmic microwave background and galaxies
were studied [63], whereby a new window to explore our
Universe by gravitational weak lensing was proposed.

Lately, GWs propagating in the curved universe has been
further generalized to scalar-tensor theories [64], including
Horndeski [65-67] and SMG [67] theories.

However, it should be noted that in all these studies, the
cosmological tensor perturbations have been neglected
(except [65,66], in which the background is arbitrary).
As observing the primordial GWs (the tensor perturbations)
is one of the main goals in the current and forthcoming
cosmological observations [68], in this paper we shall
consider the cosmological background that consists of both
the scalar and tensor perturbations, but restrict ourselves
only to Einstein’s theory, and leave the generalizations to
other theories of gravity to other occasions. What we are
planning to do in the current paper are the following:

(i) First, to describe the GWs propagating through the
inhomogeneous universe from cosmic distances to
observers properly, we first introduce three scales, A,
L., and L, which denote, respectively, the typical
wavelength of GWs, the scale of the cosmological
perturbations, and the size of the observable Uni-
verse. For GWs to be detected by the current and
foreseeable detectors, we find that the condition

(1.1)

always holds. Then, such GWs can be approximated
as high-frequency GWs,” and be well separated from
the background y,, by averaging the spacetime
curvatures over a scale ¢, where 1 < 7 <« L., and
the total metric of the spacetime is given by

AL, <L

9w = T + €h/4w (12)
where € ~ O(A/L), and y,, denotes the background,
while £, represents the GWs. In order for the
backreaction of the GWs to the background space-
times to be negligible, we must assume that

|h,| <1, (1.3)
in addition to the condition ¢ < 1, which are also the

conditions for the linearized Einstein field equations
for h,, to be valid.

’It should be noted that pulsar timing arrays can detect GWs
with wavelengths ranging from an astronomical unit to a parsec
[69]. For such detections, the high-frequency approximations
might not be valid any more [70]. We wish to come back to this
subject soon.

(i1) Such studies can be significantly simplified by
properly imposing gauge conditions, such as
the spatial, traceless, and Lorenz gauges, given,
respectively, by

Xou =0, (1.4)
¥ =0, (1.5)
V% =0, (1.6)
where
Y =l =g tuhe h= o, (1)

and V¥ denotes the covariant derivative with respect
to y,,- We show that these three different gauge
conditions can be imposed simultaneously, even
when the background is not vacuum, as longer as

the high-frequency GW approximations are valid.
(iii) However, to develop the formulas that can be
applicable to as many cases as possible, in this
paper we write down explicitly the linearized Ein-
stein field equations for y,, by imposing only the
spatial gauge. Applying these formulas together
with the geometrical optic approximations to such
GWs, we find the well-known results [71]: they still
move along null geodesics and its polarization
bivector is parallel transported, even when both
the cosmological scalar and tensor perturbations
are present. In addition, we also calculate the
gravitational ISW effects due to these two kinds
of perturbations, whereby the dependences of the
amplitude, phase, and luminosity distance of the
GWs on these perturbations are read off explicitly.
The rest of the paper is organized as follows: in Sec. II,
after introducing the three different scales, A, L., L, we
show that, for the GWs to be detected by the current and
foreseeable both ground- and space-based detectors, such
GWs can be well approximated as high frequency GWs.
Then, we derive the Einstein field equations and find that,
to make the backreaction of the GWs to the background
negligible, as well as to have the linearized Einstein field
equations for £, to be valid, the condition (1.3) must hold.
In this section, we also provide a very brief review on the
cosmological background that consists of both the cosmo-
logical and tensor perturbations. In Sec. III, we consider the
gauge freedom for GWs, and show that the three different
gauge conditions, (1.4)—(1.6), can be still imposed simul-
taneously, even when the background spacetime is not a
vacuum, as long as the high-frequency approximations are
valid. Then, by imposing only the spatial gauge condition
(1.4), we write down the linearized Einstein field equations
for the GWs, so the formulas can be applied to cases with
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different choices of gauges. In Sec. IV we study the GWs
with the geometrical optics approximation, and calculate
the effects of the cosmological scalar and tensor perturba-
tions on the amplitudes and phases of such GWs, and find
the explicit expressions of the ISW effects due to both
the cosmological scalar and tensor perturbations. When
applying them to a binary system, we calculate explicitly
the effects of these two kinds of the cosmological pertur-
bations on the luminosity distance and the chirp mass
[cf. Eq. (4.51)]. Finally, we summarize our main results in
Sec. V, and present some concluding remarks.

There are also three Appendixes, A, B, and C, in which
some mathematical computations are presented. In particu-
lar, in Appendix A, we give a very brief review over the
inhomogeneous universe, when both the cosmological
scalar and tensor perturbations are present, while in
Appendix B, we present the field equations for the GWs
X by imposing only the spatial gauge (1.4). In Appendix C,

we first decompose y,, as y,, = ,(,3) + eC;(;(,lp) and then write

down explicitly the field equations for )(,(,L) only with the

spatial gauge.

Before proceeding to the next section, we would like to
note that GWs produced by remote astrophysical sources
and then propagating through the homogeneous and
isotropic Universe have been systematical studied by
Ashtekar and his collaborators through a series of papers
[72-78], and various subtle issues related to the de Sitter
background were clarified [79-81] (see also [82-90]).

In addition, in this paper we shall adopt the following
conventions, which are different from those adopted in
[57,58], but the same as those used in [91]. In particular, in
this paper the signature of the metric is (—, +, +, +), while
the Christoffel symbols, Riemann and Ricci tensors, as well
as the Ricci scalar, are defined, respectively, by

a — 1 f
F;u/ = Ega (gﬂl/.ﬂ + 9puw — g;w.ﬂ)’
(DoDy — DyDy)X* = R¥, X",

R, =R, R=g¢"R,,, (1.8)

where D, denotes the covariant derivative with respect to
. — 2
Metric gy, g1 = 99,,/0x", and

RZM = FZ/I,L/ - FZL/,/{ + Fgurﬁ/l - F;}/Irzl" (19)
The Einstein field equations read
1
R, —=9uR=xT,, (1.10)

2

where x = 87G/c*, with G denoting the Newtonian con-
stant, and ¢ the speed of light. In addition to D, and V,, we
also introduce the covariant derivative V, with respect to
the homogeneous metric 7,,, where

Yuw = 77/41/ + EC?;U/’ (111)
with €, ~ O(L./L) < 1. We shall also adopt the conven-
tions, A,y = (A, +A4,)/2, A = (A —Ay) /2.

II. GRAVITATIONAL WAVES PROPAGATING
IN INHOMOGENEOUS UNIVERSE

In this section, we shall consider GWs first produced by
remote astrophysical sources and then propagating in
cosmic distances through the inhomogeneous Universe,
before arriving at detectors. To study such GWs, let us first
consider several characteristic lengths that are highly
relevant to their propagations and polarizations.

A. Characteristic scales of background

In this paper, we shall consider our inhomogeneous
universe as the background, which includes two parts, the
homogeneous and isotropic Universe and its inhomo-
geneous perturbations, given by 7,, and 7,,, respectively,
so the background metric y,, can be written as

Yiw =T + €cFw + O(€2)

3
’

=" —e g + O(ez) (2.1)
where €., |7| < 1 [cf. Eq. (A21)], and
PMra=8+0@),  77u=70+0(),

% = }7!40‘7’}0"” 77”” = }_/ﬂayy/}}?aﬂv (22)

and so on.

The size of the observational Universe is about L ~
8.8 x 10%% m [92]. On the other hand, in the momentum
space of the cosmological perturbations, we have
L.~ 1/k, where k denotes the typical wave number of
the perturbations, and L, the length over which the change
of the cosmological perturbations becomes appreciable.
When the modes are outside the Hubble horizon, it can be
shown that L,/L ~107. But, once they reenter the
horizon, these modes decay suddenly and then are
oscillating rapidly about a minimum [93]. In addition,
the current temperature anisotropy A7 /T of the Universe
is of order 107> [94]. So, it is quite reasonable to assume
that

L
€. ~—< 1. (2.3)
L

B. Typical gravitational wavelengths

For the second generation of the ground-based detec-
tors, such as LIGO, Virgo, and KAGRA, the wavelength
of the detected GWs are A=~ 10°-107 m, while the
wavelength of GWs to be detected by the space-
based detectors, such as LISA, TianQin, and Taiji, are
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22 108-10'2 m.* Therefore, for the ground-based detec-
tors, we have e~A/L € (1072%2,107%°), while for the
space-based detectors, we have ¢ € (10719, 1071).

Therefore, in this paper we shall consider only the cases
in which the following is true,

A €
— =<1, 2.4
2 2.4

c €C
so that all GWs considered in this paper can be well
approximated as high frequency GWs.

C. Einstein field equations

Following the above analyses, we find that 4, L., and L
denote, respectively, the characteristic length over which
hyys 7 u0» OT 7, changes significantly. Thus, their derivatives
are typically of the following orders:

_ Y _ 7
GVNZ, GZVNﬁ,
A S
op L’ 0 e
h 5 h
~— h~—. 2.5
Oh~z.  Phe (2.5)

To estimate orders of terms, following Isaacson [57], we
regard L as order of unity, and say that the metric (1.2)
contains a high-frequency GW, if and only if there exists a
family of coordinate systems (related by infinitesimal
coordinate transformations), in which we have

e<xe K1, (2.6)
and
}_/ﬂw }_/;w,a’ 7/41/.(1/3 = O( 1 ) ’
},;ﬂl/ = 0(77)9 ?;w,a = 0(77/66)’
?ﬂv,aﬂ = 0(}7/63)5
hy =O(h).  hya=O(h/e),
Py ap = O(h/€%), (2.7)

where y,, , = 0y,,/0x%, etc. Note that, in contrast to [57],
here we do not assume /,,, ~ O(1), in order to neglect the
backreaction of the GWs to the background spacetime y,,,
as to be shown below.

Expanding the Riemann and Ricci tensors R,,,5(9,,)
and R,,(g,,) in terms of €, we find [57,91],

The frequencies of GWs detected by the second generation of
the ground-based detectors is f =~20-2000 Hz, while the
frequencies of GWs to be detected by the space-based detectors
are f~1—10"* Hz.

Raﬂy5 (gmz) = Raﬂyé(o) + €Raﬁy5(l) + €2Raﬂy§(2)
+ O(e%),
Raﬂ(g/w) = Raﬁ(o) + eR(xﬁ(l) + €2Raﬁ(2>
+ 0(63), (28)
where
Raﬁy(S(O) = Ra/fy&(]’uzx)’
1
Raﬂy(?(l) = E [hﬂy;aé + haé;ﬁy - hay;ﬁé - hﬂé‘;ay
+Raayé(0>hz - Rﬁﬁyé(o) hg]’ (29)
R(x[f(O) = Rrxﬂ(y;w)?
1
Raﬁ(l) = Eypr(hra;[)’/) + hT/)’;a/) - h/)’f;(lﬂ - h(l/)’;/)‘r)v (210)
Ryy® =X g 2h7% (h h
af - Z{ Plhora + ( piaf + afitp
- hm;ﬂp - hrﬂ;ap) + 2h2;p<hm;p - hpa;r)
- (th”;/) - h;T)(hm;/} + hr/)’;a - hrzﬂ;r)}' (2'1 1)
Here the semicolon ““;” denotes the covariant derivative

with respect to the background metric y,, . For the sake of
convenience, we shall also use V, to denote the covariant
derivative with respect to y,,, so we have h,,, = V;h,,
etc. The background metric y,, (y**) is also used to lower
(raise) the indices of h,,, such as

By =1y"hey, = 7,0 h=h,=y"h,  (2.12)

and so on.
The background curvatures Ry,5% (7) and R, (y) can
be further expanded in terms of €., as

= — ~ ~ ~ (2 ~
Rapys O (r) = Rupyo(7) + €cRapys(7) + RS 5(7) + O(€D).
Raﬂ(o) (}/) = Raﬂ(?) + €cRaﬂ(}7)

+ @R (7) + O(ed). (2.13)
where
Raﬁy&(?) = % 787105 + Vaslpy = Vayips — Vpslay
+Raay(s772 — Rpoy573) (2.14)

N l_ .. . . .
Ra/i(y) = Eyp (ym\/)’p =+ Veplap — Vptlap — 7/(1/)’|/J1)v (215)

and kfj,)(f/) is given by Eq. (2.11) with the replacement
(hap: V) = Fap- vﬂ). Here the vertical bar ““|”” denotes the
covariant derivative with respect to y,,, which is also
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denoted by V,, so that P pela = vaf/m, etc. Taking L ~ O(1)
and considering Eq. (2.7) we find

Roys  Ryp=0O(1), (2.16)
eck“ﬂy(s’ €cRaﬁ ~Of/ec),

ERY . &R ~037). (2.17)
€R 5,5, RV = O(h/e),

€2Ra[)’75(2)7 €2Ra[)’<2) = O(hz) (218)

To write down the Einstein field equations, let us first
note that

(vavﬁ - vﬂva))(yé = _ngaﬂ(o))(mi - Raéaﬂ(o))(}/a' (219)

Then, we find that in terms of y,,, Raﬁ(') is given by

1
Rop" = 5 2Ry O + R o + RGO o

+ Vavé)(ﬂa + vﬁvé)(aé)

1 1

- 5 D)((l/} + Zya[)’D){7 (220)

where Uy ,s = 7" ¥ opu» and
1 v
X = h;w - EY;wh’ X = },ﬂ Xy = —h. (221)

It should be noted that in [57] Isaacson considered the
vacuum case, for which we have Raﬁ(” = 0, that is,

1
D)((l/)’ - 5 ya/)’ D)( - v(lvé)(ﬂﬁ - vﬂv{s)(a&

+ 2Rayﬁa(0))(y6 - Rg(o))(ﬁa - RZ(O)ZOCG =0, (222)
which is precisely Eq. (5.7) of [57], after the difference
between the conventions used here and the ones used in
[57] is taken into account.

However, in the present paper we consider the propa-
gation of GWs through the inhomogeneous universe, which
has nonzero Riemann and Ricci tensors. So, we expect that
the corresponding Einstein field equations for h,, are
different from Eq. (2.22). To see this, we first note that

9 =y — el + EMsh™ + O(€),
R=g"R,, = R" +eRM + &R? + 0(c?), (2.23)

where

RO = pRE)

R(l) = y/le(l}/) _ hﬂDRL(I)/)s
1
= VeV —2PRY) + 5@+ ROy,

R® = yRG) — Rl + Hsh™RY). (2.24)
Inserting Egs. (2.8) and (2.23) into the Einstein field
equations, we find that

1 1
R = 7R+ e[ B L 1, R0) + 1, )

1
+ée? {Rﬁ) =3 (}/WRm + h,wR(l))] +0(€?)

= k(T + €T ), (2.25)

where T,(f,),) denotes the energy-momentum tensor that
produces the background, while 7, denotes the astro-
physical source that produces the GWs.

D. Separation of GWs from background

To separate GWs produced by astrophysical sources
from the inhomogeneous background, we can average the
field equations over a length scale #, which is much larger
than the typical wavelength of the GWs but much smaller
than L,

A< <KL,. (2.26)
Then, this process will extract the slowly varying back-
ground from GWs, as the latter will vanish when averaging
over such a scale. In particular, we have

V) = Vs <leﬂ(0)> — R 0

uvaf = s
<R;w<0)> = Rﬂb(0)7 <T/w(0)> = Tﬂv(0)7 (227)
() = (R,) = (RD) =0, (2.28)
<R;w(2>> = <R/w<2)>fv <R(2)> - <R(2)>f’
<h;wR(l)> = <h/4DR(l)>f’ <T;w> = <T;w>f' (229)

Note that quadratic terms of h,, may survive such an
averaging process, if two modes are almost equal but with
different signs, although each of them represents a high
frequency mode. For example, for £, o el and
hopoxe™ 2%, we have hy,h,z e, where ), =) — ;.
Thus, although @, w, > 1, we can have w, <1, if
@ =~ m,. Therefore, due to the nonlinear interactions among
different modes, low frequency modes can be produced,
which will survive with such averaging processes. If we are
only interested in the linearized Einstein field equations of
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hy,,, such modes must be taken care of properly. With this in
mind, taking the average of Eq. (2.25) we find that

0 0
RY — 7RO +6(G,, @), = k(T +€(T,,),), (2.30)

®=g?_1

G, 5

(YuwR® +h,,RV),  (2.31)
which is a quadratic function of #,,. Then, substituting
Egs. (2.30) and (2.31) back into Eq. (2.25), we find that the

high-frequency part takes the form

1
Rl(li/) - E (y;wR(l) + h;wR(O))
4 €<G,(3j)>high _ K‘<Tﬂ,,>high1 (232)
where
2)\ high 2
(G)"™" =G = (G @),
<T;w>high = T,MD - <Tﬂv>f' (233)

On the other hand, from Eqs. (2.16)—(2.18) we find that

1
G\ =R - ZY,WR(O O(7/e.).
(GW®), =~0(2/&), T ~0@/c.). (234)

Note that, after introducing the cosmological perturbation
scale L., the leading order of G,(g) becomes Gy =~

€CIA3W ~O(j/e.), instead of L=2 [64]. The same is true

for ng), as it can be seen from Appendix A. Then, from
Eq. (2.30) we find that each term has the following order,

O(7/ec) +€O(T ) ,)-

Therefore, to have the backreaction of the GWs to the
background be negligible, so that the background space-

O(7/e.) + O(h*) = (2.35)

time y,, is uniquely determined by T,(,(,),), ie.,

1
R, - E}/WR(O) =«T,,9, (2.36)
we must assume that
<l (2.37)
€C
A
€ |<Tﬂy)f| < o (2.38)

c

In addition, from Eq. (2.32) we find that

(G ~ O(h2/e). (2.39)

Therefore, in order for the quadratic terms from G,(ﬁ,) not to
affect the linear terms of the leading orders //e® and h/e!
in Eq. (2.32), we must assume that

|h| < 1. (2.40)

With the above conditions, we find that Eq. (2.32) can be
written as

D)((l/)’ + },a/}vyvé)(}/ﬁ vav ){/35 - v/)'v Xas + ZR(zy/)’O'( ))( re
= K(Fap = 2T op)™="), (2.41)

where

1
f{l/}’ = ; {Ro—(l(o))([)’o' + Rﬂ/}((]))((m _)(aﬂRm) + y(lﬂ)(y(SRyﬁ(O)}
= X/iﬁTéa(O) + )((zﬁT&/}(O) + ya/})(yéT}/ﬁ(o)

1
Y TO (2.42)

2
From the above derivations, we can see that the linearized
Einstein field equations (2.41) are valid only to the two
leading orders, €~ and e~!. For orders higher than them,
these equations are not applicable. This is particularly true
for the zeroth order of e.
In addition, since €;! < €7,
the terms

we find that in Eq. (2.41)

fa/i’ 2R(1y/36( >)( O(]?h/é’() < O(l’l/é’), (243)
which can be also neglected, in comparing with terms that
are orders of €2 or ¢~'. However, in order to compare our
results with the ones obtained in [57-59], we shall keep
them, and drop the corresponding terms only at the end of

our calculations.

E. The inhomogeneous universe

In this subsection, we shall give a very brief introduction
over the flat Friedmann—Lemaitre—Robertson—Walker
(FLRW) universe with its linear scalar and tensor pertur-
bations, described by the metric (1.11). In terms of the
conformal coordinates x* = (1, x'), (i = 1, 2, 3), we have

Y =a*M. P =a(mn™, (244)

with 7, = diag(—1,+1,+1,+1). The coordinate 7 is
related to the cosmic time via the relation, 7 = f %

Following the standard process, we decompose the linear
perturbations f/ﬂ,, into scalar, vector, and tensor modes,
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—2¢ | 0B —S;
Puw = a*(n)
H sym ’ —2yb;; + 20,E +20;F ;) + H;;
(2.45)
where
3iSi — aiFl' — 0, alH” — 0 — H;, (246)

with 9" =6Y0; and H' = 5"*H,;. However, the vector
mode will decay qulckly with the expansion of the
Universe, and can be safely neglected [95,96]. Then, using
the gauge transformations, as shown explicitly in
Appendix A, we can always set

B=E=0, (2.47)

in which the gauge is completely fixed. This is often
referred to as the Newtonian gauge, under which the gauge-
invariant quantities defined in Eq. (A11) become

D = ¢, Y =y, (B=E=0), (2.48)
that is, in the Newtonian gauge, the potentials ¢ and y are
equal to the gauge-invariant ones, ® and ¥. Therefore, with

this gauge and ignoring the vector part, we have

i = () 22—
T = U o ‘ H;; =2y )’

o (720 0
7 =a2(n) 0 ‘ 250 )"

In the rest of this paper, we shall restrict ourselves to
this gauge.

(2.49)

III. LINEARIZED FIELD EQUATIONS FOR GWS
IN AN INHOMOGENEOUS UNIVERSE

In this section, we shall consider the field equations for
X given by Eq. (2.41) in the inhomogeneous cosmological
background of Eq. (1.11) with the Newtonian gauge (2.47),
by neglecting the vector perturbations, for which 7, and
y#v are given by Eq. (2.49).

A. Gauge fixings for GWs

Before writing down these linearized field equations
explicitly, let us first consider the gauge freedom for y,,. At
the end of the last section, we had considered the gauge
transformations for the cosmological perturbations, and had
already used the gauge freedom,

=Xt + el

(3.1)

to set B = E = 0 [cf. Eq. (2.47)], the so-called Newtonian
gauge, as shown explicitly in Appendix A. These choices

completely fix the gauge freedom for the cosmological
perturbations.

In this subsection, we shall consider another kind of
gauge transformations for the GWs, given by

B = x4 eg, (3.2)

where”

&, ~O(eh), Eup = O(h), Eupy = O(h/€). (3.3)
Since €. > €, we can see that to the first order of €., the
background metric y,, does not change under the coor-
dinate transformations (3.2), that is,
7;41/ = 7/41/ + 0(63)’ (34)
a property that is required for the transformations (3.2) to be
the gauge transformations only for the GWs. On the other
hand, under the coordinate transformations (3.2), we have

G = T + €hyy + O(?),

=Yw + €( uv 5/4 v fv;y) + 0(62)7 (35)
that is,
il;w = huzx - 25(/4;1/)' (36)
Hence, we find
Raﬁyé(l) Ra/iyé = _EfRaﬁy(S ) = (h?/ec)’
Raﬂ( ) — Raﬂ = —,CgR O(h?/ec), (37)

as can be seen from Egs. (2.16)—(2.18), and (3.3), where L.
denotes the Lie derivative. Therefore, Eq. (2.41) is gauge
invariant only up to O(hj/e.). However, since €;! < 7!,
terms that are of the order of €72 and €' are still gauge
invariant, while the ones of order of € are not. This is
because in the scale A the spacetime appears locally flat,
and the curvature is locally gauge invariant. Thus, provided
that the following conditions hold,

|nl, 7] < 1. exe X1, (3.8)
the GW produced by an astrophysical source can be
considered as a high-frequency GW, and their low-fre-
quency components are negligible, so that the local-flatness
behavior carries over to the case in which the background is
even curved.

“In writing down the leading order of &,, we had set the slowly
changing part that is of order one to zero, as it is irrelevant to the
high frequency GWs considered here.
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On the other hand, from the field equations (2.41) we can
see that they will be considerably simplified, if we choose
the Lorenz gauge,

V% =0, (3.9)
where
T = = 3 1
= X =2V &y + 1w Vaé, (3.10)

as it can be seen from Eq. (3.6), where &, = y,,&”. Then, we
find that the Lorenz gauge (3.9) requires
Dgﬂ"'RODgy_v)(/w (311)
Note that R©%&, ~ O(hje/e.) < O(h/e), so to the order
of e7! it can be neglected. Clearly, for any given y,, (with
some proper continuous conditions [97], which are nor-
mally assumed always to exist), the above equation in
general has nontrivial solutions [57].
In addition, Eq. (3.11) does not completely fix the gauge.
In fact, the gauge residual,

= X" + eg”, (3.12)

=<«
S)

exists, for which the Lorenz gauge (3.9) still holds,

Vvy )(m, =0, (3.13)
as long as ¢” satisfies the conditions
Og, + RO, = 0. (3.14)

Again, in this equation, the term RO¢, ~ O(hej/e.) is
negligible, in comparing with the one (g, ~ O(h/e).

An interesting question is this: can we use this gauge
residual further to set

Fou=0? (3.15)
To answer this question, we first note that, if this is the case,
¢, must satisfy the additional conditions,

VOgy + vng - (316)

yOyvaga = )? Ove
Clearly, for any given y,, and 7, (again with certain
regular conditions [97]), in general the above equation has
solutions. However, we must remember that ¢, also needs
to satisfy Eq. (3.14). To see if these conditions are
consistent or not, let us take the covariant derivative V#
in both sides of Eq. (3.16), which results in

V. Vi¢" + gy — Vo V,¢¥

= Ogo + R, = 0 = V7. (3.17)
Therefore, we conclude that it is consistent to impose the
Lorenz and spatial gauges simultaneously, even when the
background is curved [57].

Finally, we note that the traceless condition

x=0, (3.18)
was also introduced in [57]. In fact, provided that the
Lorenz gauge V¥y,, =0 holds, from the field equa-
tions (2.41) we find

Or + 2R Oy = ky™ (Fop — 2(T o)1), (3.19)
Note that the two terms JF and ZRW(O> ¥7° are order of
hy/e., as shown above, and can be dropped in comparing
with terms of the order 4/e. Therefore, far from the source
(To3 =0), if the Lorenz gauge holds, one can also
consistently impose the traceless gauge. Together with
the Lorenz and spatial gauges, it leads to the well-known
traceless-transverse gauge, frequently used when the back-
ground is Minkowski [91,98,99].

It should be noted that in curved backgrounds the above
three different gauge conditions can be imposed simulta-
neously only for high frequency GWs, and are valid only up
to the order of €~! [57]. In other situations, when imposing
them, one must pay great cautions, as these constraints in
general represent much more degrees than the four degrees
of the gauge freedom that the general covariance normally
allows.

B. Field equations for GWs

To write down explicitly the field equations (2.41) for
Xuw- and to make our expressions as much applicable as
possible, in Appendix A, we only impose the spatial gauge,
(n=0,1,2,3),

)(0;4 = 09 (320)

and then calculate each term appearing in Eq. (2.41),
before putting them together to finally obtain the explicit
expressions for each component of the field equations. In
particular, the nonvanishing components of F,; and

2R},Mﬂ(0);(7" are given by Eqs. (B2) and (B6), while the
ones of [ly,s are given by Egs. (B8) and (B9). The term
YapV'Vy,s is given by Egs. (B11) and (B12), while the
one V, V5 is given by Eq. (B14). Setting

ga/} = D)( af + yaﬂvyvéx yé6 V(IV(S)( ps V/}véﬂf ad

2RO, (321)

we find that the field equations (2.41) take the form

123021-9



FIER, FANG, LI, MUKOHYAMA, WANG, and ZHU

PHYS. REV. D 103, 123021 (2021)

gaﬂ = K(}—aﬂ - 2<Taﬂ>high)7 (322)
where the nonvanishing components of G,; are given by
Egs. (B16)—(B18).

IV. GEOMETRICAL OPTICS APPROXIMATION

To study the propagation of GWs in our inhomogeneous
universe, let us first note that, when far away from the
source that produces the GWs, we have 7,, = 0. Then,
Eq. (3.22) reduces to

ga/g = K]:a/i’ (le = O) (41)

Following Isaacson [57] and Laguna et al. [59], we
consider the geometrical optics approximation, for which
we have

Xap = Re(Ape?/€) = Re(e,5Ae™/€), (4.2)
where ¢, denotes the polarization tensor with
ePer, =1, (4.3)

and A and ¢ are real and characterize, respectively, the
amplitude and phase of the GWs with e™ = y%ye,,.
Note that in writing the above expression we made the
change, ¢; — ¢/¢, by following Laguna et al. [59], where
@ is the quantity used by Isaacson [57]. With this in mind,
we can see that both the amplitude A and the phase ¢ are
slowly changing functions [57],

dup=0O(1), A%, =0O(1). (4.4)
With the gauge (3.20), we must set
A()[; =0= 60/}. (45)

Moreover, as shown in the last section, in addition to the
spatial gauge, we can consistently impose the Lorenz and
traceless gauges,

V% =0, y=0. (4.6)
Then, from Egs. (4.2) and (4.5) we find that the Lorenz

gauge yields,
VYA, + kA, =0, (4.7)

€

where k, = V,¢ and k* = y”k;. Considering Eq. (4.4) we
find that, to the leading order (e™1), we have
kA, =0 = ke, =0. (4.8)
Therefore, the propagation direction of the GW is orthogo-
nal to its polarization plane spanned by the bivector e,,.

Note that the first term in Eq. (4.7) is of the order €, and
should be discarded. Otherwise, it will lead to inconsistent
results, as mentioned above. Therefore, in the rest of this
paper we shall ignore such terms without further notifica-
tions. See [57,59,64] for more details.

In addition, the traceless condition requires

rP e =0. (4.9)

Plugging Eq. (4.2) into Eq. (3.22) and considering Eq. (4.4)

and the Lorenz gauge (4.6), we find that the field equations
to the orders of €72 and €' are given, respectively, by

€21 Kk, Agy = 0, (4.10)

1
el KV eqs + (kﬂvﬂ 1nA+§vﬂkﬂ>eaﬂ =0. (4.11)

Since A, # 0, from Eq. (4.10) we find
k*k, = 0. (4.12)

Then, for such a null vector k¥, we can always define a
curve x* = x#(1) by setting

dx* (1)
dA

=7 (4.13)

where A denotes the affine parameter along the curve. It is
clear that such a defined curve is a null geodesics,

k*V k; = k*'V,k, =0, (4.14)
as now we have V, k; =V, V0 = V,V 9 =V k,, that is,
GWs are always propagating along null geodesics in our
inhomogeneous universe, even when both the cosmological
scalar and tensor perturbations are all present, as long as the
geometrical optics approximation are valid.

On the other hand, multiplying e* on both sides of
Eq. (4.11) and taking Eq. (4.3) into account, we find that

4

= (4.15)

1
lnA—i—EV”k” = 0,

where d/d) = k*V,. Introducing the current J* = A%k* of
the gravitons moving along the null geodesics, the above
equation can be written in the form

V,J#=0. (4.16)
Therefore, the current of the gravitons moving along the
null geodesics defined by k* is conserved, even when the

primordial GWs (or cosmological tensor perturbations) are
present (H;; # 0).
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Inserting Eq. (4.15) into Eq. (4.11), we find that

KtV eqp = 0. (4.17)
Thus, the polarization bivector e, is still parallel trans-
ported along the null geodesics, even when the primordial
GWs are present.

It should be to note that Eqs. (4.7)—(4.17) hold not only
for the inhomogeneous universe but also for any curved
background, as long as the geometrical optics approxima-
tion are applicable to the high frequency GWs. For more
detail, see [71].

To study them further, we expand y,, in terms of €, as

(0)

N 1
P = 1) + exla) + O(e2), (4.18)

and then consider them order by order.

A. GWs propagating in homogeneous
and isotropic background

To the zeroth order of €., we havey,, ~7,, = aznﬂb, and

0
Y =) + Ole,), (4.19)
where we had set
29 = AW eio"fe = o O pie e (4.20)

Then, from Eqs. (4.16) and (4.17) we immediately
obtain,

V,(A©20r) = 0, (4.21)
d (())
—e) = 422
d/l i 0’ ( )

where k,(,o) =V,00 = (¢, ), and k0¥ = 7.

B. Gravitational ISW effects

The derivation of the ISW effect in cosmology is based
crucially on the fact that the electromagnetic radiation
propagating along null geodesics in the inhomogeneous
universe. Laguna et al. [59] took the advantage of the fact that
GWs are also propagating along null geodesics and derived
the gravitational ISW effect for GWs when only the cosmo-
logical scalar perturbations are present (H;; = 0). In this
subsection, we shall generalize their studies further to the
case where both the cosmological scalar and tensor pertur-
bations are present. As shown by Eq. (4.12), even when both
of them are present, the GWs produced by astrophysical
sources are still propagating along the null geodesics.
Therefore, such a generalization is straightforward.

In particular, let us first introduce the conformal metric

Yuw bY

ds? = Vudxtdx” = a_zyuudxﬂdxy = —(1 +2e.p)dn’*

Since y,, and 7, are related to each other by a conformal
transformation, so the null geodesics x#(1) in the y,,

spacetime is the same as ¥#(4) in the 7,, spacetime, where

di = a*dl, k= %7{”, (4.24)
and ] is the affine parameter of the null geodesics ¥ in the
spacetime of 7,,,.

The advantage of working with the metric y,, is that the
zeroth-order spacetime now becomes the Minkowski
spacetime, and the corresponding null geodesics are the
straight lines, given by

dx Ok ()
d

1]
P

O, (4.25)

Thus, to simplify our calculations, we shall work with 7,,.
In particular, to the zeroth order of €., we have

kKO® = (1, =n"), (4.26)
where k()" = —n' represents the spatial direction of the

GWs from the source propagating to the observer
[cf. Fig. 1]. Then, from Eq. (4.21) we find,

d 1-
—In(aA®) = ——kOr =0, 4.27
I (aA®) = 2RO, (427)
which implies that the quantity defined by
Q=RA (4.28)

is constant along the GW path, and will be determined
by the local wave-zone source solution, where R = ar
denotes the physical distance between the observer and the

\ Z

: .

F &
Y «

FIG. 1. A gravitational wave is propagating along the spatial
direction k" = —n' to the observer located at the origin.
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source, while r denotes the comoving distance, given by
r= \/(xe - xr)2 + (ye - yr)2 + (Ze - Zr)z’ where )Cé =
(X¢s VerZe) and xL = (x,,y,,z,) are the spatial locations
of the source and observer, respectively.

In the following, we shall set up the coordinates as
follows [59]: the observer is located at the origin with its
proper time denoted by 7 and world line x*(z). Denoting
the time to receive the GW by z,, this event will be
recorded as x*(z7) = (z,,0). The emission time of the GW
by an astrophysical source corresponds to the proper time
7, of the observer with x*(z) = (z,, 9). Then, the GW will
move along the null geodesics, described by (1) =
7Ok (2) + e.xV#(]), which corresponds to the wave vector
k(7)) = kO% (7)) +e kDK (A), where %O (1) =(1,(1,—1)n'),
and 4, is the moment when the GW arrives at the origin
with 7(1,) = 7,.

The effects of the scalar and tensor perturbations are

manifested from the perturbations of the null geodesics.

Considering the fact fﬁ?” = 0 in the y,, spacetime, we find

that, to the first order of ¢, k#(1) is given by

S
dl;/~1 H N f((l;})ﬂ];(ma,;(o)ﬁ -0,

(4.29)

where I:Ellﬁ)” denotes the Christoffel symbols of the first

order of €.. As mentioned previously, for the scalar
perturbations, we shall not assume that y = ¢, that is,
the trace of the anisotropic stress of the Universe does not
necessarily vanish, as shown by Eq. (A.15) in Appendix A.
Then, for u = 0 we find that

d - d¢
ak(l)o = 8r(¢+l//) —ZE—znknlaerl, (430)
where
do .
i (0, —n'0;)® (4.31)
Thus, integrating Eq. (4.30) we find
- 1
K0 = —(¢p + W)l + E”k"lszme
s 1
=200}, + Iisw = 5 lisw- (4.32)

where Ig)w represents the gravitational ISW effect due to

the cosmological scalar perturbations, and was first calcu-

lated in [59]. The new term I;é)w is the gravitational
integrated effect due to the cosmological tensor perturba-
tions. They are given, respectively, by

A
1= [ otp+war (4.33)
Ae

On the other hand, the spatial components of the wave
vector are given by

d
k =-n|0 — (¢ —
SR =00 1w+ o -w)
1 dH
- Enknl <Wk1 + 8,Hkl>} N (435)
dy () — i v dH
1
—En nla Hkl:| (436)
where we had set k()i = k” —|— k L , with the parallel

component of the spatial wave vector being defined by

]}‘(‘1)' —n njk( )j ,

I}(l)i = J.’ic“” The projection operator L} is defined by
J_’ = 5’ -n' nj, with n; = 8, n*. After integrations, the
above two equations yield

and the perpendicular component by

~(1)i 1
k\(\l) {(W ¢)|ﬁ ——" ankll/l
s 1
1 = 315 (437
= [/ (¢ +w)dA — n*H [}
——n n / 8 Hkld/v:| (438)
The GW phase is then given by
d(p ,
U =¢+y-— —n n' Hk[d/l (4.39)
which leads to
o0 =@ — @,

The frequency of the GW is defined as w = —u*k,, where
u* is the four velocity of the fluid of the Universe, given by
Egs. (A2)-(A4), from which we find that the ratio of
receiving and emitting frequencies is given by

w 1-7
L= 4.41
i’ (441)

e l+2z’
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where 1 +z=a,/a,, and

) 1 s 1
T=¢ j; +o'n; +§nk”lHk1|ﬁZ - II(S{V|/1, +§I§Q)W|/l,' (4.42)
In addition, setting A = A(O)(l + &), from Eq. (4.21) we
find
dé 7(1)0 7(1)i 7(Mi | =Dug 0w
- E = 8,/( + 8,kH + 8,-1@ + F;w k ) (443)
where
7o _ [0
0.k —2¢+ Irsw - Elrsw
o —i( LIS = 0y — ¢+ 1)
K =WV ISW W ISW
1d
sy (n*n'Hyy + Iigy)
1
+ - 6,(nkankl + I%)V\/)’
:—J_’J[/ 0,0;(¢ +w)dV
— I/lkainj - Enknl [ 8i8ij1d/l/] s
~ ()~ d
F kO = 7 (¢ —3y). (4.44)

Notice that in the last term, there are no contributions from
the tensor perturbations. Collecting all of this together,
Eq. (4.43) yields

L

s)
di 2W + IISW)

—0.(¢p +w) + dﬂ(

[
—J_’/A 0;0;(¢ +w)dx

1 1d
+2nknla Hy —=—(n*n'Hy +I§§)w)

2dA
+ J_’Jnkﬁij

which has the general solution

1 .. [+ [
5 = _l//|ﬁ + EJ_U / / 8,81(45 + l//)dllld "
¢ 1, Ja,

1 1 A
- 5 I’lk |:— E l’llHkl%e + J_lj / aiijd/V
/Ie

1 .. A yy
+ 5 J_’/nl / / 8i8ij1d/1’d/1”] .
Ae S

(4.46)

In terms of the gravitational tensorial ISW effect defined by
Eq. (4.34), the above expression can be written in the form

e= (w—tntay )|
—1//4nn )

1

A [V
—_ ZJ_U /}b l (9,8] [ﬂkankl —_ 2(¢ + ‘I/)]dﬂ"dﬂ’

1
+51£§)w

1

A
- 5 nk / alHkld/l/. (447)
Ae

Combining all of our results together, we are at the point
to construct the gravitational waveform through Eq. (4.2),
from which we find that

1
SV = €euh,

2
h=Ae = 7(1 +2)
dy

hﬂl/ :}(ﬂy -

i(¢e+op)

(1+&)e (4.48)

where d¢ and & are given, respectively, by Egs. (4.40) and
(4.47), and d; = (1 + z)R is the luminosity distance. Note
that in writing the expression for the response function  we

had set € = 1.
For a binary system, we have [59,99]

Q = Me(ﬂfeMe)2/37

P = @ — (nf e M,)3, (4.49)

where M, and f, denote, respectively, the intrinsic chirp
mass and frequency of the binary, and ¢, is the value of the
phase at the merge, at which we have f = oco. Therefore,
the function % for a binary system can be cast in the form,

7[ = Mr (ﬂerr)2/3€i((ﬂ"+5w),
L

(4.50)

where the modified luminosity distance D; and the
chirp mass M, measured by the observer are given,
respectively, by

dy _(1+z
1-T-¢& =T

DLE

) M,, (4.51)
where T is given by Eq. (4.42).

V. CONCLUSIONS

In this paper, we have systematically studied GWs,
which are first produced by some remote compact astro-
physical sources, and then propagate in our inhomogeneous
universe through cosmic distances before arriving at the
detectors. Such GWs will carry valuable information of
both their sources and the cosmological expansion and
inhomogeneities of the universe, whereby a completely
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new window to explore our universe by using GWSs is
opened. As the third generation (3G) detectors, such as the
space-based ones, LISA [18], TianQin [19], Taiji [20],
DECIGO [21], and the ground-based ones, ET [50] and CE
[51], are able to detect GWs emitted from such sources as
far as at the redshift z ~ 100 [52] (see also footnote 1), it is
very important and timely to carry out such studies
systematically. Such studies were already initiated some
years ago [59,61,62] in the framework of Einstein’s theory,
and more recently in scalar-tensor theories [64—67].

In this paper, in order to characterize effectively such
systems, we first introduced three scales, 4, L., and L,
which represent, respectively, the typical wavelength of the
GWs, the scale of the cosmological perturbations, and the
size of our observable Universe. For GWs to be detected by
the current and foreseeable (both ground- and space-based)
detectors, in Sec. II we showed that the relation

A<KL, <L, (5.1)

is always true, that is, such GWs can be well approximated
as high frequency GWs, for which the general formulas
were already developed by Isaacson more than half century
ago [57,58].

However, Isaacson considered only the case where
the background is vacuum, while in [59,61,62] only the
cosmological scalar perturbations were considered. In this
paper, we considered the most general case in which the
background also includes the cosmological tensor pertur-
bations. The inclusion of the latter is important, as now one
of the main goals of cosmological observations is the
primordial GWs (the tensor perturbations) [68]. In the
nonvacuum case (in Sec. II), we showed explicitly that
the conditions

|h,| <1, e<xe. <1 (5.2)

must hold in order for the backreaction of the GWs to the
background to be neglected and the linearized Einstein field
equations given by Eq. (2.41) to hold, where the total
metric of the spacetime is expanded as g,, =y, + €h,,,
with y,,(=7,, + €.7,,) representing the background.

In Sec. 111, we considered the gauge choices, and found
that the three different gauge conditions, spatial, traceless,
and Lorenz, given, respectively, by Egs. (1.4)—(1.6), can be
still imposed simultaneously, even when both the cosmo-
logical scalar and tensor perturbations are present, as long
as the GWs can be approximated as the high-frequency
GWs. However, by imposing only the spatial gauge (1.4),
the linearized Einstein field equations (2.41) are explicitly
given in Appendix B. If y,, is decomposed into two parts,

X = 200 + e + O(e2), (5.3)

the field equations for )(,(4})

Appendix C.

As an application of our general formulas, developed in
Secs. I and 111, in Sec. IV we studied the GWs by using the
geometrical optics approximation,

are given explicitly in

Hap = €apAe'?e, (5.4)
where e,; represents the polarization tensor, A and ¢
denote, respectively, the amplitude and phase of the GWs.
We showed explicitly that even when both the cosmologi-
cal scalar and tensor perturbations are present, such GWs
are still propagating along null geodesics, and the current of
gravitons moving along the null geodesics is conserved,
and the polarization tensor is parallel transported, i.e.,

kﬁv/{kﬂ = 0, klvieaﬂ = 0, VAJA = 0, (55)
where k, =V,p,J, = Azkﬂ. In fact, these are true for any
curved background, provided that (1) the GWs can be
considered as high-frequency GWs, and (2) the geometrical
optics approximation are valid [71].

With these remarkable features, we calculated the effects
of the cosmological scalar and tensor perturbations on the
amplitude 4 and phase ¢, given by Egs. (4.40), (4.47), and
(4.48). Restricting to GWs produced by a binary system,
the effects of the cosmological perturbations, both scalar
and tensor, on the luminosity distance and the chirp mass
are given explicitly by Eq. (4.51), which represent a natural
generalization of the results obtained in [59,61,62] to the
case in which the cosmological tensor perturbations are
also present.

It should be noted that in cosmology the effects of the
scalar and tensor perturbations of the homogeneous universe
on the luminosity distances were studied in [100-102].
Since in the geometrical optics approximations both GWs
and electromagnetic waves (EWs) are all moving alone the
null geodesics, the effects of the cosmological scalar
perturbations on the luminosity distance of GWs carried
out in [59] should be the same as that obtained in [100,101]
for EWs, while the ones of the cosmological tensor
perturbations carried out in this paper should be the same
as that obtained in [102] for EWs. However, the calculations
of the GW phase are new. This is mainly due to the fact that
the detection of GW's depends not only their amplitudes but
also their phases [91], while the phases of EWs in cosmology
do not play a significant role [93].

The applications of our general formulas developed in
this paper to other studies are immediate, including the
gravitational analog of the electromagnetic Faraday rota-
tions [89,90,103,104], and their detections by the space-
and ground-based detectors. We wish to return to these
important issues in other occasions soon.

It would be also very important to extend such studies
to include the relations between the GWs and their
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sources, high-order corrections to the geometrical optics
approximations, and more interesting the non-high-
frequency GWs.
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APPENDIX A: DECOMPOSITIONS OF
COSMOLOGICAL PERTURBATIONS
AND GAUGE CHOICE

Following [95,96], the linear perturbations 7,, can be
decomposed into scalar, vector, and tensor modes, and
given explicitly by Eq. (2.45).

The energy-momentum tensor TW(0> of a fluid takes the
form [95]

70 = (p + p)u'u, + p&, + =, (A1)
where u* is the four velocity of the fluid, p and p are its
energy density and isotropic pressure, respectively, and 7},
is the anisotropic stress tensor, which has only spatial
components, i.e., 7y = 0. Setting
p=p+edp, p=p+edp, w=u'+eu, (A2)
where i## = a~'§) is the four velocity of the fluid of the
homogenous and isotropic universe, and p and p are its
energy density and isotropic pressure, respectively, we find
that du# can be decomposed as

1 . )
Sut = » (=, 0'v +v'), (A3)

where 9;v' = 0. Then, from u, =y, u* = i, + €.6u,, we
find that

ou, = a(—¢,0;v + 0;B +v; = S;), (A4)

which leads to u*u, = —1 + O(e?), as expected.

On the other hand, setting 7] = €./, similar to 7,,, the
anisotropic stress tensor irl’ can be decomposed into scalar,
vector, and tensor modes,

1

A= <afai - %6{82> M+ 5 (OIV + 0T + I, (AS)

where 91T = 0 = IT, 0,1/ = 0, IT' = 511, IT = 511,

1° J 1
0% = 0'0;, etc. Then, we find that
TOO(0> =—p—e€.p,
70 = e.(p + p)[0i(v + B) + v; = S,
T'o® = —e.(p+ p)(@'v + v,

T, = p&i, + e (6ps + 7). (A6)
1. Gauge transformations
of cosmological perturbations
Considering the gauge transformations,
h=n+el’  F=x+e 0+, (A7)
where 9,¢' = 0, we find that
G=d-H =" F=y+HE,
B=B+¢-¢, E=E-¢.
op=20p=C%.  Sp=5p—Cp,
v=v+7, (AB)
F,=F,-¢, Si=8;+, =04+ (A9)
Hj=Hy. &= (A10)

where H = a'/a with a' = da/dy. From the above gauge
transformations we can see that the following quantities are
gauge invariant,

O=¢+H(B-E)+(B-E),

Y=y -HB-FE),

@, =S;+F. (A11)

On the other hand, if we choose { = E, {® = E' — B, and

{; = F;, we have
B=E=0, F, =0, (A12)
in which the gauge is completely fixed. This is often
referred to as the Newtonian gauge. Then, we are left with
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six scalars (¢, y, v, 6p, 6p, IT), two vectors (S;, v;), and two
tensors (H;;,II;;). However, the vector part decreases
rapidly with the expansion of the Universe, so we can
safely set them to zero [95,96],
Si:Fi:Ui:Hi:()' (A13)
Then, for the scalar perturbations, there are six inde-
pendent equations, given, respectively, by [95]

"+ 2Hy' + HP' + QH + H?)p
= 47Ga? <5p + §V2H> . (A14)
w — ¢ = 8xGall, (A15)
3H(y' + Hep) — Vi = —4zGa’dp,  (A16)
w' + Hp = —4nGa*(p + p)v, (A17)
&p' +3H(6p +6p) = (p + p)Bw' = V?v),  (Al8)

2

[(p+p)o) +6p+3VPI==(p+p)(¢+4H0).  (A19)

Note that Eqs. (A14) and (A15) are obtained from the
linearized (i, j) components of the Einstein field equations,
and Egs. (A16) and (A17) are the energy and momentum
constraints, while Egs. (A18) and (A19) are obtained from
the conservation of the energy-momentum tensor.

For the tensor perturbations, we have

H,/' +2HH;/ — V?H,; = 162Ga’Tl;;,  (A20)

l]’

which is obtained from the equations 6G©) = k6T’

It must be noted that in writing the linearized field
equations, (A14)—-(A20 we had 1mphcitly assumed that
the quadratic terms ezR,w ~ O(7%) < 1, which is equiv-
alent to

7 <1, (A21)

where IA?,S%,) (7) is given by Eq. (2.11) with the replacement
(M, Vg) = (74, Vy). Otherwise, these quadratic terms
cannot be neglected from the Einstein field equations for
the background spacetimes,

Gu(?) +€.G() +EGR (7)) =xT.,  (A22)
where
G/w(}_,) = 0(1)7 €CG/41/(77) = O(J//GC),
G (7) = O(7), (A23)

as can be seen from Eq. (2.17).

APPENDIX B: FIELD EQUATIONS FOR y;

In this Appendix, we shall calculate all the components
of the quantities appearing in the field equations (3.22) for
Xap> Dy imposing only the spatial gauge

)(0# =0.

In particular, to calculate the nonvanishing components of
the tensor G4, we first note that

X =Ry, = vy = {5”‘5” + e [4p* — (§* R + 5T H) Y,
v =i +e.2py — HY )(kl)v X=7"% = Y0 = vix”,
J’ij)(ikﬁ‘zi = [ + e, Qua* — 2L H™) fu,
1 1, _.. 1 L . . R A
2Ty " = 5xT® =2 (p = P)i + 5 ecl( = p) (2w = H'ua) + (8p = 8p) + 22 ), (B1)
where § = 6Y3,;, xij = a’3ij, &i; = 6y, etc. Then, from Eq. (2.42) we find that
&2

Foo = ey {(p-P)F+ellp—P) 2w+ )y — H " 31y) + (6p — 6p)7 + 227 4]
Foi = —a’e.(p+ p)iudrv,

1 . A 1 . . . .
Fij= 502 [4p7i; + (p — P)id;] + Eazec{[‘mp)(ij + (8p = 6p)is,) + (p— P)(PH;j — HY316;))

+2(&1 7+ B+ 7 ubi) ) (B2)
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In addition, the nonvanishing (independent) components of the Riemann tensor,

R;waﬁ«)) = Ryvaﬂ + €CR;¢uaﬁ7 (B3)
are given, respectively, by
_ a’ -
ROin = aZ <H2 - Z) 5ij7 Rminj = CZZHZ (5ij5mn - 5in5mj)7 (B4)

and

N " 1 "
o = {00, [0 220l o (]|

2
Rijkl = =20 H* (84 — 6ud) — a*[(8y it + Suw jx — Suw ju — ;W ) + 2H (W' + 2Hy) (581 — 5181

N 1
Roiji = d? |:H(¢,j5ik = ¢i0;) + (W' 0 —w'i6i5) + 5 (Hi'j,k - Hﬁ'k,j):| ,

1
+ 5“2{(ij,u + Hipje — Hi jo — Hj ) — R[6u(Hly + 2HH ji) + 63 (H}y + 2HH ;)
= 8;(Hy + 2HH ) — 8y (HYy + 2HH ;)] }- (B5)

Hence, we find that

"

"
2Ron; V) =2 (‘; - H2>;2 +e. {2<a"af¢>;?i,- +2HY 7+ 20"+ Hy )y — 4 <C; - H2> 7
. . a’ .
_ (Hz]// + HHU/))?ij + 2(_ _ H2> Hl])?ij}»
a
. . . . R 1 ; oo

2Ry = 2ec{HOWE - @02 + O = OV )i+ (OHY) = Ol
2Ry O = 2H (81 = Jij) + €AGHP PRy — 25) + 4HY' (R — 75y)

+2[(0:0;w)3 + (0*0"w)Fub;; — (X 0w)F i — (00w )il

- 2H*H 6, + 2H*H ;7 — 2HH’(;’;3,->,c + HH,/'y + HH" 745,

+ (28(,-81H§> - 0*0'H;; — 0,0,H" )31y} (B6)

On the other hand, similar to the above expression, writing Ly, in the form,
D){(Iﬁ = E])(aﬁ + €c|j)(a/}v (B7)
we find they are given, respectively, by

0%+ 2H (B8)

oo = 2HZ. Do = _2’Haj)?ij7 |j)(ij = —)A(;/, - ZH)A(;'J

and

m)(00 = —27-{[2(1//’ - HW))? - (Hij/ - HHU))?UL
Do = (07 + 2(0 ) Vi + M) + (03 + 20" = 2Hy) 075 + 2H[(Oy)iij — (Oy)7]
— (HX = 2HH®) i + H(O;H*)f .
Cyij = 207} + (¢ + 4HP)7; + (0°h)Oiiiy — AH2hiij + 2w 0y + 40w i + 3(0 ) Dy — 4(0Mw) Dt i
+ 200 g ji + 2(0%w) 75 — 2000 i i — 'R = 20" + AHy" )3y — HY 9,07 — 20" HY (0,7 i
—20:H" 0,7 + 20"H ' 0,7 iy + 2Hk(i/)?;')k + H* "7+ AHHR 7 5 — 0PHE (e (B9)
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where 25"‘5‘(,»1//)?j>k = (0" 0wy kT (8"8jz//) 7:x» that is, the partial derivative acts only to the first function. The same is true
for other terms, for example, 20'H ;0,7 ), = (8'H*,)0,% ji + (0"H* ;)7 -
On the other hand, defining
1
gf,/) = Yas V'V 5. (B10)

we find that
1 1 1 1 1 1 1 1 1
G =6 —e.206" +G), GV =g =0, G} =5,6" +el6;G" —2wG") + H,;G)),  (BIN)

where
G =Hy + (a—+ Hz))?—i- 'V,
a
1
G\ = Mgy - { (" T H2> b+ qu’])? L2 D)+ (DB,

— (' -2Hy)} - [W"+3HW — Py~ 2( +H2> ] +(0'w)0if + 4w 07— (0'0'y)ii;
1 i B ) )
—I—E{(H”/ ZHH’]))?/ 4 [Hz]//_2< +H2>Hu azHu:| _4Hlk8ka])(u (akHU)(ak)?ij)_2<81H]k)(ak)?ij>}-
(B12)
On the other hand, defining

gaﬂ = Vo Vs, (B13)

we find that it has the following nonvanishing components,

a/ . a// . . ) ~ . Y N a//
gt = - A= <; - 2H2>;( + €. {Hd)’){ —(0'9)0" i + (W' = 2Hy)F + (W' = 3Hy' )y =2 <; - 2H2>W
1 R R . a’ o
= 3 (H = XHHV)Rl, == (HO” = SHH 7, + (Z - 2H2) Hiig, ,] ,
go: = 0"y — MO i + €. |:(aj¢))?§j + (01 = HIP)Fi; + H(Dip)R + 2wd* 7y — (0'w)i,
+ By’ = 2Hy) "y + (Ow)i — (O — HO*w)pu + (O’ — HOw )R
1 . 1

— HXO 7}, — (H — HH¥) 0y —EHflak)(jk -5 H KT — 3 5 (H* — HHJk),iij],

G = =% + 07) + €. [H(a,-qs);? — M)+ (W' = 2Hw) (0 + D7) + H@W)ia + (v = 3Hw) 2
- % (H¥ — 2HH)O 71 — %H{’@k;? i+ HH O, — % (H* = 3HHT*) 3 jk] ,
Gy = 00"+ M35, + e [(akqb)ai;?,»k + (0:0°D)1 = 2H2p35; = 0,[(Dw) ] + (w3 + 20,(wd' 7 0)
+ ()0 F i + (Ow) " Fi — (0*w) 0 J1abij — 2Hy 76 — 0;(HM D ) — %ai[(aijl))?kl]
5 (OHy = H = Y00+ HUHY = IRy + 3, -+ 20, )7 (B14)

Note that gfj,? is not symmetric, ij,) # g}j} as can be seen from its definition given by Eq. (B13).
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Finally, defining G,; as
gaﬂ = D)(a/} + 7(1/}vyv5)(76 - vav(s)(/}é - v/}vﬁx(tﬁ + 2Ra}'/}rr(0))(yo—v (BlS)

we find that its nonvanishing components are given by

"

gOO - HA/ - <%+H2>2_818])?U

"

+ ec{HM + (D) — 20D ;) + [w” +THY' -2 (‘; + H2> v - 8%//];? — (W~ 2H)Y

. . 1 . . . " .
001 = 4pO02,) ~ (0)0uk 5 | (V" =P H) 4t 2 (407 0,

1, N A A 1 . o
3 (HY' = 2HHY)g}, 4+ 2H (9% 07%,;;) + 3 (O*H7)O2,; + (alHJk)ak;?,.j}, (B16)

Goi = HOR — 8j)?§j

+€c{(5j¢))a,+2H(3’¢)xl,-—2w (@5,)) + 2HOW)E — 2 (0I2)) + (@)l — O — (o — 2Hy)id

N 1 . LA
— HDHR 7+ OB+ HI (0750 + @) + 5 (OH)) + 5 (a,-x,o—HH/kww,k)}, (B17)

A A~ a// A A A A
gij = —)(:/J =+ 82)(,] 2H}{U + Hél} + 511 < a + H2))( + 8k81;(k15ij — aiak)(jk — 8j8k)(,~k

vty + @ gy [ 2% 0 o gt - 2000,

— (0,0*)Fix — (0:0°)f i + (0" P)OsFi; + 2(0*h)0'71ab;; — (*P)DiZn; — ()7 i + (0" P)F 1
+2(0%w =" = 2Hy' )iij + (P —y" = 3HY )i, — w' (7 + 1'6) + 2wd

+ Fw (307 + Ok86i; — 0 jk — Ok ik + 20'Fubi;) + 2w 0'71ub;; + (0X0'w) 7 by

- 48(i‘l/ak)?j)k - 25(iakll/)?j)k - 41//8(iak)?j)k - 25(1'1//8]'))?

1 1
+3 (H*' = 2HH)3,,8;; + [—

"
2Hkl” - <a + H2> H" ] Judiy + HY 7+ 2HH Y

"
+2H]((/A, |:H)?/+ (%"‘Hz)f("—aka kl:|H -—2H/k(9k(9m)(,m5 -——32Hk 151]'——8 Hkla )(klé
~ 20'HE 07 + 20°HL 0,70 — OPHL 20 + 0 HY 9, 20 + 0GHA O + 20,0'HY 21 — 00'H

— O"H ;0" + 2Hkla(i31f(j)k — O H™ D, 7 16;j — Hklakazﬂ?ij}- (B18)

APPENDIX C: FIELD EQUATIONS TO THE FIRST ORDER OF e,
Following Eq. (4.18), we write 4 in the form,
)?(1/)’ 2)?2(2 +€c)?sﬂ) +O(€%)’ (Cl)

where, to the zeroth order, the traceless-transverse gauge,

(0 ~ in(0
=0, 29=0 97 =0, (C2)
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will be chosen. But, to the first order, we shall not impose the traceless and Lorenz gauge conditions. The only gauge that

now we choose is

2oy =0.

(C3)

With this gauge choice, to the first order of €., the nonvanishing components of the tensor G, given by Egs. (B16)~(B18)

yield
. a’ . o o R N
Goo = 7'V ~ (; + HZ)N - 90 + 109 (b + vy + G (C4)
Gy = HoV =07\ + Gy (Cs)
1 " (1
G = =D+ o) —omp D 4 M0 +5,j(a +H2 ) 4 95 - 0,040 - 0,04 + G, (Co)
where
A(l) 1 .. .. Cl” .. (0)
gOO — 5 |:(H”” aZHl.]) + 4HHI']/ _ 2(3 + H2> Hl]:|)?ij
1 .
5 (HY = 2HHY)YY + - (8"H’/)8k)(lj + (THMIRY, (C7)
G = +@)Y + 2192 + )
~H(OHF)ZY + (O HDFY + M0 )+;H'/k(a V) = HEHA (0,7, (C8)
G =+207") + (& +4Hp)7 ) — (0,0° )y — (0, D' + (0" )02 — (0" h)O2L) — (0" $) D1y + (00215
+2(Pw =" =21y 3 —w' 7 + 2 + 0w (302 - 02 - 0)) + (0w 8,
1 1 a’ 0 (0
5 (M~ 2HH"1);(M)5,]+[2H““—< +H2>HH} 2400+ HE 2+ 2R HE )
NONE A0
+2HE SOPHY 595, —-a HNO") 6, =20 HE Oy k—|—28"H’ O3\, — OPHEA)
+a(inla,-);(k +20), alka — 0 0 H 7y +2H0,07\) — OFH™0,,21)' 5. (C9)
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