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With the recognition that fast flavor instabilities likely affect supernova and neutron-star-merger
neutrinos, using simulation data to pin down when and where the instabilities occur has become a high
priority. The effort faces an interesting problem. Fast instabilities are related to neutrino angular crossings,
but simulations often employ moment methods, sacrificing momentum-space angular resolution in order to
allocate resources elsewhere. How can limited angular information be used most productively? The main
aims here are to sharpen this question and examine some of the available answers. A recently proposed
method of searching for angular crossings is scrutinized, the limitations of moment closures are
highlighted, and two ways of reconstructing angular distributions solely from the flux factors (based,
respectively, on maximum-entropy and sharp-decoupling assumptions) are compared. In (semi)transparent
regions, the standard closure prescriptions likely miss some crossings that should be there and introduce
others that should not.
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I. INTRODUCTION

Calculations predict that supernova and neutron-star-
merger neutrinos experience fast flavor instabilities at some
times and locations, possibly with important consequences
for the dynamics, composition, and neutrino signal [1–46].
Of the physical conditions that affect stability, the electron-
lepton-number (ELN) angular distribution GðμÞ is recog-
nized as being particularly important,

GðμÞ ¼
Z

∞

0

dEνE2
ν

ð2πÞ2 ðgνeðEν; μÞ − gν̄eðEν; μÞÞ; ð1Þ

where gνe and gν̄e are the neutrino and antineutrino
distribution functions, Eν is neutrino energy, and μ ¼
cos θ is the angle of propagation away from the radial
direction. (Axial symmetry is assumed and differences
among the heavy-lepton flavors are ignored.) Angular
crossings of GðμÞ—points where the function passes
through zero—are associated with fast instability.
Since the presence of angular crossings is a simple

criterion, searching for crossings is a useful alternative to

running every single location through linear stability
analysis. But while the criterion is straightforward to apply
if the neutrino angular distributions are known, they usually
are not. Because of the high complexity of supernova and
merger physics, sacrifices simply have to be made in some
aspects of the problem, even when using the most powerful
supercomputers. Computing neutrino transport with high
angular resolution in momentum space—that is, finely
resolving the p̂ dependence of the neutrino distributions—
is expensive, and many radiation-hydrodynamics simula-
tions opt for evolving only the lowest moments of the
angular distributions (the energy densities and fluxes, for
example). Thus we face the question that occupies us here:
How can this limited amount of information best be used in
the search for angular crossings?
Recently, a few publications have advocated and adopted

a search procedure that involves applying polynomial
weighting functions to GðμÞ [42–44]. In Sec. II, we
examine this approach. We find that it never introduces
spurious crossings, but sometimes misses physical ones.
In our view, more evidence is needed to establish whether
this approach has any advantages over searching point by
point for crossings in GðμÞ.
In Sec. III, inspired by Ref. [42]’s contrasting of the

polynomial method with other criteria found in the literature,
we offer our own remarks on the similarities and differences.
Regardless of how the search is conducted, it inevitably

runs into problems in (semi)transparent regions if only the
first few angular moments are employed. In Sec. IV, we
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demonstrate this point, emphasizing that a closure prescrip-
tion can be adequate for energy-momentum transport while
being inadequate for angular-crossing searches. The para-
digmatic example is a highly forward-peaked distribution.
This case is easy to describe from the transport perspective:
particles travel like a beam, and pressure is nonzero only
along the flux direction. But the same distribution flusters
angular moments, as very many of them are required to
specify an approximation that is not compromised by
unphysical features like negative particle numbers.
In this paper, we use “completion” to mean a prescription

for reconstructing angular distributions from the first few
moments (or, equivalently, generating all higher moments).
We use this term in contrast with “closure," by which we
mean a prescription for generating a finite number of higher
moments. In practice, closures usually only specify
moments that are one or two ranks above those that are
actually being evolved, because that suffices to close the
hierarchy of coupled transport equations. Our goal, how-
ever, is not to approximate transport by truncating the
hierarchy of equations: our goal is to fill in the details of the
angular distributions. We would prefer to complete, rather
than close, the angular distributions that are output by
moment-based simulations.
Here we focus on two completions that depend only on

the neutrino flux factor f ¼ F=E, where F is the energy
flux and E is the energy density. The “maximum-entropy
completion” fills in the details by assuming that the angular
distribution is of an entropy-maximizing form. The same
distribution types have been used to motivate closures; here
we are simply adopting them for a different (but obviously
related) purpose. We compare this first prescription with
the “sharp-decoupling completion,” which maps an angular
distribution with flux factor f onto the angular distribution
in the supernova bulb model with the same flux factor.
These two completions are presented in Sec. V.
We also find in Sec. V that, given the same zeroth and

first moments, closed and completed distributions do not
always agree on whether a crossing occurs. The disagree-
ment can go either way, with closed distributions exhibiting
a crossing not found with completed distributions or vice
versa. In view of this fact, we urge caution when presenting
or interpreting stability analyses that apply closures to
obtain the angular distributions.
The maximum-entropy and sharp-decoupling comple-

tions have their own strengths and weaknesses, and we
are not endorsing either one as a final answer to the question
of how best to search for angular crossings using moment
data. In Sec. VI, we indicate the steps we will take elsewhere
to provide a more actionable answer to this question.

II. POINTS VS POLYNOMIALS

In the method proposed in Ref. [42] and utilized in
Refs. [43,44], a weighting function is introduced,

F ðμÞ ¼
XN
n¼0

anμn; ð2Þ

such that F ðμÞ > 0 for all μ ∈ ½−1; 1�. The coefficients an
are arbitrary aside from having to satisfy the positivity
constraint, and N labels the highest angular moment for
which simulation data are available. A weighted version of
the ELN angular distribution is then formed,

IF ¼
Z

1

−1
dμF ðμÞGðμÞ; ð3Þ

and the search for angular crossings is conducted by
searching for functions F ðμÞ that satisfy

IF I0 < 0; ð4Þ

where

In ¼
Z

1

−1
dμμnGðμÞ: ð5Þ

The idea is that if there is an angular crossing, a well-
chosen polynomial F ðμÞ will exaggerate the region where
the crossing occurs, causing the integrated quantity IF to
have a different sign than I0. We call this search procedure
the “polynomial method.”
An alternative is to simply scan overGðμÞ, evaluating the

function at different values of μ and checking if it changes
sign (the “point-by-point method”). Reference [42] does
not explain why (or whether) the polynomial method is
superior to the point-by-point method—the latter procedure
is not mentioned—but the paper does observe, just as F ðμÞ
is being introduced (footnote 2), that an angular-moment
expansion cannot be used to approximate GðμÞ because
higher moments are not necessarily negligible—they sim-
ply are not provided by moment-based simulations. We
agree with this point and develop it further in Sec. IV.
However, the polynomial method does not evade the

issue of non-negligible higher moments. The product
F ðμÞGðμÞ that appears in Eq. (3) is a kind of reshaped
version of GðμÞ, and so it might be thought that the method
in some way explores a fuller range of ELN angular
distributions (because of the flexibility in F ), while at
the same time being informed by the simulation’s output
(because the starting point is G). This is not the case,
unfortunately. LetG0ðμÞ≡ F ðμÞGðμÞ be the reshaped ELN
angular distribution. Then

IF ¼
Z

1

−1
dμG0ðμÞ ¼ I00; ð6Þ

and the criterion IF I0 < 0 becomes I00I0 < 0, which
simply checks if GðμÞ is capable of being reshaped in
such a way that the overall lepton number changes sign.
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The polynomial method is thus in no way akin to searching
for crossings in physically motivated modifications of the
moment-reconstructed distribution. In fact the procedure is
in quite the opposite spirit: the distribution is reshaped so as
to artificially exaggerate crossing regions. The polynomial
and point-by-point methods are equally limited by trunca-
tion of the angular-moment expansion.
Moreover, the polynomial method sometimes misses

angular crossings. [Because F ðμÞ > 0, spurious crossings
are never created by the search procedure itself, although
they may appear due to neglecting higher moments in the
ELN angular distribution.] As an example of missed
crossings, let N ¼ 1, define ϵ by

I1
I0

¼ 1

3
þ ϵ; ð7Þ

and consider the case with I0 > 0. Since

GðμÞ ¼ I0
2

�
1þ 3μ

I1
I0

�
; ð8Þ

a crossing exists in the backward direction for ϵ > 0. The
criterion IF I0 < 0 can be rewritten as IF=I0 < 0, giving

a1 < −
a0

1
3
þ ϵ

ðfor crossing to be foundÞ: ð9Þ

Assume that a0 > 0. Then Eq. (9) entails

F ðμ ¼ þ1Þ < a0

�
1 −

1
1
3
þ ϵ

�
: ð10Þ

This says that if 0 < ϵ < 2=3, then F ðμ ¼ þ1Þ must drop
below zero in order to satisfy IF I0 < 0. If instead a0 < 0,
then F ðμ ¼ −1Þ < 0 for all ϵ > 0. Therefore, many ELN
angular distributions with crossings will not be identified as
such in the polynomial search. The requisite polynomials
are excluded by the positivity condition.
The idea being demonstrated here is that becauseF ðμÞ is

required to be non-negative, it is limited in how much it can
amplify certain regions relative to other ones. The ELN
angular distribution itself is not limited in this way, and so
small enough crossings can go unnoticed. This intuitive
point is illustrated in Fig. 1.F ðμÞ, the purple curve, weights
the backward direction as much as possible relative to the
forward direction, hoping to amplify the crossing region
and make IF go negative, but F ðμÞGðμÞ can only be
distorted so much. The area under the solid green curve
remains positive.
Based on the considerations above, we are unable to see

any advantages to the polynomial method as compared to
scanning point by point over GðμÞ. The latter is, in fact,
equivalent to using delta functions in place of F ðμÞ, and
because the philosophy of the polynomial method is that

crossing regions should be amplified as much as possible,
delta functions would intuitively seem to be the best way to
accomplish this. The point-by-point method could also very
well be more efficient, since the scan is directly over μ
rather than over Nth-degree polynomials with coefficients
satisfying a constraint that must itself be satisfied at
all μ ∈ ½−1; 1�.
The possibility certainly remains that we have over-

looked something in our assessment. Since the polynomial
method has now been used in multiple publications on fast
instabilities, it would be a valuable contribution to the
literature for any advantages we may have overlooked to be
spelled out.

III. ZERO MODES, PENDULUMS,
AND POLYNOMIALS

Seeing as how several other instability criteria can be
found in the literature, it may be worthwhile to clarify how
they all relate to one another.
The most rigorous test of stability involves linearizing

the equations of motion—more particularly, making
them linear in the off-diagonal elements of the density
matrices—and searching for normal-mode solutions of the
form e−iΩtþiKx, where for simplicity we assume a single
spatial dimension [47,48]. The result is a dispersion relation
that involves integrals such as

Z
1

−1
dμ

μm

wþ zμ
; ð11Þ

where w ¼ wðΩÞ and z ¼ zðKÞ. Generally, the dispersion
relation is therefore transcendental and must be solved
numerically.
Reference [10] pointed out that, by picking K such that

z ¼ 0, the dispersion relation simplifies from a transcen-
dental equation to a quadratic one, allowing one to solve for
ΩðK0Þ analytically. (K0, the “zero mode,” is the value of K

FIG. 1. GðμÞ (dashed green curve), F ðμÞ (purple), and
F ðμÞGðμÞ (solid green) vs μ ¼ cos θ, adopting ϵ ¼ 1=6
[Eq. (7)]. The angular crossing at μ ≅ −0.7 is not detected by
the polynomial search.
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for which z ¼ 0.) The criterion ImΩ ≠ 0 can then be
written as

ðI0 þ I2Þ2 − 4I21 < 0: ð12Þ

Reference [24] derived two different criteria that apply
to homogeneous (K ¼ 0) fast instabilities. The first of
these comes from the demand that there be a trajectory
ṽ ∈ ½−1; 1� that satisfies a certain kind of resonance
condition in the linear regime. If such a trajectory exists,
the system is unstable. The criterion is simply

I22 < I21: ð13Þ

The other criterion comes from the pendulumlike nature of
fast flavor conversion and reads

I22 ≤
4

5
I1ð5I3 − 3I1Þ: ð14Þ

In Ref. [24], these criteria served the purpose of demon-
strating the validity of the paper’s analysis, showing, in
particular, how the analysis allows for criteria to be
formulated that improve (in the homogeneous setting
considered) upon the angular-crossing criterion. They
can be viewed as being complementary to the zero-mode
test of Ref. [10], but one should be cautious in employing
them on simulation data because, unlike the zero-mode test,
they do not derive from exactly solving a particular mode’s
dispersion relation. One should also be cautious in applying
the zero-mode test, of course, since it only assesses the
stability of a single mode.
Reference [42] claims that the polynomial search “offers

an infinite number of inequalities similar to” Eq. (12) and
suggests that this particular inequality corresponds to
F�ðμÞ ¼ μ2 � 2μþ 1. While it is true that

IFþIF−
¼ ðI0 þ I2Þ2 − 4I21; ð15Þ

this expression does not generally show up in the search
because

IF I0 ¼ a0I20 þ a1I0I1 þ a2I0I2: ð16Þ

What can be said in favor of the polynomial search is that if
the zero mode is unstable, then it will register a crossing. If
IFþIF−

< 0, then one of the two factors must have the
opposite sign of I0. [Since Fþðμ ¼ 1Þ ¼ 0, a nuance here
involves whether the polynomials must be non-negative or
strictly positive.] But suppose that the factors IFþ and IF−

are both negative. Then, although the zero mode is stable,
the search registers a crossing anyway. Testing each factor
individually is not equivalent to evaluating their product.
Thus, the polynomial method neither generalizes nor

even reproduces the zero-mode criterion [or for that matter

the criteria in Eqs. (13) and (14)]. The difference between
the two is in fact a crucial distinction. Equation (12) implies
that the discriminant of the quadratic dispersion relation is
negative, hence that ImΩ ≠ 0 for a particular mode. The
criterion IF I0 < 0 lacks any such interpretation.
To summarize, the following instability tests are found in

the literature:
(1) linear stability analysis for all (or a range of) Ω

and/or K,
(2) Gðμ1ÞGðμ2Þ < 0 for μ1; μ2 ∈ ½−1; 1�: the point-by-

point method of searching for angular crossings,
(3) Eq. (4): the polynomial method of searching for

angular crossings,
(4) Eq. (12): the zero-mode test (i.e., linear stability

analysis for K ¼ K0),
(5) Eq. (13): the K ¼ 0 resonant-trajectory test,
(6) Eq. (14): the K ¼ 0 unstable-pendulum test.

The presence of an angular crossing has been shown to be
necessary and sufficient for the existence of an instability
ImΩ ≠ 0 for some wave vector [46]. Besides that equiv-
alence, no two of these tests produce identical results in all
situations.
The point-by-point and polynomial methods are similar

in that they adopt angular crossings as the instability
criterion, differing in how they search GðμÞ for crossings.
But it is a separate question, which we now turn to, how
GðμÞ is constructed in the first place.

IV. CLOSURES AND COMPLETIONS

We are drawing a distinction in this paper between
closures (which supply a finite number of angular
moments) and completions (which supply an infinite
number) of the neutrino distribution functions. The dis-
tinction is helpful here because it reflects the differing
needs of transport calculations and fast-instability searches.
Much attention has been devoted to closure in the

context of radiative transfer (e.g., Refs. [49,50] and the
studies they cite). Its importance can be seen immediately
by taking angular moments of the Boltzmann equation
(here assuming flat spacetime with spherical symmetry and
a static background),

∂
∂t Eþ 1

r2
∂
∂r ðr

2FÞ ¼ …;

∂
∂t F þ 1

r2
∂
∂r ðr

2PÞ ¼ …; ð17Þ

and so on ad infinitum. (As before, E and F are the energy
density and flux density. P is the radiative pressure.)
Particle streaming alone couples the moments in an infinite
hierarchy of equations.
With a savvy implementation of closure, an accurate

solution is obtained for the transport of energy and momen-
tum. Many different closure methods have been proposed,
implemented, and analyzed. Some of them—variable
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Eddington tensor methods—solve the Boltzmann equation
under certain simplifications to all orders in the moment
expansion and could be used to output approximate angular
distributions. We are interested, however, in simulations that,
in practice, only output the lowest moments, regardless of
how they are obtained. These include simulations that adopt
algebraic Eddington tensor methods.
In such cases, accuracy in E and F does not guarantee

accuracy in the reconstruction of angular distributions
using solely those moments. In other words, while it
may not be necessary to track higher moments for the
purposes of approximately solving the Boltzmann
equation, higher moments must sometimes be supplied if
the angular distributions are to be approximated well.
This point is illustrated in Fig. 2, which shows the angular

distributions ψ that result from applying two different M1
closure prescriptions. Three different flux factors f are
shown for each closure. In one spatial dimension, the
radiative pressure is P ¼ pE, where p is the Eddington
factor. Shown in the figure are the Levermore closure [51]

p ¼ 3þ 4f2

5þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3f2

p ðLevermoreÞ ð18Þ

and the Minerbo closure [52]

p ¼ 1

3
þ 2f2

15
ð3 − f þ 3f2Þ ðMinerboÞ: ð19Þ

These prescriptions follow from distinct physical assump-
tions. In the Levermore case, closure is obtained by asserting
that the pressure is isotropic in the frame in which the flux
vanishes. In the Minerbo case, the pressure is calculated by
assuming that the underlying distribution function is
classical and entropy maximizing.
From Fig. 2 we see that the distribution functions do not

radically differ for the plotted flux factors. In particular,
they both exhibit the same unphysical features at f ≳ 0.5:

negative particle densities in nonradial directions and
positive but highly inflated particle densities in the back-
ward direction.
Accurate modeling of forward-peaked distributions

demands that higher moments be specified.

V. MAXIMUM-ENTROPY AND
SHARP-DECOUPLING DISTRIBUTIONS

To illustrate the latitude in modeling angular
distributions—even with the densities and fluxes taken
as given—we examine two completions in this section. For
simplicity, we consider monochromatic neutrinos, so that
the angular distributions of number density and energy
density have the same shape.
The first is the maximum-entropy distribution ψ ðmaxÞ,

which maximizes the entropy s ¼ ψ logψ at fixed E and
F [52,53]. It has the form

ψ ðmaxÞðμÞ ¼ 1

eη−aμ þ k
; ð20Þ

where k ¼ 0. The distribution takes on k ¼ þ1 (Fermi-
Dirac statistics) or k ¼ −1 (Bose-Einstein) if the entropy
functional is modified accordingly, but here we focus
strictly on the classical limit as a representative case. For
a distribution of this form, the flux factor is calculated to be

fðmaxÞ ¼ coth a −
1

a
; ð21Þ

which can be numerically inverted to find aðfÞ. The other
parameter η sets the overall normalization of ψ ðmaxÞ.
Normalizing so that the zeroth moment is unity, we have

e−η ¼ a
2 sinh a

: ð22Þ

The maximum-entropy assumption is the origin of the
Minerbo closure and its quantum-statistical variations
[54–56]. Although ψ ðmaxÞ models astrophysical neutrino
angular distributions imperfectly, it does capture some of
the essential features.
An alternative way to specify all higher moments is to

use a sharp-decoupling completion. A distribution of this
type is found in the bulb model of supernova neutrino
emission, in which all neutrinos decouple at a single sharp
surface (the neutrinosphere) at radius Rν [57]. The dis-
tribution is

ψ ðbulbÞðμÞ ¼ Aθ

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðRν=rÞ2

q �
; ð23Þ

where r is the radial coordinate, θ is the step function, and
A is a normalization factor. We choose

FIG. 2. Angular distributions obtained by applying M1 closure
for the radiative pressure and setting all higher moments to zero.
Distributions are normalized such that

R
dμψðμÞ ¼ 1.
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A ¼ 1

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðf − f2Þ

p ; ð24Þ

which ensures as before that the zeroth moment is unity.
The flux factor in the bulb model is in one-to-one
correspondence with the radial distance r,

fðbulbÞ ¼
1
2
ðRν
r Þ2

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðRν

r Þ2
q ð25Þ

or, inverting,

r
Rν

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f − f2

p : ð26Þ

The flux factor fðbulbÞ is plotted in Fig. 3 as a function of
r=Rν. It starts at the neutrinosphere with a value of 0.5 and
by twice the emission radius already exceeds 0.9. Because
neutrinos are radiated strictly outward, ψ ðbulbÞ is intrinsi-
cally forward peaked.
These completions are both suitable for certain appli-

cations, but they differ markedly. The left panel of Fig. 4
compares ψ ðmaxÞ and ψ ðbulbÞ at the same flux factors as
shown in Fig. 2. (No bulb distribution exists with f ¼ 0.1.)
We thus see two very different completions of the angular
distribution even at fixed f.
Another way to inspect the angular information con-

tained in these completions is by observing their angular
moments

ψn ¼
Z

1

−1
dμμnψðμÞ: ð27Þ

These are shown in the right panel of Fig. 4. In order to
write a recursion formula for ψ ðmaxÞ, we note that

Z
a

−a
dxxnex ¼ anðea þ ð−1Þne−aÞ − n

Z
a

−a
dxxn−1ex: ð28Þ

This then leads to

ψ ðmaxÞ
n ¼ 1

a

h
e−ηðea þ ð−1Þne−aÞ − nψ ðmaxÞ

n−1

i
: ð29Þ

Note that with the normalization of Eq. (22), ψ ðmaxÞ
n → 1 as

a → ∞ (corresponding to f → 1) at finite n. In the other

limit, as a → 0, ψ ðmaxÞ
n alternates between zero (at odd n)

and finite but declining values (at even n). This is because
all even n have some contribution from the isotropic
moment, whereas all odd n vanish by symmetry. If angular
distributions are to be expressed using truncation, it is
better to truncate an expansion in orthogonal functions

FIG. 3. Flux factor f of the bulb distribution as a function of
radius r in units of the neutrinosphere radius Rν. Note that f is
never below 0.5. Compare to Fig. 6 of Ref. [58], which shows the
flux factor vs radius in simulations with Boltzmann neutrino
transport.

FIG. 4. Left: angular distributions ψ obtained using the sharp-decoupling (“bulb”) and maximum-entropy completions. Unlike in the
other figures, here the distributions are normalized to have ψðμ ¼ þ1Þ ¼ 1. Note that f ¼ 0.5 and f ¼ 0.9 translate to picking bulb
distributions at r ¼ Rν and r ¼ 1.67Rν, respectively. No bulb distribution exists with f ¼ 0.1. Right: angular moments ψn, normalized
to have ψ0 ¼ 1.
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(e.g., Legendre polynomials) than an expansion in μn

moments. Closure prescriptions make the distinction
moot, but only in part, by ensuring agreement in the
isotropic limit.
For the sharp-decoupling completion, using the normali-

zation of Eq. (24), we have

ψ ðbulbÞ
n ¼ 1

nþ 1

1 − ð1 − 4ðf − f2ÞÞnþ1
2

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðf − f2Þ

p : ð30Þ

As the figure makes clear, forward-peaked distributions
converge slowly in n and vary in exactly how they do so.
In Sec. IV, we saw that standard M1 closures become

unphysical at flux factor f ≳ 0.6. By comparing the
Minerbo closure and the max-entropy completion, Fig. 5
shows that the failure of closure to accurately describe
forward-peaked angular distributions leads to closures
being unreliable when used in the search for angular
crossings.
The figure shows potential errors of two kinds. In the left

panel, an angular crossing in the completed distributions is
missing from the closed ones at μ just above 0.9. The
reason for this crossing being absent is, again, that closures
struggle with forward peaking. In order for closure to place
a lot of weight at μ ∼ 1, it must impose unrealistic negative
fluxes in more transverse directions, as we saw above.
The right panel of Fig. 5 shows that this undesired
consequence can introduce spurious crossings. Even in
cases where closure and completion both have crossings, a
single crossing in the completion is typically turned into a
double crossing in the closure.
While ψ ðmaxÞ is not necessarily an optimal approxima-

tion, it does capture the main feature—concentrated flux
at μ ∼ 1—that underlies the inadequacies of closure.

We conclude that an angular-crossing search using closure
is susceptible to these errors.

VI. DISCUSSION

Several recent publications have searched for fast insta-
bilities, using angular crossings as a proxy. This manner of
searching faces technical challenges associated with the
limited angular resolution of simulations. The root of the
problem is simple: as angular distributions become more
forward peaked, more angular moments are required for
their accurate approximation.
Closure—which, in practice, usually means that the

angular-moment expansion is truncated at the pressure or
heat-flux tensor—is inadequate for forward-peaked distri-
butions. Completions—where the available moments are
matched to a physically motivated angular spectrum—are a
superior alternative, but the question arises exactly which
physics should be used as the motivation. As their names
indicate, the sharp-decoupling and maximum-entropy dis-
tributions are based on assumptions regarding decoupling
and entropy. They are easy to formulate and work with, but
they are not necessarily the best choices.
Elsewhere we will present phenomenological fits to the

neutrino angular distributions in a supernova simulation
using Boltzmann transport [59]. From these fits, a com-
pletion can be constructed that better reflects the actual
distributions found in supernovae.
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