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We review the derivation of the pulsations equations for spherically symmetric boson stars and then
make a thorough study of the radial oscillation frequencies for the fundamental and first excited modes. We
do this for self-interacting boson stars and consider a range of values for the self-coupling constant. We also
numerically evolve boson stars and Fourier transform the dynamic solutions. The Fourier transform gives
an independent computation of the radial oscillation frequencies and allows us to verify our results obtained
from the pulsation equations. We find excellent agreement between the two methods.
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I. INTRODUCTION

Boson stars are starlike configurations of a complex scalar
field minimally coupled to gravity [1,2]. They are described
by classical solutions to the Einstein-Klein-Gordon system.
In their simplest realization, spacetime is spherically sym-
metric and time independent. Such static solutions can be
both stable and unstable to small perturbations. To study the
linear stability of boson stars, Gleiser [3], Jetzer [4], and
Gleiser and Watkins [5] derived pulsation equations, whose
solution gives the squared radial oscillation frequency,which
canbeused to determine stability (see also [6]).Alternatively,
both linear and nonlinear stability can be studied by numeri-
cally evolving a boson star using full numerical relativity, as
was first done by Seidel and Suen [7] (see also [8,9]). For
reviews on boson stars, see [10–12].
Stability has proven to be a powerful motivation for the

development of tools and methods for studying boson stars.
These tools and methods, however, can do more than just
tell us about stability. Our interest in this work is to make a
thorough study of the radial oscillation frequencies of
boson stars. We shall do this for boson stars that include
self-interactions for the scalar field.
The study of radial oscillations of compact objects was

initiated by Chandrasekhar when he derived a pulsation
equation for spherically symmetric systems with a perfect
fluid energy-momentum tensor [13]. His pulsation equation
has since been used extensively to study the radial
oscillations of neutrons stars (see, for example, [14–18]).
One motivation for studying radial oscillations is to gain
insight into the inner structure of the star.
We have another motivation, which is to help with the

study of dark matter admixed neutron stars [19–21]. It is
possible that dark matter could be mixed with the ordinary
nuclear matter inside a neutron star. If sufficient amounts of
darkmatter exist inside the star, bulk properties such as mass,
radius, and radial oscillation frequencies are affected [21–26].

Dark matter admixed neutrons stars with bosonic dark
matter (also known as fermion-boson stars) have been
studied semianalytically [19,27,28] and with full numerical
relativity [24,29–31]. To understand the radial oscillations of
themixed systems, it is useful to have an understanding of the
radial oscillations of the individual systems. Hence, there is a
need to study the radial oscillations of boson stars.
The pulsation equations for boson stars were first solved

numerically byGleiser andWatkins [5]. Their interestwas in
determining the onset of instability and they did not solve for
the radial oscillation frequencies. This was extended by
Hawley and Choptuik [9], who did compute the radial
oscillation frequencies for the fundamental and first excited
modes, though their interest was primarily with black hole
critical phenomena and they did not include self-interactions
for the scalar field. Recently, radial oscillation frequencies
were computed for l-boson stars in [32]. Nonradial oscil-
lations of boson stars were considered in [33–35]. Radial
oscillations for a pseudo-Goldstone boson was studied
in [36].
In this work, we both reproduce and extend the results

of [9]. We compute the radial oscillation frequencies for
boson stars for a range of values for the self-coupling
constant. As will be seen, the pulsation equations are
complicated. It is valuable, then, to have an independent
method of computing the radial oscillation frequencies so
as to verify that the pulsation equations have been derived
and solved correctly. We therefore numerically evolve
boson stars using full numerical relativity. Fourier trans-
forming the dynamic solutions gives an independent
computation of the radial oscillation frequencies. We find
excellent agreement between the two methods.
In the next section, we review the spherically symmetric

Einstein-Klein-Gordon system and give the general set of
equations that describe boson stars. In the sections that
follow, we rewrite these equations in various ways. In
Sec. III, we reduce them to describing static, or equilibrium,
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solutions, in which spacetime is time independent. We then
solve the static equations for the well-known static boson
star solutions. In Sec. IV, we write the equations to the first
order in perturbations to the static solutions. We then form
the pulsation equations, which we solve for the squared
radial oscillation frequencies. Lastly, in Sec. V, we solve the
equations using full numerical relativity. We then Fourier
transform the result and compare with the radial oscillation
frequencies computed in Sec. IV. We conclude in Sec. VI.
In Appendix A, we list some radial oscillation frequencies
and in Appendix B, we show that our results are consistent
with those in [5,9]. In Appendix C, we list some convenient
unit conversions.

II. SPHERICALLY SYMMETRIC
EINSTEIN-KLEIN-GORDON SYSTEM

In this paper, we restrict our attention to spherically
symmetric systems and use units such that c ¼ ℏ ¼ 1. We
parametrize the spherically symmetric metric as

ds2 ¼ −eνdt2 þ eλdr2 þ r2dθ2 þ r2sin2θdϕ2; ð1Þ

where νðt; rÞ and λðt; rÞ are determined from the Einstein
field equations,

Gμ
ν ¼ 8πGTμ

ν; ð2Þ

where Gμ
ν is the Einstein tensor, which is determined from

the metric in Eq. (1), Tμ
ν is the energy-momentum tensor,

which is given below, and G ¼ 1=
ffiffiffiffiffiffiffi
mP

p
, where mP is the

Planck mass. In the following sections, we shall make use
of the ðμ; νÞ ¼ ðt; tÞ; ðr; rÞ, and ðt; rÞ equations from (2),
which lead to

ν0 ¼ þ8πGreλTr
r þ

eλ − 1

r
;

λ0 ¼ −8πGreλTt
t −

eλ − 1

r
;

_λ ¼ −8πGreνTr
t; ð3Þ

where a dot denotes a t derivative and a prime denotes an r
derivative.
For the matter sector, we use the standard Lagrangian for

a complex scalar field,

L ¼ −ð∂μϕÞð∂μϕÞ� − μ2jϕj2 − ηjϕj4; ð4Þ

where ϕðt; rÞ is the complex scalar field, μ is its mass, and
η ≥ 0 is the self-coupling constant. We minimally couple
the scalar field to gravity through L →

ffiffiffiffiffiffi−gp
L, where g is

the determinant of the metric. From this Lagrangian it is
straightforward to compute the equations of motion,

∂t½eðλ−νÞ=2 _ϕ� ¼
1

r2
∂r½r2eðν−λÞ=2ϕ0�

− eðνþλÞ=2ðμ2 þ 2ηjϕj2Þϕ; ð5Þ

and the following components of the energy-momentum
tensor,

Tt
t ¼ −e−νj _ϕj2 − e−λjϕ0j2 − μ2jϕj2 − ηjϕj4;

Tr
r ¼ þe−νj _ϕj2 þ e−λjϕ0j2 − μ2jϕj2 − ηjϕj4;

Tr
t ¼ −e−νð _ϕϕ�0 þ _ϕ�ϕ0Þ: ð6Þ

There are also nonzero values for Tθ
θ ¼ Tϕ

ϕ, which we
will not be using, and Tr

t ¼ −eν−λTr
t.

The Lagrangian in (4) is invariant under global phase
transformations, ϕ → eiθϕ, for constant θ. This leads to a
conserved current,

Jμ ¼ igμνðϕ�∂νϕ − ϕ∂νϕ
�Þ; ð7Þ

which satisfies a continuity equation, ∇μJμ ¼ 0. This
continuity equation immediately leads to a conserved
charge. From qðt; rÞ ¼ −

R
r
0 d

3r
ffiffiffiffiffiffi−gp

Jt, we have

q0 ¼ −4πr2eðνþλÞ=2Jt: ð8Þ

The solution to Eq. (8) gives qðt; rÞ and the conserved
charge is given by Q ¼ qðt; r → ∞Þ.
This section has presented the general set of equations

that we will use to study boson stars. In the following
sections, we will solve these equations for static solutions,
for radial oscillation frequencies, and for dynamic
solutions.

III. STATIC SOLUTIONS

In this section, we reduce the equations given in Sec. II to
those that describe static, or equilibrium, solutions. Static
solutions are solutions for which the geometry is time
independent. For the geometry to be time independent, the
energy-momentum tensor must be time independent and
diagonal. It is not difficult to show that this requirement on
the energy-momentum tensor requires the scalar field to
take the form

ϕðt; rÞ ¼ ϕ0ðrÞe−iωt; ð9Þ

where ω is a real constant and ϕ0 is real up to a global
phase. Since the Lagrangian in (4) is invariant under global
phase transformations, without loss of generality we take
ϕ0 to be real. Equation (9) is often referred to as the boson
star ansatz. We shall indicate time-independent fields with
a subscript 0.
Assuming (9) and dropping the time dependence of the

metric fields, the equations of motion in (5) reduce to
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0 ¼ ϕ00
0 þ

�
2

r
þ ν00

2
−
λ00
2

�
ϕ0
0

þ eλ0ðω2e−ν0 − μ2 − 2ηϕ2
0Þϕ0; ð10Þ

the energy-momentum tensor components in (6) reduce to

Tt
0t ¼ −ω2e−ν0ϕ2

0 − e−λ0ϕ02
0 − μ2ϕ2

0 − ηϕ4
0;

Tr
0r ¼ þω2e−ν0ϕ2

0 þ e−λ0ϕ02
0 − μ2ϕ2

0 − ηϕ4
0; ð11Þ

along with Tt
0r ¼ 0, and the metric equations in (3) become

ν00 ¼ þ8πGreλ0Tr
0r þ

eλ0 − 1

r
;

λ00 ¼ −8πGreλ0Tt
0t −

eλ0 − 1

r
; ð12Þ

with the bottom equation in (3) vanishing identically. A
useful equation that we will make use of in the following
section is

λ00 þ ν00 ¼ 16πGrðϕ02
0 þ ω2ϕ2

0e
λ0−ν0Þ; ð13Þ

where we plugged in for the energy-momentum tensor
components using (11). Finally, the equation for the
conserved charge in (8) becomes

q00 ¼ 8πωr2ϕ2
0e

ðλ0−ν0Þ=2: ð14Þ

Static boson stars are described by the solutions to
Eqs. (10) and (12), with the conserved charge given by the
solution to Eq. (14). To solve these equations, it is
convenient to define σ0ðrÞ and m0ðrÞ through

σ0 ≡ eðν0þλ0Þ=2; m0 ≡ r
2G

ð1 − e−λ0Þ: ð15Þ

We further define Φ0ðrÞ≡ ϕ0
0ðrÞ so that we have a system

of first order ordinary differential equations (ODEs),

Φ0
0 ¼ −

�
2

r
þ 4πGr

N0

ðTr
0r þ Tt

0tÞ þ
2Gm0

N0r2

�
Φ0

−
1

N0

�
ω2

N0σ
2
− μ2 − 2ηϕ2

0

�
ϕ0;

σ00 ¼ 4πG
rσ0
N0

ðTr
0r − Tt

0tÞ;

m0
0 ¼ −4πr2Tt

0t;

q00 ¼ 8π
ωr2ϕ2

0

N0σ0
; ð16Þ

along with ϕ0
0 ¼ Φ0, where N0 ≡ 1–2Gm0=r.

These equations can be numerically integrated outward
from r ¼ 0 after inner boundary conditions are determined.
Inner boundary conditions can be determined by plugging

Taylor expansions of the fields into Eqs. (16), giving

ϕ0ðrÞ ¼ ϕ0ð0Þ−
ϕ0ð0Þ
6

�
ω2

σ20ð0Þ
− μ2 − 2ηϕ2

0ð0Þ
�
r2 þOðr4Þ;

σ0ðrÞ ¼ σ0ð0Þ þ
4πGω2ϕ2

0ð0Þ
σ0ð0Þ

r2 þOðr4Þ; ð17Þ

along withm0ðrÞ ¼ Oðr3Þ and q0ðrÞ ¼ Oðr3Þ. As it stands,
σ0ð0Þ and ω are unknown. It greatly simplifies finding
solutions to define

σ̂0ðrÞ≡ σ0ðrÞ
σ0ð0Þ

; ω̂≡ ω

σ0ð0Þ
; ð18Þ

and then to replace all occurrences of σ0 and ω with σ̂0 and
ω̂. The advantage in doing this is that σ0ð0Þ cancels out and
the inner boundary condition for σ̂0,

σ̂0ðrÞ ¼ 1þ 4πGω̂2ϕ2
0ð0Þr2 þOðr4Þ; ð19Þ

does not require knowledge of σ0ð0Þ. Outer boundary
conditions are obtained by requiring that the energy-
momentum tensor goes to zero at large r, and so ϕ0;
Φ0 → 0 as r → ∞. We further require that the spacetime is
asymptotically Schwarzschild, so that σ0 → 1, and thus that
σ̂0 → 1=σ0ð0Þ, as r → ∞.
In this paper, we consider only fundamental static

solutions. Such solutions have zero nodes (i.e., zero
crossings for ϕ0) and are uniquely identified by the central
value ϕ0ð0Þ and the self-coupling η. To find a solution, we
choose values for ϕ0ð0Þ and η as well as a trial value for ω̂2

and then integrate Eqs. (16) outward from r ¼ 0 using the
inner boundary conditions in Eqs. (17) and (19). We then
use the shooting method, varying the value of ω̂2 until
our integrated solution satisfies the outer boundary con-
ditions. Once a solution is found, the mass and conserved
charge of the system are given by M ¼ m0ð∞Þ and Q ¼
q0ð∞Þ and the squared oscillation frequency is given by
ω2 ¼ ω̂2=σ̂2ð∞Þ. Solutions are only found for positive ω2

and hence only for real ω.
In Fig. 1, we present solutions for a few values of the self-

coupling η. Figure 1(a) displays the mass, M, of the boson
star as a function of its radius, where R95 is defined as the
radius that contains 95% of the mass. Figures 1(b)–1(c)
display the mass, conserved charge Q, and oscillation
frequency ω as a function of the central value ϕ0ð0Þ.
In this work, we display all results using dimensionless

quantities that are standard for boson stars, such as
M=ðm2

P=μÞ and μR95 for the boson star’s mass and radius
(see, for example, [3–5,7]). The benefit in doing this is that
all results are valid for an arbitrary scalar field mass, μ, and
μ does not have to be specified. In Appendix C, we list a
few astrophysical-friendly unit conversions, which do
require specification of the scalar field mass.
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From Fig. 1, we can see that for a given value of η, there
is a maximum possible mass. It is well known that the
transition from stable to unstable with respect to small
perturbations occurs at the static solution with the largest
mass [12,37]. In Fig. 2, the solid blue curve, which uses
the vertical scale on the left, gives the maximum mass and
the dashed red curve, which uses the vertical scale on the
right, plots the central value ϕ0ð0Þ corresponding to
the maximum mass. Both quantities are plotted as a
function of η. The dashed red curve, then, is also plotting
the critical value of ϕ0ð0Þ, above which the boson star is
unstable.

IV. RADIAL OSCILLATIONS

Gleiser [3], Jetzer [4], and Gleiser and Watkins [5] were
the first to derive pulsation equations for boson stars. These
papers studied the same system, but Ref. [5] combined the
equations differently than Refs. [3,4] and, in this sense,
derived different pulsation equations. We prefer the for-
malism of [3,4], as it is more easily able to accommodate all

fields, and we review that here. We find it easiest to
compare equations with [5] and we therefore define the
perturbations as done in [5]. Our numerical method for
solving the pulsation equations generalizes the method
presented in [5].

A. Pulsation equations

In this subsection, we write the equations in Sec. II to the
first order in perturbations about the static solutions and
derive the pulsation equations for boson stars. Since a
complex scalar field has two real degrees of freedom, we
should expect two coupled pulsation equations. The sol-
utions to the pulsation equations give the squared radial
oscillation frequencies.
We begin by defining

ϕðt; rÞ≡ ½ϕ1ðt; rÞ þ iϕ2ðt; rÞ�e−iωt; ð20Þ

where ω is the oscillation frequency for a static solution and
ϕ1 and ϕ2 are real. Note that setting ϕ2 ¼ 0 (and dropping
the time dependence) gives the boson star ansatz (9).
Consequently, the static value of ϕ2 vanishes and ϕ2 is
at the level of a perturbation. We next write the fields as
perturbations about their static solutions, defining the
perturbations as in [5],

ϕ1ðt; rÞ ¼ ϕ0ðrÞ½1þ δϕ1ðt; rÞ�;
ϕ2ðt; rÞ ¼ ϕ0ðrÞδϕ2ðt; rÞ;
νðt; rÞ ¼ ν0ðrÞ þ δνðt; rÞ;
λðt; rÞ ¼ λ0ðrÞ þ δλðt; rÞ: ð21Þ

Writing the fields in the equations of motion in (5) as
perturbations about their static solutions, then keeping
perturbations only through first order and canceling the
static terms, we find

FIG. 2. The solid blue curve, which uses the vertical scale on
the left, plots the maximum mass of a static solution for a given
value of η. The dashed red curve, which uses the vertical scale on
the right, plots the central value ϕ0ð0Þ corresponding to the
maximum mass. Since the transition from stable to unstable for
static solutions occurs at the static solution with the largest mass,
the dashed red curve is also plotting the critical value of ϕ0ð0Þ,
above which a static solution is unstable.

(a) (b) (c) (d)

FIG. 1. The well-known static boson star solutions are presented for four values of the self-coupling constant η. (a) The mass,M, of the
boson star as a function of R95, where R95 is the radius that contains 95% of the mass. (b)–(c) The mass, conserved charge Q, and
oscillation frequency ω as a function of the central value ϕ0ð0Þ. From bottom to top in (a)–(c) and top to bottom in (d), the curves are for
η=ðμ2=m2

PÞ ¼ 0 (blue), 100 (red), 200 (orange), and 300 (purple).
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0 ¼ δϕ00
1 þ δϕ0

1

�
2
ϕ0
0

ϕ0

þ 2

r
þ ν00 − λ00

2

�
þ δν0 − δλ0

2

ϕ0
0

ϕ0

− eλ0−ν0ð2ωδ _ϕ2 þ δϕ̈1Þ þ eλ0−ν0ω2ðδλ − δνÞ
− eλ0μ2δλ − 2ηϕ2

0e
λ0ð2δϕ1 þ δλÞ; ð22Þ

and

0 ¼ δϕ00
2 þ

�
2
ϕ0
0

ϕ0

þ 2

r
þ ν00 − λ00

2

�
δϕ0

2 − ωeλ0−ν0
δ_ν − δ_λ

2

− eλ0−ν0ðδϕ̈2 − 2ωδ _ϕ1Þ − 2ηeλ0ϕ2
0δϕ2; ð23Þ

where we used Eq. (10) to cancel terms. Doing the same for
the energy-momentum tensor components in (6) gives

δTt
t ¼ ω2e−ν0ϕ2

0δνþ e−λ0ϕ02
0 δλ − 2ω2e−ν0ϕ2

0δϕ1

þ 2ωe−ν0ϕ2
0δ _ϕ2 − 2e−λ0ϕ02

0 δϕ1

− 2e−λ0ϕ0ϕ
0
0δϕ

0
1 − 2μ2ϕ2

0δϕ1 − 4ηϕ4
0δϕ1;

δTr
r ¼ −δTt

t − 4μ2ϕ2
0δϕ1 − 8ηϕ4

0δϕ1;

δTr
t ¼ −2e−ν0ϕ0ðϕ0

0δ _ϕ1 − ωϕ0δϕ
0
2Þ; ð24Þ

and for the metric equations in (3) gives

δν0 ¼ þ8πGreλ0δTr
r þ ν00δλþ

δλ

r
;

δλ0 ¼ −8πGreλ0δTt
t þ λ00δλ −

δλ

r
;

δ_λ ¼ −8πGreν0δTr
t; ð25Þ

where the first two metric equations were simplified by
using the static metric equations in (12). Two useful
formulas that follow from Eqs. (25) are

∂rðre−λ0δλÞ ¼ −8πGr2δTt
t;

δν0 − δλ0 ¼
�
ν00 − λ00 þ

2

r

�
δλ

− 32πGreλ0ϕ2
0ðμ2 þ 2ηϕ2

0Þδϕ1; ð26Þ

where in the bottom equation we plugged in for the
perturbed energy-momentum tensor using Eqs. (24).
Finally, for the conserved charge in (8),

δq0 ¼ 8πωr2ϕ2
0e

ðλ0−ν0Þ=2
�
2δϕ1 þ

δλ − δν

2
−
δ _ϕ2

ω

�
: ð27Þ

There are different ways to combine the equations
presented thus far. Further, not all of the equations are
necessary, since they are not all independent. In deriving
the pulsation equations, we follow the method of [3,4]. We
introduce the quantity

_ξ≡ ωδϕ2; ð28Þ

where the factor of ω is included for convenience. Upon
plugging this into the bottom equation in (25), we obtain a
result that can be immediately integrated to give

δλ ¼ 16πGrϕ0ðϕ0
0δϕ1 − ϕ0ξ

0Þ: ð29Þ

Combining this result, δTt
t in Eq. (24), and the equilibrium

equations (10) and (13) with the top equation in (26) allows
us to solve for δν,

δν ¼ −
2

ω2
̈ξþ 2

ω2
eν0−λ0ξ00 þ ð16πGrϕ0ϕ

0
0 þ 4Þδϕ1

þ 2

ω2
eν0−λ0

�
2

r
þ 2

ϕ0
0

ϕ0

− λ00 þ 8πGrϕ02
0

�
ξ0: ð30Þ

We now define

ζðt; rÞ≡ ξ0ðt; rÞ: ð31Þ

We also introduce a harmonic time dependence for all
perturbations:

δϕ1ðt; rÞ ¼ δϕ1ðrÞe−iχt; ζðt; rÞ ¼ ζðrÞe−iχt; ð32Þ

δνðt; rÞ ¼ δνðrÞe−iχt, and δλðt; rÞ ¼ δλðrÞe−iχt, where χ is
the radial oscillation frequency we would like to solve for.
The pulsation equations will be two coupled ODEs for the
perturbations δϕ1 and ζ. To construct the δϕ1 pulsation
equation, we combine the equation of motion in (22) with
the bottom equation in (26) and with Eqs. (29) and (30) to
obtain

δϕ00
1 ¼ −χ2eλ0−ν0δϕ1 −

�
2
ϕ0
0

ϕ0

þ 2

r
þ ν00 − λ00

2

�
δϕ0

1 þ 2

�
2

r
þ 2

ϕ0
0

ϕ0

− λ00 þ 8πGrϕ02
0

�
ζ þ 2ζ0

− 16πGrϕ0ðϕ0
0δϕ1 − ϕ0ζÞ

�
1

2

ϕ0
0

ϕ0

�
ν00 − λ00 þ

2

r

�
þ eλ0ðω2e−ν0 − μ2 − 2ηϕ2

0Þ
�

þ ½4ω2eλ0−ν0 þ 16πGreλ0ϕ0ϕ
0
0ðω2e−ν0 þ μ2 þ 2ηϕ2

0Þ þ 4ηϕ2
0e

λ0 �δϕ1: ð33Þ
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For the ζ ODE, we begin with the bottom equation in (26) and plug into it Eq. (29), its derivative, and the derivative of
Eq. (30) to obtain

ζ00 ¼ −χ2eλ0−ν0ζ − 2ω2eλ0−ν0δϕ0
1 −

�
2

r
þ 2

ϕ0
0

ϕ0

− λ00 þ 8πGrϕ02
0

�
½ðν00 − λ00Þζ þ ζ0�

−
�
2
ϕ00
0

ϕ0

− 2
ϕ02
0

ϕ2
0

−
2

r2
− λ000 þ 8πGðϕ02

0 þ 2rϕ0
0ϕ

00
0Þ
�
ζ − ðν00 − λ00Þζ0

− 8πGω2eλ0−ν0
�
ðϕ2

0 þ 2rϕ0ϕ
0
0Þζ þ rϕ2

0ζ
0 − rϕ0

�
ν00 − λ00 þ

2

r

�
ðϕ0

0δϕ1 − ϕ0ζÞ þ 2reλ0ϕ2
0ðμ2 þ 2ηϕ2

0Þδϕ1

�
: ð34Þ

It is straightforward to show that Eqs. (33) and (34) are
equivalent to Eqs. (41) and (42) in [3] by using Eqs. (10),
(13), and the derivative of Eq. (13).
It turns out that δq0 in (27) can be integrated exactly.

Using Eqs. (28), (29), (30), and (13) in Eq. (27), we
obtain [3,4]

δq ¼ −
8π

ω
r2ϕ2eðν0−λ0Þ=2ζ: ð35Þ

In Eqs. (33) and (34), ν00 and λ
0
0 are given by Eq. (12), ϕ

00
0

is given by Eq. (10), ϕ0, ϕ0
0, ν0, λ0, and ω are obtained from

the static solution, and λ000 is obtained by taking the
derivative of the λ00 equation in (12):

λ000 ¼
eλ0 − 1

r2
− λ00

eλ0

r
− 8πGeλ0ðTt

0t þ rλ00T
t
0t þ r∂rTt

0tÞ; ð36Þ

where

∂rTt
0t ¼ 2e−λ0ϕ02

0

�
2

r
þ ν00

2

�
− 4ϕ0ϕ

0
0ðμ2 þ 2ηϕ2

0Þ

þ ω2ν00e
−ν0ϕ2

0: ð37Þ

Solving the pulsation equations (33) and (34) gives δϕ1

and ζ. We can use these, along with the static solutions ϕ0,
ϕ0
0, ν0, and λ0 to construct the perturbation to ϕ1, which

from (21) is ϕ0δϕ1, to obtain δλ from (29), which after
writing it in terms of ζ is

δλ ¼ 16πGrϕ0ðϕ0
0δϕ1 − ϕ0ζÞ; ð38Þ

and to obtain δq from (35). In the next subsection, ϕ0δϕ1,
δλ, and δq will play a role in how the pulsation equations
are solved.

B. Numerical solution and results

In this subsection, we outline how we numerically solve
the pulsation equations for the squared radial oscillation
frequencies, χ2, and present results. Our method general-
izes the strategy of Gleiser and Watkins [5] and is similar to

that used by Hawley and Choptuik [9]. The relevant
equations are the pulsation equations in (33) and (34),
the δq equation in (35), the δλ equation in (38), and the
static equations in (16). Since both (35) and (38) are
algebraic, once the other equations are solved, it is trivial to
obtain δq and δλ.
To solve the pulsation equations, we need inner and outer

boundary conditions. Note that all relevant equations that
contain perturbations, contain one perturbed field in each of
their terms. Thus, we scale these equations such that
δϕ1ð0Þ ¼ 1. Additional inner boundary conditions are
found by plugging Taylor expansions of the fields into
the pulsation equations, giving

δϕ1ðrÞ ¼ 1þ 1

6

�
6ζ1 þ

4ω2 − χ2

σ20ð0Þ
þ 4ηϕ2

0ð0Þ
�
r2 þOðr4Þ;

ζðrÞ ¼ ζ1rþOðr3Þ; ð39Þ

where ζ1 is an as-yet-undetermined constant.
For outer boundary conditions we have that perturba-

tions head to zero at large r. In particular we shall use that
ϕ0δϕ1; δq; δλ → 0 as r → ∞, where ϕ0δϕ1 is the definition
of the ϕ1 perturbation from (21). The condition on δq can
be understood as only allowing perturbations that conserve
total charge [3–5,9].
We next write all equations in terms of m0, σ̂0, and ω̂, as

defined in Eqs. (15) and (18), and

χ̂ ≡ χ

σ0ð0Þ
: ð40Þ

Just as with the static equations, σ0ð0Þ cancels out. We note
that it is for this reason that we defined _ξ in Eq. (28) with
the factor of ω.
We assume that the static equations have been solved and

the value of ω determined for given values of ϕ0ð0Þ and η.
Even so, we find it easiest to simultaneously solve the static
equations (again) and the pulsation equations, but now with
the precise value of ω plugged in. We do this by writing the
pulsation equations in first order form and then integrating
outward from r ¼ 0 using the previously listed inner
boundary conditions and using trial values for χ̂2 and ζ1.
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We then use the shooting method, varying both χ̂2 and ζ1
until the outer boundary conditions are satisfied. In practice,
we find that if two of the outer boundary conditions are
satisfied (i.e., two of ϕ0δϕ1; δq; δλ → 0 as r → ∞), so is the
third. Once a solution is found, the squared radial oscillation
frequency is given by χ2 ¼ χ̂2=σ̂20ð∞Þ.
The pulsation equations in (33) and (34) can be shown to

be self-adjoint [3]. We expect the squared radial oscillation
frequencies to be real and discrete and, for a given static
solution, for there to be an infinite number of them, just as for
fermion stars [16]. The smallest frequency is called the
fundamental mode, the next smallest the first excited mode,
and so on. Such modes are also indicated by the number of
nodes (i.e., zero crossings) of either δq or δλ [5]. In practice,
we solve for a specific mode by tuning χ̂2 and ζ1 in the
shooting method such that δq and δλ have the desired
number of nodes.We present results for the fundamental and
first excited modes. We have attempted to solve for higher
modes, but have been unable to do so. We find that our code
is running up against machine precision (we use 64-bit
floating point numbers). Extending our code beyond this
limitation is beyond the scope of this work.
In Fig. 3(a), we show the squared radial oscillation

frequency, χ2, for the fundamental mode as a function of
the central value ϕ0ð0Þ for various values of η. As can be
seen, for a given value of η, there exists a peak value of χ2.
As η is increased from η ¼ 0, the peak increases until it
reaches a maximum value. As η is increased further, the
peak decreases. In Fig. 3(b), we show the analogous plot for
the first excited mode. We find again that for a given value
of η, there exists a peak value of χ2. Unlike with the
fundamental mode, we find that as η is increased, the peak
always decreases. We have computed the peak value of χ2

as a function of η for both the fundamental and first excited
modes, which is shown in Fig. 4(a). In Fig. 4(b), we show
the values of ϕ0ð0Þ at which the peak values of χ2 occur.
In Fig. 3 we can see that all curves eventually hit zero for

sufficiently large ϕ0ð0Þ. The transition from positive to
negative for χ2 indicates the respective mode transitioning
from stable to unstable. If any mode is unstable, the static
solution is unstable. Since the fundamental mode always
has the smallest frequency, a static solution is stable if χ2 for
the fundamental mode is positive, otherwise the static
solution is unstable. The value of ϕ0ð0Þ when χ2 ¼ 0,
and hence when a mode is transitioning from stable to
unstable, is called the critical value. We have computed the
critical value of ϕ0ð0Þ for both the fundamental and first
excited modes. We have done this by setting χ2 ¼ 0 and
varying ζ1 and ϕ0ð0Þ in the shooting method. The results
are shown in Fig. 4(c). Also shown in Fig. 4(c) is the same
dashed red curve as shown in Fig. 2, which gives the value
of ϕ0ð0Þ for the static solution with the largest mass. As
mentioned in the previous section, it is well known that the
static solution with the maximum mass occurs for the
critical value of ϕ0ð0Þ. Consequently, the dashed red curve

is directly on top of the solid black curve as expected.
Though expected, this is a nontrivial test of our radial
oscillation code.
In Appendix A, we list radial oscillation frequencies and

other computed values. Some of the η ¼ 0 results presented
in this section were previously computed in [5,9]. We show
that our results are consistent with those in [5,9] in
Appendix B.

V. DYNAMIC SOLUTIONS

It is valuable to compute the radial oscillation frequen-
cies using a different method than used in the previous
section so as to verify that the equations and solutions of the
previous section are correct. This is particularly true given
the complexity of the pulsation equations in (33) and (34).
In this section, we numerically evolve a spherically
symmetric boson star using full numerical relativity, with

(a)

(b)

FIG. 3. The squared radial oscillation frequency, χ2, as a
function of the central value ϕ0ð0Þ for (a) the fundamental mode
and (b) the first excited mode. The dashed curve in both plots
corresponds to η ¼ 0. In (a), as η is increased, the peak of each
curve increases, until it hits a maximum at η=ðμ2=m2

PÞ ¼ 86.63
(dash-dotted curve). As η is increased further, the peaks decrease.
In (b), as η is increased, the peaks always decrease. In (a), the
curves are for η=ðμ2=m2

PÞ ¼ 0, 10, 25, 86.63, 200, 400, 600. In
(b) the curves are for η=ðμ2=m2

PÞ ¼ 0, 10, 25, 50, 100, 200, 300,
400, 500, 600.
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the static solutions of Sec. III used as initial data. It is well
known that the discretization error inherent in a numerical
evolution acts as a perturbation [7]. By Fourier trans-
forming the dynamic solution, we obtain an independent
computation of the radial oscillation frequencies and are
able to verify that that we have computed them correctly in
the previous section.
We begin by putting the equations in Sec. II into a form

better suited for numerical evolution. Toward this end, it is
convenient to use the metric functions αðt; rÞ and aðt; rÞ,
defined by

α≡ eν=2; a≡ eλ=2: ð41Þ

Defining

Φ≡ ϕ0; Π≡ a
α
_ϕ; ð42Þ

the equations of motion in (5) can be written in first order
form as

_Π ¼ 1

r2
∂r

�
r2

α

a
Φ
�
− αaðμ2 þ 2ηjϕj2Þϕ: ð43Þ

Writing the fields in terms of their real and imaginary parts,

ϕ¼ ϕ1þ iϕ2; Φ¼Φ1þ iΦ2; Π¼Π1þ iΠ2; ð44Þ
the equations of motion become

_ϕ1 ¼
α

a
Π1;

_Φ1 ¼ ∂r

�
α

a
Π1

�
;

_Π1 ¼
1

r2
∂r

�
r2α
a

Φ1

�
− αa½μ2 þ 2ηðϕ2

1 þ ϕ2
2Þ�ϕ1; ð45Þ

and

_ϕ2 ¼
α

a
Π2;

_Φ2 ¼ ∂r

�
α

a
Π2

�
;

_Π2 ¼
1

r2
∂r

�
r2α
a

Φ2

�
− αa½μ2 þ 2ηðϕ2

1 þ ϕ2
2Þ�ϕ2: ð46Þ

The metric equations in (3), when written in terms of the
fields α and a, become

α0 ¼ þ4πGrαa2Tr
r þ

αða2 − 1Þ
2r

;

a0 ¼ −4πGra3Tt
t −

aða2 − 1Þ
2r

;

_a ¼ −4πGrα2aTr
t; ð47Þ

and the energy-momentum tensor components in (6)
become

Tt
t ¼−

Π2
1þΠ2

2þΦ2
1þΦ2

2

a2
−μ2ðϕ2

1þϕ2
2Þ−ηðϕ2

1þϕ2
2Þ2;

Tr
r¼þΠ2

1þΠ2
2þΦ2

1þΦ2
2

a2
−μ2ðϕ2

1þϕ2
2Þ−ηðϕ2

1þϕ2
2Þ2;

Tr
t ¼−

2

aα
ðΠ1Φ1þΠ2Φ2Þ: ð48Þ

For initial data, we use a static solution computed as
described in Sec. III. We assume the initial data is time

(a)

(b)

(c)

FIG. 4. In each plot, the solid black curve uses the vertical scale
on the left and is for the fundamental mode and the dashed blue
curve uses the vertical scale on the right and is for the first excited
mode. The maximum squared radial oscillation frequency for a
given value of η is plotted in (a) and the corresponding value of
ϕ0ð0Þ is plotted in (b). These values correspond to the peaks seen
in Fig. 3. (c) The central value ϕ0ð0Þ is plotted for when χ2 ¼ 0.
This is the critical value of ϕ0ð0Þ and corresponds to when the
respective mode transitions between stable and unstable. The
dashed red curve, which lies directly on top of the solid black
curve, is the same dashed red curve plotted in Fig. 2. That the
solid black curve and the dashed red curve agree is expected,
since both are computing the critical value of ϕ0ð0Þ for the
fundamental mode.
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symmetric (i.e., that it occurs at t ¼ 0), so that, given a
static solution ϕ0ðrÞ, Φ0ðrÞ, σ0ðrÞ, m0ðrÞ, and ω, we have

ϕ1ð0; rÞ ¼ ϕ0; Φ1ð0; rÞ ¼Φ0; Π1ð0; rÞ ¼ 0; ð49Þ

and

ϕ2ð0;rÞ¼ 0; Φ2ð0;rÞ¼0; Π2ð0;rÞ¼
ω

N0σ0
ϕ0; ð50Þ

where N0 ¼ 1–2Gm0=r.
The boundary conditions for the metric fields are

aðt; 0Þ ¼ 1 and αðt; rÞ ¼ 1=aðt; rÞ for r → ∞. Since our
computational domain does not extend to infinity, we allow
matter fields to exit at the outer boundary using standard
outgoing wave boundary conditions,

_ϕ1¼−
ϕ1

r
−Φ1; _Π1¼−

Π1

r
−Π1

0; Φ1¼−
ϕ1

r
−Π1;

_ϕ2¼−
ϕ2

r
−Φ2; _Π2¼−

Π2

r
−Π2

0; Φ2¼−
ϕ2

r
−Π1: ð51Þ

Our code is second order accurate and evolves the
evolution equations in (45) and (46) using the method of
lines and third order Runge-Kutta method. The spatial
derivatives in the evolution equations are finite differenced
using centered stencils. We use the common practice of
writing the spatial derivatives in the _Π1 and _Π2 evolution
equations as r−2∂r ¼ ∂r3 before finite differencing [38]. At
each time step, we solve the first two equations in (47)
using second order Runge-Kutta method. We use a uniform
computational grid with Δr ¼ 0.005=μ or 0.01=μ,
rmax ¼ 100=μ, and Δt=Δr ¼ 0.5 (we find that for larger
values of ϕ0ð0Þ we need the more accurate Δr ¼ 0.005=μ
to obtain a precise match between the results of this and the
previous sections).
We compute radial oscillation frequencies from dynamic

solutions using a fast Fourier transform. The results
presented are from the Fourier transform of jϕj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
1 þ ϕ2

2

p
at the innermost grid point (either at r ¼

0.0025=μ or 0.005=μ). We carry all evolutions out to
t ¼ 2 × 104=μ, allowing for a large number of oscillations
and an accurate determination of the radial oscillation
frequencies.
As mentioned, the initial data is a static solution, which

is uniquely identified by ϕ0ð0Þ and η. Discretizaton error in
the numerical evolution causes the static solution to shift
slightly before quickly settling into a stable configuration.
As such, the dynamic evolution is for a static solution with
a sightly different value of ϕ0ð0Þ (but the same value of η)
than used to make the initial data. For a proper matching of
the radial oscillation frequencies as computed using the
methods of this and the previous sections, a precise value
for ϕ0ð0Þ must be determined. We have found that simply

averaging jϕj at the innermost grid point over the whole of
the evolution gives a sufficiently accurate value.
In Fig. 5, we show three representative results. The black

curves are the Fourier transform of the dynamic solution
and the spikes along the black curves represent frequencies
at which the dynamic solution is oscillating. It is not
unreasonable to expect that there could be oscillation
frequencies with a nonlinear origin. As such, it is not
necessarily clear which spikes have a linear origin and give
the radial oscillation frequencies we are interested in. The
blue and red vertical lines are the fundamental and first

(a)

(b)

(c)

FIG. 5. Three representative plots are shown. In each, the black
curve is the Fourier transform of a dynamic solution and the
spikes along the black curve give the frequencies at which the
dynamic solution is oscillating. The units on the vertical axis
are arbitrary. The vertical lines are the fundamental (left most,
blue) and first excited (right most, red) squared radial oscillation
frequencies computed from the Pulsation equations. We can see
that the agreement is excellent. (a) η ¼ 0, ϕ0ð0Þ=mP ¼ 0.03522,
and radial oscillation frequencies χ2=μ2 ¼ 8.6222 × 10−4 and
6.3409 × 10−3. (b) η=ðμ2=m2

PÞ ¼ 100, ϕ0ð0Þ=mP ¼ 0.03517,
and radial oscillation frequencies χ2=μ2 ¼ 1.0729 × 10−3 and
8.1150 × 10−3. (c) η=ðμ2=m2

PÞ ¼ 400, ϕ0ð0Þ=mP ¼ 0.02823,
and radial oscillation frequencies χ2=μ2 ¼ 3.6229 × 10−4 and
7.3741 × 10−3.
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excited squared radial oscillation frequencies as computed
using the pulsation equations and the methods of the
previous section. As can can be seen, there is excellent
agreement. Thus, the solution to the pulsation equations
allows us to unambiguously determine which of the spikes
in Fig. 5 come from linear perturbations, while the spikes in
Fig. 5 allow us to verify that we have computed the radial
oscillation frequencies in the previous section correctly.

VI. CONCLUSION

We computed the fundamental and first excited radial
oscillation frequencies for self-interacting boson stars by
solving pulsation equations. To verify our results, we evolved
boson stars using full numerical relativity and Fourier trans-
formed the dynamic solutions.We found excellent agreement
between the twomethods. InAppendixA, we list some radial
oscillation frequencies and other computed values.
If boson stars are detectable, it is interesting to speculate

on whether their radial oscillations can be measured. Since
radial oscillations do not couple to gravitational waves, it is
unlikely that they can be measured by purely gravitational
means. For neutron stars, the expectation for how radial
oscillations could be measured is through emission of
electromagnetic radiation from the surface of the star (see,
for example, [17,18,39]). For something similar to be
possible with boson stars, the scalar field would have to

have additional interactions that were not considered in
this work.
As mentioned in the Introduction, a main motivation for

thiswork are darkmatter admixed neutrons stars. If sufficient
amounts of bosonic dark matter mix with the ordinary
nuclear matter of a neutron star, the radial oscillations of
the mixed star can be affected [21–26]. This would occur for
scalar field masses around μ ∼ 10−10 eV [19]. Boson stars
madewith such a scalar field have radial oscillation frequen-
cies in the kHz range,which is comparable to neutron stars. If
the radial oscillations of mixed stars can be detected, say
through emission of electromagnetic radiation, interesting
questions are how the radial oscillations of the bosonic sector
show up in the frequency spectrum [24] and if it is possible to
infer details about the bosonic sector from their measure-
ment. If this latter case is possible, it would mean that the
presence of darkmatter could be inferred frommeasurements
of the radial oscillation frequencies of neutron stars. We
expect the results presented here to be relevant for answering
these questions, which are currently under study.

APPENDIX A: RADIAL OSCILLATION
FREQUENCIES

In this Appendix, we list some of the values computed in
Sec. IV. Table I lists values for the fundamental mode and
Table II lists values for the first excited mode.

TABLE I. Computed values for the fundamental mode.

η=ðμ2=m2
PÞ ϕ0ð0Þ=mP ω=μ ω̂=μ ζ1=μ2 χ2=μ2 χ̂2=μ2

0 0.01 0.9668 1.0344 −0.7277 0.1691 × 10−3 0.1936 × 10−3

0 0.015 0.9513 1.0531 −0.7622 0.3344 × 10−3 0.4099 × 10−3

0 0.02 0.9365 1.0729 −0.7997 0.5140 × 10−3 0.6747 × 10−3

0 0.025 0.9224 1.0939 −0.8406 0.6798 × 10−3 0.9560 × 10−3

0 0.03 0.9089 1.1160 −0.8852 0.8045 × 10−3 1.2129 × 10−3

0 0.035 0.8961 1.1395 −0.9339 0.8617 × 10−3 1.3934 × 10−3

0 0.04 0.8840 1.1645 −0.9872 0.8253 × 10−3 1.4323 × 10−3

0 0.045 0.8724 1.1909 −1.0456 0.6697 × 10−3 1.2481 × 10−3

0 0.05 0.8615 1.2190 −1.1098 0.3693 × 10−3 0.7394 × 10−3

0 0.05407 0.8530 1.2432 −1.1667 0 0

100 0.01 0.9635 1.0393 −0.7383 0.2064 × 10−3 0.2402 × 10−3

100 0.015 0.9442 1.0645 −0.7875 0.4366 × 10−3 0.5549 × 10−3

100 0.02 0.9249 1.0938 −0.8475 0.7008 × 10−3 0.9802 × 10−3

100 0.025 0.9058 1.1275 −0.9197 0.9410 × 10−3 1.4579 × 10−3

100 0.03 0.8875 1.1658 −1.0056 1.0896 × 10−3 1.8800 × 10−3

100 0.035 0.8703 1.2088 −1.1066 1.0770 × 10−3 2.0778 × 10−3

100 0.04 0.8545 1.2567 −1.2245 0.8363 × 10−3 1.8089 × 10−3

100 0.045 0.8403 1.3094 −1.3609 0.3070 × 10−3 0.7455 × 10−3

100 0.04701 0.8350 1.3320 −1.4215 0 0

400 0.01 0.9508 1.0574 −0.7783 0.2949 × 10−3 0.3648 × 10−3

400 0.015 0.9177 1.1091 −0.8894 0.5922 × 10−3 0.8648 × 10−3

400 0.02 0.8847 1.1771 −1.0451 0.7686 × 10−3 1.3606 × 10−3

400 0.025 0.8556 1.2599 −1.2485 0.6481 × 10−3 1.4052 × 10−3

400 0.03 0.8324 1.3559 −1.5026 0.1290 × 10−3 0.3422 × 10−3

400 0.03083 0.8292 1.3730 −1.5500 0 0
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APPENDIX B: COMPARISON
WITH LITERATURE

In this Appendix, we compare some of our results from
Sec. IV with those found in the literature. In particular,
Gleiser and Watkins [5] and Hawley and Choptuik [9] have
reported results for η ¼ 0, i.e., in the absence of self-
interactions.
We have computed the critical value ϕ0ð0Þ=mP ¼

0.2301 for the first excited mode with η ¼ 0 (see
Table II). This value is computed in both [5,9]. These
two papers report, respectively, 1.16 and (approximately)
1.15, but they scale ϕ0ð0Þ=mP with a factor of

ffiffiffiffiffiffi
8π

p
, and

thus 1.16=
ffiffiffiffiffiffi
8π

p ¼ 0.2314 and 1.15=
ffiffiffiffiffiffi
8π

p ¼ 0.2294, which
is consistent with our result.
Hawley and Choptuik list a number of oscillation

frequencies for the fundamental and first excited modes
in Appendix A of [9]. It is important to note that they list
what we have labeled as ω̂=μ and χ̂2=μ2 in the main text. In
Table III, we list the results reported in [9] for the
fundamental mode and the corresponding values we have
computed. As can be seen, there is excellent agreement
between ω̂=μ and χ̂2=μ2.
In Table IV we do the same but for the first excited mode.

We find again excellent agreement for ω̂=μ. However, we
find some discrepancy with χ̂2=μ2, although our numbers

TABLE II. Computed values for the first excited mode.

η=ðμ2=m2
PÞ ϕ0ð0Þ=mP ω=μ ω̂=μ ζ1=μ2 χ2=μ2 χ̂2=μ2

0 0.04 0.8840 1.1645 −1.0042 0.7892 × 10−2 0.0137
0 0.06 0.8415 1.2806 −1.2935 1.5174 × 10−2 0.0351
0 0.08 0.8085 1.4299 −1.7291 2.2766 × 10−2 0.0712
0 0.1 0.7851 1.6245 −2.4085 2.9433 × 10−2 0.1260
0 0.12 0.7713 1.8824 −3.5133 3.4057 × 10−2 0.2028
0 0.14 0.7677 2.2305 −5.3947 3.5702 × 10−2 0.3014
0 0.16 0.7743 2.7081 −8.7602 3.3792 × 10−2 0.4134
0 0.18 0.7904 3.3722 −15.0690 2.8409 × 10−2 0.5171
0 0.2 0.8130 4.3002 −27.3010 2.0283 × 10−2 0.5675
0 0.22 0.8357 5.5908 −51.3178 0.8862 × 10−2 0.3966
0 0.2301 0.8447 6.4205 −71.2434 0 0

100 0.04 0.8545 1.2567 −1.2462 1.0038 × 10−2 0.0217
100 0.06 0.8081 1.4973 −1.9525 1.7335 × 10−2 0.0595
100 0.08 0.7883 1.8198 −3.1402 2.1562 × 10−2 0.1149
100 0.1 0.7884 2.2336 −5.0970 2.1982 × 10−2 0.1764
100 0.12 0.8017 2.7581 −8.3403 1.9234 × 10−2 0.2277
100 0.14 0.8218 3.4251 −13.8187 1.4467 × 10−2 0.2513
100 0.16 0.8431 4.2819 −23.2943 0.8472 × 10−2 0.2185
100 0.18 0.8601 5.3982 −40.1006 0.0267 × 10−2 0.0105
100 0.1805 0.8604 5.4310 −40.6736 0 0

400 0.04 0.8039 1.5810 −2.2058 1.0542 × 10−2 0.0408
400 0.06 0.7964 2.1377 −4.4044 1.1507 × 10−2 0.0829
400 0.08 0.8185 2.8204 −8.1458 0.8650 × 10−2 0.1027
400 0.1 0.8453 3.6412 −14.3217 0.4448 × 10−2 0.0825
400 0.1186 0.8632 4.5597 −23.6175 0 0

TABLE III. Comparison of values we have computed with those computed in [9] for the fundamental mode.

ϕ0ð0Þ=ðmP=
ffiffiffiffiffi
8π

p Þ ϕ0ð0Þ=mP ω=μ ω̂=μ χ2=μ2 χ̂2=μ2 [9]: ω̂=μ [9]: χ̂2=μ2

0.06 0.01197 0.9606 1.0417 0.2307 × 10−3 0.2713 × 10−3 1.0417 0.28 × 10−3

0.1 0.01995 0.9367 1.0727 0.5121 × 10−3 0.6717 × 10−3 1.0727 0.67 × 10−3

0.14 0.02793 0.9144 1.1067 0.7594 × 10−3 1.1112 × 10−3 1.1067 1.11 × 10−3

0.18 0.03590 0.8939 1.1439 0.8628 × 10−3 1.4132 × 10−3 1.1440 1.41 × 10−3

0.22 0.04388 0.8749 1.1849 0.7162 × 10−3 1.3135 × 10−3 1.1849 1.31 × 10−3

0.26 0.05186 0.8576 1.2299 0.2151 × 10−3 0.4424 × 10−3 1.2299 0.45 × 10−3

0.27 0.05386 0.8535 1.2419 0.2217 × 10−4 0.0469 × 10−3 1.2419 0.05 × 10−3
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are mostly within the reported error for theirs (which is �2
in the final digit). Although our numbers are mostly
consistent with theirs, there are two reasons why we
believe our numbers to be more accurate. The first is that
we compute both ω̂ and ζ1 to near machine-precision
accuracy, with ζ1 computed to this accuracy for each value
of χ̂2 that is tried in the shooting method. χ̂2 is then
computed to an accuracy greater than listed in the tables.
The second reason is that we have confirmed the accuracy
of our numerical method for computing frequencies by
comparing values to dynamical solutions, as explained
in Sec. V.

APPENDIX C: UNITS

Figures 1–5 and Tables I–IV presented results in terms of
dimensionless quantities. The benefit in doing this is that
the results are valid for an arbitrary scalar field mass, μ, and
μ does not have to be specified. In this Appendix, we list a
few astrophysical-friendly unit conversions, which do
require specification of μ.
The boson star mass was given in terms of M=ðm2

P=μÞ.
To convert this to solar masses (M⊙),

M ¼ 1.3360

�
10−10 eV

μ

�
½M=ðm2

P=μÞ� ½M⊙�: ðC1Þ

The boson star radius was given in terms of μR95. To
convert this to kilometers (km),

R95 ¼ 1.9732

�
10−10 eV

μ

�
ðμR95Þ ½km�: ðC2Þ

The oscillation frequency was given in terms of ω=μ. To
convert this to kilohertz (kHz),

ω ¼ 151.93

�
μ

10−10 eV

�
ðω=μÞ ½kHz�: ðC3Þ

Similarly, the squared radial oscillation frequency was
given in terms of χ2=μ2. To convert this to squared kilohertz
(kHz2),

χ2 ¼ 23083

�
μ

10−10 eV

�
2

ðχ2=μ2Þ ½kHz2�: ðC4Þ
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