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We study the principal core g-mode oscillation in hybrid stars containing quark matter and find that they
have an unusually large frequency range (≈200–600 Hz) compared to ordinary neutron stars or self-bound
quark stars of the same mass. Theoretical arguments and numerical calculations that trace this effect to the
difference in the behavior of the equilibrium and adiabatic sound speeds in the mixed phase of quarks and
nucleons are provided. We propose that the sensitivity of core g-mode oscillations to non-nucleonic matter
in neutron stars could be due to the presence of a mixed quark-nucleon phase. Based on our analysis, we
conclude that for binary mergers where one or both components may be a hybrid star, the fraction of tidal
energy pumped into resonant g-modes in hybrid stars can exceed that of a normal neutron star by a factor of
2 to 3, although resonance occurs during the last stages of inspiral. A self-bound star, on the other hand, has
a much weaker tidal overlap with the g-mode. The cumulative tidal phase error in hybrid stars,
Δϕ ≅ 0.5 rad, is comparable to that from tides in ordinary neutron stars, presenting a challenge in
distinguishing between the two cases. However, should the principal g-mode be excited to sufficient
amplitude for detection in a postmerger remnant with quark matter in its interior, its frequency would be a
possible indication for the existence of non-nucleonic matter in neutron stars.
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I. INTRODUCTION

The core of a neutron star (NS) can, in principle, support
phases of dense deconfined quark matter (QM) [1].
Confirmation of the presence of quarks in NSs, however,
has not been possible either through observations or from
lattice-gauge calculations of finite baryon density matter
starting from the Lagrangian of quantum chromodynamics
(QCD). Although perturbative calculations of QM have
been performed [2–4], their applicability is limited to
baryon densities nB ≳ 40ns [5], where ns ≃ 0.16 fm−3 is
the nuclear matter saturation density. Such densities,
however, lie well beyond the central densities nc in the
range 3ns–8ns of observed NSs. In view of this conundrum,
theoretical studies of QM in NSs have been exploratory in
nature by positing either a sharp first-order or a smooth

crossover hadron-to-quark phase transition. Depending on
the treatment of the phase transition and the equations of
state (EOSs) of hadronic and quark matter, either a phase of
pure QM or a phase in which hadrons are admixed with
quarks can be realized (for a detailed account, see Ref. [6]
and an extensive list of references therein). In either case,
stars with quarks are difficult to distinguish from normal
NSs based on the knowledge of masses and radii alone as
similar results can be obtained with both. While the long-
term cooling of a NS can be affected by the presence of
quarks, cooling data are relatively sparse and gathered over
decades [7,8]. Gravitational wave observations from com-
pact binary mergers can be another probe of the EOS, but
currently, constraints on tidal polarizability [9–11] from
gravitational wave data [12] are consistent with both
normal and quark-containing stars, depending on the
theoretical assumptions made [6,13,14].
In this paper, we are particularly interested in how NS

oscillations can shed light on the presence of QM in stars
that contain an admixture of nucleons and quarks (termed
hybrid stars). Kokkotas et al. [15] have proposed that NS
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oscillations (in particular, the f, p modes) could be a
“fingerprint” for the supranuclear EOS in gravitational
wave data. A review of potential signatures of QM in NSs
in the multimessenger era, including the role of their
oscillations, can be found in [16]. Along these lines, we
offer in this work a new diagnostic of deconfined QM in
NSs based on asteroseismology. We show that a steep rise
in the frequency of the principal g-mode (gravity mode)
occurs as soon as QM appears in a mixed phase in the core,
exceeding the typical core g-mode frequency of a nucleonic
star by a factor of 2 or more. This rise is essentially driven
by a drop in the local equilibrium speed of sound at the
onset of the phase transition, while the adiabatic sound
speed changes only slightly. If this g-mode becomes
resonant with the tidal force during the late stages of a
binary inspiral, the resulting energy transfer from the
orbital motion to the star via tidal coupling can affect
the phase of the gravitational waveform, and potentially
signal a hybrid star.
NS oscillations are categorized by the nature of the

dominant restoring force for the perturbation in question.
Several types of modes can be supported by a star and it is
desirable to investigate as many of them as possible in
detail. These modes are typically excited and sustained in
different regions of the star and their amplitudes and
damping rates are subject to considerable uncertainty.
Here, for reasons that will become apparent, we focus
our attention on the g-mode and its coupling to gravita-
tional waves.
A g-mode is a specific kind of nonradial fluid oscillation

initiated when a parcel of fluid is displaced against the
background of a stratified environment [17,18]. While
pressure equilibrium is rapidly restored via sound waves,
chemical equilibrium can take longer causing buoyancy
forces to oppose the displacement. Since cold NSs are not
convective, the opposing force sets up stable oscillations
throughout the core, with a typical frequency, called the
(local) Brunt-Väisälä frequency [19], which depends on the
difference between the equilibrium and adiabatic sound
speeds as well as the local metric coefficients. Convectively
stable g-modes exist for a wide range of models of the EOS
[20]. Though the g-mode in NSs has been studied before
[21–23], with recent works incorporating additional fea-
tures like hyperonic matter and superfluidity [24–34], the
novel aspect of our work is the investigation of the g-mode
frequency in a phase transition from nuclear matter to a
mixed phase of quarks and nucleons. We point out that a
similar result was obtained in [30] for superfluid hyperonic
stars. However, the calculations presented there were for a
fixed NS mass of about 1.64 M⊙ with a radius of 13.6 km.
While their chosen hyperonic EOS does support a maxi-
mum mass of 2.015 M⊙ [35], the nuclear and quark EOSs
chosen in our work satisfy additional observational and
experimental constraints, and presents the effect for a wide
range of masses up to the observed maximum.

This paper also extends the results of [36] by incorpo-
rating aspects of general relativity in the fluid oscillation
equations (while remaining within the Cowling approxi-
mation), updating the nuclear EOS to include consistency
with radius constraints from tidal polarizability [37] and
NICER data [38,39] on the radius of ≃1.4 M⊙ NS. We also
provide new analytical results for the two sound speeds in a
mixed phase of quarks and nucleons. Our study can be of
practical interest to investigations of the sound speed in
NSs, which is attracting renewed attention [40–43]. The
matter of detecting g-modes from the pre- or postcoales-
cence phase of binary NS mergers is not addressed in detail
here, but we present an estimate of its impact on the
accumulated tidal phase up to the merger.
It is pertinent to note that oscillation modes other than g-

modes can also potentially be affected by the presence of
QM in NSs. Radial oscillation modes, which however do
not couple to gravitational waves, were studied in [44].
Among nonradial modes, the i-mode (interface mode) has
been recently investigated for the special case of crystalline
QM surrounded by a hadronic envelope in [45] and its
frequency can range from (300–1500) Hz, which can be
probed by current or third generation interferometric
detectors. The r-mode (Rossby mode) frequency and its
damping rate for NSs containing QM also differs from a
purely nucleonic one [46–48]. The s-mode (shear mode)
can be excited in a mixed phase of quarks and nucleons and
is sensitive to the shear modulus of structures in the mixed
phase [49], probing the surface tension of QM. The g-mode
oscillation in stars containing QM has been studied in the
case of a sharp interface [50,51] between hadronic and
quark matter, yielding the spectrum of so-called disconti-
nuity g-modes, but these works assume a strong first-order
phase transition and a large value of the surface tension for
QM, while we study the case of a mixed phase of
significant extent that would be favored if the same surface
tension were small enough.1 The g-mode for baryonic stars
with superfluid effects was studied in [24–34] highlighting
the subtle role of temperature and composition gradients in
driving the g-mode. In this work, we investigate the
composition gradients induced by the mixed phase of
quarks and nucleons, which supports unusually high-
frequency g-modes through its effect on the adiabatic
and equilibrium sound speeds.
The organization of this paper is as follows. In Sec. II, we

introduce the governing equations of the g-mode and
outline its relation to the two sound speeds. In Sec. III,
we present the EOS models in the nucleonic and quark
sectors chosen for our study of the g-mode spectrum. The
rationale for our parameter choices and the basic features of

1Here, we do not explicitly study surface and curvature effects
or the impact of a nontrivially structured mixed phase on the
oscillation spectrum [49,52,53], but a more complete treatment of
g-mode s in hybrid stars should address these issues.
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these models are highlighted here for orientation. We stress
that our choices are representative, but not exhaustive. In
Sec. IV, we derive expressions for the two sound speeds in
the mixed phase of quarks and nucleons. Results for the
sound speeds, the Brunt-Väisälä frequency, and the g-mode
frequency in nucleonic, quark, and hybrid stars are gathered
and interpreted in Sec. V. The tidal forcing and phase error
due to g-mode excitation are estimated in Sec. VI. Our
summary, conclusions, and outlook are contained in
Sec. VII. The Appendixes contain details about the
determination of parameters in the nuclear EOS model,
the resulting NS structural properties, and the two sound
speeds.

II. g-MODE OSCILLATIONS

In this section, we outline the equations for fluid
oscillations and nonrotating NS structure that were used
to determine the eigenfrequencies of the g-mode. In
general, the oscillatory displacement of a fluid element
in a spherically symmetric star is represented by a vector
field ξ⃗nlmðr⃗Þe−iωt with n, l, and m denoting the radial,
azimuthal, and magnetic mode indices. To be precise, the
frequencies also carry subscripts nlm implicitly under-
stood, with degeneracies that are broken in more realistic
cases such as with rotation or magnetic fields. For even-
parity or spheroidal modes, separation into radial and
tangential components yields ξnlmr ðr⃗Þ ¼ ηnlr ðrÞYlmðθ;ϕÞ
and ξnlm⊥ ðr⃗Þ ¼ rηnl⊥ðrÞ∇⊥Ylmðθ;ϕÞ, respectively, where
Ylmðθ;ϕÞ are the spherical harmonics. From the perturbed
continuity equation for the fluid, the tangential function
η⊥ can be traded for fluid variables as δp=ϵ ¼
ω2rη⊥ðrÞYlmðθ;ϕÞe−iωt, where δp is the corresponding
local (Eulerian) pressure perturbation and ϵ the local energy
density. Within the relativistic Cowling approximation,2 the
equations of motion to be solved to determine the fre-
quency of a particular mode are [17,29,55]

−
1

eλ=2r2
∂
∂r ½e

λ=2r2ξr� þ
lðlþ 1Þeν

r2ω2

δp
pþ ϵ

−
Δp
γp

¼ 0;

∂δp
∂r þ g

�
1þ 1

c2s

�
δpþ eλ−νhðN2 − ω2Þξr ¼ 0; ð1Þ

where h ¼ pþ ϵ, and we have suppressed the indices on ω
and ξ. Equation (1) involves thermodynamic quantities that
follow from the specific EOS. Specifically, p denotes
pressure, ϵ energy density, and γ the adiabatic index of
the fluid. The Lagrangian variation of the pressure enters as

Δp, and is related to the Eulerian variation δp through the
operator relation Δ≡ δþ ξ ·∇. The symbol cs denotes the
adiabatic sound speed, which is related to the adiabatic
index as c2s ¼ γp=ðμnnBÞ where μn is the neutron chemical
potential3 and nB the local baryon density. The equilibrium
sound speed enters through the Brunt-Väisälä frequency
(N) which is given by

N2 ≡ g2
�
1

c2e
−

1

c2s

�
eν−λ; ð2Þ

where g ¼ −∇ϕ ¼ −∇p=hwith h ¼ ϵþ p the enthalpy of
the fluid. Finally, νðrÞ and λðrÞ are metric functions of the
unperturbed star which features in the Schwarzschild
interior metric (r < R):

−ds2 ≡ gαβdxαdxβ ¼ −eνðrÞdt2 þ eλðrÞdr2

þ r2ðdθ2 þ sin2θdφ2Þ: ð3Þ

Explicitly,

eλðrÞ ¼ 1

1 − ð2GmðrÞ
c2r Þ

ð4Þ

and

eνðrÞ ¼ exp

�
−
2G
c2

Z
r

0

�ðmðr0Þ þ 4πpðr0Þr03
c2 Þ

r0ðr0 − 2mðr0ÞG
c2 Þ

�
dr0
�
eν0 ; ð5Þ

where mðr0Þ is the enclosed mass of the star at r0. These
metric functions must match to their exterior values at the
surface r ¼ R, and hence the constant factor eν0 [56].
In this work, we study the fundamental g-mode with

n ¼ 1 and fix the mode’s multipolarity at l ¼ 2. For the
nonrotating stars we consider here, solutions are degenerate
in m. Note that our definition of the “fundamental” mode
refers to the lowest radial order of the g-mode which also
has the highest frequency. This should not be confused with
the qualitatively different f-mode which is also referred to
sometimes as the fundamental mode. Furthermore, over-
tones with lower frequency exist, but we do not perform
any computations with them here, since the fundamental g-
mode has the highest frequency and will be excited during
the final stage of the premerger phase when tidal forces are
strongest. The system of equations in Eq. (1) cannot be
solved analytically even with a simple model of a neutron
star. Our aim will be to solve this numerically as an
eigenvalue system for the g-mode frequency ω.
Physically, the solution to this system of equations, under
the boundary conditionsΔp ¼ 0 at the surface and ξr; δp=ϵ

2The Cowling approximation neglects the backreaction of the
gravitational potential and reduces the number of equations we
have to solve. While this approximation is not strictly consistent
with our fully general relativistic treatment of the equilibrium
structure of the star, it does not change our conclusions
qualitatively or even quantitatively, since this approximation is
accurate for g-mode frequencies at the few percent level [54].

3In beta-equilibrated charge neutral matter, the neutron chemi-
cal potential is sufficient to determine all other chemical
potentials.
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regular at the center, only exists for discrete values of the
mode frequency ω. These values represent the g-mode
spectrum for a chosen stellar model. Because we have
employed the Cowling approximation and ignored the
perturbations of the metric that must accompany fluid
perturbations, we cannot compute the imaginary part of the
eigenfrequency (damping time) of the g-mode.4 We turn
now to discuss the EOS models for nucleonic and quark
matter employed in this work.

III. MODELS FOR THE EQUATION OF STATE

The EOS models chosen in this work were predicated on
the requirement that the squared sound speeds c2e [see
Eq. (25)] and c2s could be calculated straightforwardly. In
the nucleonic sector, we employ the model of Zhao and
Lattimer (ZL) [43], which is consistent with nuclear
systematics at and below the nuclear saturation density
ns. With suitable choices of the slope of the nuclear
symmetry energy at ns (see below), this EOS is also
consistent with the recent chiral effective theory calculations
of Drischler et al. [58] in which uncertainty estimates of the
EOS up to 2nswere provided (see Fig. 2 of that reference). In
addition, theZLEOS is able to support≃2 M⊙ stars required
by mass measurements of heavy NSs [59], and is consistent
with the recent radius measurements of ∼1.4 M⊙ stars
[38,39] and the tidal deformability estimates from the binary
neutron star merger GW170817 [37].
Among the many models and treatments available in the

quark sector [6], we utilize the vMIT model of Gomes et al.
[60] as a caricature of strongly interacting quarks at the
densities attained within NSs. Such interactions between
quarks are required to satisfy astrophysical data, particu-
larly those of heavy mass NSs. For the treatment of the
nucleon-to-quark transition at supranuclear densities, we
employ the Gibbs construction [61], which renders the
transition to be smooth. Alternative models and treatments
that feature strong first- or second-order phase transitions
will be undertaken in subsequent work.

A. The ZL EOS for nucleonic matter

For completeness and to set the stage for the calculation
of the two sound speeds in the next section, relevant details
of the ZL model are provided below. The total energy
density of interacting nucleons in neutron star matter
(NSM) is

ϵB ¼
X
i¼n;p

1

π2

Z
kFi

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B þ k2
q

dkþ nBVðnn; npÞ; ð6Þ

where the Fermi momenta kFi ¼ ð3π2niÞ1=3 with i ¼ n, p
and nB ¼ nn þ np, and MB is the baryon mass in vacuum.
In the ZL model, interactions between nucleons are
written as

Vðnn; npÞ≡ Vðu; xÞ ¼ 4xð1 − xÞða0uþ b0uγÞ
þ ð1 − 2xÞ2ða1uþ b1uγ1Þ; ð7Þ

where u ¼ nB=ns and the proton fraction x ¼ np=nB.
Adding and subtracting a0uþ b0uγ , the above equation
can be rewritten as

Vðu; xÞ ¼ V0 þ S2iðuÞð1 − 2xÞ2

with

V0 ¼ a0uþ b0uγ;

S2iðuÞ ¼ ða1 − a0Þuþ b1uγ1 − b0uγ; ð8Þ

where the subscript “2i” in S2i refers to the interacting part
of the total symmetry energy S2 ¼ S2k þ S2i, with S2k
representing the kinetic part. Expanding the kinetic part in
Eq. (6) to order ð1 − 2xÞ2, we obtain the result5

S2k ¼
1

8

�
1

n
∂2ϵBk
∂x2

�
x¼1

2

¼ k2F
6EF

; ð9Þ

where kF ¼ ð3π2nB=2Þ1=3 is the Fermi wave number of
symmetric nuclear matter (SNM) and EF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM2

B

p
.

Collecting the results, the energy per baryon relative toMB
is given by

ϵB
nB

−MB ¼ Eðu; xÞ ¼ ESNM þ S2ðuÞð1 − 2xÞ2;

where

ESNM ¼ T1=2 þ V1=2 ¼ T1=2 þ ða0uþ b0uγÞ;

S2ðuÞ ¼
k2F
6EF

þ ða1 − a0Þuþ b1uγ1 − b0uγ: ð10Þ

The kinetic energy per baryon T1=2 in SNM (x ¼ 1=2) is
given by the expression

T1=2¼
ϵkin1=2

nB
−MB with

ϵkin1=2¼
2

4π2

�
kFEF

�
k2Fþ

M2
B

2

�
−
1

2
M4

B ln

�
kFþEF

MB

��
; ð11Þ

where nB, kF, and EF refer to those in SNM.
4The damping time of g-modes due to viscosity and gravita-

tional wave emission, crudely estimated in [36,57], suggests that
the g-mode can become secularly unstable for temperatures
108 K < T < 109 K for rotational speeds exceeding twice the
g-mode frequency of a static star.

5For the derivation of the kinetic part of the symmetry energy
and its derivatives, see the Appendix.
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The baryon pressure pB is

pB ¼ nsu2
dEB

du
¼ pSNM þ nsu2ð1 − 2xÞ2 dS2ðuÞ

du
; ð12Þ

where

pSNM ¼ pkin
1=2 þ nsða0u2 þ γb0uγþ1Þ; with

pkin
1=2 ¼

2

12π2

�
kFEF

�
k2F −

3

2
M2

B

�

þ 3

2
M4

B ln

�
kF þ EF

MB

��
; and

u
dS2ðuÞ
du

¼ 2

3
S2k

�
1 − 18

�
S2k
kF

�
2
�
þ ða1 − a0Þu

þ b1γ1uγ1 − b0γuγ: ð13Þ

The incompressibility KB in SNM is obtained from

KB ¼ 9
dpB

dnB
¼ 9

�
2u

dEB

du
þ u2

d2EB

du2

�

¼ 9

�
k2F
3EF

þ ½2a0uþ γðγ þ 1Þb0uγ�
�
: ð14Þ

The energy per baryon in pure neutron matter (PNM in
which x ¼ 0) relative to the baryon mass is

EPNM ¼ T0 þ V0 ¼ T0 þ ða1uþ b1u
γ
1Þ

T0 ¼
ϵkin0

nB
−MB with

ϵkin0 ¼ 1

4π2

�
kFnEFn

�
k2Fn þ

M2
B

2

�

−
1

2
M4

B ln

�
kFn þ EFn

MB

��
; ð15Þ

where now nB ¼ nn, kFn ¼ ð3π2nnÞ1=3 ¼ 21=3kF, and
EFn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fn þM2

B

p
.

The determination of the EOS constants in SNM and
PNM, and relevant NS structural properties are summarized
in the Appendix.

B. The vMIT equation of state for quark matter

In recent years, variations of the original bag model [62]
have been adopted [60,63] to calculate the structure of NSs
with quarks in their cores to account for ≥ 2 M⊙ maxi-
mum-mass stars. Termed as vMIT or vBag models, the
QCD perturbative results are dropped and replaced by
repulsive vector interactions between quarks in such works.
We will provide some numerical examples of the vMIT
model for contrast with other models as those of the vBag
model turn out to be qualitatively similar.

The Lagrangian density of the vMIT bag model is

L ¼
X
i

½ψ̄ iði∂ −mi − BÞψ i þ Lint�Θ; ð16Þ

where Lint ¼ Lpert þ Lvec describes quarks of mass mi
confined within a bag as denoted by the Θ function. For
three flavors i ¼ u, d, s and three colors Nc ¼ 3 of quarks,
the number and baryon densities, energy density, pressure,
and chemical potentials in the bag model are given by

ni ¼ 2Nc

Z
kFi d3k

ð2πÞ3 ; nB ¼ 1

3

X
i

ni; ð17Þ

ϵQ ¼ 2Nc

X
i

Z
kFi d3k

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
þ ϵint þ B; ð18Þ

pQ ¼ 2Nc

3

X
i

Z
kFi d3k

ð2πÞ3
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
i

p þ pint − B; ð19Þ

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fi þm2

i

q
þ μint;i: ð20Þ

The upper limit of the integrals kFi is the Fermi wave
number for each species i, which, at zero temperature,
appropriately terminates the integration over k. The first
terms in ϵQ and in pQ are free Fermi gas (FG) contribu-
tions, ϵFG and pFG respectively, the second terms are due to
Lint, and B is the bag constant that accounts for the cost of
confining the quarks inside a bag. Themi are quark masses,
generally taken to be current quark masses. The u and d
quark masses are commonly set to zero (because at high
density, kFi in these cases far exceed mi), whereas that of
the s quark is taken at its Particle Data Group value. The
QCD perturbative calculations of ϵpert and ppert, and the
ensuing results for the structure of NSs containing quarks
within the cores as well as self-bound strange quark stars
are discussed in [5]. At leading order of QCD corrections,
the results are qualitatively similar to what one obtains by
simply using the FG results with an appropriately chosen
value of B. As results of perturbative calculations are
deemed to be valid only for nB ≥ 40ns, they are dropped in
the vMIT model. The Lagrangian density from vector
interactions

Lvec ¼ −Gv

X
i

ψ̄ γμVμψ þ ðm2
V=2ÞVμVμ; ð21Þ

where interactions among the quarks occur via the
exchange of a vector-isoscalar meson Vμ of mass mV , is
chosen in Ref. [54]. Explicitly,

ϵQ ¼
X
i

ϵFG;i þ
1

2

�
Gv

mV

�
2

n2Q þ B; ð22Þ
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pQ ¼
X
i

pFG;i þ
1

2

�
Gv

mV

�
2

n2Q − B; ð23Þ

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fi þm2

i

q
þ
�
Gv

mV

�
2

nQ; ð24Þ

where nQ ¼Pi ni, and the bag constant B is chosen
appropriately to enable a transition to matter containing
quarks. Note that terms associated with the vector inter-
action above are similar to those in hadronic models.
We studied model parameters in a wide range B1=4 ¼
ð155–180Þ MeV and a ¼ ðGv=mVÞ2 ¼ ð0.1–0.3Þ fm2 and
report results for specific values within this range.

IV. SOUND SPEEDS IN THE PURE
AND MIXED PHASES

As the difference of the adiabatic and equilibrium sound
speeds drives the restoring force for g-modes, it is instruc-
tive to collect some general expressions for these two sound
speeds in the pure and mixed phases. For the pure phase of
npe matter, these expressions are derived and applied in
[20], but given their central role in this work, and the fact
that we also extend the application to npeμ and quark
matter, we detail their derivation below for completeness.
For the mixed phase, we derive expressions that have not,
to our knowledge, been previously reported in the liter-
ature. First, a point of notation: the equilibrium squared
sound speed is commonly defined in the literature [6,20,64]
by the symbol c2s , which we reserve here for the squared
adiabatic sound speed, as in [29]. The equilibrium sound
speed is defined by

c2e ¼
dp
dϵ

; ð25Þ

where p and ϵ are the total pressure and energy density in
matter

ϵ ¼ ϵB þ
X

l¼e−;μ−
ϵl; p ¼ pB þ

X
l¼e−;μ−

pl: ð26Þ

In Eq. (26), the leptonic energies are the T ¼ 0 degenerate
Fermi gas expressions for massive leptons. Being a total
derivative, the derivative is taken along the curve satisfying
both mechanical and chemical equilibrium, i.e., β-equilib-
rium conditions hold. In NSM, when only npe are present
in equilibrium, the composition at fixed baryon density
(nn þ np) is completely fixed once the proton fraction xp
(¼ xe by charge neutrality) is determined. In this case, the
squared adiabatic sound speed is defined as

c2s ¼
�∂p
∂ϵ
�

x
; ð27Þ

where x ¼ xp ¼ xe. In the partial derivative, the compo-
sition is held fixed, i.e., β-equilibrium conditions are
imposed only after all derivatives have been evaluated.
The resulting distinction between these two speeds plays an
important role in determining the oscillation frequencies of
nonradial oscillations such as g-modes:

ω2 ∝
�
1

c2e
−

1

c2s

�
¼ ðc2s − c2eÞ

c2ec2s
: ð28Þ

Note that both the above speeds are dependent on density,
which varies over a large range in NSM. Furthermore, an
individual knowledge of both speeds is required. In what
follows, we apply Eqs. (25) and (27) to the cases of a pure
and a mixed phase.

A. The pure phase

1. Sound speeds in npe matter

It is useful to recast the general expressions in Eqs. (25)
and (27) in terms of derivatives of the individual chemical
potentials with respect to density, since such expressions
are amenable to both analytical and numerical checks.
Without loss of generality, we have

c2e ¼
dp
dϵ

¼
�
dp
dnB

�	�
dϵ
dnB

�
: ð29Þ

Considering npe matter as an example, differentiating the
total energy density inclusive of electrons

ϵðnB; xÞ ¼ nB½MB þ EðnB; xÞ� ð30Þ

with respect to nB, we have�
dϵ
dnB

�
¼ ϵ

nB
þ nB

�
dE
dnB

�
; ð31Þ

where EðnB; xÞ is the energy per baryon. The second term
on the right-hand side of Eq. (31) becomes�

dE
dnB

�
¼
� ∂E
∂nB

�
þ
�∂E
∂x
�

nB

�
dx
dnB

�
: ð32Þ

For the equilibrium sound speed, the β-equilibrium con-
dition ð∂E∂xÞnB ¼ 0 yields

�
dE
dnB

�
¼
� ∂E
∂nB

�
: ð33Þ

Thus, �
dϵ
dnB

�
¼ ϵ

nB
þ 1

nB

�
n2B

�
dE
dnB

��
¼ ðϵþ pÞ

nB
: ð34Þ
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From the thermodynamic identity, using charge neutrality
(x ¼ xe) and beta equilibrium,

ϵþ p ¼ μnnn þ μpnp þ μene

¼ μnnB − ðμn − μp − μeÞnB ¼ μnnB; ð35Þ

leading to the simple result

�
dϵ
dnB

�
¼
� ∂ϵ
∂nB

�
x
¼ μn: ð36Þ

This implies that

c2e ≡ dp
dϵ

¼ 1

μn

�
dp
dnB

�
¼ 1

μn
nB

�
dμn
dnB

�

¼
�
d ln μn
d ln nB

�
; ð37Þ

where we have again taken advantage of the thermody-
namic identity to relate the required derivative of p to that
of μn.
The adiabatic squared sound speed can be expressed as

c2s ¼
�∂p
∂ϵ
�

x
¼
� ∂p
∂nB

�
x

.� ∂ϵ
∂nB

�
x

ð38Þ

¼ nB
ϵþ p

� ∂p
∂nB

�
x
¼ 1

μavg

� ∂p
∂nB

�
x
; ð39Þ

where we have used the equality in Eq. (34), which is valid
at constant composition even in the absence of β equilib-
rium, and introduced an average chemical potential
μavg ¼ ðPi μiniÞ=nB ¼ ðϵþ pÞ=nB. Since p ¼ pB þ pe,

c2s ¼
1

ðϵþ pÞ
��

u
∂pB

∂u
�

x
þ
�
u
∂pe

∂u
�

x

�
: ð40Þ

The required derivatives are analytic:

�
u
∂pB

∂u
�

x
¼ 2

9π2
k5F
EF

þ nsu½2a0uþ b0γðγ þ 1Þuγ�

þ nsuð1 − 2xÞ2
�

2k2F
27EF

�
1 −

9k2F
10E2

F
þ 3k4F
10E4

F

�
þ ½2uða1 − a0Þ þ b1γ1ðγ1 þ 1Þuγ1

− b0γðγ þ 1Þuγ�
�

ð41Þ

�
u
∂pe

∂u
�

x
¼ 1

3
neμe: ð42Þ

Thus, the difference of the squared sound speeds
becomes

c2s − c2e ¼
1

μavg

� ∂p
∂nB

�
x
−

1

μn

�
dp
dnB

�
: ð43Þ

At this point all the necessary ingredients for the calculation
of the speed-of-sound difference are present. It is instruc-
tive, however, to obtain a complementary expression in
which its physical causes, namely, β-equilibrium and
compositional gradients, are made explicit. To that end,
we proceed as follows: Noting that

dp
dnB

¼
� ∂p
∂nB

�
x
þ
�∂p
∂x
�

nB

dx
dnB

; ð44Þ

Eq. (43) can be recast as

c2s − c2e ¼
�

1

μavg
−

1

μn

�� ∂p
∂nB

�
x
−

1

μn

�∂p
∂x
�

nB

dx
dnB

¼ −
xμ̃

μavgμn

� ∂p
∂nB

�
x
−

1

μn

�∂p
∂x
�

nB

dx
dnB

; ð45Þ

where μ̃ ¼ μe þ μp − μn. Anticipating that β equilibrium
will be imposed at the end, we note that the first term above
vanishes as μ̃ ¼ 0, which leads to

c2s − c2e ¼ −
1

μn

�∂p
∂x
�

nB

dx
dnB

: ð46Þ

Utilizing p ¼ n2B
∂E
∂nB and interchanging the order of deriv-

atives

c2s − c2e ¼ −
1

μn
n2B

∂
∂nB

�∂E
∂x
�

nB

dx
dnB

; ð47Þ

which can be further rewritten as6

c2s − c2e ¼ −
1

μn
n2B

� ∂μ̃
∂nB

�
x

dx
dnB

: ð48Þ

It remains now to determine dx
dnB

. As

dμ̃ ¼
� ∂μ̃
∂nB

�
x
dnB þ

�∂μ̃
∂x
�

nB

dx ¼ 0; ð49Þ

dx
dnB

¼ −
� ∂μ̃
∂nB

�
x

	�∂μ̃
∂x
�

nB

: ð50Þ

With this relation, Eq. (48) becomes

6Observe the interesting relation ∂p
∂x ¼ n2B

∂μ̃
∂nB, noted also in the

context of bulk viscosity studies [65].
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c2s ¼ c2e þ
½nBð ∂μ̃

∂nBÞx�
2

μnð∂μ̃∂xÞnB
; ð51Þ

which illustrates the influence of the density and composi-
tional gradients of the two sound speeds. Thus far, we have
simply retraced the steps originally given in [20] (Sec. 4. 2
of that reference). In npe matter under the constraint of
charge neutrality, the independent variables chosen are nB
and x, and thus a partial derivative of μ̃ with respect to nB
(x) implies that x (nB) is fixed.
Casting the expressions for the sound speeds in terms of

the chemical potentials is expedient, as illustrated below for
the case of npe matter. Note that the average chemical
potential μavg ¼ μn only in β equilibrium. At fixed x, with
the relation μ̃ ¼ μe − μ̂,

nB
∂μ̃
∂nB ¼ u

∂ðμe − μ̂Þ
∂u : ð52Þ

For the term in Eq. (52) involving electrons, we have

μe ¼ ℏcð3π2nsuÞ1=3x1=3 and u
∂μe
∂u ¼ μe

3
; ð53Þ

while for baryons,7

μ̂ ¼ μn − μp ¼ 4S2ðuÞð1 − 2xÞ with

S2ðuÞ ¼ S2k þ S2i ¼
k2F
6EF

þða1 − a0Þuþ b1uγ1 − b0uγ;

uS02k ¼
1

3
· 2S2k

�
1 − 18

�
S2k
kF

�
2
�
;

and uS02i ¼ ða1 − a0Þuþ γ1b1uγ1 − γb0uγ;

uS02 ¼ uS02k þ uS02i: ð54Þ

Putting together the above results, we have

nB
∂μ̃
∂nB ¼ μe

3
− 4ð1 − 2xÞuS02: ð55Þ

Derivatives with respect to x of μ̃ at fixed density are also
straightforward. For

∂μ̃
∂x ¼ ∂ðμe − μ̂Þ

∂x ; ð56Þ

we note that

∂μe
∂x ¼ 1

3

μe
x

and
∂μ̂
∂x ¼ −8S2ðuÞ so that

∂μ̃
∂x ¼ 1

3

μe
x
þ 8S2ðuÞ: ð57Þ

The equivalence of Eqs. (40) and (51) is established
analytically in Appendix A 5.

2. Sound speeds in npeμ matter

Going beyond the results in [20], one way to include
muons is by choosing nB, x ¼ xe þ xμ, and xμ ≡ y as the
independent variables. The formal expression for the
squared adiabatic sound speed remains the same as in
npe matter, i.e., Eq. (40) but now ðu∂pe=∂uÞx [Eq. (42)] is
replaced by

�
u
∂plep

∂u
�

x;xμ

¼ 1

3
neμe þ

1

3
nμ

�
μ2μ −m2

μ

μμ

�
; ð58Þ

where lep ¼ e−; μ−.
Furthermore, by retracing the steps leading to Eq. (51),

its npeμ equivalent is obtained as

c2s − c2e ¼ −
1

μn

�∂P
∂x





nB;y

dx
dnB

þ ∂P
∂y





nB;x

dy
dnB

�
ð59Þ

with8

dx
dnB

¼
∂μ̃x∂y




nB;x

∂μ̃y
∂nB




x;y

− ∂μ̃y
∂y




nB;x

∂μ̃x∂nB




x;y

∂μ̃x∂y




nB;x

∂μ̃y
∂x




nB;y

− ∂μ̃y
∂y




nB;x

∂μ̃x∂x




nB;y

; ð60Þ

dy
dnB

¼
∂μ̃x∂x




nB;y

∂μ̃y
∂nB




x;y

− ∂μ̃y
∂x




nB;y

∂μ̃x∂nB




x;y

∂μ̃x∂x




nB;y

∂μ̃y
∂y




nB;x

− ∂μ̃y
∂x




nB;y

∂μ̃x∂y




nB;x

: ð61Þ

The chemical potentials μ̃x ¼ μp þ μe − μn and μ̃y ¼ μμ −
μe are zero in β-equilibrated matter. Equations (59)–(61),
while demonstrating that compositional gradients are at the
core of g-mode oscillations, are lengthy and computation-
ally more involved compared to the direct calculation of the
adiabatic sound speed in npeμ matter using Eqs. (41) and
(58). For the sake of completeness, we provide here the
explicit expressions for the adiabatic sound speed in npeμ
matter arising from Eqs. (59)–(61), which are in excellent
numerical agreement with the more direct method:

c2s ¼ c2e þ
1

μn
ðT1 þ T2 þ T3 þ T4Þ; ð62Þ

7Details of the derivatives of the kinetic part of the symmetry
energy are given in the Appendix.

8The intermediate steps leading to Eqs. (60) and (61) are
detailed in Appendix A 6
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where Tj ¼ Nj=D with

N1 ¼
�
μe
3
− 4ð1 − 2xÞuS02

�
2

;

N2 ¼
�
μe
3
− 4ð1 − 2xÞuS02

�
8S2xe

�
kFμ

kFe

−
xμ
xe

�
;

N3 ¼
�k2Fμ

3μe
− 4ð1 − 2xÞuS02

�
ðμe þ 8S2xeÞ

�
xμ
xe

−
kFμ

kFe

�
;

N4 ¼
�k2Fμ

3μe
− 4ð1 − 2xÞuS02

�
kFμ

kFe

�
μe
3
− 4ð1 − 2xÞuS02

�
;

D ¼
�
μe
3xe

þ 8S2

�
1þ kFμ

kFe

��
; ð63Þ

and kFe
¼ μe (massless electrons) and kFμ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μμ

2 −m2
μ

q
.

These equations explicitly display the connection to the
nuclear symmetry energy S2 and its density derivative S02.
At the muon threshold (kFμ

; xμ ¼ 0 ⇒ x ¼ xe), it is easy
to see that N2; N3; N4 ¼ 0, while N1ð≡Nnpe

1 Þ recovers
Eq. (51) for npe matter. At extremely high baryon density,
muons are ultrarelativistic (μμ ¼ kFμ

¼ kFe
, xμ ¼ xe ¼ x=2)

so that N2; N3 ¼ 0, N1 ¼ N4 ¼ Nnpe
1 =2 and the total lep-

tonic contribution to the sound speed is equally divided
between electrons and muons.

3. Sound speeds in quark matter

We now move to a discussion of sound speeds in dense
quark matter at zero temperature. For the pure quark phase,
the difference of the two sound speeds has been computed
to leading order in the quark mass [36,66] using the
noninteracting three-flavor FG model with massive quarks
(see Sec. III B). These expressions reveal that for the
noninteracting FG model, a nonzero quark mass is neces-
sary to support g-modes. This is because a system of
massless uds quarks is charge neutral with equal numbers
of each flavor at any density; effectively, there is no change
in composition with density to drive the g-mode.
To leading order in the s-quark’s mass ms, the Brunt-

Väisälä frequency is [36]

Nq ≃
�

g
2πce

��
m2

sffiffiffiffi
B

p
�
; ð64Þ

where c2e ¼ dpq=dϵq is the equilibrium squared sound
speed in QM.9 It is possible to obtain an exact expression
for c2e and c2s in QM for the FG model, and also for the
vMIT model, as we show below.

The equilibrium sound speed may be simply calculated
by numerically evaluating c2e;vMIT ¼ dp=dϵ in the pure
quark phase. However, additional insight into its composi-
tional structure is gained by expressing it in terms of the
various chemical potentials involved. Starting from the
relation (valid in β equilibrium)

μn ¼ 2μd þ μu ¼ ð2μ�d þ μ�uÞ þ 3anQ; ð65Þ

where μ�f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Ff

þm2
f

q
for a quark of flavor f, and using

c2e ¼ d ln μn= ln nB,
10 we obtain

c2e;vMIT ¼ 1

μn

�
1

3

�
2μ�d

�
1 −

m2
d

μ�2d

�
d ln nd
d ln nB

þ μ�u

�
1 −

m2
u

μ�2u

�
d ln nu
d ln nB

�
þ 3anQ

�
: ð66Þ

Contributions from the leptons are implicitly included in
the above expression.
For the noninteracting FG model, the pressure

p ¼Pf pFGðμf; μeÞ. Introducing the partial fractions
xf ¼ nf=nB, where nf ¼ ðμ2f −m2

fÞ3=2=π2 and ne ¼ μ3e=
3π2, the partial derivative of pressure with respect to baryon
density in the definition of the adiabatic sound speed in
Eq. (39) can be reexpressed in terms of partial derivatives
with respect to the various chemical potentials, yielding

c2s;FG ¼ 1

μavg

�X
f

1

3
μfxf

�
1 −

m2
f

μ2f

�
þ 1

3
μexe

�
; ð67Þ

where μavg ¼ ðPf¼u;d;s;e nfμfÞ=nB. Note that if all mf ¼ 0

(i.e, one is in a charge neutral phase with xe ¼ 0), c2s;FG ¼
c2e;FG ¼ 1=3 and there can be no g-modes. Inclusion ofOðαsÞ
corrections in this model does not change the fact that a
nonzero quark mass is necessary for g-modes.
In the vMIT model given by Eq. (24),

μ�f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Ff

þm2
f

q
¼ μf − anQ, and as was done for the

FG model, we compute partial derivatives with respect to
μ�f, noting that nfðμfÞ ¼ nFGðμ�fÞ. The resulting expression
for the adiabatic sound speed in the vMIT model is

c2s;vMIT ¼ 1

μavg

�X
f

1

3
μ�fxf

�
1 −

m2
f

μ�2f

�

þ 1

3
μexe þ 3anQ

�
; ð68Þ

9Numerically, Nq ≈ 100 Hz for a current quark mass
ms ≈ 100 MeV, but the effect of interactions in addition to this
yields significantly lower values for Nq [36].

10In charge neutral and β-equilibrated matter, μB ¼
P

f xfμfþP
l¼e;μ xlμl ¼ μn as in the nucleonic phase.
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where all quantities μf, μe, xe, xf are equilibrium values.11

If we switch off interactions (a → 0), we recover results of
the noninteracting FG model. Interestingly, if we retain the
interaction term, but set all quark masses equal or to zero
(implying that xe ¼ 0), we find that c2s;vMIT ¼ c2e;vMIT so
stable g-modes are not supported in the pure quark phase.
Therefore, while both sound speeds are modified by
interactions, e.g.,

c2s;vMIT ¼ 1

μavg
½μ�q þ 3anQ� ≠ c2s;FG; ð69Þ

at asymptotically high density where quark masses are
negligible, there can be no g-modes in quark matter in the
vMIT model.12

Note that when all chemical potentials and partial
fractions are set to their equilibrium values for c2s;vMIT in
the pure phase, μavg ¼ μn. A comparison of Eqs. (66) and
(68) reveals the differences between the two sound speeds.
While effects of interactions enter in the same formal way
for the two squared speeds, the occurrence of the loga-
rithmic derivatives of the quark densities distinguishes
c2e;vMIT from c2s;vMIT, which features the partial fractions
xf. This difference is the principal reason for the latter to
become larger than the former. In both cases, the d-quark
contributions are larger than those of u and s quarks.

B. Sound speeds in the mixed phase

Once we have expressions for the sound speed in a pure
phase of quarks or nucleons, it is possible to compute the
sound speed in the mixed phase of the two, obtained from a
Gibbs construction. The only information required, other
than the sound speeds in the pure phases, is the partial
phase fraction of quarks χ at any density. It is more
convenient to begin with the reciprocal relation

1

c2e;mix

¼
�
dϵmix

dpmix

�
: ð70Þ

In a Gibbs mixed phase, the pressures in the two phases are
equal, while the energy density is a proportional mix of the
quark (q) and nucleonic/hadronic (h) phases: ϵmix ¼
ð1 − χÞϵh þ χϵq. Substituting this into Eq. (70) gives

1

c2e;mix

¼ ð1 − χÞ
c2e;h

þ χ

c2e;q
þ ðϵq − ϵhÞ

dχ=dnB
dP=dnB

: ð71Þ

The derivatives in Eq. (71) must be computed numerically
after solving for χ, and hence afford no particular advantage

over a direct numerical computation of the sound speed from
Eq. (70) itself. However, note that the last term in Eq. (71) is
always positive in the mixed phase.
As before, the general definition of the adiabatic sound

speed applies to the mixed phase

c2s;mix ¼
�
dpmix

dϵmix

�
xi¼const¼xi;eq

; ð72Þ

and the thermodynamic identity becomes ϵmixþ
pmix ¼

P
i niμi ¼ nBμavg. Noting that the derivatives

∂ϵh=∂nB;h and ∂ϵq=∂nB;q are equal to the respective μavg,
it is once again more convenient to begin with the
reciprocal relation

1

c2s;mix

¼
�
dϵmix

dpmix

�
xi¼const¼xi;eq

; ð73Þ

and use the chain rule to compute derivatives with respect
to density. This leads to

�
dϵmix

dpmix

�
xi¼xi;eq

¼ ð1 − χÞμavg
ð ∂ph∂nB;hÞ

þ χμavg

ð ∂pq

∂nB;qÞ
; ð74Þ

which, using Eq. (39), becomes

1

c2s;mix

¼ ð1 − χÞ
c2s;h

þ χ

c2s;q
: ð75Þ

Comparing Eqs. (71) and (75), and to the extent that the
two sound speeds in the pure hadronic/quark phase are
almost equal, we expect that the last term in Eq. (71), which
tracks the rapidly changing composition in the mixed
phase, is mainly responsible for c2s;mix > c2e;mix. The more
rapid the appearance of new chemical species and the softer
the mixed phase, the larger the Brunt-Väisälä frequency
will be.
Furthermore, as will become evident from our results in

Sec. V, the adiabatic sound speed is continuous across the
transition to and from the mixed phase, while the equilib-
rium sound speed has a slight jump to accommodate the
derivative of χ. The reciprocal relation for the adiabatic
sound speeds is reminiscent of the addition of resistors in a
parallel circuit, with voltage as pressure and current as
energy density. Such impedance analogies arise commonly
in electrical engineering when modeling the behavior of
transducers.

V. RESULTS

A. Structural properties, sound speeds,
and the Brunt-Väisälä frequency

Figure 1 shows M-R curves for ZL EOSs with and
without muons for the indicated parameters in the caption.

11Inclusion of muons is straightforward and adds a term,
1
3
μμxμð1 − m2

μ

μ�2μ
Þ, on the right-hand side of Eq. (67).

12g-modes would still exist in a mixed phase of vMIT quark
matter and nucleons as the electron fraction would vary from β
processes involving nucleons.
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The radii of ∼1.4 M⊙ stars, R1.4, for the different models
shown lie within the bounds inferred from available data.
For example, data from x-ray observations have yielded
R1.4 ¼ 9–14 km for canonical masses of ∼1.4 M⊙ [67–
69]. Measured tidal deformations from gravitational wave
data in the binary NS merger GW170817 give 8.9–13.2 km
for binary masses in the range 1.36ð1.17Þ–1.6ð1.36Þ M⊙
[70], whereas for the same masses Capano et al. [71] report
11� 1 km. X-ray pulse analysis of NICER data from PSR
J0030þ 0451 by Miller et al. [39] finds 13.02þ1.14

−1.19 km for
M ¼ 1.44� 0.15 M⊙, whereas for the same star Riley
et al. [38] obtain 12.71þ1.14

−1.19 km and M ¼ 1.34þ0.15
−0.16 M⊙.

The maximum masses (≃2 M⊙) of these EOSs13 are also
within the uncertainties of high mass NSs which range from
1.908� 0.016 M⊙ to 2.27þ0.17

−0.15 M⊙ [72–76]. Although
differences in R1.4 with and without muons for a given
EOS are small, the appearance of muons in the star leads to
distinct features in the Brunt-Väisälä frequency (see below).
In Fig. 2, differences in the two squared sound speeds

are shown as a function of nB with and without muons

for the ZL EOS with L ¼ 60 MeV. The small jump at
nB ≃ 0.14 fm−3, the density at which muons appear, is
caused by a sudden drop in the equilibrium sound speed.
The differences at large densities are due to the increasing
concentration of muons.
Figure 3 shows the Brunt-Väisälä frequency N vs r=R in

the star. In the results shown, the crust is assumed to be a

FIG. 2. Difference between the adiabatic and equilibrium
squared sound speeds (normalized to the squared speed of light)
for the ZL EOS (K0 ¼ 220 MeV, Sv ¼ 31 MeV, L ¼ 60 MeV,
and γ1 ¼ 1.6) without and with muons.

FIG. 3. The Brunt-Väisälä frequency in the NS for the ZL EOS
(K0 ¼ 220 MeV, Sv ¼ 31 MeV, L ¼ 60 MeV, and γ1 ¼ 1.6)
without and with muons.

FIG. 1. Mass-radius curves for the ZL EOS without and with
muons. Configurations with muons are slightly more compact,
but both cases support Mmax ≃ 2 M⊙. Except for L, the EOS
parameters are K0 ¼ 220 MeV, Sv ¼ 31 MeV, and γ1 ¼ 1.6 for
all curves.

13By adjusting the constants of the ZL EOS to make the EOS
stiffer (yet causal) at supranuclear densities, masses larger than
2 M⊙ can be obtained; an example will be shown later.
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homogeneous fluid for simplicity, and hence N vanishes
there. The location where muons begin to appear is
signaled by the small kink in the bottom panel. Overall,
N is slightly larger with muons in the density range in the
core of a 1.4 M⊙ star, consistent with Fig. 2. This has a
proportional impact on the g-mode frequency, as shown in
the next section.
The EOS of the mixed phase following the Gibbs

construction, and the ZL EOS for the nucleonic sector
and the vMIT EOS for the quark sector, is shown in Fig. 4.
The ZL EOS does not include the small effect of muons. In
the quark sector, muons have not been included since their
impact relative to quarks is tiny.

The compositional change in the mixed phase is indi-
cated by the quark fraction χ in Fig. 5. The steep rise of χ
from the onset indicates the sort of rapid compositional
change that can impact the g-mode frequency. A similar
effect has been reported [30] in the context of the
appearance of strange baryons (e.g., hyperons), which is
not a phase transition. Note that for the EOSs considered,
the central density of the maximum mass star, indicated
by the filled circle on the curve, lies in the mixed phase so
that the pure quark phase is not realized.
Figure 6 shows results for the individual sound speeds

and their differences for the mixed phase. The two sound
speeds in the mixed phase behave very differently.
Specifically, the equilibrium sound speed suddenly drops
(rises) at the onset (end) of the mixed phase, whereas the
adiabatic sound speed varies smoothly.
The Brunt-Väisälä frequency of a 1.4 M⊙ hybrid star is

shown in Fig. 7. Note the broader width of the peak when

FIG. 5. Quark fraction vs nB corresponding to Fig. 4. The circle
indicates the central density of the maximum-mass star
(nc;max ¼ 1.22 fm−3 for Mmax=M⊙ ¼ 1.82).

FIG. 6. The two sound speeds (top panel) and their differences
(bottom panel) in the mixed phase for the EOS parameters
corresponding to Fig. 4. The pure quark phase is not achieved
prior to the maximum mass in this case. The termination at nB ¼
0.08 fm−3 demarcates the core-crust boundary, since we assume
cs ¼ ce in the core. Both sound speeds take much smaller values
in the crust than in the core. The circle indicates the central
density of the maximum-mass star (nc;max ¼ 1.22 fm−3 for
Mmax=M⊙ ¼ 1.82).

FIG. 4. EOS for the mixed phase of nucleons and quarks
(middle curve) using the Gibbs construction. For the ZL EOS
without muons, K0 ¼ 220 MeV, Sv ¼ 31 MeV, L ¼ 60 MeV,
and γ1 ¼ 1.6. Parameters for the vMIT EOS are ðmu;md;
msÞ ¼ ð5; 7; 150Þ MeV, B1=4 ¼ 180 MeV, and a ¼ 0.1. The
circle indicates the central p and ϵ of the maximum mass star
(nc;max=ns ¼ 7.63, for Mmax=M⊙ ¼ 1.82).
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quarks enter, and its location in denser regions of the star, as
compared to the nucleonic stars depicted in Fig. 3. This
explains why the g-mode, which is a long-wavelength
global oscillation, is strongly impacted by the mixed phase
(see results in the next section).
Figure 8 shows M-R curves for a hybrid star whose

Mmax ¼ 2.05 M⊙. This value is obtained by increasing the
compressibility parameter of the ZL EOS from K0 ¼ 220
to K0 ¼ 240 MeV, and increasing γ1 from 1.6 to 1.8 while
maintaining causality. Including muons pushes the onset of
the mixed phase to slightly higher densities, which causes
the maximummass of a hybrid star with muons to be higher
than for a hybrid star without muons. This is in contrast to
the effect of muons in an ordinary NS, where the softening
results in a lower maximum mass. The leftmost curves in

these figures refer to a self-bound quark star, and are shown
here to provide contrast.

B. Boundary conditions for the g-mode oscillation

Having established the equilibrium structure and com-
puted the sound speeds, we have all the variables necessary
to solve Eqs. (1) at hand, except for the boundary con-
ditions that determine the (real) eigenfrequencies. The
boundary conditions for Newtonian structure equations
are obtained as a straightforward limiting case of
Eqs. (1), and are discussed at length in [20]. To summarize
those results, in the Newtonian nonrelativistic case, regu-
larity of ξr; δp=ρ can be checked by Taylor expansion
around r ¼ 0. The resulting condition is

r2ξr ¼
l
ω2

ðY0 þ ϕ0Þrlþ1;
δp
ρ

¼ Y0rl; ð76Þ

where Y0, ϕ0 are constants. For our purposes, ϕ0 ¼ 0 since
we ignore perturbations in the gravitational potential, as in
[20]. Y0 is an arbitrary normalization constant allowed by
the linearity of these equations. Effectively, this means that
the overall scale of the eigenfunctions is arbitrary. It must
be determined by external factors, such as the strength of
the force (tidal effects in a merger, for example). The
normalization has no impact on the numerical value of the
eigenfrequency. It is therefore conventional to choose
Y0 ¼ 1. We will make, for simplicity, and without loss
of generality, a slightly different choice:

l
ω2

Y0 ¼ 1 ð77Þ
so that (for l ¼ 2), ξr → r as r → 0. In practice, we start the
integration slightly off center, so ξr will be small but
nonzero. The other condition at the center becomes

δp
ρ

¼ ω2

l
rle−ν0 ; ð78Þ

FIG. 7. The Brunt-Väisälä frequency in a hybrid star of mass
1.4 M⊙. The ZL EOS does not include muons and parameters for
the nuclear and quark EOSs are as in Fig. 4. Quarks enter at
nB ≃ 0.42 fm−3 corresponding to r=R ¼ 0.383, and the mixed
phase extends beyond the central density. The value of N
decreases toward the core due to the decreasing value of g, even
as the sound speed difference does not change much.

FIG. 8. The mass-radius curves for a hybrid star (Gibbs construction) with EOS parameters chosen such that the mixed phase supports
Mmax ¼ 2.05 M⊙. In the left panel, muons are not included, whereas the right panel is with muons included.
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again, with l ¼ 2 for our case. For the relativistic form of
the oscillation equations, the above conditions still apply
with the change δp

ρ → δp
ϵþp. The boundary condition at the

surface is the vanishing of the Lagrangian pressure per-
turbation Δp ¼ c2sΔϵ ¼ 0. This projects out the radial
component of ξ⃗. In the nonrelativistic case, ∇p ¼ −ρg
while in the relativistic case, ∇p ¼ −gh with h ¼ ðϵþ pÞ
the enthalpy.
With some algebra, one can arrive at a simpler form of

Eqs. (1):

dU
dr

¼ g
c2s

U þ eλ=2
�
lðlþ 1Þeν

ω2
−
r2

c2s

�
V;

dV
dr

¼ eλ=2−ν
ω2 − N2

r2
U þ gΔðc−2ÞV; ð79Þ

where U ¼ r2eλ=2ξr, V ¼ δp=ðϵ þ pÞ, and Δðc−2Þ ¼
c−2e − c−2s .
We employ a fourth-order Runge-Kutta scheme to find a

global solution of the linear perturbation equations,

Eqs. (79), subject to the boundary conditions for the
relativistic case outlined above. Since the solution set
comprises overtones, we selected the lowest-order g-mode
(highest frequency) by checking that the radial eigenfunc-
tion ξr has only one node inside the star. The corresponding
eigenfrequency is plotted in the figures that follow. We
examine the trends of the g-mode vs mass for various
parameter choices, for the pure nuclear, self-bound, and
hybrid stars.
Figure 9 contrasts the influence of varying the density

dependence of the symmetry energy, by changing the slope
of the symmetry energy parameter L at ns, of the under-
lying ZL EOS for normal neutron stars with fixed K0 ¼
220 MeV and Sv ¼ 31 MeV. For L ¼ 60 MeV as well as
L ¼ 70 MeV, the softening effect of muons leads to a
noticeable increase in the g-mode frequency at a given
mass. Comparing L ¼ 60 MeV with L ¼ 70 MeV for a
fixed composition, however, the g-mode frequency forM ≳
0.5–0.6 M⊙ is higher for the stiffer EOS.
In Fig. 10, results contrasting the g-mode frequencies in

normal, hybrid, and self-bound stars are presented. The

FIG. 9. Contrasts of the g-mode frequencies vs mass of normal NSs for the ZL EOS without and with muons. The two curves with
different L’s in each panel are for EOSs with K0 ¼ 220 MeV, Sv ¼ 31 MeV, and γ1 ¼ 1.6.

FIG. 10. Contrasts of g-mode frequencies vs stellar mass in a hybrid star. Parameters of the EOSs are as in the insets. In the left panel,
muons are not included, whereas the right panel is with muons included.
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contents of this figure constitute the principal result of this
work, viz., the abrupt rise in the scale of the g-mode
frequency at the onset of the mixed phase in the hybrid star.
For the EOS parameters displayed in the figure, the jump
occurs around 1.4 M⊙, so that a hybrid star in a merger
would have a distinctly higher g-mode frequency than a
normal NS. In the top panel, the ZL EOS does not include
muons, whereas in the bottom panel the ZL EOS includes
muons. The g-mode frequency in the mixed phase is again
higher than in a pure phase, but since the mixed phase
appears at a higher density due to muons, the rise in the g-
mode is less dramatic compared to a hybrid star without
muons. Results for the self-bound star are shown here for
comparison, and to emphasize that its g-mode frequency is
comparatively small (10–50 Hz). Unlike the f-mode
frequency for the hybrid star, which gradually interpolates
between those of the normal NS and self-bound star [50,77]
and shows no dramatic effects of compositional changes,
the g-mode frequency for the hybrid star is the highest of all
and is sensitive to the onset of quarks—making it less
subject to ambiguity. One does not need to know the mass
of the star to ascertain if it can be a hybrid star if the g-mode
frequency can be precisely determined.
The unusually large g-mode frequency for the hybrid star

with a Gibbs mixed phase may be understood in a
qualitative sense using general thermodynamic consider-
ations without reference to details of the EOS. In general,
the equilibrium sound speed ce;mix in a system with two
conserved charges (μB and μQ) can be expressed as

c2e;mix ¼
dpmixðμB; μQÞ

dϵmix

¼ ∂pmix

∂μB
�
dμB
dϵmix

�
þ ∂pmix

∂μQ
�
dμQ
dϵmix

�
; ð80Þ

where μQ is the charge chemical potential. Glendenning
[61] showed that in such a situation, while μB is smooth at
the onset of the mixed phase, μQ is not, as there is freedom
to rearrange charges between the two phases to achieve
global charge neutrality and minimize the free energy. In
fact, the steady rise with density of μQ in the pure nuclear
phase changes abruptly to a decline in the mixed phase,
tempering the equilibrium sound speed as shown by our
numerical results presented in Fig. 6 and confirmed by
other works [78] which use different EOSs from ours for
the nucleon and quark sector. On the other hand, the
adiabatic sound speed cs;mix is evaluated at fixed compo-
sition and shows no such effect, and hence the difference of
the two sound speeds (usually small in a pure phase)
abruptly increases in the mixed phase. This is reflected as a
positive jump in the Brunt-Väisälä frequency and therefore
of the g-mode in the mixed phase.

VI. g-MODE ENERGY AND TIDAL FORCING

Unlike the Sun, where convection from within can drive
oscillations, any oscillations of an evolved NS likely
require an external agent to excite and sustain the pertur-
bation beyond its normal damping time. A violent event
such as a NS merger is bound to produce oscillations in the
premerger phase due to tidal forcing or in the postmerger
(ringdown) phase as the hypermassive remnant relaxes to
its stable rotating configuration. Here, we estimate the
impact of the g-mode on tidal phasing leading up to the
merger, as the g-mode spectrum in the postmerger remnant
can be modified by thermal and convective effects which
are beyond the scope of the current work. We follow [18]
and assume spherically symmetric nonrotating stars, the
Newtonian approximation to orbital dynamics, and quad-
rupolar gravitational wave emission. These simplifying
approximations allow for a first estimate of the excitation
energy and amplitude of the g-mode, as well as the
phase difference due to dynamic tides associated with the
g-mode (not to be confused with the quasistatic tides due to
global deformation). Our estimates can be systematically
improved by going to the post-Newtonian approximation or
numerical relativity.
The estimates are derived by modeling the NS as a forced

simple harmonic oscillator with a massM�, a radiusR�, and
a natural frequency ω ¼ ωg, the angular frequency of the g-
mode. The forcing comes from the quadrupolar moment of
the companion star’s gravitational force (mass M), which
couples to the g-mode. By following the analysis of [18],
we arrive at an expression for the accumulated phase error
ΔΦðtÞ caused by the g-mode:

ΔΦðtÞ ≈ 3πΓ
m

�
ΩeðtÞ
Ω

− 1

��
−
ΔE
E

�
; ð81Þ

where △E is the energy pumped into the g-mode, E is the
total (kinetic plus potential) orbital energy of the system,
ΩeðtÞ is the time-dependent orbital frequency of the binary,
andΩ ¼ ωg=m. The quantitym in Eq. (81) is the azimuthal
mode index (m ¼ 2 in this case). Finally, Γ is a quantity
that appears as a result of applying the stationary phase
approximation to the evaluation of the time to resonance
[18], and is quantified below. A ΔΦðtÞ of Oð1Þ signifies a
large deviation from the point particle approximation to the
gravitational waveform from the merger. Explicitly, the
quantity △E (for angular quantum number l) is given by

ΔE ¼
�

5π

384m

�
M=M�

½1þM=M��ð2lþ1Þ=3

�
c2R�
GM�

�
5=2

×
�
Ω
Ωd

�ð4l−7Þ=3�GM2�
R�

�
S2lm; ð82Þ

where Ωd ¼ ðGM�=R3�Þ1=2 is a natural frequency unit and
Slm is proportional to the overlap integral between the mode
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eigenstate jlmi and the vector spherical harmonic
jPlmi ¼ ∇½rlYlmðθ;ϕÞ�. The total instantaneous orbital
energy is E ¼ −GMM�=2a with a ¼ aðtÞ the instanta-
neous orbital separation. The evolution of the orbital
frequency for a circularized orbit using the formula for
quadrupolar gravitational wave emission gives

ΩeðτÞ ¼
1

8

�
aMc

c3

�
−5=8 1

τ3=8
; ð83Þ

whereMc is the chirp mass of the binary system and τ is the
time to coalescence. All quantities on the right-hand side in
Eq. (81) can be calculated, once the parameters of the
binary (M;M�; R�) and the resonant g-mode frequency are
fixed. We choose M ¼ M� ¼ 1.5 M⊙ for neutron/hybrid
stars and pure quark stars. The strongest tidal coupling is
likely to the l ¼ m ¼ 2 g-mode whose characteristic
frequency we choose as

ωgðNSÞ ≅ 2πð200Þ Hz;
ωgðHSÞ ≅ 2πð300Þ Hz; and

ωgðQSÞ ≅ 2πð40Þ Hz; ð84Þ

based on the g-mode eigenfrequencies in the previous
section. Even without computing Slm, one can estimate
from Eq. (83) the time at which the g-mode becomes
resonant as

τ0ðNSÞ ≅ 272 ms;

τ0ðHSÞ ≅ 103 ms; and

τ0ðQSÞ ≅ 22s; ð85Þ

where the zero of time is the moment of coalescence.
Assuming circularized orbits, standard equations of binary
orbit evolution aðtÞ [79] give

a0ðNSÞ ≅ 111 km;

a0ðHSÞ ≅ 85 km; and

a0ðQSÞ ≅ 326 km: ð86Þ

We note that the g-mode for the hybrid star, which has a
larger resonant frequency than neutron or quark stars, is
excited later in the merger and is likely to be stronger in
amplitude due to the close separation of the binary since the
forcing term is ∝ 1=a3 for l ¼ 2. Finally, from our
calculations for the g-mode eigenfunction and the associ-
ated density perturbation δϵðrÞ, we estimate

SNS
lm ≅ 4.5 × 10−3;

SHS
lm ≅ 6.2 × 10−3; and

SQS
lm ≅ 9.9 × 10−6 ð87Þ

using Eq. (40) for Slm from [32]. From these estimates,
Eq. (82) can be utilized to yield the estimated fractional
orbital energy pumped into the g-mode:



ΔEE





NS
≅ 2.3 × 10−3;



ΔEE





HS
≅ 5.9 × 10−3; and



ΔEE





QS
≅ 2 × 10−9; ð88Þ

and finally from Eq. (81), we obtain the phase error due to
the resonant excitation of the g-mode to be

△ϕNS ≅ 0.8; and

△ϕHS ≅ 0.45;

△ϕQS ≅ 6 × 10−4: ð89Þ

Note that ΔϕNS and △ϕHS are comparable. Despite ðΔEE Þ
being larger for a hybrid star as expected, its higher g-mode
frequency means it is excited later in the merger, when there
is less time left for accumulating a phase error. These results
are very sensitive to the value of Slm (ΔΦ ∝ S2lm), which
itself canvary by a factor of 2 ormore dependingon theEOS.

A. Comparison with other works

Table I compares our results for zero-temperature core g-
modes in the Gibbs mixed phase of hadrons and quarks
with other works, some of which also find an enhancement
of the frequency due to other compositional mixes or
collective fluid effects like superfluidity, although values in
the table do not include the effect of entrainment on the g-
mode, which has also been studied. Details about the
different EOSs used, the effect of nonzero temperature and
entrainment can be found by perusing the respective
reference. We confirm the value of the g-mode frequency
for npe and npeμ nonsuperfluid matter described by the
Akmal-Pandharipande-Ravenhall (APR)-EOS as reported
in [29], which also serves as a test of our numerics. In
comparison to [29] with the APR-EOS or [33] with the
SLy4 equation of state, the ZL-EOS yields a larger value of
the g-mode frequency as it is less stiff than either of those
two. While the EOS and the treatment of gravitational
perturbations differ between the cited works, the results for
npeμ matter with superfluidity appear to be in general
agreement with each other. Note the considerably larger
value of the g-mode frequency for hyperonic stars with
superfluidity compared to hybrid stars or superfluid neu-
tron stars. All of these, in turn, are larger than nonsuperfluid
neutron/hyperonic stars although the latter employ
Newtonian gravity. A study of g-mode frequencies and
damping times in superfluid hybrid stars is a future
objective that would make this comparison more complete.
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VII. SUMMARY AND CONCLUSIONS

The main objective of this work was to ascertain the
characteristics of g-mode oscillations of NSs containing
QM in their cores. Toward this end, the nucleon-to-quark
phase transition was treated using Gibbs construction,
which renders an otherwise sharp first-order transition
smooth. The cores of such hybrid stars accommodate
admixtures of nucleonic and quark matter, the pure quark
phase never being achieved. This feature, while allowing
contrasts between the structural properties (e.g.,M vs R) of
normal and hybrid stars to be made also permits compar-
isons of observables that depend on their interior compo-
sitions, such as short- and long-term cooling, oscillation
modes, etc. Determining the composition of the star is
essential to break the degeneracy that exists in the masses
and radii of normal and hybrid stars, as one may be
masquerading as the other.
The nucleonic part of the EOS used in this work tallies

with nuclear systematics near and below ns in addition to
being consistent with results from modern chiral effective
field theory (EFT) calculations up to 2ns for which
uncertainty quantifications have been made. The EOS
employed in the quark sector is sufficiently stiff, and hence
nonperturbative, to support ∼2 M⊙ NSs required by recent
observations. Furthermore, the overall EOS gives radii of
∼1.4 M⊙ stars that lie within the bounds of recent
determinations. The EOS is also consistent with the tidal
deformation inferred from gravitational wave detection in
the event GW170817. The Appendix summarizes the
structural properties for the EOSs used and provides
mathematical details for the derivation of the sound speeds.
Unlike for M-R curves for which only the pressure vs

density relation (EOS) is sufficient, the analysis of g-mode
oscillations requires simultaneous information about
the equilibrium and adiabatic squared sound speeds,

c2e ¼ dp=dϵ and c2s ¼ ∂p=∂ϵjx, where x is the local proton
fraction. The distinction between these two sound speeds
plays a central role in determining the Brunt-Väisälä
frequencies ω2 ∝ c−2e − c−2s of nonradial g-mode oscilla-
tions. Thus, a future detection of g-modes would take
gravitational wave astronomy beyond the current capability
of M-R measurements to determine the composition of
the star.
We find that the g-mode is sensitive to the presence of

QM in NSs, where quarks are part of a mixed phase with
nuclear matter in the core. The equilibrium sound speed
drops sharply at the boundary of the mixed phase (Fig. 5),
raising the local Brunt-Väisälä frequency and the funda-
mental g-mode frequency of the star (Fig. 6). Contrasts of
g-mode frequencies between normal and hybrid stars
containing quark matter (Fig. 9) form the principal results
of our work.
Our analysis leads to the conclusion that in binary

mergers where one or both components may be a hybrid
star, the fraction of tidal energy pumped into the resonant g-
mode in hybrid stars can exceed that of a NS by a factor of 2
to 3, although resonance occurs later in the inspiral. On the
other hand, a self-bound star has a much weaker tidal
overlap with the g-mode. The cumulative tidal phase error
in hybrid stars Δϕ ≅ 0.5 is comparable to that from tides in
ordinary NSs. While this happenstance may present a
challenge in distinguishing between the two cases, should
the g-mode be excited to sufficient amplitude in a post-
merger remnant, its frequency spectrum would be a
possible indication for the existence of non-nucleonic
matter, including quarks. The detection of such g-mode
frequencies in binary mergers observed by current gravi-
tational wave detectors seems challenging, but possible
with next generation detectors.
The novel features of this work include (i) use of

nucleonic EOSs that are consistent with constraints from

TABLE I. Comparison of characteristic g-mode frequencies (denoted by ωg in the table) reported in a selection of
the literature. As other works usually fix the stellar massM, we include this information. The symbol Λ is used here
as a shorthand to denote hyperonic degrees of freedom and SF denotes superfluidity in the nucleonic sector. Values
of fg that vary with the NS mass can be inferred from Figs. 9 and 10 of this work. The entries are representative, not
exhaustive.

Authors [Ref.] Core composition M (M⊙) fg ¼ ωg=ð2πÞ (kHz)
Reisenegger and Goldreich [17] npe 1.405 0.215
Lai [20] npe 1.4 0.073
Kantor and Gusakov [29] npe 1.4 0.13
Kantor and Gusakov [29] npeμ 1.4 0.19
Kantor and Gusakov [29] npeμðSFÞ 1.4 0.46
Dommes and Gusakov [30] npeμΛðSFÞ 1.634 0.742
Yu and Weinberg [33] npeμ 1.4 0.13
Yu and Weinberg [33] npeμðSFÞ 2.0 0.45
Rau and Wasserman [34] npeμðSFÞ 2.0 0.45
Jaikumar et al. (this work) npe 1.4 0.24
Jaikumar et al. (this work) npeμ 1.4 0.27
Jaikumar et al. (this work) npeμq 2.0 0.58
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modern chiral EFT calculations coupled with sufficiently
stiff quark EOSs to calculate structural properties of hybrid
stars that lie within the bounds of astrophysical measure-
ments, (ii) a first calculation of the two sound speeds and
the principal g-mode frequency of hybrid stars employing
Gibbs phase criteria, and (iii) a concomitant analysis of
tidal phase effects in a binary merger due to g-modes in
hybrid stars. In future work, we aim to report on g-mode
frequencies in alternative treatments of quark matter in NSs
such as a first-order nucleon-to-quark phase transition and
crossover transitions as in quarkyonic matter.
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APPENDIX: DETERMINATION
OF EOS CONSTANTS IN SNM
AND PNM FOR THE ZL EOS

1. SNM

The constants a0, b0, and γ in Eq. (10) for SNM are
determined by utilizing the empirical properties of SNM at
u ¼ 1. Specifically, the values used are E1=2 ¼ −B ¼
−16 MeV at ns ¼ 0.16 fm−3, p1=2=ns ¼ 0, and K1=2 ¼
220 MeV. Manipulating the relations

−B ¼ T1=2 þ a0 þ b0; ðA1Þ

0 ¼ T 0
1=2 þ a0 þ γb0; ðA2Þ

K1=2

9
¼ T 00

1=2 þ 2T 0
1=2 þ 2a0 þ γðγ þ 1Þb0; ðA3Þ

the constants are given by

γ ¼ K1=2=9 − T 00
1=2

T1=2 − T 0
1=2 þ B

;

b0 ¼
K1=2=9 − T 00

1=2

γðγ − 1Þ ; and

a0 ¼ −B − T1=2 − b0; ðA4Þ

where T 0
1=2 ¼ u dT1=2

du and T 00
1=2 ¼ u2 d2T1=2

du2 . Explicit expres-
sions for these derivatives are

T 0
1=2 ¼

pkin
1=2

n






ns

¼ 1

ns
·

2

12π2

�
kFEF

�
k2F −

3

2
M2

B

�

þ 3

2
M4

B ln

�
kF þ EF

MB

��
kFs

;

T 00
1=2 ¼

Kkin
1=2

9
− 2T 0

=12 ¼
k2Fs
3EFs

− 2T 0
=12; ðA5Þ

where kFs ¼ ð3π2ns=2Þ1=3. To obtain the first term in the
rightmost equality above, it is advantageous to use the
thermodynamical identity p ¼ nμ − ϵ for the kinetic parts,
whence dp

dn ¼ n dμ
dn ¼ dμ

dkF
dkF
dn . The result quoted above ensues

from the relations dkF
dn ¼ kF

3n and μ ¼ EF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM2

B

p
, both

evaluated at ns and kFs.
Numerical values of the derivatives and constants so

derived are

T1=2 ≃ 21.79 MeV; T 0
1=2 ≃ 14.34 MeV;

T 00
1=2 ¼ −5.030 MeV; γ ≃ 1.256;

a0 ≃ −129.3 MeV; and b0 ≃ 91.49 MeV; ðA6Þ

as in ZL. For other permissible values of K1=2 in the range
220� 30 MeV, Eqs. (A4) and (A5) can be used to
determine the corresponding constants.

2. PNM

In the PNM sector in which x ¼ 0, the constants in
Eq. (15) to determine are a1, b1, and γ1. As in SNM, E0 and
T0 are relative to the baryon massMB. Denoting the energy
per baryon of PNM by E0, its various terms and the
associated pressure are

E0 ¼ T0 þ V0 ¼ T0 þ a1uþ b1u
γ
1;

p0 ¼ ns

�
u2

dE0

du

�
¼ nsðu2T 0

0 þ a1u2 þ γ1b1uγ1þ1Þ: ðA7Þ

Evaluating the above equations at u ¼ 1 leads to

E0 ¼ Sv − B ¼ T0 þ a1 þ b1; ðA8Þ

p0 ¼ nsðT 0
0 þ a1 þ γ1b1Þ; ðA9Þ

where Sv ¼ ðE0 − E1=2Þ at u ¼ 1. The last equation above
is generally written as
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p0

ns
¼ L

3
with L ¼ 3

�
n
dSv
dn

�
ns

¼ 3½uS0v�u¼1 so that

L
3
¼ T 0

0 þ a1 þ γ1b1; ðA10Þ

where S0v ¼ dSv
du . Manipulating Eqs. (A8) and (A10) leads to

the relations

b1 ¼
L
3
þ B − Sv þ T0 − T 0

0

γ1 − 1
and

a1 ¼ Sv − B − T0 − b1: ðA11Þ

Taking guidance from the empirical properties of isospin
asymmetric nuclear matter, we choose Sv ¼ 31 MeV, L in
the range (30–70) MeV, and γ1 ¼ 5=3. The resulting values
of the constants are

a1≃−
�
L
2
þ14.72

�
MeV and b1≃

�
L
2
−4.62

�
MeV:

ðA12Þ

3. Sensitivity of the EOS constants

The EOS constants above depend on the input values of
B, ns, K0 and Sv, L, γ1 in SNM and PNM, respectively.
Although we have used representative values for these
quantities at u ¼ 1, nuclear data permit variations in them.
Furthermore, one or more sets of these constants may be
correlated, as, for example, SV and L. Additional con-
straints are to support ≃2 M⊙ NSs and to maintain
causality, at least within the star. These points must be
borne in mind when varying the input values, particularly
when correlated errors are present in theoretical evaluations
of these quantities.

4. NS properties with the ZL EOSs

The various properties shown in Table II below are for
beta-equilibrated normal NSs and correspond to variations
in the characteristic properties of the ZL EOSs.
Structural properties of hybrid stars are discussed and

shown in various figures in the text.

5. Proof of equivalence of Eqs. (40) and (51)

Here we establish the equivalence of the direct approach
to computing c2s from Eq. (40) with that from Eq. (51) for a
general EOS with a parabolic dependence of the proton
fraction x in the case of n, p, e matter. Both approaches
yield identical results, which we have verified numerically
as well.

The equilibrium squared sound speed is

c2e ¼
�
dP
dϵ

�
eq
¼

nB d
dnB

ðPbar þ PeÞ
ðϵþ PÞ ; ðA13Þ

where the total pressure P ¼ Pbar þ Pe is comprised of the
pressure from baryons and electrons. Writing

d
dnB

¼ ∂
∂nB þ dx

dnB

∂
∂x ; ðA14Þ

we get

c2e ¼
ðnB ∂Pbar∂nB þ nB

∂Pe∂nBÞ
ϵþ P

þ
nBð∂Pbar∂x

dx
dnB

þ ∂Pe∂x
dx
dnB

Þ
ϵþ P

: ðA15Þ

Comparing this with Eq. (39), the first term on the right-
hand side is simply c2s. For the specific case of an EOS with
parabolic dependence in x (of which the APR-EOS in
Kantor and Gusakov [29] and the ZL-EOS in Zhao and
Lattimer [43] are examples), we have

Eðu;xÞ¼E0ðuÞþð1−2xÞ2S2ðuÞ; u¼ nB=n0; ðA16Þ

where n0 is the saturation density, E0 the energy per
baryons (neutrons and protons), and S2 the symmetry
energy. Computing the pressure and its derivatives with
respect to nB and x for the EOS in Eq. (A16), we find

TABLE II. Structural properties of nucleonic NSs with M ¼
1.4 M⊙ and Mmax for the ZL EOSs. For each mass, the
compactness parameter β ¼ ðGM=c2RÞ ≃ ð1.475=RÞðM=M⊙Þ,
nc, pc, and yc are the central values of the density, pressure,
and proton fraction, respectively. The corresponding equilibrium
squared speeds of sound are denoted by c2e. The Λ’s denote tidal
deformabilities.

Property ZL-A ZL-B ZL-C Units

K0 220 220 240 MeV
Sv 31 31 31 MeV
L 50 70 60 MeV
γ1 1.6 1.6 1.8
R1.4 11.77 12.69 12.61 km
β1.4 0.175 0.163 0.164
nc;1.4=ns 3.35 2.78 2.75
pc;1.4 83.65 60.59 61.50 MeV fm−3

ðc2eÞc;1.4 0.385 0.345 0.363 c2

Λ1.4 713.4 970.2 504.1
Rmax 10.01 10.68 10.8 km
Mmax 1.997 2.02 2.13 M⊙
βmax 0.294 0.279 0.291
nc;max=ns 7.71 6.96 6.67
pc;max 798.89 602.04 646.7 MeV fm−3

ðc2eÞc;max 0.874 0.777 0.866 c2

Λmax 9.11 9.6 6.39
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∂Pbar

∂x ¼ −4nBð1 − 2xÞuS02; ðA17Þ

where the prime on S2 is with respect to u. Since (assuming
massless electrons) ∂Pe∂x ¼ 1

3
nBμe, it follows that

c2e ¼ c2s þ
1

μn

�
μe
3
− 4ð1 − 2xÞuS02

�
nB

dx
dnB

: ðA18Þ

From the β-equilibrium condition

μe ¼ 4S2ð1 − 2xÞ ⇒ μe=ð4S2Þ ¼ ð1 − 2xÞ; ðA19Þ

we get upon differentiation

1

4S2

�
dμe
dnB

�
−
�
μe
4S22

��
dS2
dnB

�
¼ −2

�
dx
dnB

�
: ðA20Þ

Using

�
dμe
dnB

�
¼ μe

3x

�
dx
dnB

�
þ μe
3nB

; ðA21Þ

and solving for dx=dnB from Eq. (A20), a minor rear-
rangement yields

nB

�
dx
dnB

�
¼ −ðμe

3
− 4ð1 − 2xÞuS02Þ
ðμe
3x þ 8S2Þ

: ðA22Þ

Putting together Eqs. (A22) and (A18), we get

c2e ¼ c2s −
1

μn

ðμe
3
− 4ð1 − 2xÞuS02Þ2
ðμe
3x þ 8S2Þ

: ðA23Þ

Comparing Eq. (A23) with Eqs. (51), (55), and (57) in the
text, namely,

c2s ¼ c2e þ
½nBð ∂μ̃

∂nBÞx�
2

μnð∂μ̃∂xÞnB
; ðA24Þ

nB
∂μ̃
∂nB ¼ μe

3
− 4ð1 − 2xÞuS02; ðA25Þ

∂μ̃
∂x ¼ 1

3

μe
x
þ 8S2ðuÞ; ðA26Þ

we see that Eq. (51) is consistent with the direct definition
of c2s from Eq. (40) and that Eq. (51) applies in general for
any form of the EOS with a parabolic dependence in x,
although in the text we arrived at Eqs. (55) and (57) in the
context of the ZL-EOS.

6. Derivation of Eqs. (59)–(61)
In npeμ matter, we choose the independent variables to

be the baryon density nB, the lepton fraction x, and the
muon fraction y≡ xμ. The electron fraction xe is the
difference x − y.
The starting point for the speed-of-sound difference is

c2s − c2e ¼
1

μavg

∂P
∂nB






x;y

−
1

μn

dP
dnB

: ðA27Þ

The total derivative of the pressure PðnB; x; yÞ with respect
to nB is given by

dP
dnB

¼ ∂P
∂nB






x;y

þ ∂P
∂x





nB;y

dx
dnB

þ ∂P
∂y





nB;x

dy
dnB

ðA28Þ

and therefore

c2s − c2e ¼
�

1

μavg
−

1

μn

� ∂P
∂nB






x;y

−
1

μn

�∂P
∂x





nB;y

dx
dnB

þ ∂P
∂y





nB;x

dy
dnB

�
ðA29Þ

¼
�
μn − μavg
μavgμn

� ∂P
∂nB






x;y

−
1

μn

�∂P
∂x





nB;y

dx
dnB

þ ∂P
∂y





nB;x

dy
dnB

�
: ðA30Þ

The average chemical potential μavg is

μavg ¼ ð1 − xÞμn þ xμp þ ðx − yÞμe þ yμy; ðA31Þ

which means that

μn − μavg ¼ xðμn − μp − μeÞ þ yðμe − μμÞ
≡ −xμ̃x − yμ̃y ðA32Þ

with the obvious definitions for μ̃x and μ̃y.
In β equilibrium μn ¼ μavg (as well as μ̃x ¼ μ̃y ¼ 0) and,

correspondingly,

c2s − c2e ¼ −
1

μn

�∂P
∂x





nB;y

dx
dnB

þ ∂P
∂y





nB;x

dy
dnB

�
; ðA33Þ

which is Eq. (59) in the main text. Using P ¼ n2B
∂E
∂nB jx;y, the

speed-of-sound difference can be expressed as

c2s − c2e ¼ −
n2B
μn

∂
∂nB

�∂E
∂x





nB;y

dx
dnB

þ ∂E
∂y





nB;x

dy
dnB

�




x;y

¼ −
n2B
μn

�∂μ̃x
∂nB






x;y

dx
dnB

þ ∂μ̃y
∂nB






x;y

dy
dnB

�
: ðA34Þ
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The calculation of dx
dnB

and dy
dnB

begins from the total
differentials of μ̃x and μ̃y, which are

dμ̃x ¼
∂μ̃x
∂nB






x;y
dnB þ ∂μ̃x

∂x





nB;y

dxþ ∂μ̃x
∂y





nB;x

dy ¼ 0 ðA35Þ

and

dμ̃y ¼
∂μ̃y
∂nB






x;y
dnB þ ∂μ̃y

∂x





nB;y

dxþ ∂μ̃y
∂y





nB;x

dy ¼ 0: ðA36Þ

From the former differential, it follows that

dy ¼ −1
∂μ̃x∂y




nB;x

�∂μ̃x
∂nB






x;y
dnB þ ∂μ̃x

∂x





nB;y

dx

�
; ðA37Þ

which, when substituted into the latter, leads to

0 ¼ ∂μ̃y
∂nB






x;y
dnB þ ∂μ̃y

∂x





nB;y

dx

−

∂μ̃y
∂y




nB;x

∂μ̃x∂y




nB;x

�∂μ̃x
∂nB






x;y
dnB þ ∂μ̃x

∂x





nB;y

dx

�
: ðA38Þ

One then collects terms proportional to dnB and dx

 ∂μ̃y
∂nB






x;y

−

∂μ̃y
∂y




nB;x

∂μ̃x∂y




nB;x

∂μ̃x
∂nB






x;y

!
dnB

¼ −

 ∂μ̃y
∂x





nB;y

−

∂μ̃y
∂y




nB;x

∂μ̃x∂y




nB;x

∂μ̃x
∂x





nB;y

!
dx ðA39Þ

or, equivalently,

dx
dnB

¼
∂μ̃x∂y




nB;x

∂μ̃y
∂nB




x;y

− ∂μ̃y
∂y




nB;x

∂μ̃x∂nB




x;y

∂μ̃x∂y




nB;x

∂μ̃y
∂x




nB;y

− ∂μ̃y
∂y




nB;x

∂μ̃x∂x




nB;y

: ðA40Þ

Similarly,

dy
dnB

¼
∂μ̃x∂x




nB;y

∂μ̃y
∂nB




x;y

− ∂μ̃y
∂x




nB;y

∂μ̃x∂nB




x;y

∂μ̃x∂x




nB;y

∂μ̃y
∂y




nB;x

− ∂μ̃y
∂x




nB;y

∂μ̃x∂y




nB;x

: ðA41Þ

The speed-of-sound difference, as given by Eqs. (A34),
(A40), and (A41), is physically transparent because β-
equilibrium and compositional gradients are brought to the
forefront via μ̃xðyÞ and ∂=∂xðyÞ, respectively [the latter two
equations are Eqs. (60) and (61) in the main text]. However,
this intuitive picture comes at the expense of computational
complexity.
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