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This study addresses the collapse behavior of neutron star (NS) mergers expressed through the binary
threshold mass Mthres for prompt black-hole (BH) formation, which we determine by relativistic
hydrodynamical simulations for a set of 40 equation of state (EOS) models of NS matter. Mthres can
be well described by various fit formulas involving stellar parameters of nonrotating NSs, which are
employed to characterize the EOS models. Using these relations we compute which constraints on NS radii
and the tidal deformability are set by current and future merger detections that reveal information about the
merger product. We systematically investigate the impact of the binary mass ratio q ¼ M1=M2 and
assemble various fits, which make different assumptions about a-priori knowledge. This includes fit
formulas forMthres for a fixed mass ratio or a range of q if this parameter is not known very well. Also, we
construct relations describing the threshold to prompt collapse for different classes of candidate EOSs,
which for instance do or do not include models with a phase transition to quark matter. In particular, we find
fit formulas for Mthres including an explicit q dependence, which are valid in a broad range of 0.7 ≤ q ≤ 1

and which are nearly as tight as relations for fixed mass ratios. For most EOS models except
for some extreme cases the threshold mass of asymmetric mergers is equal or smaller than the one of
equal-mass binaries. Generally, the impact of the binary mass asymmetry on Mthres becomes stronger with
more extreme mass ratios, whileMthres is approximately constant for small deviations from q ¼ 1, i.e., for
0.85 ≤ q ≤ 1. The magnitude of the reduction of Mthres with the binary mass asymmetry follows a
systematic EOS dependence. We also describe in more detail that a phase transition to deconfined
quark matter can leave a characteristic imprint on the collapse behavior of NS mergers. The occurrence of
quark matter can reduce the stability of the remnant and thus the threshold mass relative to a purely
hadronic reference model. Comparing specifically the threshold mass and the combined tidal deformability
Λ̃thres of a system with Mthres can yield peculiar combinations of those two quantities, where Mthres is
particularly small in relation to Λ̃thres. Since no purely hadronic EOS can yield such a combination ofMthres

and Λ̃thres, a combined measurement or a constraint on both quantities can indicate the onset of quark
deconfinement. Finally, we point out new univariate relations betweenMthres and stellar properties of high-
mass NSs, which can be employed for direct EOS constraints or consistency checks in combination with
other measurements.

DOI: 10.1103/PhysRevD.103.123004

I. INTRODUCTION

The merging of two neutron stars (NSs) leads to either
the formation of a black hole (BH) or a NS remnant [1–3].
A direct gravitational collapse takes place if the total mass
of the system is higher than some threshold mass beyond
which the forming remnant cannot be stabilized. For lower
total binary masses rapid differential rotation and thermal
pressure support the central object against prompt collapse

even if the total mass exceeds the maximum mass of
nonrotating NSs. Such systems may undergo a delayed
collapse to a BH as a result of angular momentum losses
and redistribution and cooling. The lifetime of the meta-
stable remnant decreases with higher total masses up to the
threshold where a BH forms on a dynamical timescale of
about a millisecond [4–15]. The outcome of a merger is
predominantly determined by the total mass of the binary
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Mtot relative to the threshold binary mass for prompt BH
formation Mthres, which is thus the crucial parameter to
characterize the merger product [16,17].
The immediate merger outcome is highly important

because it determines the properties of postmerger gravi-
tational waves (GWs) and the features of the electromag-
netic counterpart, for instance, the quasithermal emission
powered by the radioactive decays of nuclei synthesized by
the rapid neutron-capture process (so-called kilonovae) and
radiation produced by relativistic outflows, e.g., [18–37].
Therefore, it is important to understand the collapse
behavior of NS mergers, which is quantitatively expressed
through the threshold binary mass.
The dynamics of a NS merger in general depend on the

incompletely known equation of state (EOS) of high-
density matter [38–40]. Therefore, the EOS determines
the merger product for a given binary configuration as one
of the most basic characteristics. The actual threshold
binary mass Mthres for prompt BH formation is thus
currently unknown and has to be specified for every
EOS model. The EOS dependence of the threshold
mass can be expressed by stellar parameters of non-
rotating NSs, which are uniquely linked to the EOS. In
Ref. [17] we pointed out that the threshold mass can be well
described by the maximum mass and radii of nonrotating
NSs. Specifically, we found tight relations Mthres ¼
MthresðMmax; R1.6Þ and Mthres ¼ MthresðMmax; RmaxÞ with
R1.6 and Rmax being the radius of 1.6 M⊙ NS and the
radius of the nonrotating maximum-mass configuration,
respectively. Because of its EOS dependence, a measure-
ment of Mthres, in turn, constrains the EOS of NS matter.
This prospect is in particular interesting because the
threshold mass probes the very high-density regime of
the EOS. For instance, the inversion of MthresðMmax; R1.6Þ
with some information on R1.6 can yield the maximum
mass Mmax of nonrotating NSs. Also, constraints on Mthres
can be employed for current and future multimessenger
interpretations of merger events to infer NS properties like
radii and tidal deformabilities as in [8,41–49].
The merger outcome leaves a very strong imprint on

different observables, like the postmerger GW signal or
kilonova features. The binary masses of a merger event are
measurable with good precision at sufficiently close dis-
tances [50,51] implying that Mthres can be determined by a
number of events with different binary masses and infor-
mation on the respective merger product. The system with
the lowest total mass and observational indications for a
prompt collapse gives an upper limit on Mthres, whereas a
detection with characteristics excluding a prompt collapse
limits Mthres from below. In practice, only the chirp mass
M ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5 is measured with high
precision, which provides an estimate of the total binary
mass in combination with a constraint on the binary mass
ratio q ¼ M1=M2. The mass ratio may only be given with
limited accuracy for events at larger distances [50,51]. It is

thus critical to address the influence of the mass ratio on the
collapse behavior as in some cases only the total mass or
the chirp mass will be known with good precision.
In Ref. [49] we extended the analysis of the collapse

behavior: (1) We considered a very large set of candidate
EOSs to essentially cover the full range of viable hadronic
models with a fine sampling. (2) We systematically
determined the threshold mass for asymmetric binary
mergers, which we further detail here. (3) We expressed
the collapse behavior by various new functions, i.e., fit
formulas linking Mthres, Mmax and other stellar parameters.
We devised bivariate relations withMmax as an independent
variable to be determined or constrained from measure-
ments, but as bilinear functions the relations can be easily
inverted. These new relations are more accurate and
consider different dependent variables, which might be
measured more precisely. This includes in particular the
(combined) tidal deformability, which is the stellar
parameter describing EOS effects during the inspiral
and is thus the quantity which can be directly obtained
from a GW measurement, e.g., [52–56]. The combined
tidal deformability of a binary system is defined by
Λ̃¼ 16

13ðM1þM2Þ5 ððM1þ12M2ÞM4
1Λ1þðM2þ12M1ÞM4

2Λ2Þ,
where the tidal deformabilities of the individual binary

components are given by Λ1;2 ¼ 2
3
k2ðM1;2ÞðRðM1;2Þ

M1;2
Þ5 with

the stellar radius R and the tidal Love number k2. These
new expressions of the collapse behavior are directly
relevant for more accurate EOS constraints [8,41–46,48]
from multimessenger observations and for the implemen-
tation in analysis pipelines [20–22,24,30–33,48,57]. (4)
Finally, in [49] we identified a new signature, which is
indicative of the occurrence of the hadron-quark phase
transition, which may or may not take place in NSs. By
considering a large sample of hybrid EOSs with a first-
order phase transition to deconfined quark matter [58–62],
we find that some of those models can lead to relatively low
threshold masses in comparison to the combined tidal
deformability Λ̃thres at the threshold, i.e., the tidal deform-
ability of the system with total binary mass Mtot ¼ Mthres.
Specifically, the comparison between Mthres and Λ̃thres
reveals combinations of both quantities where Mthres is
particularly small for the given Λ̃thres. Such combinations of
Mthres and Λ̃thres do not occur for any purely hadronic EOS
within our large representative sample of models.
Therefore, a combined measurement of both quantities
can yield evidence for the appearance of a phase of
deconfined quark matter in NSs. We refer to Ref. [49]
for a more detailed motivation and discussion of these
different aspects and their applications.
Here we discuss more details of the collapse behavior of

NS mergers as follow-up to our previous study. First, we
describe a more complete and more comprehensive set of fit
formulas for the binary threshold mass for prompt BH
formation. As one example, these fit formulas can be used
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for constraints on NS properties like the radius that can be
inferred from merger events which provide information
about the merger outcome. Second, we explicitly quantify
which EOS constraints are implied by a measurement of a
merger with a given total mass. Hence, the resulting
formula can be immediately applied to any new detection.
Third, we quantify the impact of the binary mass ratio on
the stability of the merger remnant. In particular, we
develop fit formulas for the threshold mass valid for a
range of binary mass ratios, which are as tight as relations
for a fixed mass ratio. We also provide a tentative
explanation of the mass ratio impact on the merger
stability based on a semianalytic model. Fourth, we
discuss in more detail the recently proposed signature
of the hadron-quark phase transition, which is based on
the collapse behavior of NS mergers [49]. We extend these
considerations to asymmetric binaries and we describe
general EOS dependencies of the collapse behavior,
which may be useful for additional constraints on
the EOS. Fifth, we point out new univariate relations
between the threshold massMthres and stellar properties of
high-mass NSs, which can be employed for EOS con-
straints and consistency checks in GW data analysis.
Interestingly, these relations are insensitive to the presence
of a phase transition.
One of our main findings is that Mthres depends on the

binary mass ratio in a systematic way, while previous
studies have only tentatively assessed the impact of q
[17,47,63,64]. For most EOS models the threshold mass of
asymmetric mergers is smaller than or equal to the one of
the equal-mass binary. Importantly, the difference in the
threshold mass between equal-mass binaries and asym-
metric mergers is influenced by the EOS. We find general
formulas for the threshold binary mass which include the
mass ratio as a parameter and still yield an accurate
description of Mthres with a precision comparable to that
of formulas for fixed q.
Understanding the impact of q on the collapse behavior

is important for at least two reasons. First, as mentioned
the binary mass ratio may not be inferred with high
precision from a measurement with lower signal-to-noise
ratio. Hence, in practice relations for Mthres which are
valid for a range of mass ratios are often required. Recall
that for instance the mass ratio of GW170817 was found
to be in the range 0.7 ≤ q ≤ 1 [26,65]. Second, for
determining the threshold mass for prompt collapse,
different detections with information on the merger out-
come and measured total binary mass (or chirp mass) have
to be combined. Even if those measurements yield
relatively precise q estimates, the different events may
have different mass ratios. Therefore, it is indispensable to
quantify the detailed influence of q on Mthres especially if
the threshold mass is employed for EOS constraints and
for the interpretation of merger observations (including
the implementation in analysis pipelines). See for instance

[20–22,24,30–33,41,44,48,57,66] for a direct application
of relations describing Mthres.
This paper is organized as follows. Section II provides

background information on the simulations and in particu-
lar on the EOS sample studied in this paper and in Ref. [49].
We introduce different classes of EOSs, which are moti-
vated by which additional information on the EOS may be
available. We describe different relations quantifying the
collapse behavior of NS mergers and describe their
application for EOS constraints in Sec. III. This section
also includes a discussion of current and future constraints
on NS properties inferred from the collapse behavior. In
Sec. IV we focus on the impact of the mass ratio on Mthres
and develop generalized fit formulas, which explicitly
include q. Section V presents an intuitive toy model, which
reproduces our findings. Section VI discusses the afore-
mentioned signature of the hadron-quark phase transition,
which is based on a comparison between Mthres and Λ̃thres.
We provide more details on the impact of the mass ratio and
describe the influence of general EOS properties. We
present some additional, useful univariate relations linking
the collapse behavior of NS mergers, i.e., Mthres, and
properties of high-mass NSs in Sec. VII. We summarize
in Sec. VIII.
In this paper masses refer to the gravitational mass.

Binary masses including Mthres are considered at infinite
orbital separation. We define the mass ratio as q ¼ M1=M2

with M1 ≤ M2.

II. EQUATION OF STATE SAMPLE AND
SIMULATION DATA

In this paper we extend our study of the collapse
behavior of NS mergers in [49] by providing a more
detailed discussion and pointing out additional relations.
We describe results for the same set of NS merger
simulations considering the same 40 EOS models [58–
62,67–92]. These high-density models include a subset of
EOSs with a phase transition to deconfined quark matter.
We refer the reader to Ref. [49] and its Supplemental
Material, where more details about the simulations and in
particular the EOS models can be found.
For the sake of completeness we summarize some main

features of the simulation data discussed here. We group the
40 EOS models in three subsets.
(a) We identify a “base sample” containing 23 purely

hadronic models which are compatible with current
astrophysical constraints [67–87]. Specifically, we
require those models to be consistent with the limits
on the maximum mass on nonrotating NSs inferred
from pulsar observations [93,94] and with constraints
on the tidal deformability from GW170817 [65].

(b) We extend this set of models with an “excluded
hadronic sample” which contains 8 EOSs [77–
80,88–91]. These models describe purely hadronic
matter and are incompatible with the aforementioned
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astrophysical constraints. Mostly, they are in tension
with the tidal deformability limit and at least margin-
ally in agreement with current knowledge about Mmax
[93,94]. Generally, these EOSs are rather stiff and lead
to relatively large NS radii.

(c) Finally, we consider a “hybrid sample” of 9 models
which include a phase transition to deconfined quark
matter [58–62,73,92]. These EOSs employ the same
description of hadronic matter [71–73], i.e., at den-
sities below the phase transition density. The models
make different assumptions about the properties of
quark matter, which leads to different stellar param-
eters of hybrid stars. Note that also the onset density of
the phase transition varies among the models. All
EOSs of this set are compatible with the astrophysical
constraints mentioned above; and the hadronic part at
lower and moderate densities is consistent with ex-
perimental constraints from [40,95–98].

The classification of the different EOS models can be
found in Table IX in Appendix A that contains also the
corresponding references and acronyms, which we will
employ here. The table lists also certain stellar properties
and the simulation results. Considering the stellar proper-
ties we argue that our set of hadronic EOSs covers the full
range of possible models in the sense that the true EOS
should have stellar parameters which are close to one of the
models within our sample. This does not apply to the
hybrid sample, since all those models employ the same
low-density EOS and the possibility of a phase transition
introduces additional degrees of freedom, e.g., the onset
density, the latent heat and the exact properties of the quark
phase. However, the hadronic part of the hybrid EOSs falls
roughly in the middle of the allowed range of stellar
parameters. This choice thus represents an EOS from
which only moderate deviations may be expected. The
quark matter EOSs of the hybrid sample vary significantly
leading to a broad variety of different stellar parameters
(see also Figs. 4 and 5 in [45]). We also refer to Fig. 1 of the
Supplemental Material of [49] illustrating the variety of
EOS models by their mass-radius relations.
For all EOS models we determine the threshold binary

mass Mthres for fixed mass ratios q ¼ M1=M2 ¼ 1, q ¼
0.85 and q ¼ 0.7. For this we simulate specific binary
setups by running calculations with a relativistic smooth
particle hydrodynamics (SPH) code, which adopts the
conformal flatness condition to solve the Einstein field
equations [99–104]. For every calculation with a given total
binary mass we check the evolution of the minimum
lapse function αmin. If αmin continuously decreases, we
classify the merger as a prompt collapse event. An
increasing αmin after merging instead indicates a bounce
of the merger components and we regard the outcome as no
prompt collapse. Within our sample of calculations
for different total binary masses Mtot and fixed mass ratio
q we then identify the lightest system with Mtot ¼ Munstab

leading to a prompt collapse and the most massive
binary with Mtot ¼ Mstab which does not undergo a
direct collapse. As in previous publications we define
Mthres ¼ 0.5ðMunstab þMstabÞ. We thus determine Mthres
with an accuracy of �0.5ðMunstab −MstabÞ, which is at
least �0.025 M⊙ for every EOS model and binary
mass ratio in this study. The results and more details about
the simulations and their setup can be found in the
Supplemental Material of [49] and references therein.
We run in total more than 400 simulations with about
300,000 SPH particles to obtain Mthres for the different
setups. For some selected EOS models we run additional
simulations for mass ratios q ¼ 0.9, q ¼ 0.8, ¼ 0.6 and
q ¼ 0.5, which will be further discussed in Sec. IV.
We emphasize that most EOS models are temperature

dependent. This holds in particular for the EOS tables
of the hybrid sample. Other EOSs which are only provided
as barotropic relations at zero temperature are treated with
an approximate inclusion of thermal pressure. For these
models we set the thermal ideal-gas index Γth ¼ 1.75 (see
[103] for an assessment and justification of this choice).
To develop a sense for the importance of thermal effects

in determining Mthres, we perform a number of simulations
with the approximate treatment of thermal pressure for
EOS models for which the full temperature dependence is
available. We consider the purely hadronic SFHX EOS and
the hybrid model DD2F-SF3 and adopt different choices
for the thermal ideal-gas index Γth, which controls the
strength of thermal pressure support. Usually, Γth ¼ 1.75 is
a good choice to reproduce results of fully temperature-
dependent tables, and, furthermore, Γth ¼ 1.75 approxi-
mately equals an average value of Γth which one would
directly extract from a temperature-dependent EOS table of
hadronic models (see [103]).
For the purely hadronic EOS SFHX we find that Γth ¼

1.75 leads to the same Mthres within the precision to which
we determine the threshold mass in this study.1 Γth ¼ 1.5
slightly underestimates the threshold mass in comparison to
the simulation with the full temperature dependence. For
the hybrid model DD2F-SF3, the calculation with Γth ¼
1.75 yields a too high threshold mass, and only reducing
the thermal ideal-gas index to 1.5 or 1.334 yields the same
result as the temperature-dependent EOS table. This is
understandable because the quark phase has a weak thermal
pressure support with Γth closer to 4=3, which is much
lower than Γth in the hadronic phase. Based on previous
work, e.g., [103], and this limited set of additional
calculations we conclude that Γth ¼ 1.75 works well for
hadronic models, but choosing Γth might be less obvious
for hybrid models considering that the phase boundaries are

1For both EOSmodels we simulate systems with q ¼ 1 and the
same total binary masses as those we considered to determine
Mthres with the full tables, i.e., we check the merger outcome for
2.95 M⊙ and 3.0 M⊙ for SFHX, and 2.8 M⊙ and 2.85 M⊙ for
DD2F-SF3.
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temperature dependent as well. These calculations show
that the inclusion of thermal effects is generally important,
while depending on the required precision an ansatz with an
approximate thermal pressure component can work well at
least for hadronic models.

III. RELATIONS FOR Mthres

In [49] we discuss different relations that quantitatively
describe the collapse behavior of NS mergers. To this end
we construct bilinear fit formulas involving Mthres and
certain stellar parameters, which characterize an EOS, for
instance the maximum mass Mmax of nonrotating NSs and
NS radii or their tidal deformability (see Table II in the
Supplemental Material of [49]). For most of these fits we
choose Mmax to be the dependent variable, but being linear
the relations can easily be inverted to express for instance
Mthres as function of Mmax and another stellar property. We
for instance consider dependencies on Λ̃thres, which is the
combined tidal deformability of a binary with a massMthres.
This quantity can be inferred from future merger observa-
tions (see [49] for a more detailed discussion).
Changes of the independent variables are useful depend-

ing on which of these quantities are actually measured. We
also develop fits employing the different sets of EOSs as
defined in Sec. II. The reasoning behind this is that one may
make different assumptions about the general properties of
the EOSs. Imposing for instance current astrophysical
constraints one may exclude subset (b). One may also
argue that indications of a phase transition may be revealed
either by heavy-ion collisions, theoretical arguments or by
other astronomical observations. For instance, we demon-
strate in [49] that a combined measurement of Mthres and
Λ̃thres may reveal signs of a phase transition (more details
below). If there are no indications of a phase transition, one
may want to focus on purely hadronic EOS models, i.e., the
hadronic base sample possibly extended by the excluded
hadronic sample.
Here we further extend the set of fits from [49]. The

additional relations are listed in Tables I and II. We choose
the threshold binary massMthres as dependent variable, i.e.,
we quantify the collapse behavior by

MthresðX; YÞ ¼ aX þ bY þ c ð1Þ

with X and Y being stellar properties characterizing the
EOS. The parameters a, b and c are obtained by least-
squares fits to the data listed in Table IX. We provide the
variances of the fit parameters from which confidence
intervals can be drawn as appropriate. We assess the quality
of these fits by providing the maximum residual and the
average deviation between fit and the underlying data. Both
are meaningful measures. Since the set of EOS models is
not a statistical sample, the maximum residual may provide
the best figure of merit to assess the quality of a fit.
However, our sample may also include some rather extreme

EOS models which may lead to larger deviations but might
already be excluded by other measurements like for
instance nuclear parameters derived from experiments.
This is why also the average deviation may provide
generally useful information about how well a certain
relation describes the data as we avoid a possible bias
by a single extreme model. In addition, we quote the sum of
the squared residuals, which is the quantity which is
actually minimized by the least-squares fit. Thus, as a
cross validation one can assess the normalized sum of the
squared residuals and the reduced chi-square employing the
number of data points and fit parameters and the precision
to which we determine Mthres. These figures of merit
closely correlate with the average deviations and generally
indicate good fits especially for the base sample2 and
relations with fixed q. We provide these numbers for all fits
throughout the paper, but will focus the discussion on the
more intuitive maximum and average deviations.
As in [49] the relations in Tables I and II are built either

for fixed binary mass ratios or for a range in q. Hence, the
respective relations can be employed for equal-mass
binaries, for asymmetric mergers or for observations which
provide only a coarse constraint on the mass ratio (see also
discussion below). As said, we also vary the underlying set
of EOSs, since one may make different assumptions on
which models are considered to be viable.
Finally, we employ different independent variables to

describe the EOS dependence of Mthres, but all relations
involve Mmax (see Sec. VII for univariate relations without
Mmax). This includes the radius R1.6 of a 1.6 M⊙ NS, the
radius Rmax of the nonrotating maximum-mass NS, the tidal
deformability of a 1.4 M⊙ NS and the combined tidal
deformability Λ̃thres of the binary at the threshold mass,
which generally depends on q. We use different indepen-
dent variables in the relations because different applications
of these relations may require different quantities. One
should also bear in mind that these quantities may be
obtained with different accuracy. In particular, we point out
that the relations with R1.6 or Λ1.4 may be the most useful
since these parameters may be obtained with high precision
in the near future, for instance from GW measurements of
the inspiral phase [56] or the postmerger phase [105], or
from x-ray timing [106–108].
Considering the different relations in Tables I and II, we

make the following general observations. (i) For q ¼ 1 and
the base sample, R1.6 yields the tightest relations, whereas
Λ̃thres leads to the largest deviations. This may be explained
by the fact that R1.6 is a quantity that characterizes the

2If the hybrid sample is included, the fits become systemati-
cally worse in comparison to relations for the base sample. This is
understandable because a phase transition introduces an addi-
tional mechanism that affects the collapse behavior which may
not be fully captured by the stellar parameters we are considering
(see Sec. VI). The larger reduced chi-square and the other figures
of merit clearly indicate this deficiency of the modeling.
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density regime of the EOS which determines the dynamics
of systems close to the collapse (see Fig. 1 in the
Supplemental Material of [49]). (ii) Relations for fixed
mass ratio are tighter than those with a range in q. The one
for q ¼ 1 is slightly better for most fits. (iii) Not unex-
pected, the relations are tighter if we only consider the base
sample of EOS models. Including hybrid EOSs with phase
transition leads to significantly worse relations. This can be
seen in particular for relations with q ¼ 1 involving NS
radii. Adding the excluded sample to the base sample only
slightly increases the deviations compared to the base
sample alone. Combining the base sample and the hybrid
sample instead leads to larger deviations (compare for
instance fits 1, 13 and 14).

(iv) Without explicitly listing deviations, we remark
that the fits for q ¼ 1 also describe the results for q ¼ 0.85
relatively well and vice versa, since the threshold mass for
0.85 ≤ q ≤ 1 do not differ very much (cf. Sec. IV).
(v) Considering the maximum residuals, fits based on
data for q ¼ 1 and q ¼ 0.7 are generally somewhat tighter
than fits which employ q ¼ 1, q ¼ 0.85 and q ¼ 0.7
(cf. fits 5 and 6). We explain this by the fact that Mthres
is very similar for q ¼ 1 and q ¼ 0.85. Thus, the inclusion
of q ¼ 0.85 results shifts the fit towards theMthresðq ¼ 1Þ,
which implies a slightly worse description of the data for
q ¼ 0.7. We consider both types of fits to be useful for
describing Mthres in the range 0.7 ≤ q ≤ 1. Relations
based on only q ¼ 1 and q ¼ 0.7 may be more accurate

TABLE I. Different bilinear fits (second column) describing the EOS dependence of the threshold binary mass Mthres for prompt BH
formation (see main text). Third column specifies the set of EOSs used for the fit [“base”≡ hadronic base sample (a), “ex”≡ excluded
hadronic sample (b), “hyb”≡ hybrid sample (c) as defined in Sec. II]. q is the binary mass ratio of the underlying data. Fifth to seventh
columns provide the fit parameters a, b and c and their respective variances with units such that masses are in M⊙ and radii are in km.
The next two columns specify the maximum and average deviation between fit and the underlying data (inM⊙). Last two columns give
the sum of the squared residuals being minimized by the fit procedure and the number of data points included in the fit. For fits marked
with an asterisk we compute deviations between fit and the data comparing additionally to the results for q ¼ 0.85 which are not
employed for the fit.

No. Fit MthresðX; YÞ EOSs q a b c Max. Av.
P

Sq. Res. N

1 aMmaxþbR1.6þc b 1 0.547�0.036 0.1647�0.006 −0.198�0.099 0.042 0.016 0.0096 23
2 aMmaxþbR1.6þc b 0.85 0.629�0.034 0.1486�0.006 −0.181�0.093 0.041 0.016 0.0085 23
3 aMmaxþbR1.6þc b 0.7 0.832�0.042 0.1161�0.007 −0.276�0.117 0.067 0.017 0.0134 23
4 aMmaxþbR1.6þc b 1, 0.85 0.588�0.026 0.1566�0.004 −0.189�0.070 0.043 0.018 0.0209 46
5 aMmaxþbR1.6þc b 1, 0.7 0.689�0.048 0.1404�0.008 −0.237�0.132 0.137 0.028 0.0736 46
5 * aMmaxþbR1.6þc b 1, 0.7 0.689�0.048 0.1404�0.008 −0.237�0.132 0.137 0.028 0.0736 46
6 aMmaxþbR1.6þc b 1, 0.85, 0.7 0.669�0.035 0.1431�0.006 −0.218�0.097 0.151 0.027 0.0919 69
7 aMmaxþbR1.6þc bþhþe 1 0.610�0.035 0.1641�0.007 −0.342�0.086 0.107 0.031 0.0602 40
8 aMmaxþbR1.6þc bþhþe 0.85 0.746�0.039 0.1391�0.008 −0.341�0.098 0.102 0.035 0.0782 40
9 aMmaxþbR1.6þc bþhþe 0.7 0.914�0.039 0.1121�0.008 −0.424�0.098 0.117 0.033 0.0780 40
10 aMmaxþbR1.6þc bþhþe 1, 0.85 0.678�0.028 0.1516�0.005 −0.341�0.069 0.117 0.034 0.1594 80
11 aMmaxþbR1.6þc bþhþe 1, 0.7 0.762�0.039 0.1381�0.008 −0.383�0.096 0.162 0.045 0.3115 80
11 * aMmaxþbR1.6þc bþhþe 1, 0.7 0.762�0.039 0.1381�0.008 −0.383�0.096 0.162 0.045 0.3115 80
12 aMmaxþbR1.6þc bþhþe 1, 0.85, 0.7 0.757�0.029 0.1384�0.006 −0.369�0.072 0.170 0.043 0.4003 120
13 aMmaxþbR1.6þc bþh 1 0.617�0.061 0.1581�0.011 −0.287�0.185 0.104 0.033 0.0529 32
14 aMmaxþbR1.6þc bþe 1 0.581�0.022 0.1632�0.004 −0.254�0.053 0.054 0.018 0.0161 31

15 aMmaxþbRmaxþc b 1 0.450�0.043 0.1891�0.008 −0.011�0.114 0.059 0.018 0.0137 23
16 aMmaxþbRmaxþc b 0.85 0.544�0.051 0.1687�0.009 0.003�0.133 0.071 0.022 0.0188 23
17 aMmaxþbRmaxþc b 0.7 0.764�0.047 0.1331�0.009 −0.144�0.123 0.054 0.021 0.0160 23
18 aMmaxþbRmaxþc b 1, 0.85 0.497�0.034 0.1789�0.006 −0.004�0.088 0.078 0.021 0.0357 46
19 aMmaxþbRmaxþc b 1, 0.7 0.607�0.051 0.1611�0.009 −0.077�0.133 0.119 0.031 0.0802 46
19 * aMmaxþbRmaxþc b 1, 0.7 0.607�0.051 0.1611�0.009 −0.077�0.133 0.119 0.031 0.0802 46
20 aMmaxþbRmaxþc b 1, 0.85, 0.7 0.586�0.039 0.1636�0.007 −0.051�0.102 0.132 0.029 0.1085 69
21 aMmaxþbRmaxþc bþhþe 1 0.507�0.038 0.1885�0.008 −0.135�0.085 0.126 0.030 0.0662 40
22 aMmaxþbRmaxþc bþhþe 0.85 0.654�0.038 0.1617�0.008 −0.176�0.085 0.100 0.032 0.0663 40
23 aMmaxþbRmaxþc bþhþe 0.7 0.833�0.034 0.1330�0.007 −0.307�0.075 0.079 0.030 0.0511 40
24 aMmaxþbRmaxþc bþhþe 1, 0.85 0.580�0.028 0.1751�0.006 −0.156�0.063 0.131 0.032 0.1520 80
25 aMmaxþbRmaxþc bþhþe 1, 0.7 0.670�0.039 0.1608�0.008 −0.221�0.086 0.164 0.046 0.2838 80
25 * aMmaxþbRmaxþc bþhþe 1, 0.7 0.670�0.039 0.1608�0.008 −0.221�0.086 0.164 0.046 0.2838 80
26 aMmaxþbRmaxþc bþhþe 1, 0.85, 0.7 0.665�0.029 0.1611�0.006 −0.206�0.065 0.157 0.042 0.3606 120
27 aMmaxþbRmaxþc bþh 1 0.550�0.058 0.1689�0.011 −0.028�0.161 0.092 0.029 0.0468 32
28 aMmaxþbRmaxþc bþe 1 0.445�0.026 0.1970�0.005 −0.079�0.056 0.069 0.019 0.0195 31

ANDREAS BAUSWEIN et al. PHYS. REV. D 103, 123004 (2021)

123004-6



and thus preferable if one wishes to minimize that
maximum deviations and binaries with small q are
likely or possible to occur. (For the table entries
with an asterisk we determine the deviations by compar-
ing additionally to the q ¼ 0.85 data which are not
employed for constructing the fit. The q ¼ 0.85 deviations
do not increase the overall deviations which means
that the q ¼ 0.85 data is well captured by those fits.)
Fits employing q ¼ 1, q ¼ 0.85 and q ¼ 0.7, i.e., with a
bias towards the results of equal-mass mergers, may
provide on average a better description by taking into
account that for uniformly distributed q the threshold
mass is more likely to be closer to Mthresðq ¼ 1Þ. See
also Sec. IV.

Examples for Mthres relations are shown in Fig. 1 for
fixed q with the base EOS sample. In the upper panels
Mthres is given as function ofMmax and R1.6, whereas in the
lower panels we use Mmax and the tidal deformability of a
1.4 M⊙ NS as independent variables. For all of these cases
with fixed mass ratio and the base sample, we find the
maximum residual to be significantly better than 0.1 M⊙
with an average deviation of less than 0.03 M⊙ (see
Tables I and II).
In addition, we construct another set of fits describing the

collapse behavior by the threshold chirp mass Mthres for
prompt BH formation. We provide these relations in
Tables III and IV. We recall that the chirp mass is measured
with high precision during the GW inspiral, whereas the

TABLE II. Different bilinear fits (second column) describing the EOS dependence of the threshold binary massMthres for prompt BH
formation (see main text). Third column specifies the set of EOSs used for the fit [“b” ≡ hadronic base sample (a), “e” ≡ excluded
hadronic sample (b), “h” ≡ hybrid sample (c) as defined in Sec. II]. q is the binary mass ratio of the underlying data. Fifth to seventh
columns provide the fit parameters a, b and c and their respective variances with units such that masses are inM⊙. The next two columns
specify the maximum and average deviation between fit and the underlying data (inM⊙). Last two columns give the sum of the squared
residuals being minimized by the fit procedure and the number of data points included in the fit. For fits marked with an asterisk we
compute deviations between fit and the data comparing additionally to the results for q ¼ 0.85 which are not employed for the fit.

No. Fit MthresðX; YÞ EOSs q a b=10−4 c Max. Av.
P

Sq. Res. N

29 aMmaxþbΛ1.4þc b 1 0.589�0.052 7.973�0.416 1.359�0.112 0.056 0.025 0.0201 23
30 aMmaxþbΛ1.4þc b 0.85 0.668�0.055 7.126�0.443 1.226�0.119 0.060 0.027 0.0228 23
31 aMmaxþbΛ1.4þc b 0.7 0.863�0.061 5.469�0.494 0.825�0.133 0.081 0.027 0.0284 23
32 aMmaxþbΛ1.4þc b 1, 0.85 0.629�0.038 7.550�0.303 1.293�0.082 0.066 0.026 0.0460 46
33 aMmaxþbΛ1.4þc b 1, 0.7 0.726�0.056 6.721�0.449 1.092�0.121 0.157 0.035 0.1007 46
33 * aMmaxþbΛ1.4þc b 1, 0.7 0.726�0.056 6.721�0.449 1.092�0.121 0.157 0.035 0.1007 46
34 aMmaxþbΛ1.4þc b 1, 0.85, 0.7 0.707�0.042 6.856�0.340 1.137�0.092 0.171 0.033 0.1333 69
35 aMmaxþbΛ1.4þc bþhþe 1 0.509�0.047 6.026�0.324 1.595�0.094 0.095 0.041 0.0982 40
36 aMmaxþbΛ1.4þc bþhþe 0.85 0.659�0.048 5.122�0.330 1.303�0.096 0.088 0.045 0.1023 40
37 aMmaxþbΛ1.4þc bþhþe 0.7 0.846�0.047 4.109�0.322 0.898�0.094 0.106 0.042 0.0975 40
38 aMmaxþbΛ1.4þc bþhþe 1, 0.85 0.584�0.034 5.574�0.238 1.449�0.069 0.107 0.045 0.2208 80
39 aMmaxþbΛ1.4þc bþhþe 1, 0.7 0.677�0.044 5.067�0.307 1.246�0.089 0.150 0.055 0.3675 80
39 * aMmaxþbΛ1.4þc bþhþe 1, 0.7 0.677�0.044 5.067�0.307 1.246�0.089 0.150 0.055 0.3675 80
40 aMmaxþbΛ1.4þc bþhþe 1, 0.85, 0.7 0.671�0.034 5.085�0.232 1.265�0.068 0.155 0.052 0.4804 120
41 aMmaxþbΛ1.4þc bþh 1 0.622�0.063 7.837�0.570 1.282�0.135 0.097 0.034 0.0554 32
42 aMmaxþbΛ1.4þc bþe 1 0.492�0.046 5.959�0.303 1.645�0.093 0.105 0.035 0.0643 31
43 aMmaxþbΛ̃thresþc b 1 1.441�0.101 27.52�2.239 −0.909�0.261 0.085 0.037 0.0455 23
44 aMmaxþbΛ̃thresþc b 0.85 1.409�0.105 19.70�1.902 −0.641�0.264 0.088 0.040 0.0500 23
45 aMmaxþbΛ̃thresþc b 0.7 1.448�0.109 9.484�1.235 −0.544�0.264 0.112 0.037 0.0512 23
46 aMmaxþbΛ̃thresþc b 1, 0.85 1.401�0.080 22.46�1.575 −0.693�0.202 0.109 0.044 0.1237 46
47 aMmaxþbΛ̃thresþc b 1, 0.7 1.130�0.141 8.211�1.875 0.235�0.341 0.228 0.077 0.4328 46
47 * aMmaxþbΛ̃thresþc b 1, 0.7 1.130�0.141 8.211�1.875 0.235�0.341 0.228 0.077 0.4328 46
48 aMmaxþbΛ̃thresþc b 1, 0.85, 0.7 1.152�0.110 9.767�1.572 0.157�0.267 0.230 0.078 0.6012 69
49 aMmaxþbΛ̃thresþc bþhþe 1 1.389�0.122 19.29�3.467 −0.577�0.341 0.275 0.095 0.5545 40
50 aMmaxþbΛ̃thresþc bþhþe 0.85 1.400�0.104 11.91�2.120 −0.422�0.273 0.209 0.087 0.4141 40
51 aMmaxþbΛ̃thresþc bþhþe 0.7 1.458�0.086 6.494�1.138 −0.479�0.219 0.192 0.067 0.2795 40
52 aMmaxþbΛ̃thresþc bþhþe 1, 0.85 1.352�0.082 13.43�1.904 −0.344�0.220 0.282 0.096 1.0914 80
53 aMmaxþbΛ̃thresþc bþhþe 1, 0.7 1.207�0.090 4.317�1.391 0.213�0.226 0.367 0.105 1.4837 80
53 * aMmaxþbΛ̃thresþc bþhþe 1, 0.7 1.207�0.090 4.317�1.391 0.213�0.226 0.367 0.105 1.4837 80
54 aMmaxþbΛ̃thresþc bþhþe 1, 0.85, 0.7 1.237�0.071 5.585�1.174 0.113�0.179 0.355 0.106 2.0506 120
55 aMmaxþbΛ̃thresþc bþh 1 1.090�0.194 12.09�3.498 0.242�0.490 0.184 0.081 0.2945 32
56 aMmaxþbΛ̃thresþc bþe 1 1.505�0.067 30.20�2.136 −1.108�0.190 0.165 0.047 0.1172 31
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total mass is computed from the chirp mass and constraints
on the mass ratio q. Since M is the quantity which is
directly measured, the relations in Tables III and IV may be
more useful for many applications.
For fixed mass ratio, the conversion between Mtot and

M is trivial [Mtot ¼ Mq0.6ð1þ 1=qÞ1.2], and thus the
conversion between Mthres and Mthres. Here we are
mostly interested in the relations for a range in q to
check whether Mthres or Mthres yields tighter relations.
Although the absolute deviations are smaller for Mthres,
the relative deviations are larger. Recall that the
chirp mass is smaller than the total binary mass. The
reason for the larger deviations is that the chirp mass
decreases with binary mass asymmetry for constant total
mass: M ¼ Mtotq−0.6ð1þ 1=qÞ−1.2. Hence, if for a spe-
cific EOS the threshold binary mass was the same for
q ¼ 1 and q ¼ 0.7, Mthres for this EOS differs between
symmetric and asymmetric binaries. This additional q
dependence leads to the stronger relative deviations in the
Mthres relations if the fit includes data for different q. In
other words, because of the definition of the chirp mass,

the relative differences between Mthresðq ¼ 1Þ and
Mthresðq ¼ 0.7Þ are larger than those for Mthres.
Consequently combining q ¼ 1 and q ¼ 0.7 data in a
single relation leads to larger scatter. We also refer to the
discussion below providing tight fits for Mthres and Mthres
including an explicit q dependence. For fixed mass ratio
the relative deviations between fit and data are in fact
identical comparing MthresðX; YÞ and MthresðX; YÞ.
We finally comment on the choice of the independent

variables in the relations for Mthres and Mthres in Tables I,
II, III and IV. These stellar parameters express the EOS
dependence of the collapse behavior and characterize the
EOS in the density regime most relevant for prompt BH
formation. The maximum massMmax of nonrotating NSs is
a natural choice since it determines the threshold to BH
formation for nonrotating stars. However, it is clear from
the different mass-radius relations of nonrotating NSs and
the simulation results for Mthres that also other EOS
parameters affect the collapse behavior (two EOSs with
the same Mmax can yield very different Mthres). In Tables I,
II, III and IV we have chosen for instance the radii or the

FIG. 1. Upper panels: Threshold binary mass Mthres for prompt BH formation as function of the maximum mass Mmax of nonrotating
NSs and the radius of a 1.6 M⊙ NS for q ¼ M1=M2 ¼ 1 (left) and q ¼ 0.7 (right) with the base EOS sample. Blue plane is a bilinear fit
(see Table I) to the data (blue points). Short black lines visualize deviations between fit and data. Lower panels: Same as the upper panels
but with the tidal deformability Λ1.4 of a 1.4 M⊙ NS instead of R1.6 (q ¼ 1 on the left, q ¼ 0.7 on the right; see Table II).
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closely related tidal deformability of NSs with masses in
the range 1.4 to 1.6 M⊙, which characterize the EOS at
intermediate to high densities. This is motivated by the fact
that fit formulas involving these parameters yield the
tightest relations, which suggests that these quantities
express the fundamental dependencies. We discuss these
findings in Appendix B and point out that fit formulas for
Mthres can also be constructed for radii or tidal deform-
abilities of NSs with other fiducial masses in the range 1.1
to 2.0 M⊙. These relations are also relatively tight, the
maximum deviations roughly double if one employs the
stellar properties of very light or very massive stars in
comparison to 1.4 to 1.6 M⊙ NSs (see Appendix B for
additional details).

We also refer to some subtle aspects of the inversion of
Mthres and Mthres relations. It is trivial to invert a bilinear
relation, but it is at least in principle not obvious that the
inverted relation represents the optimal description of the
data if dependent and independent variables are
exchanged. This is because a least-squares fit is con-
structed by minimizing the residuals with respect to the
dependent variable. Thus, changing the dependent vari-
able and minimizing the residuals with respect to this
variable yields another fit, which generally will (slightly)
differ from the inverted relation derived from a fit to
another dependent variable. By comparing inverted rela-
tions and fits for different dependent variables and by
orthogonal regression (total least squares) we show that

TABLE III. Different bilinear fits (second column) describing the EOS dependence of the threshold chirp massMthres for prompt BH
formation (see main text). Third column specifies the set of EOSs used for the fit [“b” ≡ hadronic base sample (a), “e” ≡ excluded
hadronic sample (b), “h” ≡ hybrid sample (c) as defined in Sec. II]. q is the binary mass ratio of the underlying data. Fifth to seventh
columns provide the fit parameters a, b and c and their respective variance with units such that masses are inM⊙ and radii are in km. The
next two columns specify the maximum and average deviation between fit and the underlying data (inM⊙). Last two columns give the
sum of the squared residuals being minimized by the fit procedure and the number of data points included in the fit. For fits marked with
an asterisk we compute deviations between fit and the data comparing additionally to the results for q ¼ 0.85 which are not employed
for the fit.

No. Fit MthresðX; YÞ EOSs q a b=10−2 c Max. Av.
P

Sq. Res. N

57 aMmaxþbR1.6þc b 1 0.238�0.016 7.168�0.255 −0.086�0.043 0.018 0.007 0.0018 23
58 aMmaxþbR1.6þc b 0.85 0.273�0.015 6.443�0.239 −0.078�0.040 0.018 0.007 0.0016 23
59 aMmaxþbR1.6þc b 0.7 0.355�0.018 4.958�0.296 −0.118�0.050 0.029 0.007 0.0024 23
60 aMmaxþbR1.6þc b 1, 0.85 0.255�0.011 6.806�0.186 −0.082�0.031 0.021 0.008 0.0042 46
61 aMmaxþbR1.6þc b 1, 0.7 0.297�0.031 6.063�0.505 −0.102�0.085 0.071 0.021 0.0307 46
61 * aMmaxþbR1.6þc b 1, 0.7 0.297�0.031 6.063�0.505 −0.102�0.085 0.071 0.021 0.0307 46
62 aMmaxþbR1.6þc b 1, 0.85, 0.7 0.289�0.022 6.190�0.365 −0.094�0.062 0.079 0.019 0.0370 69
63 aMmaxþbR1.6þc bþhþe 1 0.265�0.015 7.143�0.294 −0.149�0.037 0.047 0.013 0.0114 40
64 aMmaxþbR1.6þc bþhþe 0.85 0.323�0.017 6.032�0.334 −0.148�0.043 0.044 0.015 0.0147 40
65 aMmaxþbR1.6þc bþhþe 0.7 0.390�0.017 4.788�0.329 −0.181�0.042 0.050 0.014 0.0142 40
66 aMmaxþbR1.6þc bþhþe 1, 0.85 0.294�0.012 6.587�0.241 −0.148�0.031 0.053 0.015 0.0319 80
67 aMmaxþbR1.6þc bþhþe 1, 0.7 0.328�0.022 5.965�0.424 −0.165�0.054 0.081 0.028 0.0985 80
67 * aMmaxþbR1.6þc bþhþe 1, 0.7 0.328�0.022 5.965�0.424 −0.165�0.054 0.081 0.028 0.0985 80
68 aMmaxþbR1.6þc bþhþe 1, 0.85, 0.7 0.326�0.016 5.988�0.309 −0.159�0.039 0.086 0.025 0.1196 120
69 aMmaxþbR1.6þc bþh 1 0.269�0.027 6.880�0.488 −0.125�0.080 0.045 0.014 0.0100 32
70 aMmaxþbR1.6þc bþe 1 0.253�0.009 7.102�0.176 −0.111�0.023 0.023 0.008 0.0030 31
71 aMmaxþbRmaxþc b 1 0.196�0.019 8.229�0.352 −0.005�0.049 0.026 0.008 0.0026 23
72 aMmaxþbRmaxþc b 0.85 0.236�0.022 7.313�0.410 0.001�0.058 0.031 0.010 0.0035 23
73 aMmaxþbRmaxþc b 0.7 0.326�0.020 5.684�0.372 −0.061�0.052 0.023 0.009 0.0029 23
74 aMmaxþbRmaxþc b 1, 0.85 0.216�0.015 7.771�0.277 −0.002�0.039 0.037 0.009 0.0070 46
75 aMmaxþbRmaxþc b 1, 0.7 0.261�0.032 6.957�0.594 −0.033�0.084 0.063 0.022 0.0319 46
75 * aMmaxþbRmaxþc b 1, 0.7 0.261�0.032 6.957�0.594 −0.033�0.084 0.063 0.022 0.0319 46
76 aMmaxþbRmaxþc b 1, 0.85, 0.7 0.253�0.024 7.075�0.439 −0.022�0.062 0.071 0.019 0.0401 69
77 aMmaxþbRmaxþc bþhþe 1 0.221�0.017 8.206�0.356 −0.059�0.037 0.055 0.013 0.0125 40
78 aMmaxþbRmaxþc bþhþe 0.85 0.283�0.017 7.012�0.355 −0.076�0.037 0.043 0.014 0.0125 40
79 aMmaxþbRmaxþc bþhþe 0.7 0.356�0.014 5.682�0.307 −0.131�0.032 0.034 0.013 0.0093 40
80 aMmaxþbRmaxþc bþhþe 1, 0.85 0.252�0.013 7.609�0.272 −0.068�0.028 0.059 0.014 0.0305 80
81 aMmaxþbRmaxþc bþhþe 1, 0.7 0.288�0.022 6.944�0.476 −0.095�0.050 0.083 0.028 0.0934 80
81 * aMmaxþbRmaxþc bþhþe 1, 0.7 0.288�0.022 6.944�0.476 −0.095�0.050 0.083 0.028 0.0934 80
82 aMmaxþbRmaxþc bþhþe 1, 085, 0.7 0.287�0.016 6.966�0.345 −0.089�0.036 0.081 0.024 0.1122 120
83 aMmaxþbRmaxþc bþh 1 0.240�0.025 7.351�0.486 −0.012�0.070 0.040 0.013 0.0089 32
84 aMmaxþbRmaxþc bþe 1 0.194�0.011 8.573�0.234 −0.034�0.024 0.030 0.008 0.0037 31
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these subtleties are in practice irrelevant for the relations
discussed here.3 In essence, the inversion of the relations

given in Tables I to IV represents a very good description
of the data.

A. Current and future EOS constraints from Mthres

The advantages of bilinear relations for Mthres is the fact
that they are readily invertible. One can thus obtain expres-
sions for NS radii or the tidal deformability as function of
Mthres and Mmax. In the spirit of [8,41,46] one can employ
additional relations between Mmax and the radius R or the
tidal deformability Λ to obtain a lower or upper bound on
Mmax for a given R or Λ. Adopting such a relation to
constrain MmaxðRÞ or MmaxðΛÞ, one can then directly read
off a bound on R or Λ for a given Mthres constraint.

TABLE IV. Different bilinear fits (second column) describing the EOS dependence of the threshold chirp massMthres for prompt BH
formation (see main text). Third column specifies the set of EOSs used for the fit [“b” ≡ hadronic base sample (a), “e” ≡ excluded
hadronic sample (b), “h” ≡ hybrid sample (c) as defined in Sec. II]. q is the binary mass ratio of the underlying data. Fifth to seventh
columns provide the fit parameters a, b and c and their respective variance with units such that masses are inM⊙. The next two columns
specify the maximum and average deviation between fit and the underlying data (inM⊙). Last two columns give the sum of the squared
residuals being minimized by the fit procedure and the number of data points included in the fit. For fits marked with an asterisk we
compute deviations between fit and the data comparing additionally to the results for q ¼ 0.85 which are not employed for the fit.

No. Fit MthresðX; YÞ EOSs q a b=10−4 c Max. Av.
P

Sq. Res. N

85 aMmaxþbΛ1.4þc b 1 0.257�0.023 3.470�0.181 0.592�0.049 0.025 0.011 0.0038 23
86 aMmaxþbΛ1.4þc b 0.85 0.289�0.024 3.090�0.192 0.531�0.052 0.026 0.012 0.0043 23
87 aMmaxþbΛ1.4þc b 0.7 0.369�0.026 2.336�0.211 0.352�0.057 0.035 0.012 0.0052 23
88 aMmaxþbΛ1.4þc b 1, 0.85 0.273�0.017 3.280�0.134 0.562�0.036 0.031 0.011 0.0089 46
89 aMmaxþbΛ1.4þc b 1, 0.7 0.313�0.033 2.903�0.267 0.472�0.072 0.080 0.023 0.0357 46
89 * aMmaxþbΛ1.4þc b 1, 0.7 0.313�0.033 2.903�0.267 0.472�0.072 0.080 0.023 0.0357 46
90 aMmaxþbΛ1.4þc b 1, 0.85, 0.7 0.305�0.024 2.965�0.197 0.492�0.053 0.088 0.020 0.0447 69
91 aMmaxþbΛ1.4þc bþhþe 1 0.221�0.020 2.623�0.141 0.694�0.041 0.041 0.018 0.0186 40
92 aMmaxþbΛ1.4þc bþhþe 0.85 0.286�0.021 2.221�0.143 0.565�0.042 0.038 0.020 0.0192 40
93 aMmaxþbΛ1.4þc bþhþe 0.7 0.361�0.020 1.755�0.138 0.384�0.040 0.045 0.018 0.0178 40
94 aMmaxþbΛ1.4þc bþhþe 1, 0.85 0.254�0.015 2.422�0.106 0.629�0.031 0.049 0.020 0.0435 80
95 aMmaxþbΛ1.4þc bþhþe 1, 0.7 0.291�0.024 2.189�0.167 0.539�0.049 0.078 0.030 0.1089 80
95 * aMmaxþbΛ1.4þc bþhþe 1, 0.7 0.291�0.024 2.189�0.167 0.539�0.049 0.078 0.030 0.1089 80
96 aMmaxþbΛ1.4þc bþhþe 1, 0.85, 0.7 0.289�0.018 2.199�0.123 0.548�0.036 0.080 0.027 0.1346 120
97 aMmaxþbΛ1.4þc bþh 1 0.271�0.027 3.411�0.248 0.558�0.059 0.042 0.015 0.0105 32
98 aMmaxþbΛ1.4þc bþe 1 0.214�0.020 2.594�0.132 0.716�0.041 0.046 0.015 0.0122 31
99 aMmaxþbΛ̃thresþc b 1 0.627�0.044 11.98�0.975 −0.396�0.114 0.037 0.016 0.0086 23
100 aMmaxþbΛ̃thresþc b 0.85 0.611�0.046 8.540�0.825 −0.278�0.114 0.038 0.017 0.0094 23
101 aMmaxþbΛ̃thresþc b 0.7 0.618�0.046 4.050�0.528 −0.232�0.113 0.048 0.016 0.0093 23
102 aMmaxþbΛ̃thresþc b 1, 0.85 0.607�0.035 9.720�0.701 −0.297�0.090 0.050 0.019 0.0245 46
103 aMmaxþbΛ̃thresþc b 1, 0.7 0.458�0.071 2.867�0.946 0.186�0.172 0.112 0.040 0.1102 46
103 * aMmaxþbΛ̃thresþc b 1, 0.7 0.458�0.071 2.867�0.946 0.186�0.172 0.112 0.040 0.1102 46
104 aMmaxþbΛ̃thresþc b 1, 0.85, 0.7 0.473�0.055 3.619�0.784 0.139�0.133 0.101 0.040 0.1497 69
105 aMmaxþbΛ̃thresþc bþhþe 1 0.604�0.053 8.398�1.509 −0.251�0.148 0.120 0.041 0.1051 40
106 aMmaxþbΛ̃thresþc bþhþe 0.85 0.607�0.045 5.162�0.919 −0.183�0.118 0.091 0.038 0.0778 40
107 aMmaxþbΛ̃thresþc bþhþe 0.7 0.623�0.037 2.774�0.486 −0.205�0.093 0.082 0.029 0.0510 40
108 aMmaxþbΛ̃thresþc bþhþe 1, 0.85 0.586�0.036 5.769�0.837 −0.144�0.097 0.125 0.042 0.2108 80
109 aMmaxþbΛ̃thresþc bþhþe 1, 0.7 0.502�0.043 1.339�0.660 0.150�0.107 0.170 0.050 0.3340 80
109 * aMmaxþbΛ̃thresþc bþhþe 1, 0.7 0.502�0.043 1.339�0.660 0.150�0.107 0.170 0.050 0.3340 80
110 aMmaxþbΛ̃thresþc bþhþe 1, 0.85, 0.7 0.519�0.033 1.962�0.552 0.097�0.084 0.164 0.050 0.4535 120
111 aMmaxþbΛ̃thresþc bþh 1 0.475�0.085 5.264�1.522 0.105�0.213 0.080 0.035 0.0558 32
112 aMmaxþbΛ̃thresþc bþe 1 0.655�0.029 13.15�0.927 −0.482�0.083 0.072 0.021 0.0222 31

3We assess these aspects by considering the q ¼ 1 data of the
base sample and relations between Mthres, Mmax and R1.6 (fit 1).
We compute a least-squares fit for each variableMthres,Mmax and
R1.6 and invert the respective relation. Moreover, we model the
data by a total least-squares fit (orthogonal regression). For every
fit and every inverted relation we compute the maximum and
average deviation between relation and data. Comparing these
deviations for every dependent variable, we find that they
coincide to within at least a few percent (typically less than
1%). Hence, we conclude that inverting relations is as good as
performing directly a fit to data with another dependent variable.
We expect this to hold for all fits in this paper considering the
similarity between these relations.
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We exemplify the constraints for an event which
provides evidence for no direct BH formation, i.e., with
Mtot < Mthres, as it was arguably the case for GW170817
[41,42,109]. Additionally, we employ an upper bound on
Mmax, which may be expressed asMmax < Mup

max ¼ w1Rþ
w2 with some coefficients w1 and w2 to be specified.
Such relations can be inferred by causality arguments,
which limit the maximum stiffness of any EOS at higher
densities by requiring that the speed of sound should not
exceed the speed of light. See [8,46] for details and for the
case R ¼ R1.6, which yieldsM

up
max ¼ 1

3.1
c2
G R1.6, hence w1 ¼

0.219 and w2 ¼ 0 for R in km. Alternatively, we consider
the 40 EOS models of this study and find an upper limit
MmaxðR1.6Þ<Mup

maxðR1.6Þ¼ 0.177R1.6þ0.306. Following
these arguments we then obtain

Mtot < aMmax þ bRþ c

< aMup
max þ bRþ c

< aw1Rþ aw2 þ bRþ c ð2Þ

with the parameters a, b and c taken from Tables I or II as
appropriate. From this results the limit

R >
Mtot − c − aw2

aw1 þ b
: ð3Þ

This limit is displayed as black solid line in Fig. 2, where
we employ the parameters from fit 1 from Table I. [It is

trivial to obtain similar limits for the tidal deformability by
replacing R by Λ in the derivation. We also refer to the
following section and the discussion in Sec. VII for a
justification to use fit 1, i.e., a Mthres relation for q ¼ 1.
Below we describe that for most EOS models the thresh-
old mass of asymmetric mergers is approximately equal or
smaller than the one of equal-mass systems. This implies
that using Mthresðq ¼ 1Þ, being usually equal or larger
than Mthresðq < 1Þ, is a safe choice in Eq. (2) independent
of the mass ratio q, which may not be well known.] A
very conservative limit is given by the dashed black
curve, for which we employ the above mentioned cau-
sality argument resulting in the very strict limit
Mup

maxðR1.6Þ ¼ 1
3.1

c2
G R1.6 (see [41,46]). The dashed curve

is likely very restrictive since we assume here the extreme
case that the speed of sound equals the speed of light
above a certain density to obtain an upper bound onMmax.
Microphysical EOS models are typically not as stiff,
which is why the solid curve represents a more appro-
priate constraint. The relations for Mthres have a certain
scatter δM (see Tables I and II), which can be easily
taken into account by shifting the relation and setting
Mtot < Mthres − δM. This results in

R >
Mtot − δM − c − aw2

aw1 þ b
ð4Þ

and is visualized by the shaded area, where we adopted the
maximum deviation from Table I.
For the case of GW170817 with MGW170817

tot ¼
2.73þ0.04

−0.01 M⊙ [26] we find R1.6 > 10.56þ0.15
−0.04 km, which

is fully in line with our previous constraint in [41] based an
older relation for Mthres [17] and slightly different assump-
tions.4 The total binary mass of GW170817 is depicted by
the blue line in Fig. 2.
It is straightforward to apply Eq. (4) to any other new

GW event which indicates that no prompt collapse took
place. An updated limit can be easily read off from Fig. 2
for any total binary mass of a new measurement.
Following a very similar reasoning one can infer upper

limits on R from GW events with evidence for a prompt
collapse, i.e., Mtot > Mthres. In this case one may simply
insert the current lower limit Mlow;obs

max from pulsar obser-
vations [93,94,110]. This leads to an upper limit

FIG. 2. Bounds on NS radius R1.6 implied by GW detections
with total binary massMtot. Black lines show a lower limit on R1.6
if an observation provides evidence for no direct BH formation.
Red line displays an upper limit on R1.6 inferred from events with
indications for a prompt collapse of the merger remnant. The
shaded areas indicate the maximum scatter of the underlying
empirical relations for Mthres; the dashed black line employs a
very conservative assumption about the maximum stiffness of NS
matter at higher densities (see text). The blue vertical line
provides the total binary mass of GW170817 with the error
bar indicated by the blue shaded area.

4As in [41] we do not include the maximum deviation in the
error analysis (δM ¼ 0) since our assumptions are generally
conservative. In [41] we employed the very conservative Mup

max
relation based on causality arguments but assumed that the total
binary mass was 0.1 M⊙ below the threshold mass, which we do
not adopt here. Note that the binary mass of GW170817 has been
slightly revised in [26] compared to [65], which was employed in
[41]. Adopting the same assumptions and binary mass as in [41]
we in fact find R1.6 > 10.68 km for the new relation (fit 1), i.e.,
the limit as in [41].
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R <
Mtot þ δM − aMlow;obs

max − c
b

: ð5Þ

This upper bound is also visualized in Fig. 2 by the red line.5

From this figure one can easily read off which constraint on
NSproperties are implied by newdetectionswith givenMtot.
It is apparent fromFig. 2 how the constraints tighten as better
limits on Mthres become available. In this context we also
refer to [46], which sketches an observing strategy to
efficiently determine Mthres from electromagnetic counter-
parts assuming that binary mass estimates would be circu-
lated with a GW trigger (see also [21]).
Obviously Eqs. (4) and (5) yield limits on any radius R or

tidal deformability Λ by employing the corresponding
MthresðMmax; RÞ or MthresðMmax;ΛÞ relation and the fit
parameters a, b and c (see Tables I and II and in particular
Tables X and XI from Appendix B for stellar parameters of
different NS masses).
Considering GW170817, for instance, fit 29 implies

Λ1.4 > 150 (with w1 ¼ 0.001124 and w2 ¼ 1.9646 deter-
mined empirically from the base sample). This limit is very
small, also in comparison to previous constraints [42,43],
and arguably conservative. But in fact theMthres data shows
that there potentially exist EOS models with Λ1.4 somewhat
above 150 which would not lead to a prompt collapse and
thus be compatible with GW170817 (see also [47]).
The exact lower limit is sensitive to the adopted upper limit

onMmax for a givenΛ1.4, i.e.,w1 andw2, whichwedetermine
empirically based on the available EOS sample. This sample
containsmodels which are rather stiff like for instanceWFF1
and WFF2 and which become acausal at higher densities.6

Thismay yield a slightly too highMup
max as function ofR1.6 or

Λ1.4. Omitting such extreme EOSmodels, we find somewhat
higher limits of Λ1.4 > 180 and R1.6 > 10.7 km.
See also Fig. 8 to read off a limit on Λ̃thres, which

similarly constrains Λ1.37 ≡ Λð1.37 M⊙Þ (cf. discussion in
[8,45,49]). These are the limits implied by the currently
available data and it is likely that those will be further
strengthened by future events (Fig. 2). Reference [41]
provides a deeper discussion of the particular advantages
and prospects of this type of EOS constraint, which for
example rely only on the mass inference of GW measure-
ments and are thus rather insensitive to the waveform
models used in the analysis [26]. We also refer to [49] for a

description of how Mthres relations can be employed to
determine Mmax. This requires the measurement or con-
straint of one additional NS parameter, which could be for
instance R1.6, Λ1.4 or Λthres (see fits 25 to 32). Employing
Λthres has the advantage that it can be directly determined
from the inspiral GW signal of the same merger events
which yield the Mthres estimate.

IV. BINARY MASS RATIO EFFECTS ON Mthres

In [49] we already mentioned that the binary mass ratio q
affects the threshold mass for prompt BH formation in a
systematic way, i.e., the difference betweenMthres of equal-
mass mergers and of asymmetric binaries depends in a
particular way on the EOS (see fit 12 in Table II in the
Supplemental Material of [49]). We define ΔMthres ¼
Mthresðq ¼ 1Þ −Mthresðq ¼ 0.7Þ. For the purely hadronic
base sample Fig. 3 shows ΔMthres as function of Mmax and
R1.6 revealing clearly that the mass ratio effect itself is EOS
dependent. The relation is well described by a bilinear fit.
We find a maximum residual of 0.06 M⊙ and an average
deviation between the bilinear fit and the data of 0.02 M⊙.
Interestingly, if one removes the DD2-Hyp, BHBLP and
DD2EOSs, the fit gets even tighterwith amaximumresidual
of about 0.028 M⊙ and an average deviation of only
0.012 M⊙. These three EOS models are at most marginally
compatible with the constraints from GW170817 [26].
This demonstrates that the difference in Mthres between

symmetric and asymmetric binaries increases for larger
radii R1.6 but decreases with increasing maximum mass.
One may thus summarize that stiff EOS at moderate NS
densities enlarge the difference ΔMthres, while the differ-
ence is reduced if the EOS remains very stiff at the highest
densities. We remark that possibly the different collapse
behavior for different q, which is expressed through
ΔMthres, may also inform about details of the high-density

FIG. 3. Difference ΔMthres between the threshold mass of
equal-mass mergers and the threshold mass of asymmetric
binaries with mass ratio q ¼ 0.7 as function of Mmax and R1.6
(blue dots). The blue plane displays a bilinear fit (see Table V).
Deviations between the fit and the underlying data are illustrated
by black lines. This figure is identical to Fig. 3 in the Supple-
mental Material of [49].

5The shown limit is drawn for equal-mass mergers. For some
EOS models Mthres of asymmetric mergers is smaller than that of
equal-mass binaries. Hence, if the mass ratio in a detection
deviates from unity or if only a range of q is given, a
corresponding line with the measured q or the lower bound of
the inferred range of q, respectively, should be computed. This
can be readily done by Mthres relations for asymmetric mergers,
see in particular Sec. IV.

6For those two EOS models, for example, the speed of sound
exceeds c for rest-mass densities above ρ ¼ 1.45 × 1015 g=cm3

and ρ ¼ 1.40 × 1015 g=cm3, respectively, which corresponds to
the central densities of NSs with 1.9 M⊙ and 2.0 M⊙.
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EOS. In principle, ΔMthres is measurable from several
different detections, i.e., from measurements of Mthres with
different q.
The dependence in Fig. 3 also explains why in [47] the

thresholdmass for asymmetric binaries seems to increase for
very soft EOSs,7 whereas our earlier results [17,41] have
shown the opposite behavior for moderately stiff EOSs.
Not unexpectedly we find that ΔMthres can also be

described by relations involving other independent varia-
bles like Rmax or Λ1.4 and that similar fits exist for enlarged
EOS samples. We summarize these findings in Table V,
where we assess the quality of the fits by the maximum
residual and the average deviation between fit and data. The
relation ΔMthresðMmax; R1.6Þ becomes slightly tighter
(according to sum of the squared residuals, the maximum
and average deviations in Table V) if we include all the
EOS models in the fit.8

We remark that we observe a qualitatively similar
behavior if we consider the difference Mthresðq ¼ 1Þ−
Mthresðq ¼ 0.85Þ, which can be similarly described by fits
as in Table V. A few more details are provided in

Appendix A and Fig. 13. The absolute differences
Mthresðq¼ 1Þ−Mthresðq¼ 0.85Þ, however, are smaller com-
pared to the comparison between q ¼ 1 and q ¼ 0.7, i.e.,
the threshold mass does not change strongly in the range
0.85 ≤ q ≤ 1. The deviations from a fit are more significant
in comparion to the absolute values, and thus the overall
trend is less pronounced but still clearly visible. For six
particularly soft EOS models Mthresðq ¼ 0.85Þ is margin-
ally larger than the threshold mass of the corresponding
equal-mass merger (by at most 0.05 M⊙; see Table IX).
Also the very stiff NL3 leads to a slightly larger
Mthresðq ¼ 0.85Þ. This is fully in line with the behavior
shown in Fig. 3, where models with relatively small R1.6 in
relation to Mmax have ΔMthres ≈ 0 (cf. also panels
in Fig. 13).

A. Combining fits

Considering the above dependencies of ΔMthres, we
devise various extensions to include mass ratio effects.
By this, we obtain particularly tight relations describing the
collapse behavior for different q. An obvious choice is to
combine two independent fits for samples with different
fixed q through some interpolation, e.g., fit 1 and fit 2 from
Table I describing the range 0.85 ≤ q ≤ 1 or fit 2 and fit 3
to cover the range 0.7 ≤ q ≤ 0.85 (or any other combina-
tion of fits from Tables I, I, III and IV or Table II from the
Supplemental Material in [49]). We remind that all these
relations are bilinear implying that they can be easily
inverted to employ any quantity as the dependent one.
A very first ansatz could be a linear interpolation.

Schematically, we then express the full q-dependent rela-
tion as

fitðqÞ ¼ ðfitq¼1 − fitq¼0.85Þðq − 1Þ=0.15þ fitq¼1 ð6Þ

TABLE V. Fits describing ΔMthres as the difference between the threshold mass for prompt collapse of equal-mass mergers and of
asymmetric binaries with q ¼ 0.7 as function of different stellar parameters (first column). Second column specifies the set of EOSs
used for the fit [‘base” ≡ hadronic base sample (a), “ex” ≡ excluded hadronic sample (b), “hyb” ≡ hybrid sample (c) as defined in
Sec. II]. Third to fifth columns provide the fit parameters a, b and c and their respective variances with units such that masses are inM⊙
and radii are in km. The next two columns specify the maximum and average deviation between fit and the underlying data (inM⊙). Last
two columns give the sum of the squared residuals being minimized by the fit procedure and the number of data points included in the fit.

Fit¼ ΔMthresðX; YÞ EOS Sample a b c Max. Av.
P

Sq. Res. N

aMmaxþbR1.6þc base −0.285�0.041 ð4.859�0.672Þ×10−2 0.079�0.114 0.061 0.019 0.0127 23
aMmaxþbR1.6þc baseþhyb −0.296�0.031 ð4.964�0.576Þ×10−2 0.093�0.095 0.056 0.017 0.0140 32
aMmaxþbR1.6þc baseþex −0.302�0.021 ð5.218�0.388Þ×10−2 0.075�0.051 0.052 0.018 0.0148 31
aMmaxþbR1.6þc baseþhybþex −0.304�0.018 ð5.198�0.347Þ×10−2 0.083�0.044 0.051 0.016 0.0159 40
aMmaxþbRmaxþc Base −0.314�0.042 ð5.596�0.780Þ×10−2 0.132�0.110 0.067 0.018 0.0128 23
aMmaxþbRmaxþc baseþhyb −0.313�0.041 ð4.525�0.788Þ×10−2 0.247�0.114 0.073 0.021 0.0233 32
aMmaxþbRmaxþc baseþex −0.344�0.024 ð6.231�0.505Þ×10−2 0.135�0.053 0.066 0.018 0.0172 31
aMmaxþbRmaxþc baseþhybþex −0.327�0.026 ð5.548�0.546Þ×10−2 0.172�0.057 0.069 0.021 0.0295 40
aMmaxþbΛ1.4þc base −0.274�0.035 ð2.504�0.283Þ×10−4 0.535�0.076 0.049 0.015 0.0093 23
aMmaxþbΛ1.4þc baseþhyb −0.295�0.029 ð2.553�0.260Þ×10−4 0.582�0.062 0.045 0.015 0.0115 32
aMmaxþbΛ1.4þc baseþex −0.333�0.023 ð1.934�0.156Þ×10−4 0.685�0.048 0.058 0.019 0.0170 31
aMmaxþbΛ1.4þc baseþhybþex −0.337�0.021 ð1.917�0.142Þ×10−4 0.697�0.041 0.055 0.018 0.0188 40

7In [47] the threshold mass was not directly determined, but
the collapse behavior of binaries with the same total mass but
different q suggest an increase of the remnant stability and Mthres
correspondingly with the system’s asymmetry.

8This behavior seems somewhat peculiar, we note, however,
that removing the very stiff EOS models DD2, DD2+Hyp and
BHBLP (which are at most marginally compatible with the tidal
deformability of GW170817) from the base sample leads to the
tightest fit with a maximum residual of 0.028 M⊙ and an average
deviation of 0.012 M⊙. (In this case the fit parameters are
a − 0.263, b ¼ 3.050 × 10−02 and c ¼ 0.239.) We thus suspect
that the inclusion of additional excluded stiff models shifts the fit
towards these models and yields a better description of these three
outliers, which “spoil” the fit of the base sample.
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to be valid in the whole range 0.85 ≤ q ≤ 1. This allows a
simple and straightforward implementation of mass ratio
effects for any two fits regardless of what are the dependent
and independent variables. A larger range in q can be
covered either by employing fits for q ¼ 1 and q ¼ 0.7 in
Eq. (6) or by a piecewise linear ansatz describing separately
the ranges q ¼ ½1; 0.85� and q ¼ ½0.85; 0.7�.
Fora larger rangeinq, asimple lineardependenceonqmay

not provide the most accurate description of MthresðqÞ (see
also Fig. 2 in the SupplementalMaterial of [49]). Sincemass
ratio effects become stronger with asymmetry, i.e., decreas-
ing q, one may for instance replace Eq. (6) by a higher-order
polynomial such that thederivativewith respect toq is zero at
q ¼ 1. We assess this point by investigating MthresðqÞ for
selected EOS models. Figure 4 (left panel) showsMthres for
the DD2F EOS as function of the mass ratio in the range
0.5 ≤ q ≤ 1. The black error bars indicate the precision to
which MthresðqÞ was determined from simulations for this
EOS.One can clearly recognize thatmass ratio effects on the
threshold mass become stronger with mass asymmetry.
We take different approaches to quantify the behavior

in Fig. 4. Generally, we find that higher-order polynomials
provide a good description of the data. The blue
curve in Fig. 4 displays a least-squares fit of the form
MthresðqÞ¼ αð1−qÞ2.5þ γ (resulting in α ¼ −1.452 M⊙
and γ ¼ 2.923 M⊙.)

9 A second approach is more suited
to the idea behind Eq. (6). We simply compute the

coefficients in MthresðqÞ ¼ αð1 − qÞ2.5 þ γ by requiring
that the function should reproduce the results for q ¼ 1
and q ¼ 0.7 (red solid curve; α¼−1.521M⊙ and γ ¼
2.925 M⊙). The red dotted curve uses Mthresðq ¼ 0.5Þ
instead of Mthresðq ¼ 0.7Þ (yielding α ¼ −1.443 M⊙ and
γ ¼ 2.925 M⊙). It is apparent that this description is
comparable to an actual fit, and we conclude that this
procedure describes the data sufficiently well even for very
asymmetric binaries. Note that the solid red curve also
reproduces the data for q ¼ 0.5, i.e., by an extrapolation
beyond the region 0.7 ≤ q ≤ 1. The deviations are smaller
than the maximum deviations in Tables I and II. We
emphasize that Fig. 4 shows an example for an EOS which
leads to relatively strong mass ratio effects, i.e., a large
ΔMthres. As discussed above, other EOSs result in much
smaller differences in Mthres for q ¼ 1 and q ¼ 0.7.
We also remark that functions like αð1 − qÞ2 þ γ or

αð1 − qÞ3 þ γ similarly reproduce the data as the ansatz
with the power 2.5. Fitting the dataMthresðqÞ for DD2F to a
function αð1 − qÞn þ γ, n is found to be 2.47. ForMthresðqÞ
with the SFHX EOS in the range 0.6 ≤ q ≤ 1 we find
n ¼ 3.53; for the SAPR and DD2 EOSs MthresðqÞ is best
described by higher-order polynomials with n ∼ 5. This is
because in the range 0.8 ≤ q ≤ 1 MthresðqÞ changes only
slightly, but mass ratio effects on the threshold mass
become continuously stronger around q ¼ 0.7 and below.
Generally, the power will depend on the EOS, the range of
q which is considered for a fit, and also on the accuracy to
which Mthres is determined. Corroborating the precise
functional dependence on q will require us to study the
behavior ofMthresðqÞ for many more EOSs, which we leave
for future work. Apparently, there is no universal power n
valid for all EOS and a larger range in q. We find that n ¼ 3
yields a good description of all data. See discussion
below and in Appendix C, which shows that a simple

FIG. 4. Left panel: Threshold mass Mthres for prompt BH formation as function of mass ratio q for the DD2F EOS. Black error bars
indicate finite precision to which Mthres is given from merger simulations for fixed q. Blue dashed curve displays a fit MthresðqÞ ¼
αð1 − qÞ2.5 þ γ to the data. Red curves are directly computed from specific data points assuming a functionMthresðqÞ ¼ αð1 − qÞ2.5 þ γ
(see main text). Right panel: Threshold chirp mass Mthres for prompt BH formation as function of the mass ratio q for the DD2F EOS.
Black error bars indicate finite precision to which Mthres is given from merger simulations. Red curves are directly computed from
specific data points assuming a function MthresðqÞ ¼ αð1 − qÞ2.5 þ γ (see main text).

9In the figure and the fit we intentionally do not include the
data for q ¼ 0.85 because a uniform sampling in q should
provide a more representative description. In any case, the
additional data point is consistent with the different curves
and leaves the fit parameters basically unchanged if included.
A least-squares fit with the q ¼ 0.85 result yields α ¼
−1.475 M⊙ and γ ¼ 2.927 M⊙, which lies virtually on top of
the dashed blue line.
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linear q dependence does not describe the data very well.
Higher powers cause a very strong reduction of Mthres at
smaller q, which may even become unphysical as Mthres
approaches Mmax. We thus adopt below a dependence
Mthres ¼ αð1 − qÞn þ γ with n ¼ 3.
Reference [64] speculated about a dependence

MthresðqÞ ¼ Mq¼1
thresð q

ð1þqÞ2Þ0.6, which would lead to a con-

stant difference ΔMthres ¼ Mq¼1
thres −Mq¼0.7

thres for all EOSs.
This function does not lead to a very accurate description of
mass ratio effects on the threshold mass because it does not
take into account that the influence of q is different for
different EOSs. See Fig. 3; recall that ΔMthres ≈ 0 for some
EOSs, i.e., Mthresðq ¼ 1Þ ≈Mthresðq ¼ 0.7Þ. We also note
that for the range of binary mass ratios considered in this
study, MthresðqÞ changes smoothly with q and we do not
observe an abrupt change of the collapse behavior that
could indicate the occurrence of a qualitatively new
mechanism related to enhanced tidal disruption triggering
the collapse in very asymmetric binaries [64]. We observe a
smooth transition with asymmetric merger dynamics and
tidal disruption already for slightly asymmetric systems,
which continuously becomes more pronounced for more
extreme mass ratios (see also discussion in Sec. V).
Finally, we note that also the threshold for prompt BH

formation expressed by the chirp mass Mthres is well
captured by an ansatz MthresðqÞ ¼ αð1 − qÞ2.5 þ γ with
the power 2.5 (see right panel of Fig. 4). For the red solid
curve we employ Mthresðq ¼ 1Þ and Mthresðq ¼ 0.7Þ to
determine the coefficients α¼1.135M⊙ and γ¼ 1.273M⊙.
The red dotted curve is given by α ¼ −1.076 M⊙ and
γ ¼ 1.273 M⊙ based on the data points Mthresðq ¼ 1Þ
and Mthresðq ¼ 0.5Þ.
Based on these observations for an individual EOS, we

devise a general recipe to describe q-dependent relations
forMthres using fits for fixed mass ratio as in Tables I and II.
It reads

MthresðqÞ ¼ αð1 − qÞ3 þMthresðq ¼ 1Þ ð7Þ

where the coefficient α is given by

α ¼ Mthresðq ¼ 1 − ΔqÞ −Mthresðq ¼ 1Þ
Δq3

: ð8Þ

In this study we describe fits for Mthres with fixed mass
ratios of q ¼ 1, q ¼ 0.85 and q ¼ 0.7. Since the high-order
polynomial apparently fits the data well in the full range
0.7 ≤ q ≤ 1, we set Δq ¼ 0.3 and α is given by
Mthresð0.7Þ−Mthresð1Þ

0.33 with fit functions for Mthresð0.7Þ and
Mthresð1Þ listed in Tables I and II. The range of validity
is 0.7 ≤ q ≤ 1 but we conclude from Fig. 4 that one can
expect that this ansatz will also work reasonably well for
some range below q ¼ 0.7. Also, considering the behavior
in Fig. 4 for the DD2F EOS [and a few other EOS models

for which we obtained MthresðqÞ with finer spacing in the
range 0.5 ≤ q ≤ 1, see also Fig. 2 in the Supplemental
Material of [49] ], we suspect that q-dependent relations
given by Eq. (7) show a tightness, which is roughly
comparable to the one found for fits with fixed mass ratio
and which is significantly better than that of fits which
combine q ¼ 0.7, q ¼ 0.85 and q ¼ 1 data without explicit
q dependence (like fits 4–6, 10–12, 18–20, 24–26, 32–34,
38–40, 46–48 and 52–54 in Tables I and II).
It is also clear from the right panel in Fig. 4 that the

ansatz in Eq. (7) also works for improved descriptions
of MthresðqÞ.

B. General q-dependent fit formula

Based on the considerations above, we directly develop
q-dependent fit formulas Mthresðq; X; YÞ as alternative to
Eq. (7). First, we note that in our case the parameter α in
Eq. (7) is given by α ¼ −ΔMthres=0.33 for the range
0.7 ≤ q ≤ 1. Hence, Eq. (7) reads

MthresðqÞ ¼ −
ΔMthres

0.33
δq3 þMthresðq ¼ 1Þ ð9Þ

with δq≡ 1 − q. As discussed above, ΔMthres can also be
described by fit formulas [with the same independent
variables X and Y as a fit forMthresðq ¼ 1Þ]. In combination
this suggests the ansatz

Mthresðq;Mmax;R1.6Þ¼ c1Mmaxþc2R1.6þc3þc4δq3Mmax

þc5δq3R1.6þc6δq3: ð10Þ

Using this nonlinear ansatz in a least-squares fit to the
Mthres data for q ¼ 0.7, q ¼ 0.85 and q ¼ 1, we realize that
the last term does not yield a significant improvement
regarding the tightness of the relation. Thus, we omit the
last term in Eq. (10) and set c6 ¼ 0. Fitting the data of the
base sample we then determine c1 ¼ 0.578, c2 ¼ 0.161,
c3 ¼ −0.218, c4 ¼ 8.987 c5 ¼ −1.767 (with c6 ¼ 0 by
construction). Remarkably, the maximum residual is only
0.066 M⊙ (with an average deviation between fit and data
of 0.017 M⊙). Hence, the higher-dimensional, more gen-
eral q-dependent relation given by Eq. (10) is approx-
imately as tight as the relations for fixed q (see fits 1 to 3 in
Table I). This compares to a maximum residual of
0.151 M⊙ (0.027 M⊙ average deviation) for a fit combin-
ing the data for all mass ratios without an explicit q
dependence (fit 6 in Table I). For a more detailed com-
parison we individually check the deviations of the data sets
with fixed q against the higher-dimensional formula. We
find maximum and average deviations of 0.047 M⊙ and
0.016 M⊙ for q ¼ 1, 0.044 M⊙ and 0.017 M⊙ for
q ¼ 0.85, and 0.066 M⊙ and 0.018 M⊙ for q ¼ 0.7.
Comparing these numbers to those for fits 1, 2 and 3 in
Table I shows that the more general formula with explicit q
dependence is nearly as accurate as the fits for fixed q,
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although it is valid for the full range 0.7 ≤ q ≤ 1. In line
with these numbers we find that the reduced chi-square is
0.84 for the relation with explicit mass ratio dependence
(similar to the reduced chi-square of fits 1 to 3 for fixed q),
whereas fit 6 from Table I, i.e., the relation without q
dependence, yields about 2.23.
With the ansatz in Eq. (10) setting c6 ¼ 0, we obtain

various fit formulas for the different EOS samples. The fit
parameters are given in Table VI together with the
maximum residual and the average deviation between
fit and data to quantify the accuracy of the relation.
Table VI includes also relations with other independent
variables, where we replace R1.6 by Rmax, Λ1.4 or Λ̃thres. As
explained, these choices are motivated by what is assumed
to be known about the EOS and which quantities are
measured. Also for these relations we find that the q-
dependent fit is approximately as accurate as the fits for
fixed mass ratio in Tables I and II. For completeness we

provide a table with the fit parameters for the full ansatz in
Eq. (10) with all six terms in Appendix C. There, we also
include fits with the ansatz Mthresðq;Mmax; R1.6Þ ¼
c1Mmax þ c2R1.6 þ c3 þ c4δq3R1.6, i.e., we keep only
the dominant EOS dependence of ΔMthres on R1.6
(Table XIII). These relations are not particularly tight
compared to fits without explicit q dependence.
To illustrate the influence of different EOS properties on

MthresðqÞ, we plot Eq. (10) for fixedMmax and R1.6 in Fig. 5
with ci as given above. One can clearly recognize that
Mthres increases with Mmax and R1.6, but that the impact of
the binary mass ratio is very different depending on Mmax
and R1.6.
We add some more remarks. Generating fits with a

dependence on δq to some other power n, e.g., 2, 2.5 or 4,
leads to similarly tight fits. In Appendix C Table XIV
provides a comparison between fits like Eq. (10) adopting
different powers n. Considering the deviations between fits

TABLE VI. Different fits describing the EOS dependence of the threshold binary mass Mthres for prompt BH formation including an
explicit dependence on the binary mass ratio q through δq ¼ 1 − q (see main text). First column specifies the set of EOSs used for the fit
[“b”≡ hadronic base sample (a), “e”≡ excluded hadronic sample (b), “h”≡ hybrid sample (c) as defined in Sec. II]. Fit parameters ci
and their respective variances are given in second to sixth columns. The units of the fit parameters ci are such that masses are inM⊙, radii
in km and tidal deformabilities dimensionless. These relations are obtained by least-square fits to theMthres data for q ¼ 1, q ¼ 0.85 and
q ¼ 0.7. Seventh and eighth columns specify the maximum and average deviation between fit and the underlying data. Last two
columns give the sum of the squared residuals being minimized by the fit procedure and the number of data points included in the fit.

Mthresðq;Mmax; R1.6Þ ¼ c1Mmax þ c2R1.6 þ c3 þ c4δq3Mmax þ c5δq3R1.6

EOSs c1 c2= × 10−1 c3 c4 c5 Max. Av.
P

Sq. Res. N

b 0.578� 0.025 1.610� 0.042 −0.218� 0.060 8.987� 1.268 −1.767� 0.229 0.066 0.017 0.0335 69
bþ h 0.663� 0.045 1.535� 0.082 −0.329� 0.116 9.058� 2.321 −1.784� 0.412 0.116 0.035 0.1950 96
bþ e 0.633� 0.019 1.555� 0.034 −0.274� 0.037 9.120� 1.087 −1.783� 0.192 0.108 0.022 0.0738 93
bþ hþ e 0.664� 0.028 1.566� 0.052 −0.369� 0.055 9.145� 1.628 −1.792� 0.284 0.118 0.033 0.2281 120

Mthresðq;Mmax; RmaxÞ ¼ c1Mmax þ c2Rmax þ c3 þ c4δq3Mmax þ c5δq3Rmax

EOSs c1 c2= × 10−1 c3 c4 c5 Max. Av.
P

Sq. Res. N

b 0.491� 0.032 1.847� 0.061 −0.051� 0.071 9.382� 1.656 −2.088� 0.340 0.071 0.021 0.0512 69
bþ h 0.613� 0.040 1.665� 0.079 −0.135� 0.096 8.209� 2.074 −1.859� 0.419 0.102 0.032 0.1551 96
bþ e 0.507� 0.020 1.888� 0.042 −0.129� 0.036 10.074� 1.205 −2.218� 0.242 0.074 0.021 0.0733 93
bþ hþ e 0.571� 0.027 1.820� 0.057 −0.206� 0.048 9.249� 1.623 −2.061� 0.323 0.121 0.031 0.1974 120

Mthresðq;Mmax;Λ1.4Þ ¼ c1Mmax þ c2Λ1.4 þ c3 þ c4δq3Mmax þ c5δq3Λ1.4

EOSs c1 c2= × 10−4 c3 c4 c5= × 10−3 Max. Av.
P

Sq. Res. N

b 0.698� 0.035 7.772� 0.361 1.137� 0.074 0.900� 0.455 −9.050� 2.295 0.096 0.029 0.0854 69
bþ h 0.750� 0.041 7.670� 0.487 1.016� 0.088 0.878� 0.616 −9.763� 3.078 0.111 0.040 0.2242 96
bþ e 0.651� 0.029 5.370� 0.243 1.325� 0.059 −0.026� 0.435 −3.541� 1.483 0.114 0.043 0.2404 93
bþ hþ e 0.674� 0.030 5.402� 0.263 1.265� 0.060 −0.292� 0.444 −3.121� 1.595 0.123 0.048 0.3746 120

Mthresðq;Mmax; Λ̃thresÞ ¼ c1Mmax þ c2Λ̃thres þ c3 þ c4δq3Mmax þ c5δq3Λ̃thres

EOSs c1 c2= × 10−3 c3 c4 c5= × 10−3 Max. Av.
P

Sq. Res. N

b 1.380� 0.061 2.352� 0.141 −0.669� 0.154 4.464� 0.755 −5.076� 0.530 0.114 0.040 0.1617 69
bþ h 1.107� 0.105 0.998� 0.191 0.263� 0.259 1.914� 1.157 −2.416� 0.707 0.187 0.078 0.7930 96
bþ e 1.408� 0.044 2.112� 0.131 −0.652� 0.116 3.854� 0.758 −4.681� 0.496 0.274 0.056 0.5000 93
bþ hþ e 1.374� 0.061 1.490� 0.164 −0.428� 0.161 2.384� 1.015 −3.206� 0.611 0.268 0.086 1.3246 120

ANDREAS BAUSWEIN et al. PHYS. REV. D 103, 123004 (2021)

123004-16



and data we conclude that n ¼ 3 is the best choice to
capture the higher-order behavior of MthresðqÞ also indi-
cated in Fig. 4. The accuracy of the relations is not
particularly sensitive to the exact value of n (as long as
n is larger than abut 2 and smaller than about 4; see
Appendix C for a brief discussion).
Finally, based on the findings for a single EOS in Fig. 4

(and a few other selected EOS models, i.e., SAPR, DD2,
and SFHX in addition to DD2F), we suspect that the
general q-dependent relations for Mthres [Eq. (10) and
Table VI] hold also for mass ratios somewhat smaller
than 0.7.
We describe two possibilities to derive q-dependent fits

for the chirp mass threshold MthresðqÞ. We can employ the
fits for Mthres [Eq. (10) and Table VI] and use the general
relation M ¼ Mtotq0.6ð1þ qÞ−1.2. This leads to

MthresðqÞ ¼ MthresðqÞq0.6ð1þ qÞ−1.2 ð11Þ

FIG. 5. Threshold binary mass for prompt collapse as function
of binary mass ratio q for different EOS properties based on
Eq. (10). Solid curves assume a fixed maximum mass ofMmax ¼
2.0 M⊙ but different NS radii. Blue curves show MthresðqÞ for a
fixed radius R1.6 ¼ 13 km but with Mmax being 2.0 M⊙ (solid),
2.1 M⊙ (dashed) and 2.2 M⊙ (dotted).

TABLE VII. Different fits describing the EOS dependence of the threshold chirp mass Mthres for prompt BH formation including an
explicit dependence on the binary mass ratio q through δq ¼ 1 − q (see main text). First column specifies the set of EOSs used for the fit
[“b”≡ hadronic base sample (a), “e”≡ excluded hadronic sample (b), “h”≡ hybrid sample (c) as defined in Sec. II]. Fit parameters ci
and their respective variances are given in second to sixth columns. The units of the fit parameters ci are such that masses are inM⊙, radii
in km and tidal deformabilities dimensionless. These relations are obtained by least-square fits to theMthres data for q ¼ 1, q ¼ 0.85 and
q ¼ 0.7. Seventh and eighth columns specify the maximum and average deviation between fit and the underlying data. Last two
columns give the sum of the squared residuals being minimized by the fit procedure and the number of data points included in the fit.

Mthresðq;Mmax; R1.6Þ ¼ c1Mmax þ c2R1.6 þ c3 þ c4δq3Mmax þ c5δq3R1.6

EOSs c1 c2= × 10−2 c3= × 10−1 c4 c5= × 10−1 Max. Dev. Av. Dev.
P

Sq. Res. N

b 0.251� 0.011 6.999� 0.181 −0.941� 0.255 3.685� 0.542 −7.992� 0.980 0.028 0.007 0.0061 69
bþ h 0.288� 0.019 6.672� 0.352 −1.422� 0.450 3.696� 1.003 −8.027� 1.778 0.049 0.015 0.0364 96
bþ e 0.275� 0.008 6.759� 0.149 −1.184� 0.162 3.727� 0.473 −8.035� 0.833 0.048 0.009 0.0140 93
bþ hþ e 0.289� 0.012 6.804� 0.225 −1.593� 0.238 3.732� 0.706 −8.061� 1.233 0.050 0.015 0.0429 120

Mthresðq;Mmax; RmaxÞ ¼ c1Mmax þ c2Rmax þ c3 þ c4δq3Mmax þ c5δq3Rmax

EOSs c1 c2= × 10−2 c3= × 10−2 c4 c5= × 10−1 Max. Dev. Av. Dev.
P

Sq. Res. N

b 0.214� 0.014 8.032� 0.262 −2.162� 3.044 3.866� 0.711 −9.448� 1.459 0.031 0.009 0.0094 69
bþ h 0.266� 0.017 7.236� 0.340 −5.781� 4.144 3.336� 0.898 −8.409� 1.812 0.043 0.014 0.0290 96
bþ e 0.221� 0.009 8.208� 0.182 −5.537� 1.546 4.162� 0.525 −10.01� 1.052 0.033 0.009 0.0139 93
bþ hþ e 0.248� 0.012 7.908� 0.246 −8.881� 2.092 3.796� 0.705 −9.304� 1.403 0.054 0.013 0.0373 120

Mthresðq;Mmax;Λ1.4Þ ¼ c1Mmax þ c2Λ1.4 þ c3 þ c4δq3Mmax þ c5δq3Λ1.4
EOSs c1 c2= × 10−4 c3= × 10−1 c4 c5= × 10−3 Max. Dev. Av. Dev.

P
Sq. Res. N

b 0.305� 0.015 3.381� 0.156 4.918� 0.322 0.029� 0.197 −4.102� 0.993 0.041 0.012 0.0160 69
bþ h 0.327� 0.018 3.337� 0.211 4.399� 0.383 0.021� 0.267 −4.412� 1.333 0.048 0.017 0.0420 96
bþ e 0.285� 0.013 2.332� 0.106 5.732� 0.257 −0.387� 0.190 −1.625� 0.648 0.049 0.019 0.0459 93
bþ hþ e 0.295� 0.013 2.346� 0.114 5.475� 0.262 −0.503� 0.193 −1.443� 0.695 0.053 0.021 0.0711 120

Mthresðq;Mmax; Λ̃thresÞ ¼ c1Mmax þ c2Λ̃thres þ c3 þ c4δq3Mmax þ c5δq3Λ̃thres

EOSs c1 c2= × 10−4 c3= × 10−1 c4 c5= × 10−2 Max. Dev. Av. Dev.
P

Sq. Res. N

b 0.600� 0.026 10.20� 0.610 −2.889� 0.667 1.572� 0.327 −2.221� 0.230 0.049 0.017 0.0303 69
bþ h 0.481� 0.045 4.322� 0.826 1.154� 1.123 0.451� 0.501 −1.055� 0.306 0.082 0.034 0.1489 96
bþ e 0.612� 0.019 9.151� 0.571 −2.811� 0.507 1.295� 0.331 −2.043� 0.216 0.120 0.024 0.0951 93
bþ hþ e 0.597� 0.026 6.445� 0.713 −1.836� 0.698 0.651� 0.441 −1.397� 0.265 0.118 0.037 0.2498 120
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with MthresðqÞ taken from Table VI. Alternatively, we
directly fit the data for MthresðqÞ using an ansatz

Mthresðq;Mmax; R1.6Þ ¼ c1Mmax þ c2R1.6 þ c3

þ c4δq3Mmax þ c5δq3R1.6: ð12Þ

The resulting fit parameters are given in Table VII for
different sets of EOSs. The table also provides similar fits
for other independent quantities like Rmax, Λ1.4 and Λ̃thres.
Both approaches lead to the same tightness of the final
relations.

V. SEMIANALYTIC MODEL FOR MASS RATIO
EFFECTS ON Mthres

One can work out a tentative explanation for mass ratio
effects on Mthres, i.e., Fig. 3, by Newtonian point-particle
dynamics. In a first step we assume that symmetric and
asymmetric binaries merge at the same orbital distance a
and that the angular momentum L of the remnant can be
estimated by the orbital angular momentum at this distance.
For the same orbital separation an asymmetric binary has
less angular momentum than an equal-mass binary of the
same total mass. Using Kepler’s law, the total angular
momentum is given by

LðqÞ¼L1þL2¼
qa2

ð1þqÞ3Mtotωþ q2a2

ð1þqÞ3Mtotω ð13Þ

with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mtot=a3

p
(gravitational constant G suppressed

for clarity). LðqÞ is an increasing function of q, i.e., the
angular momentum and thus the stability of the remnant
decreases with the binary mass asymmetry (see Fig. 6).
This illustrates that generally asymmetric mergers may
have smaller Mthres. Here, we assume that the threshold
mass is determined by a competition between the desta-
bilizing effect of mass and the centrifugal support with
increasing angular momentum (see [63] for a semianalytic
model employing relativistic stationary stellar models).
Additionally, the angular momentum L1 of the lighter

binary component increases with asymmetry, while the
more massive star carries less angular momentum (L2) for
smaller q (see Fig. 6). Considering the dynamics of
asymmetric mergers where the less massive component
is disrupted and wrapped around the more massive star, this
may imply that there is less angular momentum in the very
center of the remnant, which is formed by the more massive
star. Hence, not only the total angular momentum is
reduced for asymmetric mergers, but also its distribution
may be such that the central core has less centrifugal
support (see Fig. 12 in [111] for stable remnants at late
times considering systems of constant rest mass).
These simple considerations, however, do not explain the

particular EOS dependence of the difference ΔMthres ¼
Mthresðq ¼ 1Þ −Mthresðq ¼ 0.7Þ (or similarly the difference

between the threshold mass for q ¼ 1 and q ¼ 0.85, see
Fig. 13), which dominantly depends on R1.6 (see Fig. 3).
Thus, we refine the model in a second step by assuming that
the orbital distance at merging, i.e., the distance which
determines the remnant’s angular momentum, is given by
a ¼ R1 þ R2 ¼ RðM1Þ þ RðM2Þ. Now, the model depends
explicitly on the EOS through the different mass-radius
relations. This estimate takes into account that the merging
may occur at different orbital distances depending on the
binary masses and the EOS. We compute the angular
momentum of the remnant through Eq. (13) by fixing
Mtot ¼ Mthresðq ¼ 1Þ for every EOS of the base sample. We

FIG. 6. Angular momentum of a binary with a total mass of
3 M⊙ as function of the mass ratio q within a Newtonian point-
particle approximation at an orbital distance of 24 km. Within this
model the total angular momentum decreases with binary mass
asymmetry (black). The contribution from the lighter binary
component grows (green curve), whereas the angular momentum
of the more massive binary component decreases even stronger
(blue curve).

FIG. 7. Toy model estimate of the difference in the remnant’s
angular momentum between symmetric (q ¼ 1) and asymmetric
mergers (q ¼ 0.7) as function of the radius R1.6 of a 1.6 M⊙ NS
for different EOSs of the base sample. See text for more
explanations.
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compare the angular momentum of equal-mass and asym-
metric mergers of the same total mass by defining
ΔL ¼ Lðq ¼ 1Þ − Lðq ¼ 0.7Þ. Figure 7 displays ΔL as
function of R1.6 for all EOSs of the base sample. Note first
that ΔL is positive, as already suspected from the argu-
ments above. Moreover, the toy model qualitatively repro-
duces the EOS dependence by showing that larger NSs may
lead to a stronger difference in the injected angular
momentum in symmetric and asymmetric mergers. The
model does not predict a slight increase of Mthres for small
deviations from q ¼ 1 as it is indicated by our data for
some relatively soft EOSs. Obviously, one should not
overrate this simplistic model as the merging is a highly
dynamical process and the angular momentum is a time-
dependent quantity. Also, the exact distribution of angular
momentum may be crucial, and mass ejection and disk
formation in asymmetric systems may be enhanced.

VI. SIGNATURE OF A PHASE TRANSITION

A. General idea and equal-mass mergers

In Sec. II we introduce different sets of EOS models, and
we distinguish in particular purely hadronic EOSs and
models with a phase transition to deconfined quark matter.
The main purpose of this classification is to understand the
impact of a phase transition on the collapse behavior
(cf. Ref. [49]).
Specifically, the combination of Mthres and Λ̃thres may be

indicative of a phase transition to deconfined quark matter.
EOSs which undergo a phase transition tend to have
relatively high Λ̃thres in comparison toMthres. This is shown
in Fig. 8, which is nearly identical to Fig. 2 in [49]. Hybrid
models occur in the upper left corner of the diagram, which
is not reached by hadronic models. Hence, measuring a
combination ðΛ̃thres;MthresÞ in the regime above the dashed
line provides evidence for a phase transition.
This particular impact of a phase transition on the

collapse behavior is understandable. The gravitational
collapse of the merger remnant, i.e., Mthres, is determined
by the very high-density regime of the EOS. The tidal
deformability Λ̃thres is measured during the inspiral before
merging and it thus contains only information about the
EOS at moderate densities. Recall that for equal-mass
mergers Λ̃thres ¼ Λ̃ðMthres=2Þ.
For most of the tested hybrid EOSs, we find that

Mthres=2 < Monset withMonset being the mass of the lightest
NS where quark matter occurs. Hence, the merging stars are
purely hadronic and the phase transition takes place at
densities, which are only reached after merging. This
implies that Λ̃thres is only sensitive to the hadronic regime
of the EOS, whereas Mthres is strongly affected by the
presence of quark matter. Concretely,Mthres is significantly
reduced compared to the purely hadronic reference model
because the phase transition leads to a sudden softening of
the EOS at higher densities. The reduction ofMthres implies

an increase of Λ̃thres ¼ Λ̃ðMthres=2Þ since the tidal deform-
ability is larger for smaller masses. This explains why the
regime beyond the dashed curve in Fig. 8 is only reached by
hybrid EOSs which can lead to the combination of large
Λ̃thres and small Mthres. The dashed line as criterion for the
identification of a phase transition is drawn by hand and
given by Λ̃hybrid

thres ¼ 488ðMthres=M⊙Þ − 1050.We remark that
a similar figure can be obtained for Mthres and Λ1.4. In this
case the signature is less pronounced as the hybrid models
are less distinguishable from the purely hadronic EOSs.
As is apparent from Fig. 8, not all hybrid models are

located at Λ̃thres > Λ̃hybrid
thres . These are models with an EOS

of the quark phase, which is relatively stiff. This stabilizes
the remnant and yields a threshold mass that is comparable
to that of the purely hadronic reference model. We thus
conclude that a measured combination ðΛ̃thres;MthresÞ with
Λ̃thres < Λ̃hybrid

thres ðMthresÞ is uninformative about the presence

FIG. 8. Threshold mass Mthres and combined tidal deformabil-
ity Λ̃thres of binary systems with Mtot ¼ Mthres for different EOSs
and q ¼ 1. EOS models are classified as in Sec. II: large black
dots show the purely hadronic base sample, small black dots
display the excluded hadronic sample, i.e., models which are
incompatible with GW170817, and green symbols indicate
hybrid models. (Two excluded models with Mthres > 3.4 M⊙
lie outside the plot limits.) Overplotted crosses mark hyperonic
EOSs. The red plus sign corresponds to the ALF2 EOS, where
quark matter resembles properties of hadronic matter [84,87].
The black dashed line separates an area where only hybrid models
occur, from a “mixed” regime with both hybrid and purely
hadronic EOS. Blue lines display curves of constantMmax, which
are given by fit 43 in Table II for the hadronic base sample. Since
viable hadronic models should have Mmax ≥ 1.97 M⊙, no had-
ronic EOS (large black dots) occurs significantly to the left the
blue solid line. Note that all except for one hybrid model (green
dots) fulfill Mmax ≥ 1.97 M⊙, although some models occur on
the left of the blue solid line. The red curve marks configurations
which have approximately a NS radius of 13.5 km (with a mass of
Mthres=2) as an approximate upper bound on NS radii from
GW170817. See main text for more explanations. A very similar
figure can be found in [49].
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of a phase transition. In other words, depending on the
properties of quark matter, a hybrid model can but does not
need to be located in the regime labeled as “only hybrid”
in Fig. 8.
In [49] we point out several advantages of the procedure

to identify the presence of a phase transition through the
comparison between Λ̃thres and Λ̃

hybrid
thres ðMthresÞ. In particular,

Λ̃thres is larger and thus easier to measure compared to the
combined tidal deformability of binaries composed of
hybrid stars because Λ̃thres ¼ Λ̃ðMthres=2Þ > Λ̃ðMonsetÞ
for most hybrid models. Also, a measurement of
Λ̃thres does not need to be very precise, whereas the
identification of a phase transition through a kink in the
relation ΛðMÞ at higher masses aroundMonset requires very
accurate observations of Λ (e.g., Fig. 3 in [45]) or a larger
number of events [112,113]. Alternatively, measuring an
increased dominant GW frequency of the postmerger phase
would indicate the occurrence of a phase transition
[61,66,114,115]. See [49] for some more advantageous
aspects of the Λ̃hybrid

thres −Mthres comparison.
For these reasons the new signature of a phase transition

through a constraint on ðΛ̃thres;MthresÞ is very promising.
However, one point is critical, namely the fact that no
purely hadronic EOS is located above the dashed line in
Fig. 8. Our sample of hadronic models is relatively large,
and thus we basically test the full range of viable models
with a finite number of candidate EOSs. It is reasonable to
expect that any other hadronic EOS is sufficiently similar to
one of our tested models that it would lead to a very similar
combination of Λ̃thres and Mthres. Similarly, we anticipate
based on the physical understanding described above that
also other hybrid models which are not considered here,
may occur in the “only hybrid” regime. We remark that our
hybrid models employ the same hadronic model (DD2F) at
densities below the onset density of the phase transition.
Because Mthres=2 < Monset holds for most models, the
hybrid models appear to lie on a virtual curve in Fig. 8,
which simply resembles the ΛðMÞ relation of the hadronic
model. Using other hadronic EOS for the density regime
below the phase transition, we expect the corresponding
models to be shifted along the black dashed line following
the ΛðMÞ curve of the hadronic EOS.
We add one more aspect corroborating and refining our

line of arguments to exclude purely hadronic EOS models
above Λ̃hybrid

thres ðMthresÞ. We discuss in Sec. III that there is a
tight relation between Mmax, Λ̃thres and Mthres in particular
for hadronic EOSs. Using the relation for the base sample
with q ¼ 1 (fit 43 in Table II), we draw curves of constant
Mmax in Fig. 8 (blue lines), see also Fig. 1 in [49] showing
that Mmax increases with Mthres but decreases with Λ̃thres.
The blue solid curve for Mmax ¼ 1.97 M⊙ closely

follows the dashed black line separating the “only hybrid”
area form the “mixed” regime. Current pulsar observations
imply that Mmax > 1.97 M⊙ (corresponding to the one-

sigma error bar in [93]; Ref. [110] yieldsMmax > 1.96 M⊙
within two sigma). The tight relation between Mmax, Λ̃thres
and Mthres thus explains why there are no purely hadronic
models beyond the blue solid line or the dashed black line,
respectively. We remark that the EOSs comprising the base
sample have been selected by the condition that their
maximum mass exceeds 1.97 M⊙. One hadronic model
of the base sample occurs slightly above the blue solid
curve because the relation MmaxðMthres; Λ̃thresÞ features
small deviations (see Sec. III). Otherwise, only hybrid
models can lead to ðΛ̃thres;MthresÞ significantly beyond the
blue curve for the reasons explained above. Generally,
these considerations provide strong support for the
assumption that no viable hadronic models occur in the
upper left corner of the diagram and that indeed the phase
transition to deconfined quark matter can be identified by
Λ̃thres > Λ̃hybrid

thres ðMthresÞ with either the black dashed or the
solid blue line as quantitative criterion.
Note that the hybrid models above the blue curve

are compatible with a maximum mass of 1.97 M⊙ (except
for the VBAG EOS with Mmax slightly below;
see Table IX). It is precisely the presence of a phase
transition which causes models to yield a combination of
ðΛ̃thres;MthresÞ in a regime which is inaccessible by had-
ronic EOSs with Mmax > 1.97 M⊙.
We emphasize that the blue lines in Fig. 8 also show that

the criterion for a phase transition can be updated by new or
ongoing pulsar measurements which shift the lower limit
on Mmax towards higher masses [110]. For instance,
Mmax > 2.1 M⊙ would imply a much larger region in
the Λ̃thres −Mthres plane where only hybrid EOSs occur
(beyond the dashed blue line labeled with 2.1 M⊙).
Finally, we include an additional curve in Fig. 8 to

understand the location of different EOSmodels. For equal-
mass mergers Λ̃thres is given by ΛðMthres=2Þ. Moreover, it is
known that the tidal deformability correlates well with the
compactness GM=ðc2RÞ of nonrotating NSs. As can be
seen in Fig. 1 of the Supplemental Material of [49], for
most EOS models Mthres=2 falls roughly in the regime of
constant radii in the mass-radius relations. We use the
relation ΛðMÞ ¼ 0.0093ðGMc2RÞ−6 from [116] and assume a
constant radius of 13.5 km, which is approximately the
limit given by the inspiral GW signal from GW170817.
This results in the solid red curve, which is given by
Λ̃thresðMthresÞ ¼ 0.0093ð GMthres

2c213.5 kmÞ−6. In fact we find that all
EOSs of the base sample are compatible with this limit in
Fig. 8. Only excluded models occur above the red curve.

B. Asymmetric mergers

So far we discussed the signature of a phase transition
focusing on equal-mass mergers assuming that the binary
mass ratio will be measured with sufficient precision.
Reasonably one can expect that small deviations from q ¼
1 lead to a very similar diagram. Figures 4 and 13 show that
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Mthres does not strongly vary for q larger than ∼0.85. As a
consequence also the tidal deformability of a slightly
asymmetric binary at the threshold does not change
significantly. We explicitly present the results for q ¼
0.85 and q ¼ 0.7. Figure 9 shows Λ̃thres as function of
Mthres for mass ratios q ¼ 0.85 and q ¼ 0.7 to be compared
to Fig 8. Here we consider the full set of EOSs with the
same meaning of the symbols as in Fig 8.
The figure demonstrates that also for q ¼ 0.85 and q ¼

0.7 the presence of a strong phase transition can be
identified by the location of ðMthres; Λ̃thresÞ in comparison
to the area spanned by purely hadronic EOSs. We infer the
criteria

Λ̃hybrid;q¼0.85
thres ¼ 558ðMthres=M⊙Þ − 1207 ð14Þ

for q ¼ 0.85 and

Λ̃hybrid; q¼0.7
thres ¼ 1238ðMthres=M⊙Þ − 2901 ð15Þ

for q ¼ 0.7 as indicator for a phase transition in asymmetric
mergers. As for the equal-mass case some hybrid EOSs
occur below the black dashed line given by (14) or (15)
meaning that a measurement in this region does not inform
about the presence of a phase transition.
Again, we include lines of constantMmax in Fig. 9 using

fit 44 and fit 45 from Table II for purely hadronic EOSs
(blue curves). As for the equal-mass case the solid blue
curve marking Mmax ¼ 1.97 M⊙ configurations is roughly
identical to the black dashed line which is drawn by hand to
separate the “only hybrid” regime and the mixed regime.
We also note that the similarity between Fig. 8 and the left
panel in Fig. 9 means that one does not require a very
accurate determination of the mass ratio since one can
readily formulate a common criterion being valid for the
range 0.85 ≤ q ≤ 1 (see fit 46). For comparison, the gray

dashed line in the left panel in Fig. 9 displays the black
dashed line from Fig. 8.
In Fig. 9 we note that there occurs one excluded hadronic

EOS in the “only hybrid” regime at about Λ̃thres ≈ 800 (only
visible in the right panel and outside the plotted range in the
left panel). This model is the GNH3 EOS, which has a low
maximum mass ofMmax ¼ 1.96 M⊙. The EOS is very stiff
at low densities and softens strongly at higher densities due
to the appearance of hyperons. For asymmetric mergers the
combined tidal deformability is dominated by the tidal
deformability of the lighter binary component, which in the
case of GNH3 becomes very large because of the large radii
of low-mass NSs described by this EOS (see mass-radius
relation of this EOS e.g., in the Supplemental Material of
[49]). Therefore the model is strongly shifted towards
higher Λ̃thres. Since the EOS is too stiff at lower densities
to be compatible with current astrophysical constraints, it
does not spoil the unambiguousness of the signature of
hybrid models in the “hybrid” regime.
Finally, we remark that it may be possible to obtain an

independent estimate of Λ̃thres for instance through radius or
Λ measurements at a different mass which can be inter-
polated or extrapolated to Mthres. Alternatively, one may
reformulate the criteria to employ these quantities, which
we leave to future work.
For asymmetric binaries with q ¼ 0.7 the tidal deform-

ability at the threshold mass Λ̃thres varies in a relatively wide
range between 200 and 650 or even 800 if one includes the
models of the “excluded sample”. The latter limit may be
the relevant one for fully agnostic searches. This compares
to range of about 200 ≤ Λ̃thres ≤ 450 for equal-mass
binaries and mildly asymmetric systems with q ¼ 0.85
(cf. [32,117]). These ranges are important to classify the
merger product based entirely on a measurement of the tidal
deformability. For Λ̃ < 200 one can safely assume that a
prompt collapse takes place, while only for Λ̃ > 800 or

FIG. 9. Same as Fig. 8 but for a binary mass ratio q ¼ 0.85 (left panel) and q ¼ 0.7 (right panel). For orientation the gray dashed line
in the left panel is identical to the black dashed line in Fig. 8.
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Λ̃ > 650, respectively, one can presume no direct BH
formation.

C. General EOS properties

To understand the EOS effects in the Λ̃thres −Mthres
plane, we highlight selected EOS models by connecting
them with arrows in Fig. 10 (the figure in the left panel is
essentially identical to Fig. 8, but hybrid models are not
shown for clarity). For comparison, the right panel displays
the mass-radius relations of the same EOSs, where we
connect the maximum-mass configurations with arrows
following the same color scheme.
Again, as in Fig. 8 we include lines of constant Mmax in

blue and we also draw sequences which indicate configu-
rations of constant radius. As above we use the results of
[116] and obtain Λ̃thresðMthresÞ ¼ 0.0093ðGMthres

2c2R̄ Þ−6 with R̄
being a chosen constant radius. Interestingly, the blue and
red curves are roughly perpendicular to each other.
We observe two effects.
(1) The red arrows connect a purely nucleonic EOS with

the same model which includes hyperons. The
hyperons occur beyond some transition density,
which is why the M − R relations in the right panel
are identical below some mass. The effect of the
hyperons is a softening at higher densities, which
leads to a reduction of the maximum mass in
comparison to the nucleonic reference model, e.g.,
[118–120]. In the left panel smaller Mmax result in a
shift towards the upper left, i.e., towards smaller
Mthres and higher Λ̃thres. The red arrows are roughly
perpendicular to the thin blue lines showing contours
of constantMmax (fit 43 from Table II). This effect is
somewhat comparable to the behavior of the hybrid

models which also resulted in a shift towards the
upper left compared to their hadronic reference
model. The red arrows are roughly parallel to the
curves of constant radius because both models, i.e.,
with and without hyperons, have the same or nearly
the same radius in the mass range around Mthres=2.

(2) The blue arrows visualize a comparison between
EOSs which have roughly the same Mmax but
different radii. It is interesting to note that models
towards the upper right in the Λ̃thres −Mthres diagram
are those which are relatively stiff at lower densities,
i.e., yield large NS radii, but strongly soften at higher
densities which leads to a relatively low Mmax.

These models accumulate towards the tip of the triangle
spanned by the viable EOSs, i.e., close to the intersection
between the solid red and solid blue curve.We conclude that
models in this area are indicative of a strong softening at
higher densities as it is typical for instance for the occurrence
of hyperons. Hyperonic EOSs aremarkedwith a red cross in
the left panel of Fig. 10. Hyperonic models like the SFHOþ
Hyp EOS do not exactly follow this behavior because
already the purely nucleonic EOS is rather soft at lower
densities. But one can clearly identify the impact of the
additional EOS softening at higher densities resulting in a
shift towards the upper left. The effect is somewhat less
pronounced as it is apparent from the mass-radius relations
in the right panel that SFHO and SFHOþ Hyp are not too
different. We generally conclude that the position in the
Λ̃thres −Mthres plane is informative about details of the EOS.
Also, Fig. 10 illustrates that upper or lower limits on

Λ̃thres, Mthres or Mmax from a single measurement can
already provide interesting EOS constraints. These can
be quantified through the fit formulas provide in Table II.

FIG. 10. Left panel: same as Fig. 8 with only purely hadronic models. Red arrows link EOS models with comparable radii atMthres=2,
but which differ with respect to the presence or absence of hyperons above a certain central density and yield differentMmax. Blue arrows
link EOSmodels with comparableMmax. See main text and caption of Fig. 8 for more explanations; see Table I of Supplemental Material
to [49] for data of the individual EOS models. Right panel: mass-radius relations of nonrotating NSs for the EOS models connected with
arrows in the left panel.
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VII. UNIVARIATE RELATIONS FOR Mthres

Finally, we point out some additional relations. For
instance, we find that univariate relations between the
threshold mass and the radius or the tidal deformability
of high-mass NSs are relatively tight, although not as
tight as the bilinear relations described in Sec. III.
Figures 11 and 12 show examples of such relations for
equal-mass mergers, linking the threshold mass and stellar
properties of NSs with 2.0 M⊙. Dashed lines display the
fits, which are given in Table VIII. For these figures and
the fits we employ the purely hadronic base sample and the
hybrid EOSs. Apparently, the latter follow the same
relation and do not increase the overall scatter. Note that
in Fig. 12 the deviations from the fit become larger at
higher Mthres implying that a Λ determination at smaller
Mthres will be in fact more accurate than indicated by the
maximum residual of this fit.
Table VIII provides also fits for other high-mass NS

properties like R1.8, R1.9 or the radius Rmax of the
maximum-mass configuration.10 The tightest relation is
found for R2.0 with an average deviation of only 149 m. In
this relation we employ Rmax instead of R2.0 for EOS
models with Mmax < 2.0 M⊙. Including the excluded
hadronic sample would not strongly increase the scatter
in the relations given in Table VIII. Finally, we stress that
relations for binary mass ratio q ¼ 0.85 and their respective

tightness are almost identical to the ones given in Table VIII
for q ¼ 1. Similarly, we find that combining the results for
q ¼ 1 and q ¼ 0.85 in a single relation leads to very similar
fits, which describe the data nearly as well as those in
Table VIII. We thus do not list these fits explicitly but
instead suggest to employ the given relations of equal-mass
systems for the whole range 0.85 ≤ q ≤ 1. However, for a
binary mass ratio q ¼ 0.7 such relations are less tight than
for equal-mass binaries.
These fits can be employed to directly constrain the

radius or tidal deformability of a high-mass NS from a
measurement of onlyMthres. Already, a lower or upper limit
onMthres may provide an interesting bound. Since radius or
Λ constraints through this type of relations rely only on a
measurement of the binary masses, they may provide a
useful sanity check independent of the extraction of finite-
size effects from the inspiral or any other inference of NS
properties.11 A conversion of these relations to Mthres is
trivial for fixed mass ratios.
We directly apply these findings to derive new con-

straints from the observation of GW170817 [26] assuming
that the merger remnant did not directly collapse, i.e., that

FIG. 11. Radius of nonrotating NSs with a mass of 2.0 M⊙ as
function ofMthres for equal-mass mergers. Black symbols refer to
models of the hadronic base sample, green dots show hybrid
EOSs. Dashed line is a linear fit to the data (see Table VIII). The
bluish band displays the total binary mass of GW170817 [26].

FIG. 12. Tidal deformability for NSs with a mass of 2.0 M⊙ as
function ofMthres for equal-mass mergers. Black symbols refer to
models of the hadronic base sample, green dots show hybrid
EOSs. Dashed line is a linear fit to the data (see Table VIII). The
bluish band displays the total binary mass of GW170817 [26].

10The relation with the radius of the maximum mass configu-
ration Rmax ¼ RðMmaxÞ is not as tight as those with R1.8=1.9=2.0,
and in particular some hybrid EOSs occur at relatively large Rmax.
See also fit 27 in Table I for Rmax, which is significantly tighter
because of the additionalMmax dependence. Generally, univariate
relations may not be completely unexpected considering the
findings in [17,121]. Combining the relations in Fig. 2 and Fig. 8
in [121] suggests relations betweenMthres and the TOV properties
of high-mass NSs.

11It is beyond the scope of this paper to discuss in detail the
accuracy of future GW detections of high-mass binaries. But we
note that adopting a factor 10 improvement of the parameter
estimation in GW170817 would determine the tidal deformability
to within about �30, i.e., approximately the range in Fig. 12,
whereas Mtot and q would be known with very good precision
[26] and would thus not contribute significantly to the error.
Although this comparison may not be fully applicable to high-
mass systems, we simply note that even assuming significant
systematic uncertainties and a coarse determination of Mthres
could already constrain high-mass NS properties. Clearly, extrap-
olations of the EOS inference at lower densities could be
informative about high-mass properties as well, although this
approach would rely on additional assumptions.
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the measured total binary massMGW170817
tot ¼ 2.73þ0.04

−0.01 M⊙
is smaller than Mthres. Although the mass ratio was not
accurately determined for GW170817 with 0.73 ≤ q ≤ 1,
we can assume thatMthresðq ¼ 1Þ > MGW170817

tot because for
q < 1 the threshold mass is either nearly equal or smaller
than that of equal-mass mergers for basically all EOS
models12 (see Sec. IV). The vertical line in Fig. 11 indicates
the total mass of GW170817 and shows that the radius R2.0
of a NS with 2.0 M⊙ should be larger than 9.75 km. The
corresponding limits derived from the other relations are
given in Table VIII. We adopt the lower bound of the error
estimate of MGW170817

tot (95% lower bound from [26] with
low-spin prior) and also subtract the maximum residual of
the fit. These new EOS constraints are not very strong,13 but
obviously the limits can be updated by any new merger
observation with information on the merger outcome. The
application of these relations is trivial. In particular, a
prompt collapse event would establish upper bounds on the
stellar parameters of high-mass NSs.
Note that these constraints differ from the one described

in Sec. III and in [41], where we employ an additional
relation between R1.6 and Mmax, which had been con-
structed in a very conservative way (see [46]). Here, instead
we do not rely on any information aboutMmax, which is the
reason why the limits here are less constraining.
The univariate relations are not as tight as the bilinear fits

described in Sec. III, but apparently the EOS dependence of
the collapse behavior is generally well captured. Stellar

properties of high-mass NSs may represent natural choices
to characterize the EOS in the density regime which
determines the collapse. Measuring or constraining the
threshold mass is thus important to assess the high-density
regime noting that tidal effects during the inspiral become
weaker for high-mass binaries and the inference of the EOS
at higher densities from observations of binaries with lower
masses relies on some kind of extrapolation or interpolation
procedure using information for instance from pulsar
measurements. The threshold mass instead is a very direct
and thus robust messenger of the high-density EOS albeit it
clearly requires more work to understand the detailed
signatures indicating the outcome of a merger and affecting
finally the precision of futureMthres constraints. We suspect
that the next observing runs will improve the statistics of
the binary population properties, which will allow a better
assessment of the midterm and long-term prospects to
estimate Mthres.

VIII. SUMMARY AND CONCLUSIONS

In this study we describe the dependencies of the
threshold binary mass Mthres for prompt BH formation in
NSmergers.We consider a total of 40 different high-density
EOSs including models with a phase transition to decon-
fined quark matter. We describe the EOS dependence of the
threshold to prompt BH formation by considering relations
betweenMthres and stellar properties of nonrotatingNSs.We
determineMthres for different binary mass ratios focusing on
configurations with q ¼ 1, q ¼ 0.85 and q ¼ 0.7. By this
we can assess the influence of q in a range that may be
typical for many current and future NS merger observations
[35,65]. Our main findings are the following:

(i) We present a number of fit formulas describing
Mthres as function of Mmax and another stellar
parameter, which can be either a NS radius or the

TABLE VIII. Univariate relations between the threshold mass Mthres and high-mass NS properties described by different fit formulas
(first column) for binary mass ratio q ¼ 1. a and b are fit parameters with their respective variances in units such that masses are in solar
mass and radii in km. The next two columns list the maximum and average deviation between fit and the underlying data (in km for
functions involving radii; dimensionless for relations with the tidal deformability). These fits are obtained for equal-mass mergers
employing the base sample and the hybrid sample. The last column provides the limit on the high-mass NS property if GW170817 was
not a prompt collapse (see text). We do not list limits on the tidal deformability because taking into account the maximum scatter of the
relations, the limit was negative. However, the figure also shows that the deviations from the fit are smaller at smaller threshold masses,
which is why the relation actually does imply a certain bound. Very similar relations also with regard to their tightness are obtained for
q ¼ 0.85 or for a data set including results for q ¼ 1 and q ¼ 0.85.

Fit a b Max. Dev. Av. Dev. R>

R1.8 ¼ aMthres þ b 4.395� 0.384 −1.108� 1.125 0.624 0.235 10.22
R1.9 ¼ aMthres þ b 4.656� 0.291 −2.058� 0.852 0.542 0.170 10.06
R2.0 ¼ aMthres þ b 4.998� 0.268 −3.359� 0.783 0.486 0.149 9.75
Rmax ¼ aMthres þ b 3.818� 0.488 −0.623� 1.427 1.104 0.280 8.66
Λ1.8 ¼ aMthres þ b 192.278� 13.867 −500.176� 40.583 26.057 7.168 � � �
Λ1.9 ¼ aMthres þ b 132.102� 7.660 −349.164� 22.418 13.957 4.213 � � �
Λ2.0 ¼ aMthres þ b 87.720� 6.065 −235.931� 17.749 11.963 3.387 � � �

12Note that this argument might be incorrect for very small
radii and largeMmax, see Fig. 3. In any case we find at most a very
minor deviation for other mass ratios.

13Two EOS models on the left of the bluish band with R2.0 ≈
10 km are excluded. Other models with the same radius could
still be marginally compatible if they deviated stronger from the
dashed curve.
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tidal deformability. These relations are particularly
tight (with deviations of only a few 0.01 M⊙) if we
consider Mthres for a fixed binary mass ratio. The
tightness of the relations also depends on the set of
EOSs, where onemaymake different assumptions on
which models are considered viable. For instance,
one may include models with a phase transitions to
quark matter or EOSs which are incompatible with a
certain confidence level of the tidal deformability
inference from GW170817. Not unexpectedly, en-
larged EOS samples lead to relations with a some-
what larger scatter. We derive similar relations for the
chirp mass at the threshold to prompt collapse, which
may be important in particular when the binary mass
ratio is not well measured. We note that all these
relations are bilinear and hence they are simple to
invert. This is useful for instance if one employs an
observation to obtain a bound on Mthres from which
one can then derive EOSconstraints, e.g., forNS radii
or for Mmax.

(ii) We explicitly show which limits on NS radii are
implied by a merger event of a given total binary
mass following the idea in [41]. This constraint can
be immediately employed and establishes a lower
limit on the radius or the tidal deformability if the
merger remnant did not directly collapse. An upper
limit is obtained from the measured total binary
mass if a prompt collapse took place.

(iii) This study quantifies for the first time systematically
the influence of the binary mass ratio on Mthres. For
most EOS models we find thatMthres decreases with
the binary mass asymmetry, i.e., with decreasing q.
We observe that the decrease of Mthres becomes
stronger for more asymmetric binaries, whereas
Mthres remains roughly constant in the range
0.85 ≤ q ≤ 1. This means that MthresðqÞ can be well
described by higher-order polynomials. In the range
0.85 ≤ q ≤ 1 the corresponding threshold mass of
equal-mass binaries is a good approximation to
MthresðqÞ with Mthresðq ¼ 0.85Þ being at most
0.1 M⊙ smaller or 0.05 M⊙ higher compared to
Mthresðq ¼ 1Þ for a few particularly soft EOSs.
Importantly, the magnitude of the reduction of
Mthres with decreasing q depends in a systematic
way on the EOS. Specifically, the difference
Mthresðq ¼ 1Þ −Mthresðq ¼ 0.7Þ can be well ap-
proximated as function of stellar parameters of
nonrotating NSs. For EOSs which are stiff at lower
and intermediate densities and result in large NS
radii, the impact of q on the collapse behavior is
more pronounced [strong reduction of Mthresðq ¼
0.7Þ with respect to the equal-mass case
Mthresðq ¼ 1Þ]. Soft EOSs yield a threshold mass
which is approximately constant, or shows only a
weak influence of q.

(iv) Combining these findings we derive fit formulas for
MthresðqÞ and MthresðqÞ quantifying their EOS
dependence in a range of q. These relations include
an explicit q dependence and are approximately as
tight as fits for fixed mass ratio. The generalized
formulas are valid for 0.7 ≤ q ≤ 1, but likely yield a
fair description even for mass ratios somewhat
below q < 0.7. Future work should specify the exact
dependence on q, which follows a higher-order
polynomial. The exponent may be EOS dependent
on its own, but we find that a power of three provides
a relatively accurate description.

(v) As theMthres data follows some systematic behavior,
we sketch a toy model within Newtonian physics to
explain at least qualitatively the impact of the mass
ratio on the collapse behavior. Generally, one may
understand a reduction of the threshold mass with
the binary asymmetry as a consequence of asym-
metric binaries of the same total mass having less
angular momentum than the equal-mass binary at
the same orbital distance.

(vi) Considering the Mthres data we also explore the
impact of phase transitions to quark matter on the
collapse behavior following our previous investiga-
tion in [49]. We focus on the parameters Mthres and
Λ̃thres. The latter is the combined tidal deformability
of the binary system at the threshold mass. Both
quantities can be in principle measured to some
precision with a number of detections which reveal
the outcome of the merger. If Λ̃thres is relatively high
compared to Mthres, such measurements can only be
explained by the presence of a strong phase tran-
sition because no purely hadronic EOS can yield
such a combination of Mthres and Λ̃thres. This also
implies that in principle already a single measure-
ment with a constraint on Mthres and Λ̃thres can
provide evidence for the occurrence of the ha-
dron-quark phase transition in NS mergers.

The impact of a phase transition on these quan-
tities is understandable. The tidal deformability
Λ̃thres is determined by the EOS at moderate den-
sities, i.e., by the purely hadronic regime of the EOS,
and is not informative about the presence of a phase
transition at higher densities. If a phase transition
takes place at higher densities, the EOS effectively
softens and thus yields a relatively low Mthres. No
purely hadronic EOS can introduce such a strong
softening at higher densities to lead to a comparable
reduction of Mthres.

Two remarks are important. Certain combinations
of Mthres and Λ̃thres can point to a phase transition.
However, the presence of quark matter does not
necessarily lead to a combination ofMthres and Λ̃thres
which would be obviously indicative of a phase
transition but in fact would be compatible with a
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purely hadronic EOS. These are hybrid models
where the phase transition is relatively weak in
the sense that the resulting stellar parameters (e.g.,
the mass-radius relation) are roughly comparable to
those of purely hadronic EOSs. In an extreme case, a
phase transition could even have a large latent heat,
but quark matter could become very repulsive at
higher densities and lead to a stabilization of the
merger remnant and thus relatively largeMthres. Note
that we consider combinations of Mthres and Λ̃thres
for fixed mass ratio. We show that also for q ¼ 0.85
and q ¼ 0.7 the hadron-quark phase transition can
lead to a characteristic imprint on these quantities as
described. For a practical application one will either
need to consider systems of approximately fixed q or
events within a small range of q, e.g., 0.85 ≤ q ≤ 1
as in this study. Alternatively, one may find an
appropriate way to combine measurements with
different mass ratio, which we leave for future work.
Also the specific requirements for GW data analysis
should be investigated in more details. We empha-
size that already a relatively coarse determination of
Λ̃thres may be sufficient to deduce the presence of a
phase transition, which we consider one of the
advantages of this signature.
Following these considerations for phase transi-

tions as the most extreme example of a sudden
change of EOS properties at higher densities, we
generalize these findings to hadronic EOSs. We find
that the combination of Mthres and Λ̃thres informs
about the properties of different density regimes. For
instance, a relatively high Λ̃thres and a low threshold
mass generally indicate the softening of the EOS at
higher densities, which may be caused by the
occurrence of hyperons.

(vii) Generally, our data show that only for a combined
tidal deformability Λ̃≳ 650 no direct collapse of the
merger remnant can be safely assumed if
0.7 ≤ q ≤ 1. The limit may even increase to Λ̃≳
800 if one takes into account EOSs of the “excluded
hadronic sample,” i.e., models with a tidal deform-
ability incompatible with that of GW170817. For the
range 0.85 ≤ q ≤ 1 the bound safely excluding a
prompt collapse is 450. Only for Λ̃≲ 200 one can
safely expect that direct BH formation took place.

(viii) We finally point out univariate relations between the
threshold mass and stellar parameters of high-mass
NSs like the radius or tidal deformability of stars
with about 1.8 to 2.0 M⊙. The relations are relatively
tight with deviations of only a few hundred meters
(but not as tight as bilinear fits describing Mthres).
Interestingly, the EOS models with phase transitions
follow the same behavior as purely hadronic EOSs.
Considering the tightness of these relations and their
universality, we conclude that the radii of high-mass

NSs represent an EOS property which very well
characterizes and determines the collapse behavior of
NSmergers. This is not too surprising considering the
density regime in high-mass NSs and in mergers
close to the threshold to prompt BH formation. We
employ these relations for new EOS constraints
limiting the radii of high-mass NSs. We point out
that new merger observations have the potential to
significantly improve these constraints, which may
be employed for sanity and consistency checks
within other EOS inference methods.

Generally, our findings highlight the importance to
determine the threshold mass for prompt BH formation
in NS mergers. This includes observational efforts to obtain
Mthres through the observation of electromagnetic counter-
parts, e.g. kilonovae or gamma-ray bursts, or the detection/
exclusion of postmerger GWemission. Future work should
thus further improve the theoretical understanding of these
processes to enable an unambiguous interpretation of
observational data. It also requires appropriate strategies
and instruments for electromagnetic follow-up observa-
tions. Finally, employing postmerger GWs to determine the
collapse behavior relies on specific GW data analysis
methods to identify or exclude the presence of a NS
remnant, e.g., [32,122–124]. The prospect to measure
Mthres and to understand by this the properties of the
high-density EOS including the presence of a phase
transition, stresses the importance of dedicated GW instru-
ments with increased sensitivity in the kHz range
[125–129].
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APPENDIX A: SIMULATION RESULTS
AND EOS PROPERTIES

In Table IX we list the data which are employed in this
study. We provide information on the different EOS models
and the results from the simulations for different mass
ratios q. The simulation data for q ¼ 1 and q ¼ 0.7 are
identical to Table I of the Supplemental Material in [49].

To assess the impact of the mass ratio q, we show in
addition in Fig. 13 the difference ΔMthres between the
threshold mass of an equal-mass merger and an asymmetric
binary (cf. Fig. 3). As discussed in great detail in Sec. IV,
ΔMthres clearly follows an EOS dependence. Here we show
the results for the full EOS sample. The figure displays the
difference between Mthresðq ¼ 1Þ and Mthresðq ¼ 0.85Þ in

TABLE IX. EOS sample considered in this work. Acronyms are given in the first column, and references in the last column. In the 12th
column, EOS models are grouped in three classes as described in Sec. II: “b” for the hadronic base sample, “e” for the excluded hadronic
set of models, and “h” for EOSs with a phase transition to deconfined quark matter. “T” and “B” in the second column indicate whether
the EOS table provides the full temperature dependence or only a barotropic relation, respectively. Third to fifth columns list some
properties of static stars for the given EOS. The next six columns provide the threshold massMthres and the combined tidal deformability
of a system with Mthres for binary mass ratios q ¼ 1, q ¼ 0.85 and q ¼ 0.7.

Mmax R1.6 Mthres Λ̃thres Mthres Λ̃thres Mthres Λ̃thres
q ¼ 1 q ¼ 1 q¼ 0.85 q¼ 0.85 q¼ 0.7 q ¼ 0.7

EOS T=B ðM⊙Þ (km) Λ1.4 ðM⊙Þ ðM⊙Þ ðM⊙Þ Sample Ref.

BHBLP T 2.100 13.203 696.1 3.125 356.4 3.075 400.9 2.975 516.8 b [67]
DD2Y T 2.033 13.182 695.7 3.075 392.2 3.025 440.2 2.875 626.2 b [68,69]
DD2 T 2.421 13.258 699.5 3.325 249.7 3.325 255.3 3.275 302.5 b [70,71]
DD2F T 2.079 12.232 426.3 2.925 317.5 2.925 327.4 2.850 430.9 b [71–73]
APR B 2.189 11.263 247.5 2.825 233.9 2.862 220.4 2.825 262.1 b [74]
BSK20 B 2.167 11.658 319.6 2.875 269.5 2.875 276.5 2.875 302.5 b [75]
eosUU B 2.191 11.066 229.5 2.825 216.8 2.825 222.3 2.825 242.8 b [76]
LS220 T 2.043 12.491 541.1 2.975 353.5 2.975 366.7 2.875 523.2 b [77]
LS375 T 2.711 13.776 957.4 3.575 225.1 3.575 230.4 3.575 250.2 e [77]
GS2 T 2.091 13.381 722.3 3.175 325.3 3.075 410.8 3.025 491.0 e [78]
NL3 T 2.789 14.807 1369.4 3.775 230.2 3.812 221.7 3.775 259.7 e [70,79]
Sly4 B 2.045 11.533 294.6 2.825 277.4 2.825 285.8 2.775 355.5 b [81]
SFHO T 2.058 11.761 333.9 2.875 280.3 2.875 288.2 2.825 355.5 b [82]
SFHOY T 1.988 11.758 333.9 2.825 315.0 2.825 323.4 2.725 444.7 b [68,69]
SFHX T 2.129 11.972 395.8 2.975 271.3 2.975 277.0 2.925 330.7 b [82]
TM1 T 2.212 14.361 1150.8 3.375 337.1 3.325 386.9 3.225 529.1 e [80,90]
TMA T 2.010 13.673 935.3 3.175 400.3 3.125 461.7 2.975 703.6 e [80,91]
BSK21 B 2.278 12.552 515.0 3.075 289.2 3.125 266.8 3.075 319.9 b [75]
GS1 T 2.753 14.877 1402.3 3.775 231.2 3.775 237.7 3.775 262.3 e [78]
eosAU B 2.127 10.365 150.9 2.675 201.6 2.712 189.2 2.675 223.7 b [76]
WFF1 B 2.120 10.370 151.0 2.675 201.6 2.688 199.9 2.675 221.5 b [76,87]
WFF2 B 2.188 11.057 223.9 2.825 211.5 2.800 229.5 2.825 236.9 b [76,87]
MPA1 B 2.456 12.458 479.1 3.225 203.7 3.225 208.4 3.225 226.1 b [83,87]
ALF2 B 1.975 12.628 569.4 2.975 388.2 2.938 428.0 2.875 513.9 b [84,87]
H4 B 2.012 13.731 853.2 3.125 407.1 3.025 524.2 2.925 704.9 e [87,88]
DD2F-SF-1 T 2.136 12.158 426.3 2.845 383.3 2.845 394.4 2.770 502.0 h [58,60–62,92]
DD2F-SF-2 T 2.162 12.071 426.2 2.925 300.9 2.925 318.4 2.870 402.2 h [58,60–62,92]
DD2F-SF-3 T 2.034 12.205 426.3 2.825 401.9 2.788 451.1 2.720 574.9 h [58,60–62,92]
DD2F-SF-4 T 2.031 12.232 426.3 2.835 392.5 2.797 440.6 2.725 571.2 h [58,60–62,92]
DD2F-SF-5 T 2.040 11.943 426.3 2.815 411.5 2.777 456.8 2.725 543.6 h [58,60–62,92]
DD2F-SF-6 T 2.013 12.231 426.3 2.795 431.4 2.757 483.9 2.675 640.2 h [58,60–62,92]
DD2F-SF-7 T 2.117 12.232 426.3 2.905 332.8 2.868 374.2 2.825 454.6 h [58,60–62,92]
DD2F-SF-8 T 2.026 12.232 426.3 2.915 325.0 2.877 365.6 2.810 471.4 h [58,60–62,92]
VBAG T 1.932 12.214 422.3 2.885 345.5 2.848 388.4 2.775 505.4 h [59]
ENG B 2.238 11.909 370.0 2.975 251.2 2.975 257.6 2.975 281.6 b [85,87]
APR3 B 2.365 11.963 367.2 3.075 206.0 3.075 211.0 3.075 229.6 b [74,87]
GNH3 B 1.961 13.772 857.8 3.075 436.7 2.975 577.0 2.875 806.1 e [87,89]
SAPR T 2.196 11.474 267.9 2.875 225.5 2.913 213.2 2.875 256.9 b [86]
SAPRLDP T 2.247 12.369 449.3 3.025 271.0 3.062 257.4 3.025 309.4 b [86]
SSkAPR T 2.028 12.304 442.6 2.950 312.7 2.938 331.6 2.875 420.8 b [86]
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the left panel and the difference betweenMthresðq ¼ 1Þ and
Mthresðq ¼ 0.7Þ in the right panel. Both show qualitatively
the same behavior.

APPENDIX B: Mthres RELATIONS WITH
DIFFERENT NS PROPERTIES

In Sec. III we employ stellar properties of nonrotating
NSs to describe the EOS dependence of the threshold
binary mass Mthres. Depending on which stellar parameters
are chosen, fit formulas for Mthres are more or less tight.
Here we summarize the influence of the chosen NS radius
or tidal deformability on the accuracy of the fit.
We consider functions of the form Mthres¼

MthresðMmax;RXÞ¼aMmaxþbRXþc, where RX is the
radius of a NS with mass X ∈ f1.1; 1.2; 1.3; 1.4; 1.5; 1.6;
1.7; 1.8; 1.9; 2.0g in solar masses.14 We employ the had-
ronic base sample and the simulation data for q ¼ 1.
Table X provides the fit parameters and the maximum
and average deviations between fit and data, which quantify
the accuracy of the relations. The table clearly shows that
relations with R1.6 or R1.7 yield the most accurate descrip-
tion of the data.
The radii of lighter NSs or more massive NSs lead to fits

with larger deviations. This is understandable because the
radii of NSs with small masses are only sensitive to the
EOS at low densities and are thus not informative about
EOS properties at higher densities, which are most
relevant for the collapse behavior. The radii of NSs with
very high mass are characteristic of the very high-density

regime of the EOS. Binary systems withMtot ≈Mthres may
or may not reach such densities which are roughly
comparable to those in nonrotating NSs with very high
masses in the range of 2 M⊙. However, also the EOS at
somewhat lower densities affects the collapse behavior for
instance by determining the end of the inspiral phase and
thus the amount of angular momentum in the remnant (see
[63]). Finally, an optimally chosen RX should complement
the EOS information encoded in Mmax, which character-
izes the EOS properties at very high densities. This may
explain that the relations become worse for X > 1.7 M⊙
and for Rmax in comparison to R1.6 or R1.7. Moreover, for
stiff EOSs high-mass radii like R2.0 are very similar to the
radii of NSs with moderate masses. For soft EOSs R2.0 is
very close to Rmax, i.e., it captures the bending of the
mass-radius relation towards the marginally stable con-
figuration. The radius of a configuration on the more
horizontal branch of the mass-radius relation, i.e., in the
regime with dM

dR ≈ 0, is very sensitive to the chosen fiducial
mass, and thus even for very similar EOSs R2.0 may differ
significantly.
Following the same approach we examine relations of

the form Mthres ¼ MthresðMmax;ΛXÞ ¼ aMmax þ bΛX þ c
in Table XI. Using the tidal deformability the tightest
relations are found for NSs with masses in the range of
about 1.3 M⊙, which is significantly smaller than the
“optimal” mass range found for NS radii. We note that
the relations involving radii are generally somewhat more
accurate than fits with the tidal deformability. One might
interpret this in the sense that fits with radii may represent
more fundamental relations.
Generally, all relations in Tables X and XI are relatively

tight, which is not unexpected considering that the radii of

FIG. 13. Difference ΔMthres between the threshold mass of equal-mass mergers and the threshold mass of asymmetric binaries with
mass ratio q ¼ 0.85 (left panel) or q ¼ 0.7 (right panel) as function ofMmax and R1.6 (black dots). Results for the complete EOS sample
are shown. The blue planes display bilinear fits as in Sec. IV with parameters a ¼ −0.136, b ¼ 2.495 × 10−2 and c ¼ 0.001 (left panel)
and a ¼ −0.304, b ¼ 5.198 × 10−2 and c ¼ 0.083 (right panel, see Table V). Deviations between the fit and the underlying data are
illustrated by black lines: maximum and average deviations are 0.053 M⊙ and 0.018 M⊙ for q ¼ 0.85 in the left panel and 0.051 M⊙
and 0.016 M⊙ for q ¼ 0.7 in the right panel. The red dots show cases where ΔMthres is negative, i.e., the threshold mass of the
asymmetric merger is slightly higher than that of the corresponding equal-mass case.

14For a few EOS models of the base sample Mmax is smaller
than 2.0 M⊙, in which case we employ Rmax instead of R2.0.
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NS with different masses are not completely unrelated for
a fixed EOS. Also, the tidal deformability and radii of NSs
are strongly correlated by definition. In the main text we
discuss Λ1.4, which is closer to the combined tidal
deformability of GW170817. We also focus on R1.6
instead of R1.7, which actually results in a marginally
better description, because R1.6 was used in previous
publications.

APPENDIX C: GENERAL q-DEPENDENT
RELATIONS

In Sec. IV we describe multidimensional fits for the
threshold binary mass Mthres for prompt BH formation
which include an explicit dependence on the binary mass
ratio q. We supplement these relations by additional
functions which use a different ansatz to capture the
dependence on the q. We provide here one table with
more terms and one table with less terms. See Sec. IV for a

more detailed discussion. The essential conclusion is that
the fits with six terms (Table XII) are approximately as tight
as the relations with five terms discussed in Sec. IV
(Table VI), whereas the relations including only one term
to capture the q dependence (Table XIII) do not lead to a
very accurate description.
Furthermore, we test which power n in the terms

involving δqn in Eq. (7) yields the most accurate
description of the data for q ¼ 0.7, q ¼ 0.85 and q ¼
1 adopting the base EOS sample. By adopting different
values of n we find in Table XIV that n ¼ 3 minimizes
the deviations between fit and data. The accuracy is not
very sensitive on the exact value as long as n is larger
than about 1.5 to account for the fact that mass ratio
effects become stronger with the asymmetry. Although
the table suggests that n ≈ 5 yields accurate relations, we
caution that such high powers may not be the best
choice. We determine n by fits to three data points per

TABLE X. Bilinear fits Mthres ¼ MthresðMmax; RXÞ ¼ aMmax þ bRX þ c employing NS radii with different masses X (in solar
masses), i.e., RX ≡ RðXÞ (see text). a, b and c are the resulting fit parameters with units such that masses are inM⊙ and radii are in km.
Fifth and sixth columns specify the maximum and average deviation between fit and the underlying data (inM⊙). Last two columns give
the sum of the squared residuals being minimized by the fit procedure and the number of data points included in the fit. The last line
provides the data for RX ¼ Rmax.

X a b c Max. Dev. Av. Dev.
P

Sq. Res. N

1.1 0.646� 0.061 0.163� 0.010 −0.409� 0.179 0.069 0.029 0.0280 23
1.2 0.635� 0.054 0.164� 0.009 −0.390� 0.158 0.064 0.025 0.0222 23
1.3 0.620� 0.048 0.164� 0.008 −0.360� 0.139 0.058 0.023 0.0174 23
1.4 0.602� 0.043 0.164� 0.007 −0.318� 0.123 0.053 0.020 0.0139 23
1.5 0.579� 0.039 0.164� 0.006 −0.265� 0.109 0.047 0.018 0.0113 23
1.6 0.547� 0.036 0.165� 0.006 −0.198� 0.099 0.042 0.016 0.0096 23
1.7 0.502� 0.034 0.166� 0.006 −0.109� 0.092 0.039 0.016 0.0087 23
1.8 0.437� 0.035 0.169� 0.006 0.014� 0.089 0.042 0.016 0.0086 23
1.9 0.329� 0.039 0.174� 0.006 0.211� 0.093 0.046 0.018 0.0102 23
2.0 0.059� 0.070 0.184� 0.011 0.732� 0.139 0.083 0.028 0.0273 23
Mmax 0.450� 0.043 0.189� 0.008 −0.011� 0.114 0.059 0.018 0.0137 23

TABLE XI. Bilinear fits Mthres ¼ MthresðMmax;ΛXÞ ¼ aMmax þ bΛX þ c employing the tidal deformability of NSs with different
masses X (in solar masses), i.e., ΛX ≡ ΛðXÞ (see text). a, b and c are the resulting fit parameters with their respective variances with
units such that masses are inM⊙ and Λ is dimensionless. Fifth and sixth columns specify the maximum and average deviation between
fit and the underlying data (inM⊙). Last two columns give the sum of the squared residuals being minimized by the fit procedure and the
number of data points included in the fit.

X a b c Max. Dev. Av. Dev.
P

Sq. Res. N

1.1 0.661� 0.055 ð2.192� 0.1222Þ × 10−4 1.170� 0.121 0.078 0.025 0.0228 23
1.2 0.642� 0.051 ð3.453� 0.1774Þ × 10−4 1.222� 0.111 0.057 0.024 0.0195 23
1.3 0.618� 0.050 ð5.299� 0.2663Þ × 10−4 1.284� 0.108 0.052 0.024 0.0187 23
1.4 0.589� 0.052 ð7.973� 0.4159Þ × 10−4 1.359� 0.112 0.056 0.025 0.0201 23
1.5 0.554� 0.055 ð11.88� 0.6631Þ × 10−4 1.450� 0.119 0.064 0.026 0.0229 23
1.6 0.505� 0.060 ð17.71� 1.069Þ × 10−4 1.567� 0.128 0.071 0.028 0.0265 23
1.7 0.437� 0.065 ð26.61� 1.735Þ × 10−4 1.723� 0.138 0.079 0.030 0.0305 23
1.8 0.339� 0.072 ð40.78� 2.874Þ × 10−4 1.945� 0.150 0.087 0.033 0.0352 23
1.9 0.180� 0.083 ð64.72� 5.039Þ × 10−4 2.297� 0.172 0.097 0.034 0.0421 23
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EOS at q ¼ 1, q ¼ 0.85 and q ¼ 0.7. Mthres does not
change strongly between q ¼ 0.85 and q ¼ 1. Hence, any
arbitrarily high power n can describe this roughly

constant plateau in the range 0.85 ≤ q ≤ 1 and in
addition capture a single data point at q ¼ 0.7 with a
stronger decrease of Mthres (see Fig. 4).
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TABLE XIV. Different fits describing the EOS dependence of the threshold binary massMthres for prompt BH formation including an
explicit dependence on the binary mass ratio q through δq ¼ 1 − q to power n (see main text). The units of the fit parameters ci and their
respective variances are such that masses are inM⊙ and radii in km. These relations are obtained by least-square fits to theMthres data for
q ¼ 1, q ¼ 0.85 and q ¼ 0.7 considering the base EOS sample and systematically varied powers n. Eighth and ninth columns specify
the maximum and average deviation between fit and the underlying data revealing that a power of n ¼ 3 results in the best description of
the data (highlighted by boldface entries). Last two columns give the sum of the squared residuals being minimized by the fit procedure
and the number of data points included in the fit.

Mthresðq;Mmax; R1.6Þ ¼ c1Mmax þ c2R1.6 þ c3 þ c4δqnMmax þ c5δqnR1.6

EOSs n c1 c2 c3 c4 c5
Max.
Dev.

Av.
Dev.

P
Sq.

Res. N

Base 1.0 0.537� 0.032 0.169� 0.005 −0.218� 0.066 0.883� 0.138 −0.172� 0.025 0.081 0.019 0.0415 69
Base 1.5 0.549� 0.028 0.167� 0.005 −0.218� 0.062 1.621� 0.232 −0.317� 0.042 0.072 0.018 0.0361 69
Base 2.0 0.561� 0.027 0.164� 0.004 −0.218� 0.060 2.876� 0.402 −0.564� 0.073 0.068 0.017 0.0341 69
Base 2.5 0.571� 0.026 0.162� 0.004 −0.218� 0.060 5.074� 0.709 −0.996� 0.128 0.066 0.017 0.0335 69
Base 3.0 0.578� 0.025 0.161� 0.004 −0.218� 0.060 8.987� 1.268 −1.767� 0.229 0.066 0.017 0.0335 69
Base 3.5 0.583� 0.025 0.160� 0.004 −0.218� 0.060 16.018� 2.284 −3.153� 0.412 0.066 0.017 0.0337 69
Base 4.0 0.587� 0.025 0.159� 0.004 −0.218� 0.060 28.719� 4.133 −5.658� 0.746 0.066 0.017 0.0339 69
Base 4.5 0.589� 0.025 0.159� 0.004 −0.218� 0.060 51.738� 7.499 −10.197� 1.354 0.066 0.017 0.0341 69
Base 5.0 0.591� 0.025 0.159� 0.004 −0.218� 0.060 93.549� 13.635 −18.444� 2.463 0.066 0.017 0.0342 69
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