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Gravitationalwaves enable tests of general relativity in the highly dynamical and strong-field regime.Using
events detected by LIGO-Virgo up to 1October 2019, we evaluate the consistency of the datawith predictions
from the theory.We first establish that residuals from the best-fit waveform are consistent with detector noise,
and that the low- and high-frequency parts of the signals are in agreement. We then consider parametrized
modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving
past constraints by factors of ∼2; we also find consistency with Kerr black holes when we specifically target
signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten
constraints on Lorentz-violating coefficients by a factor of ∼2.6 and bound the mass of the graviton to
mg ≤ 1.76 × 10−23 eV=c2 with 90% credibility. We also analyze the properties of the merger remnants by
measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr

frequency to δf̂220 ¼ 0.03þ0.38
−0.35 for the fundamental quadrupolar mode, and δf̂221 ¼ 0.04þ0.27

−0.32 for the first
overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are
consistent with tensorial polarizations through a template-independent method.When possible, we assess the
validity of general relativity based on collections of events analyzed jointly. We find no evidence for new
physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics.

DOI: 10.1103/PhysRevD.103.122002

I. INTRODUCTION

General relativity (GR) remains ourmost accurate theoryof
gravity, havingwithstoodmany experimental tests in theSolar
System [1] as well as binary pulsar [1,2], cosmological [3,4]
and gravitational-wave (GW) observations [5–15]. Many of
these tests probe regimes where gravitational fields are weak,
spacetime curvature is small, and characteristic velocities are
not comparable to the speed of light. Observations of compact
binary coalescences enable us to test GR in extreme envi-
ronments of strong gravitational fields, large spacetime
curvature, and velocities comparable to the speed of light;
high post-Newtonian (PN) order calculations and numerical
relativity (NR) simulations are required to accurately model
the emitted GW signal [5,6,14,15].
We report results from tests of GR on binary black hole

(BBH) signals using the second gravitational-wave tran-
sient catalog (GWTC-2) [16]. The GWTC-2 catalog
includes all observations reported in the first catalog
(GWTC-1) [17], covering the first (O1) and second (O2)
observing runs, as well as new events identified in the first
half of the third observing run (O3a) of the Advanced LIGO
and Advanced Virgo detectors [16]. We focus on the most
significant signals, requiring them to have been detected
with a false-alarm rate (FAR) < 10−3 yr−1.

A current limitation on tests of beyond-GR physics
with compact binary coalescences is the lack of under-
standing of the strong-field merger regime in nearly all
modified theories of gravity. This restricts our analysis to
testing the null hypothesis, taken to be GR, using model-
independent or parametrized tests of GR [5,14,15,18–29].
An important goal in constraining beyond-GR theories is the
development of model-dependent tests, requiring analytical
waveforms and NR simulations in alternative theories of
gravity across the binary parameter space. Unfortunately,
there is still a lack of alternative theories of gravity that are
mathematically well-posed, physically viable, and provide
sufficiently well-defined alternative predictions for the GW
signal emitted by two coalescing compact objects. Recent
NR studies have begun to model astrophysically relevant
binary black hole mergers in beyond-GR theories [30–34]
and numerous advances have been made deriving the
analytical equations of motion and gravitational waveforms
in such theories [35–48]. However, it is often unknown
whether the full theories are well-posed, and a significant
amount of work is required before the results can be used in
the context of GW data analysis.
The approach taken here is therefore to (i) check the

consistency of GR predictions with the data, and (ii) intro-
duce parametrized modifications to GR waveforms in order
to constrain the degree to which the deviations from the GR
predictions agree with the data. As in [15], the results in this*Full author list given at end of the article.
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paper should be treated as observational constraints on
deviations from GR. Such limits are a quantitative indica-
tion of the degree to which the data are described by GR but
can also be reinterpreted in the context of a given modified
theory of gravity to produce constraints, subject to a
number of assumptions [7,49]. Our analyses do not reveal
any inconsistency with GR, and the results improve on the
previous tests of GR using the BBHs observed in O1 and
O2 [5,6,8,13–15].
The analyses performed in this paper can be broken

down into four broad categories. In order to test the
consistency of the GR predictions in a generic way, we
look for residual power after subtracting the best-fit GR
waveform from the data. We also separately study the low-
frequency and high-frequency portions of an observed
signal, and evaluate the agreement of the inferred param-
eters. To constrain specific deviations from GR, we perform
parametrized tests targeting the generation of GWs and the
propagation of the GW signal. All these approaches were
already implemented in [15] for GWTC-1 signals. In
addition, we introduce a new suite of analyses: an extension
of the parametrized test considering terms from the spin-
induced quadrupole moment of the binary components,
dedicated studies of the remnant properties (ringdown and
echoes), and a new method for probing the geometry of
GW polarizations.
The tests considered here are not all independent and will

have some degree of overlap or redundancy. Whilst a
detailed discussion and study of the complex relationships
between the tests is beyond the scope of this paper, it is
important to highlight potential complementarity between
the analyses. For example, any physics that modifies the
generation of GWs would also likely lead to modifications
to their propagation. Similarly, physics that modifies the
nature of the remnant object might also predict modifica-
tions to the earlier inspiral dynamics. Furthermore, several
types of deviations from GR may be picked up simulta-
neously by multiple analyses.
The rapid increase in the number of observed binary

coalescences has driven interest in howwe can best combine
information from a set of measurements. In order to address
this question, we employ hierarchical inference on a subset
of our analyses to parametrize and constrain the distribution
of observed beyond-GR parameters for different sources
[50,51]. This allows us to make quantitative statements
about the overall agreement of our observationswith the null
hypothesis that GR is correct and that no strong systematics
are present. Such measurements are qualitatively more
general than combined constraints previously presented in
[15]. In Sec. III we discuss parameter inference for indi-
vidual events and detail how the hierarchical analysis is
performed on the full set of measurements.
Our constraints on deviations from GR are currently

dominated by statistical uncertainty induced by detector
noise [5,15,52]. Yet, the statistical uncertainty can be

reduced by combining the results from multiple events.
Additional uncertainty will arise from systematic error in
the calibration of the detectors and power spectral density
(PSD) estimation, as well as errors in the modeling of GW
waveforms in GR; unlike uncertainty induced by detector
noise, such errors do not improve when combining multiple
events and therefore will dominate the uncertainty budget
for sufficiently large catalogs of merger events. Most of the
tests in this paper are sensitive to such systematics, which
could mimic a deviation from GR. However, we do not find
any evidence of GR violations that cannot be accounted for
by possible systematics.
This paper is organized as follows. Section II provides an

overview of the data used in the analysis. It also defines the
event selection criteria and discusses which GW events are
used to produce the individual and combined results
presented in this paper. We provide details about gravita-
tional waveforms and data analysis methods in Sec. III. In
Sec. IV we present the residuals test, and the inspiral-
merger-ringdown (IMR) consistency test. In Sec. V we
outline tests of GW generation, including generic para-
metrized modifications and a test of the spin-induced
quadrupole moment. In Sec. VI we describe tests of GW
propagation using a modified dispersion relation. We
present tests of the remnant properties in Sec. VII and
study GW polarizations in Sec. VIII. Finally, we conclude
with Sec. IX.
Data products associated with the results of analyses in

this paper can be found in [53]. The GW strain data for all
events are available at the Gravitational Wave Open
Science Center [54,55].

II. DATA, EVENTS, AND SIGNIFICANCE

The analyses presented here use data taken during O3a
by Advanced LIGO [56] and Advanced Virgo [57]. O3a
extended from 1 April 2019 to 1 October 2019. All three
detectors achieved sensitivities significantly better than
those in the previous observing run [17]. Calibration
[58–61] accuracy of a few percent in amplitude and a
few degrees in phase was achieved at all sites. To improve
the precision of parameter estimation, various noise sub-
traction methods [62–65] were applied to some of the
events used here (see Table V in [16] for the list of events
requiring such mitigation). See [16] for detailed discussion
of instrument performance and data quality for O3a.
We present results for the detections of possible BBH

events in O3a with FAR < 10−3 per year, as reported by
any of the pipelines featured in [16]. This threshold is
stricter than the one in [15] to accommodate the increased
number of events within computational constraints. The 24
selected events, and some of their key properties, are listed
in Table I. Out of those, GW190814 is the only one to have
been identified as a possible neutron star-black hole
(NSBH) system based on the inferred component masses,
although the true nature of the secondary object
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remains unknown [66]. In this paper, we start from the null
hypothesis that all signals analyzed (including GW190814)
correspond to BBHs as described by GR, and proceed to
seek evidence in the data to challenge this (we find none).
We do not study the likely binary neutron star signal
GW190425 [67].
Detection significance is provided by two pipelines that

rely on GR templates (PYCBC [68–70] and GSTLAL [71,72],
both relying on the waveform models described in [73–76]
and [77]), and by one pipeline that does not (COHERENT
WAVEBURST, henceforth CWB [78–80]). Making use of a
measure of significance that assumes the validity of GR
could potentially lead to biases in the selection of events to
be tested, systematically disfavoring signals in which a GR
violation would be most evident (e.g., [81]). CWB would
detect at least some of the conceivable chirplike signals
with sufficient departures from GR that they would be
missed by the templated searches. Nonetheless, we cannot
fully discard the existence of a hidden population of signals
exhibiting large deviations from GR, which could escape
both modeled and unmodeled searches.
Out of all the events reported in [16], only the massive

event GW190521 was identified with greater significance
by the unmodeled search. This can be explained as a
consequence of the system’s high mass, which led to a short
signal with only ∼4 cycles visible in our detectors [82,83].
This fact makes it more difficult to evaluate consistency
with GR for this event than for other (less massive) systems
which remain in the sensitive band of our detectors for a
longer period. This is especially true for tests targeting the
inspiral, since there is little signal-to-noise ratio (SNR)
before the merger (SNR ≈ 4.7, computed as in Sec. IV B);
on the other hand, this signal is highly suitable for studies
of black hole (BH) ringdown [83].
We consider each of the GW events individually, carry-

ing out different analyses depending on the properties of
each signal. Some of the tests presented here, such as the
IMR consistency test in Sec. IV B and the parametrized
tests in Sec. V, distinguish between the inspiral and the
postinspiral regimes of the signal. The remnant-focused
analyses of Sec. VII are only meaningful for systems
massive enough for the postinspiral signal to be detectable
by LIGO-Virgo. Finally, studies of polarization content are
only feasible for detections involving the full three-detector
network. We choose which analyses to apply in each case
following preestablished selection criteria based on the
signal power recovered in different frequency regimes or
the number of involved detectors. Table I indicates which
events have met the selection criteria for each analysis;
further details are provided in the sections below.
Having a large number of detections also allows us to

make statements about the validity of GR from the set of
measurements as a whole. Ideally, we would like to
constrain the properties of the true population of signals
that exist in nature—for example, if GR is correct, the

population distribution of parametrized deviations from GR
would be a δ function at the point corresponding to no
deviation. However, this would require an understanding of
our detection efficiency as a function of these deviations
[84,85], as well as a joint model for the distribution of
individual event properties and deviations from GR [86].
Because no such comprehensive modeling is available, we
do not attempt to make any statements about possible
intrinsic populations, but rather measure the distribution of
deviations from GR across observed signals. Our strategies
for doing so are outlined in Sec. III B.
Given the increased significance threshold for inclusion

in this paper, we dispense with the two-tiered selection
criterion applied in [15]. Instead, we make combined
statements using all events in our selection. When possible,
we also combine our results for O3a with those from
preceding observation runs that satisfy our selection cri-
terion. That includes all events analyzed in [15] except
GW151012 and GW170729; that is: GW150914,
GW151226, GW170104, GW170608, GW170809,
GW170814, GW170818, and GW170823.1 This is done
for tests already presented in [15] (residuals test, IMR
consistency, parametrized tests, and modified dispersion
relations), as well as for new analyses for which pre-O3a
results are presented here for the first time (spin-induced
moments, ringdown, and polarizations).
In some cases we perform tests on events that yield

uninformative results, so that the posterior distribution
extends across the full extent of the prior. This means that
upper limits in such cases are determined by the prior and
thus are arbitrary. However, this is not a problem when
considering the set of measurements as a whole using the
techniques described in Sec. III B.

III. PARAMETER INFERENCE

A. Individual events

The foundation for almost all of the tests presented in this
paper are the waveform models that describe the GW signal
emitted from a coalescing compact binary. The only
exception is the polarization analysis (Sec. VIII), which
relies on null-stream projections of the data [87,88]. In GR,
the GW signal from a BBH on a quasicircular orbit is fully
characterized by 15 parameters [89]. These include the
intrinsic parameters (the masses m1;2 and spin angular
momenta S⃗1;2 of the binary components) and extrinsic ones
(the luminosity distance, the location of the binary in the
sky, the orientation of its orbit with respect to observer’s
line of sight, its polarization angle, and the reference time
and orbital phase). The dominant effects of the BHs’ spin
angular momenta on the waveform comes from the spin
components along the orbital axis. However, the other

1Unlike in this paper, combined results in [15] did not include
GW170818 because it was only detected by a single pipeline.
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components of the spins lead to precession of the spin
vectors and the binary’s orbital plane, introducing modu-
lations into the GW amplitude and phase [90,91]. We find
that aligned-spin waveform models are sufficient for many
events in this paper, but we analyze all events with at least
one precessing waveform model, to take these effects into
account.
The working null hypothesis throughout the paper is that

all events are quasicircular BBHs in GR, with no meas-
urable systematics. In principle, a BBH waveform could be
affected by the presence of eccentricity, which is not
included in any of the waveform models we use. The
presence of significant eccentricity could result in system-
atic errors mimicking a deviation from GR [92–94]. If
evidence for such a deviation was found, extra work would
be required to discard eccentricity, matter effects (for less
massive systems), or other systematics.
For a majority of the tests we employ two waveform

families to model signals from BBHs in GR. One is the
nonprecessing effective-one-body (EOB) waveform family
SEOBNRV4 [77], an analytical model that takes inputs from
post-Newtonian theory, BH perturbation theory, the gravi-
tational self-force formalism, and NR simulations. For
computational efficiency in the analyses, we use a fre-
quency-domain reduced-order model for SEOBNRV4 known
as SEOBNRV4_ROM [77]. There exists a precessing EOB
waveform model SEOBNRV4P [95–97], which has been
employed in [16], but we do not use it here due to its
high computational cost. The other waveform family is
the precessing phenomenological waveform family
IMRPHENOMPV2 [98–100], a frequency-domain model that
describes the spin precession effects in terms of two
effective parameters by twisting up the underlying
aligned-spin model [101–103]. The aligned-spin model
is itself calibrated to hybrid waveforms, which are con-
structed by stitching together waveforms from the inspiral
part (modeled using the SEOBNRv2 [104] model without
calibration from NR) and the merger–ringdown part (mod-
eled using NR simulations) of the coalescence. The two
waveform models, IMRPHENOMPV2 and SEOBNRV4_ROM,
are employed to help gauge systematics, as discussed in
detail in Sec. VA. Although a detailed study of waveform
systematics is beyond the scope of this paper, relevant
studies can be found in [77,97,99,105–110].
During O3a, we observed a number of events for which

higher-order (nonquadrupole) multipole moments of the
radiation were shown to affect parameter estimation; this
includes GW190412 [111], GW190521 [82,83], and
GW190814 [66]. Where possible and appropriate, we
employ one of three waveform models incorporating
higher moments (HMs): IMRPHENOMPV3HM [112,113],
SEOBNRV4HM_ROM [105,107], or NRSUR7DQ4 [114].
IMRPHENOMPV3HM is a successor of IMRPHENOMPV2

that includes two-spin precession [115] and the
ðl;jmjÞ¼ð2;2Þ;ð2;1Þ;ð3;3Þ;ð3;2Þ;ð4;4Þ;ð4;3Þ multipoles;

SEOBNRV4HM_ROM is built upon SEOBNRV4HM which
incorporates ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ;
finally, NRSUR7DQ4 is a surrogate model that is built by
directly interpolating NR simulations, accounting for all
spin degrees of freedom and all multipoles with l ≤ 4, in
the coprecessing frame. When we use IMRPHENOMPV2,
IMRPHENOMPV3HM, and NRSUR7DQ4, we impose a prior
m2=m1 ≥ 1=18; 1=18; 1=6, respectively, on the mass ratio,
as these waveform families are not known to be valid for
lower m2=m1. Whenever we make use of a waveform other
than IMRPHENOMPV2 or SEOBNRV4_ROM, we state so
explicitly in the text.
A majority of the tests presented in this paper are

performed using the LALINFERENCE code [116] in the
LIGO Scientific Collaboration Algorithm Library Suite
(LALSUITE) [117]. This code is designed to carry out
Bayesian inference using two possible sampling algorithms:
Markov-chain Monte Carlo (MCMC), and nested sampling.
More detail on how the binary parameters are estimated can
be found in Sec. V of [16]. In LALINFERENCE analyses, the
PSDusedwas either estimated at the time of each event using
the BAYESWAVE code [65,118] or estimated near the time of
an event using Welch’s method [119]. Unless otherwise
specified, the prior distributions of various GR parameters
(intrinsic and extrinsic) for each event are the same as in [16].
The priors on non-GR parameters specific to each test are
discussed in their respective sections below. Other quantities
such as the frequency range (over which the matched-filter
output is computed) for each event is kept the same as in [16],
unless otherwise specified.
Exceptions to the use of LALINFERENCE include the

residuals test of Sec. IVA, the IMR consistency test of
Sec. IV B, one of the ringdown studies in Sec. VII A, and
the polarization analysis of Sec. VIII. The residuals test
uses BAYESWAVE directly to carry out inference on the
residual data. Additional to LALINFERENCE, the IMR
consistency test also employs a parallelized nested sam-
pling pipeline PBILBY [89,120,121]. The damped-sinusoid
ringdown analysis is carried out with the PYRING pipeline
[122,123]. The polarization analysis is carried out with the
BANTAM pipeline [88].
Finally, we assumed the same cosmology for all the events

in this paper to infer their unredshiftedmasses and the proper
distances (as required in Sec. VI). Specifically, we takeH0 ¼
67.90 km s−1Mpc−1 for the Hubble constant, and Ωm ¼
0.3065 and ΩΛ ¼ 0.6935 for the matter and dark energy
density parameters (“TTþ lowPþ lensingþ ext” values
from [124]).

B. Sets of measurements

There are multiple statistical strategies for drawing
inferences from a set of events, each carrying its own
set of assumptions about the nature of potential deviations
from GR and how they may manifest in our signals. For
simplicity, [15] reported constraints assuming that
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deviations from GR would manifest equally across events,
independent of source properties. This is only strictly
justifiable when the deviation parameters are known by
construction to be the same for all detected events (or some
known function of the source properties). This is the case
for probes of the propagation of GWs (e.g., dispersion),
where the propagation effects can reasonably be assumed to
affect all sources equally (barring a known dependence on
the luminosity distance, which is explicitly factored out of
the analysis). However, it is generally not the case for
parametrized tests of GW generation, wherein waveforms
are allowed to deviate in arbitrary (albeit controlled) ways
from the GR prediction.
To relax the assumption of shared deviations across

events, in this paper we apply the hierarchical inference
technique proposed and implemented for GWTC-1 events
in [50,51]. We apply this procedure to the IMR consistency
test (Sec. IV B), the waveform generation tests (Sec. V),
and the ringdown analyses (Sec. VII A). The strategy
consists of modeling non-GR parameters for each event
in our pool as drawn from a common underlying distribu-
tion, whose properties we infer coherently from the data for
all events as whole [84,125]. The nature of such unknown
distribution would be determined by the true theory of
gravity and the population of sources (e.g., the magnitude
of the departure from GR could be a function of the total
mass of the binary), convolved with any biases affecting
our selection of events. By comparing the inferred distri-
bution to the GR prediction (no deviation for any of the
events), we obtain a null test of GR from our whole set of
observations.
Unlike other contexts in which hierarchical techniques

are used (notably, the study of astrophysical populations
[86,126]), the goal here is always to characterize the
distribution of measured quantities for the events in our
set, not to make inferences about underlying astrophysical
distributions that are not directly accessible (as discussed in
Sec. II). This simplifies our hierarchical model, which does
not attempt to deconvolve selection biases. However, it
limits the kinds of conclusions we may draw from our
observations, since they will necessarily pertain strictly to
the signals that we have detected and analyzed.
Although the true nature of the hyperdistribution could

be arbitrarily complex, we may always capture its essential
features by means of a moment expansion. To achieve this,
we model the true values of each beyond-GR parameter in
our pool of events as drawn from a Gaussian of unknown
mean μ and standard deviation σ [51]. This is a suitable
choice because the Gaussian is the least informative
distribution (i.e., it has maximum entropy conditional on
the first two moments) [127]. GR is recovered for σ ¼ 0
and μ ¼ xGR, where xGR is the GR prediction for the
parameter at hand (e.g., xGR ¼ 0 for parameters defined as
a fractional deviation away from GR). As the number of
detections increases in the future, we may enhance

flexibility by including additional moments in our model
(akin to adding further terms in a series expansion). In spite
of its simplicity, the Gaussian parametrization has been
shown to work effectively even when the true distribution
presents highly nontrivial features, like correlations across
the beyond-GR parameters [51]. A set of measurements not
conforming to GR would be identified through posteriors
on μ and σ that are inconsistent with the GR values at the
90% credible level.
We obtain posteriors on the hyperparameters μ and σ

through a joint analysis of the set of detections, using the
STAN-based [128] infrastructure developed in [51]. We
summarize the results from that hierarchical analysis
through the population-marginalized distribution for the
beyond-GR parameters, also known as the observed pop-
ulation predictive distribution [86]. For a given beyond-GR
parameter x, this distribution pðxjdÞ is the expectation for x
after marginalizing over the hyperparameters μ and σ,

pðxjdÞ ¼
Z

pðxjμ; σÞpðμ; σjdÞdμdσ; ð1Þ

where d represents the data for all detected events, and
pðxjμ; σÞ ∼N ðμ; σÞ by construction [51]. Since we are
characterizing a group of observations, not an astrophysical
distribution, there is no factor in Eq. (1) accounting for
selection biases. A posterior expectation pðxjdÞ that sup-
ports x ¼ xGR is a necessary, but insufficient, condition for
establishing agreement with GR—since we must also have
σ consistent with zero. If GR is correct and in the absence
of systematics, pðxjdÞ should approach a Dirac δ function
at xGR with increasing number of observations. Assuming
xGR is supported by pðxjdÞ, the width of this distribution is
a measure of our uncertainty about deviations from GR in
this parameter after combining all events.
Requiring that all events share the same value of the

beyond-GR parameter is equivalent to demanding σ ¼ 0.
Fixing σ ¼ 0, the hierarchical method reduces to the
approach of multiplying likelihoods from individual events
[50], as done in [15]. Equation (1) may then be interpreted
as a posterior on the value of x, and is identical to the
combined posteriors as computed in [15]. In the sections
below, we present both types of combined results (inferred
σ, and fixed σ ¼ 0), facilitating comparisons to previously
reported constraints. For a concrete demonstration of the
usefulness of the hierarchical approach see Sec. IV B (and
the related Appendix B), where we show how this tech-
nique succesfully identifies a subset of signals not con-
forming to the null hypothesis (due to known systematics,
in this case), while the multiplied-likelihood approach
does not.
Finally, under certain circumstances, statements from the

set of measurements may be obtained by studying the
empirical distribution of some detection statistic for a
frequentist null test of the hypothesis that GR is a good
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description of the data. As for the residuals test (Sec. IVA),
this may be done if the analysis yields a distribution of p-
values, obtained by comparing some detection statistic
against an empirical background distribution for each
event. If the null hypothesis holds, we expect the resulting
p-values to be uniformly distributed in the interval [0, 1].
Agreement with this expectation can be quantified through
a meta p-value obtained through Fisher’s method [129]. It
can also be represented visually through a probability-
probability (PP) plot displaying the fraction of events
yielding p-values smaller than or equal to any given
number: under the null hypothesis, the PP plot should
be diagonal (see also Appendix A).

IV. CONSISTENCY TESTS

A. Residuals test

A generic way of quantifying the success of our GR
waveforms in describing the data is to study the residual
strain after subtracting the best-fit template for each event
[130]. Residual analyses are sensitive to any sort of
modeling systematics, whether they arise from a deviation
from GR or more prosaic reasons. Results from similar
studies were previously presented in [5,15,66,83].
We follow the procedure described in [15]. For each event

in our set, we subtract the maximum likelihood (best-fit)
GR-based waveform from the data to obtain residuals for a
1 s window centered on the trigger time reported in [16].
Except for the three events detailed in Table II, we obtain the
GR prediction using the IMRPHENOMPV2 waveform family.2

We then use BAYESWAVE to place a 90%-credible upper-limit
on the leftover coherent signal-to-noise ratio (SNR). To
evaluate whether this value, SNR90, is consistent with
instrumental noise fluctuations, we measure the coherent
power in 193 sets of noise-only detector data around each
event. This yields a p-value for noise-producing coherent
power with SNRn

90 greater than or equal to the residual value
SNR90, i.e., p ¼ PðSNRn

90 ≥ SNR90jnoiseÞ.
Our results for O3a events are summarized in

Table III (see Table II in [15] for O1 and O2 events).
For each event, we present the values of the residual
SNR90, as well as the corresponding fitting factor
FF90 ¼ SNRGR=ðSNR2

res þ SNR2
GRÞ1=2, where SNRres is

the coherent residual SNR and SNRGR is the SNR of the
best-fit template. This quantifies agreement between the best-
fit template and the data as being better than FF90 × 100%
[5,15]. Table III also shows the SNR90 p-values.
Figure 1 displays the SNR90 values reported in Table III

as a function of the SNR of the best-fit template, with
SNR90 p-values encoded in the marker colors; events
preceding O3 are identified by an empty marker (see
Table II in [15]). If the GR model is a good fit for the

data, the magnitude of SNR90 should depend only on the
state of the instruments at the time of each event, not on
the amplitude of the subtracted template. This is consistent
with Fig. 1, which reveals no sign of such a trend.
The variation in SNR90 is linked to the distribution of

the corresponding p-values, as suggested by Fig. 1. The
O3a event yielding the highest (lowest) p-value is
GW190727_060333 (GW190421_213856) with SNR90 ¼
4.88 and p ¼ 0.97 (SNR90 ¼ 7.52 and p ¼ 0.07) and is
highlighted in Fig. 1 by a red (blue) diamond. Although
GW190408_181802 is the O3a event with the highest
residual power (SNR90 ¼ 8.48), the p-value of 0.15
indicates that this is not inconsistent with the background
distribution. Two pre-O3a events, GW170814 and
GW170818, yielded higher SNR90 than GW190408_
181802 [15], as seen in Fig. 1.

TABLE II. Waveforms subtracted to study residuals in
Sec. IVA.

Event Ref. Approximant Ref.

GW190412 [111] IMRPHENOMPV3HM [112,113]
GW190521 [82,83] NRSUR7DQ4 [106]
GW190814 [66] IMRPHENOMPV3HM [112,113]

All others [16] IMRPHENOMPV2 [98–100]

TABLE III. Results of the residuals analysis (Sec. IVA). For
each event, we present the SNR of the subtracted GR waveform
(SNRGR), the 90%-credible upper limit on the residual network
SNR (SNR90), a corresponding lower limit on the fitting factor
(FF90), and the p-value.

Events SNRGR Residual SNR90 FF90 p-value

GW190408_181802 16.06 8.48 0.88 0.15
GW190412 18.23 6.67 0.94 0.30
GW190421_213856 10.47 7.52 0.81 0.07
GW190503_185404 13.21 5.78 0.92 0.83
GW190512_180714 12.81 5.92 0.91 0.44
GW190513_205428 12.85 6.44 0.89 0.70
GW190517_055101 11.52 6.40 0.87 0.69
GW190519_153544 15.34 6.38 0.92 0.65
GW190521 14.23 6.34 0.91 0.28
GW190521_074359 25.71 6.15 0.97 0.35
GW190602_175927 13.22 5.46 0.92 0.86
GW190630_185205 16.13 5.13 0.95 0.52
GW190706_222641 13.39 7.80 0.86 0.18
GW190707_093326 13.55 5.89 0.92 0.25
GW190708_232457 13.97 6.00 0.92 0.19
GW190720_000836 10.56 7.30 0.82 0.18
GW190727_060333 11.62 4.88 0.92 0.97
GW190728_064510 13.47 5.98 0.91 0.53
GW190814 25.06 6.43 0.97 0.84
GW190828_063405 16.13 8.47 0.89 0.12
GW190828_065509 9.67 6.30 0.84 0.41
GW190910_112807 14.32 5.60 0.93 0.65
GW190915_235702 13.82 8.30 0.86 0.09
GW190924_021846 12.21 5.91 0.90 0.57

2For GW190814, we also used SEOBNRV4PHM, which yielded
results consistent with IMRPHENOMPV3HM [66].
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The set of p-values shown in Table III is consistent with
all coherent residual power being due to instrumental noise.
Assuming that this is indeed the case, we expect the p-
values to be uniformly distributed over [0, 1]. Agreement
with a uniform distribution is represented via the PP plot in
Fig. 2, which shows that the measurement agrees with the
null hypothesis (diagonal line) within 90% credibility
(computed as detailed in Appendix A). We also compute
a meta p-value for a uniform distribution of 0.39 (see
Sec. III B). This demonstrates no statistically significant
deviations between the observed residual power and the
detector noise around the set of events.

B. Inspiral-merger-ringdown consistency test

GR predicts that the final state of the coalescence of two
BHs will be a single perturbed Kerr BH [131–134].
Assuming that GR is valid, the mass and spin of the
remnant BH inferred from the low-frequency portion of the
signal should be consistent with those measured from
the high-frequency part [135–137], where the low- and
high-frequency regimes roughly correspond to the inspiral
and postinspiral, respectively, when considering the dom-
inant mode [137]. This provides a consistency test for GR,
related to the remnant-focused studies we present in
Sec. VII and the postinspiral coefficients in Sec. VA.
We take the cutoff frequency fIMR

c between the inspiral
and postinspiral regimes to be the m ¼ 2 mode GW
frequency of the innermost stable circular orbit of a Kerr
BH, with mass Mf and dimensionless spin magnitude χf
estimated from the full BBH signal assuming GR. The final
mass and spin are calculated by averaging NR-calibrated
final-state fits [138–140], where the aligned-spin final spin
fits are augmented by a contribution from the in-plane spins

[141,142]. We compute fIMR
c from augmented NR-cali-

brated fits applied to the posterior median values for the
masses and spins of the binary components. We then
independently estimate the binary’s parameters from the
low- (high-) frequency portion of the signal, restricting the
Fourier-domain likelihood calculation to frequencies below
(above) the cutoff frequency fIMR

c . The two independent
estimates of the source parameters are used to infer the
posterior distributions of Mf and χf using the augmented
NR-calibrated final-state fits. For the signal to be consistent
with GR, the two estimates must be consistent with
each other.
For this test, we require the inspiral and postinspiral

portions of the signal to be informative. As a proxy for the
amount of information that can be extracted from each part
of the signal, we calculate the SNR of the inspiral and
postinspiral part of the signal using the preferred waveform
model for each event (Table II), evaluated at the maximum
a posteriori parameters for the complete IMR posterior
distributions [16]. As in [15], we only apply the IMR
consistency test to events that have SNR > 6 in both
regions. When studying the set of measurements as a
whole (cf. Sec III B), we impose an additional criterion on
the median redshifted total mass such that ð1þ zÞM <
100 M⊙. This additional cut further ensures that the binary
contains sufficient information in the inspiral regime
because the test would be strongly biased for heavy
BBHs. A criterion based on mass was not applied in
[15] because most GWTC-1 events automatically satisfied

FIG. 1. Upper limit on the residual networkSNR (SNR90) for each
event, as a function of SNR recovered by the maximum-likelihood
template (SNRGR), with the corresponding p-value shown in color
(see Table III). Solid (empty) markers indicate events detected in
O3a (O1 or O2). Diamonds highlight the O3a events yielding the
highest (GW190727_060333) and lowest (GW190421_213856)
p-values, p ¼ 0.97 and p ¼ 0.07 respectively.

FIG. 2. Fraction of events yielding a residuals-test p-value less
than or equal to the abscissa. The light-blue band marks the 90%-
credible region for our measurement, factoring in the uncertainty
due to a finite number of both events and background instantia-
tions (Appendix A). The meta p-value for a uniform distribution
is 0.39.
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it. The cutoff frequency and SNRs for all events used in this
analysis are detailed in Table IV.3

In order to constrain possible departures from GR, we
introduce two dimensionless parameters that quantify the
fractional difference between the two estimates,

ΔMf

M̄f
¼ 2

Minsp
f −Mpostinsp

f

Minsp
f þMpostinsp

f

; ð2Þ

Δχf
χ̄f

¼ 2
χinspf − χpostinspf

χinspf þ χpostinspf

; ð3Þ

where the superscripts denote the estimate of the mass or
the spin from the inspiral and postinspiral portions of the

signal [136]. As in [15], we perform parameter estimation
using uniform priors for the component masses and spin
magnitudes and an isotropic prior on the spin orientations;
this choice induces a highly nonuniform effective prior in
ΔMf=M̄f and Δχf=χ̄f . In order to alleviate this, and in
contrast with [15], we reweight the posteriors to work with
a uniform prior for the deviation parameters. This elimi-
nates confounding factors and has the advantage of more
clearly conveying the information gained from the data. For
example, binary configurations with comparable mass
ratios and χeff ∼ 0 will lead to a remnant spin ∼ 0.7
[138–140], which means that the χf prior is concentrated
around this value and that, consequently, the Δχf is
concentrated around 0; this leads to artificially narrow
Δχf posteriors that should not be interpreted as a strong
constraint from the data on deviations from GR.
We summarize our results in Fig. 3, where we represent

the two-dimensional posteriors for all GWTC-2 events
analyzed by means of their 90% credible level. The
contours are colored as a function of the median redshifted
total binary mass ð1þ zÞM, as inferred from the full
waveform assuming GR, and we only include events with
ð1þ zÞM < 100 M⊙. Events preceding O3a are identified
with a dot–dashed trace and were already analyzed in [15].
However, distributions in Fig. 3 here are generally broader
than Fig. 2 of that paper because our results represent
posteriors using a uniform prior. Although GW190412
does not meet the SNR threshold for this test, we highlight
the posteriors for this event in Fig. 3 for comparison to
previously published results [111].
We find that the GW190412 and GW190814 postinspiral

distance posteriors are cut off by the upper prior bounds on
the distance, 3 Gpc and 2 Gpc, respectively. Due to the low
SNR in the postinspiral, the distance posterior is cut off by
the prior even when increasing the upper bound on the
volumetric distance prior pðDLÞ ∝ D2

L. The IMR consis-
tency results for these events are therefore unavoidably
dependent on the choice of priors. To mitigate such issues,
we have chosen upper bounds that lead to a small
probability density near the cutoff. For future applications
of the test we will consider ways to impose a priori
selection cuts to exclude such cases from consideration.
The fraction of the posterior enclosed by the isoprob-

ability contours that pass through the GR value, i.e., the
two-dimensional GR quantile QGR, for each event is given
in Table IV, where smaller values indicate better consis-
tency with GR. For low (high) SNRs, the posteriors will be
broader (narrower) andQGR will be higher (lower) if GR is
the correct hypothesis. The binary with the smallestQGR is
GW190521_074359, which has a small but nonzero
quantile that is rounded to zero in Table IV. For binaries
with masses ð1þ zÞM > 100 M⊙ we typically observe
QGR > 50%, which can be explained by the known
systematics mentioned above. See Appendix B for a more
detailed exposition of mass-related systematics. Of the

TABLE IV. Results from the IMR consistency test (Sec. IV B).
fIMR
c denotes the cutoff frequency between the inspiral and

postinspiral regimes; ρIMR, ρinsp, and ρpostinsp are the SNR in
the full signal, the inspiral part, and the postinspiral part
respectively; and the GR quantile QGR denotes the fraction of
the likelihood enclosed by the isoprobability contour that passes
through the GR value, with smaller values indicating better
consistency with GR. For lower SNRs, the likelihood is typically
broader and QGR is generally higher. An asterisk denotes events
with median ð1þ zÞM > 100 M⊙, for which we expect strong
systematics. We highlight GW190412 with a dagger as we show
results for comparison to [111], but the event is not used in the
joint likelihood as the postinspiral SNR is below the threshold for
inclusion. The difference in the results for GWTC-1 events
compared to [15] is due to the change in priors.

Event fIMR
c [Hz] ρIMR ρinsp ρpostinsp QGR [%]

GW150914 132 25.3 19.4 16.1 55.7
GW170104 143 13.7 10.9 8.5 29.0
GW170809 136 12.7 10.6 7.1 26.6
GW170814 161 16.8 15.3 7.2 22.9
GW170818 128 12.0 9.3 7.2 26.8
GW170823 102 11.9 7.9 8.5 93.3
GW190408_181802 164 15.0 13.6 6.4 11.4
GW190412 213 19.1 18.2 5.9 69.0†

GW190421_213856 82 10.4 8.1 6.6 78.7�
GW190503_185404 99 13.7 115 7.5 53.2
GW190513_205428 125 13.3 11.2 7.2 35.0
GW190519_153544 78 15.0 10.0 11.2 85.6�
GW190521_074359 105 25.4 23.4 9.9 0.0
GW190630_185205 135 16.3 14.0 8.2 58.8
GW190706_222641 67 12.7 7.8 10.1 96.5�
GW190727_060333 96 12.3 10.0 7.2 98.7�
GW190814 207 24.8 23.9 6.9 99.9
GW190828_063405 132 16.2 13.8 8.5 21.5
GW190910_112807 92 14.4 9.6 10.7 29.3�

3The frequency fIMR
c was determined using preliminary

parameter inference results and the values in Table IV may
slightly differ to those obtained using the posterior samples in
GWTC-2. However, the test is robust against small changes to the
cutoff frequency [137].
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binaries below the mass threshold, GW190814 has the
highest quantile, QGR ¼ 99.9%, but has a relatively low
SNR in the postinspiral regime and a relatively low
redshifted mass; the other notable outlier is GW170823,
QGR ¼ 93.3%, which has the lowest SNR and a relatively
high redshifted mass, ð1þ zÞM ≈ 93 M⊙. For GW190814,
the likelihood for the final spin fractional deviation shows a
notable departure from the GR value.4 However,
GW190814 was a higher mass ratio event with very small
spins, resulting in an inferred final spin of χf ∼ 0.28 [66].
As a consequence of the low SNR, the postinspiral regime
is uninformative, and the posterior is dominated by the
prior which peaks at χf ∼ 0.7. In contrast, the masses and
spins are very accurately measured in the inspiral regime
and a final spin of χf ∼ 0.28 is recovered. The apparent
departure from GR can be explained by the mismatch in the
information recovered between the two regimes.

We may interpret results from our set of observations
collectively through hierarchical models for the mass and
spin deviations, as described in Sec. III B. Here we treat
ΔMf=M̄f and Δχf=χ̄f as independent parameters; future
implementations may consider them jointly. With 90%
credibility, we constrain the population hyperparameters
ðμ; σÞ to be ð0.02þ0.11−0.09 ; <0.17Þ and ð−0.06þ0.15−0.16 ; <0.34Þ for
ΔMf=M̄f and Δχf=χ̄f respectively, consistent with GR
(μ ¼ σ ¼ 0) for both parameters (posteriors provided in
Appendix B). In Fig. 4, we represent the result through the
population-marginalized expectation for ΔMf=M̄f (blue)
and Δχf=χ̄f (red), as defined in Eq. (1). This measurement
constrains ΔMf=M̄f ¼ 0.02þ0.20−0.17 and Δχf=χ̄f ¼ −0.05þ0.36−0.41 ,
quite consistent with the expectation from GR.
If we assume that the fractional deviations take the same

value for all events, then we obtain the less-conservative
combined posterior shown in gray in Fig. 3. We find
ΔMf=M̄f ¼ −0.04þ0.08−0.06 and Δχf=χ̄f ¼ −0.09þ0.11−0.08 , also
consistent with the GR values.
Had we included the high-mass events discussed above

in the analysis, for which IMR tests are known to exhibit
systematic offsets, the hierarchical method would have
resulted in modest tension with GR, as discussed more fully
in Appendix B. The hierarchical method with σ ¼ 0
(assuming all events have the same deviation parameters)
does not find any inconsistency when high-mass events are
included, so we conclude that in this case the full
hierarchical method is more sensitive to these (systemat-
ics-induced) deviations from GR.
This analysis used IMRPHENOMPV2 or IMRPHENOMPV3HM

waveforms for the same events for which they were used for
the residuals analysis, given in Table II. In order to gauge

FIG. 3. Results of the IMR consistency test for the selected
BBH events with median ð1þ zÞM < 100 M⊙ (see Table IV).
The main panel shows the 90% credible regions of the posteriors
for ðΔMf=M̄f ;Δχf=χ̄fÞ assuming a uniform prior, with the cross
marking the expected value for GR. The side panels show the
marginalized posterior for ΔMf=M̄f and Δχf=χ̄f . The gray
distribution correspond to the product of all the individual
posteriors. O3a (pre-O3a) events are plotted with solid (dot–
dashed) traces. Color encodes the redshifted total mass in solar
masses, with a turnover between blue and red around the median
of the ð1þ zÞM=M⊙ distribution for the plotted events. The
results for GW190412 and GW190814 are identified by dotted
and dashed contours, respectively. The two events with contours
that do not enclose the origin are GW170823 (dot–dashed) and
GW190814 (dashed). GW190408_181802 has a multimodal
posterior that results in the small contour (blue) away from zero.

FIG. 4. Distributions for the remnant mass (blue) and spin (red)
fractional deviations, as obtained by hierarchically combining the
results in Fig. 3 (solid trace). For comparison, we also show the
result obtained using only GWTC-1 events (dot dashed trace).
The probability densities summarize our expectation for the
fraction of observed events with a given value of ΔMf=M̄f and
Δχf=χ̄f , as defined in Eq. (1). GR predicts no deviation on either
parameter (vertical dashed line). Triangles mark the GWTC-2
medians, and vertical bars the symmetric 90%-credible intervals.

4The GW190814 posterior was truncated at Δχf=χ̄f ¼ −1 in
this analysis, but we have confirmed this has no effect on QGR.
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systematic errors arising from imperfect waveform
modeling, we also produce results using the nonprecessing
SEOBNRV4_ROM model, but these results exclude
GW190412 and GW190814 due to the relative importance
of HMs. Despite the differences between the two waveform
approximants, the posteriors are in broad agreement, andwe
find no qualitative difference in the results (seeAppendixB).
This is in agreement with the expectation that systematic
errors will be subdominant to statistical errors for the typical
SNRs reported in GWTC-2 [137].

V. TESTS OF GRAVITATIONAL
WAVE GENERATION

A. Generic modifications

Parametrized tests of GW generation allow us to quantify
generic deviations from GR predictions. Such corrections
could arise as modifications to the binding energy and
angular momentum of the source, or as modifications to the
energy and angular momentum flux, both leading to
modified equations of motion. In this section, we focus
on constraining deviations from GR by introducing para-
metric deformations to an underlying GR waveform model.
The early inspiral of compact binaries is well described

by the PN approximation [74,75,91,143–151], a perturba-
tive approach to solving the Einstein field equations in
which we perform an expansion in terms of a small velocity
parameter v=c. Once the intrinsic parameters of the binary
are fixed, the coefficients at different orders of v=c in the
PN series are uniquely determined. A consistency test of
GR using the PN phase coefficients was first proposed in
[18–21,23], and a general model independent parametriza-
tion was introduced in [22]. A Bayesian framework based
on the general parametrization was introduced in [24–26],
with subsequent extensions to the late-inspiral and post-
inspiral coefficients being introduced in [27].
In order to constrain GR violations, we adopt two

approaches. In the first approach, we directly constrain
the analytical coefficients that describe the phase evolution
of the IMRPHENOMPV2 waveform model [98–100]. The
frequency-domain GW phase φðfÞ of IMRPHENOMPV2

can be broken down into three key regions: inspiral,
intermediate, and merger–ringdown. The inspiral in
IMRPHENOMPV2 is described by a PN expansion augmented
with higher order pseudo-PN coefficients calibrated against
EOB–NR hybrid waveforms. The PN phase evolution is
written as a closed-form frequency domain expression by
employing the stationary phase approximation. The inter-
mediate and merger–ringdown regimes are described by
analytical phenomenological expressions. The cutoff fre-
quency fPARc between the inspiral and intermediate region
in IMRPHENOMPV2 is defined to be GMð1þ zÞfPARc =c3 ¼
0.018, where z is the redshift and fPARc is independent of the
intrinsic parameters of the binary. We use pi to collectively
denote all of the inspiral fφig and postinspiral fαi; βig

parameters. The deviations from GR are expressed in
terms of relative shifts δp̂i in the waveform coefficients
pi → ð1þ δp̂iÞpi, which are introduced as additional free
parameters to be constrained by the data.
The second approach [14] can apply modifications to the

inspiral of any underlying waveform model, analytical or
nonanalytical, by adding corrections that correspond to
deformations of a given inspiral coefficient δφ̂i at low
frequencies and tapering the corrections to 0 at the cutoff
frequency fPARc . The second approach is applied to the
nonanalytical model SEOBNRV4_ROM [152], a frequency-
domain reduced-order model for the SEOBNRV4 waveform
approximant [77]. There is a subtle difference in the way in
which deviations from GR are introduced and parametrized
in the two approaches. In the first approach, we directly
constrain the fractional deviations in the non-spinning
portion of the phase whereas in the second approach the
fractional deviations are also applied to the spin sector. As
in [15], the posteriors in the second approach are mapped
post-hoc to the parametrization used in the first approach,
consistent with previously presented results. See Sec. VII A
for an SEOB-based analysis of the postmerger signal,
interpreted in the context of studies of the remnant
properties.
We constrain deviations from the PN phase coefficients

predicted by GR using deviation parameters δφ̂i. Here i
denotes the power of v=c beyond the leading order
Newtonian contribution to the phase φðfÞ. The frequency
dependence of the phase coefficients is given by fði−5Þ=3, so
that δφ̂i quantifies deviations to the i=2 PN order. We
constrain coefficients up to 3.5PN (i ¼ 7), including terms
that have a logarithmic dependence occurring at 2.5 and
3PN order. The nonlogarithmic term at 2.5PN (i ¼ 5)
cannot be constrained as it is degenerate with the coales-
cence phase. The coefficients describing deviations from
GR were introduced in Eq. (19) of [24]. In addition, we
include a coefficient at i ¼ −2 corresponding to an effec-
tive −1PN term that, in some circumstances, can be
interpreted as arising from the emission of dipolar radia-
tion. The full set of inspiral parameters that we constrain is
therefore

fδφ̂−2; δφ̂0; δφ̂1; δφ̂2; δφ̂3; δφ̂4; δφ̂5l; δφ̂6; δφ̂6l; δφ̂7g: ð4Þ

The inspiral deviations are expressed as shifts to the part of
the PN coefficients with no spin dependence, φNS

i , i.e.,
φi → ð1þ δφ̂iÞφNS

i þ φS
i , where φS

i denotes the spin-
dependent part of the aligned-spin PN coefficients. This
is the same parametrization that has been previously used
[5,6,13–15] and circumvents the potential singular behav-
ior observed when the spin-dependent terms cancel with the
non-spinning term. In GR, the coefficients occurring at
−1PN and 0.5PN vanish, so we parametrize δφ̂−2 and δφ̂1

as absolute deviations, with a prefactor equal to the 0PN
coefficient; all other coefficients represent fractional
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deviations around the GR value. We derive constraints on
the inspiral coefficients using the IMRPHENOMPV2 and
SEOBNRV4_ROM analyses.
Besides the inspiral, the intermediate and merger–ring-

down model in IMRPHENOMPV2 is analytic and allows for
parametrized deviations of the phenomenological coeffi-
cients that describe these regimes, denoted by fδβ̂2; δβ̂3g
and fδα̂2; δα̂3; δα̂4g respectively. The parameters δβ̂i
explicitly capture deformations in the NR calibrated coef-
ficients βi in the intermediate regime, whereas the param-
eters δα̂i describe deformations of the merger–ringdown
coefficients αi obtained from a mix of BH perturbation
theory and calibration to NR [98,99]. We omit δα̂5 as this
occurs in the same term as δα̂4, see Eq. (13) of [99],
meaning that there will be a degree of degeneracy between
the two coefficients.
As detailed in Sec. I, we consider all binaries that meet

the significance threshold of FAR < 10−3 yr−1 and impose
the additional requirement that the SNR > 6 in the inspiral
regime (δφ̂i) or postinspiral regime (δβ̂i and δα̂i) respec-
tively for an event to be included in the analyses, as data
below these SNR thresholds fails to provide meaningful
constraints. In contrast to the selection criteria used in [15],
GW170818 meets the FAR threshold applied in this
analysis and is included in the joint constraints. The
SNRs and cutoff frequencies for all events are detailed
in Table V.
For three of the events considered in this analysis, HMs

have a nontrivial impact on parameter estimation andmust be
taken into account. This is the case for GW190412 and
GW190814, which show evidence of detectable HM power
[66,111], and for GW190521, which does not [82,83]. We
perform the parametrized tests using IMRPHENOMPV3HMand,
for GW190814, SEOBNRV4HM_ROM. By construction, para-
metrized deformations in IMRPHENOMPV3HM are propagated
to theHMs through approximate rescalings of the (2, 2)mode
with no new coefficients being introduced. The framework
used for the SEOBNRV4HM_ROM analysis is extended to HMs
in an analogous way. We show the posterior distributions for
GW190412 and GW190814, the two events that show
measurable HM power, in Appendix C.
We use LALINFERENCE to calculate the posterior prob-

ability distributions of the parameters characterizing the
waveform [116]. The parametrization used here recovers
GR in the limit δp̂i → 0, enabling us to verify consistency
with GR if the posteriors of δp̂i have support at 0. As in
previous analyses, we only allow the coefficients δp̂i to
vary one at a time. Despite the lack of generality, this
approach is effective at detecting deviations from GR that
do not just modify a single coefficient [27,153,154]. In
particular, the coefficients will be sensitive to corrections
that occur at generic PN orders even when varying a
coefficient that corresponds to some fixed PN order
[27,154]. Allowing the test to vary multiple coefficients
simultaneously can often lead to posteriors that are less

informative, with the single-coefficient templates often
being preferred to the templates with multiple parameters
in the context of Bayesian model selection [153]. Varying
multiple coefficients simultaneously would therefore not
improve the efficiency of detecting violations of GR [153].
On the other hand, nontrivial multicoefficient deviations
may be detected even when only one δp̂i is allowed to vary
at a time [51]. We adopt uniform priors on δp̂i that are
symmetric about zero. Due to the way in which para-
metrized deformations are implemented, evaluating a
model in certain regions of the parameter space can lead
to pathologies and unphysical effects. This can result in
multimodal posterior distributions or other systematic
errors; see the discussion in Appendix C.

TABLE V. Parametrized test event selection for all binaries
meeting the FAR < 10−3 yr−1 threshold. Here fPARc denotes the
cutoff frequency used to demarcate the division between the
inspiral, and postinspiral regimes; ρIMR, ρinsp, and ρpostinsp are the
optimal SNRs of the full signal, the inspiral, and postinspiral
regions respectively. The last two columns denote if the event is
included in parametrized tests on the inspiral (PI) and postinspiral
(PPI) respectively. GW190814 is excluded due to the impact of
HMs, see Appendix C.

Event fPARc [Hz] ρIMR ρinsp ρpostinsp PI PPI

GW150914 50 24.7 9.6 22.8 ✓ ✓
GW151226 153 12.3 11.1 5.3 ✓ � � �
GW170104 60 13.4 7.9 11.3 ✓ ✓
GW170608 179 15.8 14.8 6.3 ✓ ✓
GW170809 54 12.0 5.8 10.9 � � � ✓
GW170814 58 16.3 9.1 13.6 ✓ ✓
GW170818 48 10.8 4.5 10.1 � � � ✓
GW170823 40 11.5 4.2 11.1 � � � ✓
GW190408_181802 68 15.0 8.3 12.5 ✓ ✓
GW190412 83 19.1 15.1 11.8 ✓ ✓
GW190421_213856 36 10.4 2.9 10.0 � � � ✓
GW190503_185404 39 13.7 4.3 13.0 � � � ✓
GW190512_180714 87 12.8 10.5 7.4 ✓ ✓
GW190513_205428 48 13.3 5.1 12.2 � � � ✓
GW190517_055101 41 11.1 3.4 10.5 � � � ✓
GW190519_153544 23 15.0 0.0 15.0 � � � ✓
GW190521 14 13.9 0.0 13.9 � � � ✓
GW190521_074359 40 25.4 9.7 23.5 ✓ ✓
GW190602_175927 22 13.1 0.0 13.1 � � � ✓
GW190630_185205 50 16.3 8.1 14.1 ✓ ✓
GW190706_222641 19 12.7 0.0 12.7 � � � ✓
GW190707_093326 161 13.4 12.2 5.5 ✓ � � �
GW190708_232457 103 13.7 11.1 8.0 ✓ ✓
GW190720_000836 126 10.5 9.2 5.2 ✓ � � �
GW190727_060333 35 12.3 2.0 12.0 � � � ✓
GW190728_064510 157 12.6 11.4 5.3 ✓ � � �
GW190814 137 24.8 22.3 10.9 ✓ ✓
GW190828_063405 45 16.2 6.0 15.1 ✓ ✓
GW190828_065509 80 9.9 6.3 7.6 ✓ ✓
GW190910_112807 35 14.4 3.3 14.0 � � � ✓
GW190915_235702 46 13.1 3.7 12.6 � � � ✓
GW190924_021846 239 12.2 11.8 3.4 ✓ � � �

R. ABBOTT et al. PHYS. REV. D 103, 122002 (2021)

122002-12



In Fig. 5 we show the 90% upper bounds on the absolute
magnitude of the GR violating coefficients, jδp̂ij. The
individual bounds are colored by the mean redshifted chirp
mass, ð1þ zÞM, as inferred assuming GR (Table I). The
results for GWTC-2 include all new BBHs reported in [16]
plus the BBHs reported in GWTC-1 [17], combined by
assuming a shared value of the coefficient across events
(i.e., by multiplying the individual likelihoods). Whilst the
combined results for GWTC-1 and GWTC-2 do not include
the two BNS events, GW170817 and GW190425, in Fig. 5
we show the results for GW170817 separately for com-
parison to previously published results [14].
We broadly see that lighter binaries contribute promi-

nently to our constraint on the inspiral coefficients and
heavier binaries drive the constraints on the postinspiral
coefficients. This is to be expected as more (less) of the
inspiral moves into the sensitivity of the detectors as we
decrease (increase) the mass and we suppress (enhance) the
SNR in the postinspiral. For all coefficients, bar the −1PN
and 0.5PN terms, the joint-likelihood bounds determined
using GWTC-1 and GWTC-2 BBHs improve on all
previous constraints [14,15]. The tightest bounds on the
−1PN and 0.5PN coefficients come from GW170817,
which improves on the GWTC-2 BBH constraints by a
factor of 120 and 2.2 respectively. We find that the
combined GWTC-2 results improve on the GWTC-1
constraints by a factor ∼1.9 for the inspiral coefficients
and ∼1.4 for the postinspiral coefficients respectively. This
improvement is broadly consistent with the factor expected
from the increased number of events,

ffiffiffiffiffiffiffiffiffiffi
17=5

p
≈ 1.8 for the

inspiral and
ffiffiffiffiffiffiffiffiffiffi
26=7

p
≈ 1.9 for the postinspiral respectively.

Neglecting the −1PN coefficient, we find that the 0PN term
is the best constrained parameter, jδφ̂0j≲ 4.4 × 10−2.
However, this bound is weaker than the 90% upper bound
inferred from the orbital-period derivative _Porb of the
double pulsar J0737–3039 by a factor ∼3 [2,155].

Although all results from individual events offer support
for the GR value, a small fraction of them contain δp̂i ¼ 0

only in the tails. This is the case for some of the coefficients
for GW190519_153544, GW190521_074359, GW190814,
GW190828_065509, and GW190924_021846. Yet, given
the large number of events and coefficients analyzed, this is
not surprising: for GR signals in Gaussian noise, we would
expect on average approximately 1 out of 10 independent
trials to return δp̂i ¼ 0 outside the 90%-credible level just
from statistical fluctuations.
To evaluate the set of measurements holistically, we

produce the population-marginalized distributions for each
parameter δp̂i following the method described in Sec. III B;
the result is the filled distributions in Fig. 6. These
distributions represent our best knowledge of the possible
values of the δp̂i’s from all LIGO–Virgo BBHs with
FAR < 10−3 yr−1 to date. For comparison, Fig. 6 also
shows the joint likelihoods obtained by restricting the
deviation to be the same for all events (unfilled black
distributions), which were used to derive the combined
GWTC-2 constraints in Fig. 5.
All population-marginalized distributions are consistent

with GR, with δp̂i ¼ 0 lying close to the median for most
parameters, and always within the 90% credible symmetric
interval. The medians, 90% credible intervals, and GR
quantiles QGR ¼ Pðδp̂i < 0Þ of these distributions are
presented in Table VI, together with equivalent quantities
for the joint-likelihood approach. A value of QGR signifi-
cantly different from 50% indicates that the null hypothesis
falls in the tails of the distribution. The quantiles may also
be directly translated into z-scores defined by zGR ¼
Φ−1ðQGRÞ, where Φ−1 is the inverse cumulative distribu-
tion function for a standard normal random variable.
The z-score encodes the distance of the posterior mean
away from zero in units of standard deviation (discussed
below).

FIG. 5. 90% upper bounds on the absolute magnitude of the GR violating parameters δp̂i. The left and middle panels show the −1PN
through 3.5PN inspiral coefficients, while the right panel shows the postinspiral coefficients fδβ̂i; δα̂ig. Constraints obtained from
individual events with IMRPHENOMPV2 are represented by horizontal stripes, colored by the median redshifted chirp mass ð1þ zÞM,
inferred assuming GR. Gray triangles (black wedges) mark the constraints obtained with IMRPHENOMPV2 (SEOBNRV4_ROM) when all
GWTC-2 events are combined assuming a shared deviation from GR. For reference, we show the equivalent results for GWTC-1
(IMRPHENOMPV2) and the individual constraints from GW170817 (IMRPHENOMPV2_NRTIDAL), as red and blue circles respectively.
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FIG. 6. Combined GWTC-2 BBH results for parametrized violations of GR obtained from the designated events in Table V, for each
deviation parameter δp̂i (abscissa). The probability densities shown in color represent the population-marginalized expectation, Eq. (1),
obtained from a hierarchical analysis allowing independent GR deviations for each event. In contrast, the unfilled black distributions
result from restricting all events to share a common value of each parameter. Phenom (SEOB) results were obtained with
IMRPHENOMPV2 (SEOBNRV4_ROM) and are shown in blue (red); the fβi; αig coefficients are not probed with SEOB, as they are
intrinsic to Phenom waveforms. For the hierarchical results, error bars denote symmetric 90%-credible intervals and a white dashed line
marks the median. The dashed horizontal line at δp̂i ¼ 0 highlights the expected GR value.

TABLE VI. Results from parametrized tests of GW generation (Sec. VA). Combined constraints on each deviation parameter δp̂i from
the full set ofGWTC-2BBHmeasurements using the IMRPHENOMPV2 or SEOBNRV4_ROMwaveforms, as indicated by P or S respectively in
the second column. The general constraints do not assume the deviation takes the same value for all events and are summarized by the
hyperdistribution mean μ and standard deviation σ, as well as the inferred direct constraint on δp̂i (defined in Sec. III B). The restricted
constraints assume a common value of the parameter shared by all events and are summarized by the constraint on δp̂i. All quantities
represent the median and 90%-credible intervals excepting σ, for which we provide an upper limit. For both general and restricted results,
QGR is the GR quantile associated with Fig. 6.

General Restricted

p̂i WF μ σ δp̂i QGR δp̂i QGR

φ−2½×20�
P −0.02þ0.04

−0.03 <0.08 −0.02þ0.09
−0.08 68% −0.02þ0.02

−0.02 93%
S −0.01þ0.03

−0.03 <0.07 −0.01þ0.07
−0.07 67% −0.01þ0.02

−0.02 85%

φ0 P 0.02þ0.05
−0.04 <0.09 0.02þ0.10

−0.10 33% 0.02þ0.04
−0.03 20%

S 0.01þ0.04
−0.04 <0.09 0.01þ0.10

−0.09 40% 0.01þ0.04
−0.03 35%

φ1 P 0.06þ0.14
−0.13 <0.27 0.05þ0.32

−0.29 33% 0.07þ0.10
−0.11 15%

S 0.02þ0.14
−0.13 <0.28 0.02þ0.31

−0.29 45% 0.03þ0.11
−0.10 29%

φ2 P 0.05þ0.09
−0.09 <0.17 0.04þ0.18

−0.18 28% 0.04þ0.07
−0.07 14%

S 0.03þ0.08
−0.08 <0.17 0.03þ0.18

−0.18 34% 0.03þ0.06
−0.06 22%

φ3 P −0.02þ0.05
−0.05 <0.10 −0.02þ0.11

−0.10 69% −0.03þ0.04
−0.04 90%

S −0.02þ0.05
−0.05 <0.09 −0.01þ0.10

−0.11 62% −0.02þ0.05
−0.04 71%

φ4 P 0.14þ0.44
−0.41 <0.72 0.16þ0.76

−0.77 33% 0.17þ0.36
−0.36 22%

S 0.11þ0.38
−0.38 <0.66 0.11þ0.75

−0.73 37% 0.14þ0.33
−0.36 26%

φ5l P −0.03þ0.15
−0.15 <0.27 −0.04þ0.29

−0.30 61% −0.02þ0.12
−0.15 65%

S −0.01þ0.16
−0.18 <0.33 −0.00þ0.35

−0.37 50% −0.02þ0.15
−0.15 52%

φ6 P 0.10þ0.32
−0.32 <0.56 0.10þ0.64

−0.62 36% 0.08þ0.30
−0.27 30%

S 0.06þ0.34
−0.31 <0.59 0.05þ0.71

−0.63 43% 0.05þ0.30
−0.33 41%

φ6l P −0.41þ1.07
−1.01 <1.27 −0.42þ1.67

−1.50 69% −0.80þ1.32
−1.29 84%

S −0.28þ1.04
−1.08 <1.39 −0.26þ1.68

−1.65 62% −0.47þ1.17
−1.14 75%

φ7 P 0.02þ0.70
−0.75 <1.09 0.01þ1.25

−1.29 49% −0.08þ0.75
−0.66 56%

S 0.18þ0.68
−0.69 <1.25 0.19þ1.27

−1.46 37% 0.38þ0.63
−0.81 21%

β2 P −0.06þ0.07
−0.08 <0.12 −0.06þ0.14

−0.14 79% −0.07þ0.08
−0.07 90%

β3 P −0.05þ0.08
−0.08 <0.12 −0.05þ0.14

−0.14 76% −0.05þ0.07
−0.06 90%

α2 P −0.04þ0.13
−0.15 <0.30 −0.04þ0.32

−0.33 61% −0.04þ0.11
−0.13 73%

α3 P −0.23þ0.65
−0.56 <1.10 −0.24þ1.36

−1.19 64% −0.32þ0.62
−0.55 80%

α4 P 0.11þ0.22
−0.23 <0.44 0.11þ0.46

−0.51 30% 0.10þ0.19
−0.22 21%
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In terms of the overall magnitude of the allowed frac-
tional deviations, the parameter constrained most tightly by
the hierarchical analysis is δφ̂−2 ¼ −0.97þ4.62−4.07 × 10−3,
within 90% credibility. On the other hand, the loosest
constraint comes from δφ̂6l ¼ −0.42þ1.67−1.50 , also within 90%
credibility. In both cases, however, the null-hypothesis lies
close to the median, with QGR ¼ 68% and QGR ¼ 69%
respectively. The magnitude of the constraint, however, is
parametrization-dependent and may not be meaningful
outside the context of a specific theory [7,22,156].
Agreement with GR requires not only that the distribu-

tions in Fig. 6 support δp̂i ¼ 0, but also that the measured
hyperparameters be consistent with μ ¼ σ ¼ 0 (see
Sec. III B). This is indeed the case, as can be inferred
from the 90% credible measurements shown in Fig. 7, and
summarized in the third and fourth columns of Table VI.
The implications of the hyperparameter measurement are
concisely captured by the two-dimensional GR quantile
QGR, defined as the isoprobability contour passing through
μ ¼ σ ¼ 0: a posterior with QGR ¼ 0 peaks at the GR
expectation, with larger values indicating reduced support.

Figure 8 summarizes the main conclusions from this
section through a visualization of zGR and QGR from the
hierarchical analysis (top and middle), and of zGR from the
joint-likelihood analysis (bottom). Each δp̂i is represented
by a vertical stripe, with the postmerger fδβ̂i; δα̂ig coef-
ficients identified by an additional circle. The figure
suggests that the postmerger parameters may behave
distinctly from the rest, tending to show more pronounced
excursions away from the baseline expectation (zGR ≈ 0).
In any case, because 1σ outliers are not unlikely and the
null hypothesis lies well within the 90% credible regions
for all coefficients (Table VI), we conclude that there is no
statistically significant evidence for GR violations.
The results from this section can be used to place

constraints on individual theories by reinterpreting the
coefficients δφ̂i within the parametrized post-Einstein
(ppE) framework given a theory-dependent mapping
[7,22]. Recently, [49] used the coefficients δφ̂i to place
constraints on higher-curvature theories in the small-
coupling approximation, focusing on two specific examples:
Einstein-dilaton-Gauss–Bonnet and dynamical Chern-
Simons gravity. The improved constraints on the coeffi-
cients δφ̂i provided here will allow for tighter constraints on
the coupling constants in such theories under similar (non-
trivial) assumptions.

B. Spin-induced quadrupole moment

The leading order spin-induced multipole moment, the
spin-induced quadrupolemoment, is ameasure of the degree
of an object’s oblateness due to its spin, specifically of its
effect on the surrounding gravitational field [157–159]. If
the object is in an inspiraling binary, this effect will become
imprinted in the GW waveform at specific PN orders,

FIG. 7. Hyperparameter measurements for the parametrized-
deviation coefficients. Contours enclose 90% of the posterior
probability for the μ and σ hyperparameters corresponding to
each of the δp̂i coefficients, as indicated by the legend. The top
(bottom) panel shows IMRPHENOMPV2 (SEOBNRV4_ROM) results,
corresponding to the blue (red) distributions in Fig. 6. The insets
provides a closer look around μ ¼ σ ¼ 0, our baseline expect-
ation in the absence of GR violations or measurement system-
atics; all contours enclose this point. As in Table VI, the values for
φ−2 have been rescaled by a factor of 20 for ease of display.

FIG. 8. Figures of merit for the GWTC-2 parametrized tests
results. Each vertical stripe corresponds to a given δp̂i as
estimated using IMRPHENOMPV2 (blue) or SEOBNRV4_ROM
(red); circles identify the postmerger coefficients fδα̂i; δβ̂ig.
The top two strips summarize the hierarchical results for generic
deviations across events: the z-score for δp̂i ¼ 0, zGR, and the
two-dimensional quantile for the hyperparameters μ ¼ σ ¼ 0,
QGR. The bottom strip shows an equivalent z-score obtained by
restricting to identical deviations across events. The generic
(restricted) z-scores correspond to the filled (unfilled) distribu-
tions in Fig. 6, and QGR to those in Fig. 7.
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helping us identify the object’s nature and composition
[160]. For a compact objectwithmassm and spin χ, the spin-
induced quadrupole moment is given by

Q ¼ −κχ2m3; ð5Þ

where κ is the spin-induced quadrupole moment coeffi-
cient, which depends on the equation of state, mass, and
spin of the compact object. Due to the no-hair conjecture
[161–163], κ is unity for BHs in GR, while it may take a
range of values for neutron stars or BH mimickers [157–
159,164]. For example, depending upon the equation of
state, the value of κ can vary between ∼2 and ∼14 for a
spinning neutron star [165–167], and between ∼10 and
∼150 for slowly spinning boson stars [81,168–170]. The
spin-induced quadrupole moments first appear along with
the self-spin terms in the GW phasing formula as a 2PN
leading-order effect [157]. In this paper, we also incorpo-
rate 3PN corrections to the GW phase due to the spin-
induced quadrupole moment of binary components
[145,171]. As shown in [172], the measurement accuracy
of these parameters is largely correlated with masses and
spins of the binary system. Despite the degeneracy, the
presence of spin terms at other PN orders as well as the
nonspinning PN coefficients help to break the correlations
of κ with spins and mass parameters, permitting its
measurement for spinning binary systems. It has been
demonstrated in the past that it is possible to measure spin-
induced multipole moments for intermediate mass-ratio
[173,174] and extrememass-ratio inspirals [175,176]. This
parameter can also be constrained through electromagnetic
observations of active galactic nuclei (see [177] for a recent
measurement) and supermassive BHs [178].
In principle, the BH nature of the binary components can

be probed by measuring their individual spin-induced
quadrupole moment coefficients κ1 and κ2, parametrized
as deviations away from unity δκ1 and δκ2. However, for
the stellar-mass compact binaries accessible to LIGO and
Virgo, it is often difficult to simultaneously constrain δκ1
and δκ2 due to the strong degeneracies between these and
other binary parameters, like the spins and masses
[160,179]. We define the symmetric and antisymmetric
combinations of the individual deviation parameters as
δκs ¼ ðδκ1 þ δκ2Þ=2 and δκa ¼ ðδκ1 − δκ2Þ=2, but in this
analysis we restrict δκa ¼ 0, implying δκ1 ¼ δκ2 ¼ δκs.
The assumption δκa ¼ 0 also demands that the two
compact objects be of the same kind which holds well
when both the objects are BHs. For non-BH binaries, this
restriction leads to stronger implications, requiring the two
compact objects to have similar masses and equation of
state as δκ1 and δκ2 are functions of these. Having a non-
BH compact object in the binary will violate these
restrictions, which could lead to systematic biases in the
estimation of δκs. For non-BBH signals, the value of δκs
would be offset from zero, given the definition, and it is

unlikely for such offsets to be completely compensated
by the aforementioned systematics. Therefore, the poste-
riors of δκs for non-BBH signals will tend to peak away
from zero, hinting at the presence of an exotic compact
object.
For a more general test of BBH nature, one might also

include effects such as the tidal deformations that arise due
to the object’s binary companion [180–182] and tidal
heating [183–188] along with the spin-induced deforma-
tions. The present test does not consider these effects but
focuses only on spin-induced deformations.
We perform this analysis on the compact binaries

observed in O1, O2 and O3a. Though the spin-induced
effects for non-BH compact objects are not modeled
beyond the inspiral phase, as a null test of BBH nature,
the analysis was performed by including the full inspiral,
merger, and ringdown phases, using a waveform model
built on IMRPHENOMPV2. In this model, only the inspiral
phase of the waveform (defined as in Sec. VA) is modified
in terms of δκ1 and δκ2. For GW190412, which showed
evidence of HMs [111], we employed a waveform model
built on IMRPHENOMPV3HM with the same modifications in
terms of δκ1 and δκ2 as for the model based on
IMRPHENOMPV2. We apply this test only to the events in
Table I that have SNR of 6 or more in the inspiral phase
under the GR BBH assumption (same threshold as in
Table V); we apply the same criteria to the GWTC-1 events.
In this paper, we do not apply this test on GW190814 as the
outcome of the test on GW190814 has already been
discussed in [66], and we have not gained any new insights
since then.
We employ a uniform prior on δκs in the range

½−500; 500�. The prior limits at �500 were chosen so they
safely encompass the known models of BH mimickers,
including gravastars and other exotic objects that may have
δκs < 0 [164]. As elsewhere in this paper, the δκs con-
straints apply exclusively to the set of events analyzed and
do not preclude the existence of objects with jδκsj high
enough to be missed by our search pipelines [81].
Figure 9 shows the measurement of δκs from individual

events. We find that δκs is poorly constrained for the
majority of events, which can be attributed to the low spin
of these events [16]. From Eq. (5), it is clear that the
quadrupole moment vanishes when the spins are zero,
irrespective of the value of κ. Therefore, any meaningful
upper limit on κ would require the lower limit on at least
one of the spin magnitudes to exclude zero. If this condition
is not met, the posteriors of δκs would rail against the priors
in this analysis. The dependence of the upper limit of κ on
the spin magnitudes was studied in [172]. In Fig. 9, we
highlight the events with the most concentrated δκs
posteriors, with a sample standard deviation σδκs < 150:
GW151226, GW190412, GW190720_000836, and
GW190728_064510. We do not quote symmetric credible
intervals from individual events, since all of the posteriors
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present tails reaching the edge of the prior on at least
one side.
We may narrow down the scope of the test by focusing

on the δκs > 0 region of our prior, which is well con-
strained by a subset of the events. Doing so is well
motivated in the context of neutron stars [158,165,166]
and specific BH mimickers such as boson stars [168] for
which κs > 1. Restricting to positive δκs, the two events
providing the tightest upper limits are GW151226 and
GW190412, with 90% credible bounds of δκs < 11.33 and
δκs < 110.89 respectively.
Figure 10 shows the distributions on δκs obtained by

considering all the events collectively. Though most of the
individual signals yielded poor constraints, the set is not
completely uninformative: as can be seen from Fig. 9, most
of the posteriors have markedly stronger support in regions
close to zero, even though they extend to the edge of the
prior. This is reflected by the combined results of Fig. 10,
which disfavor large values of jδκsj. The blue histogram
represents the population-marginalized posterior obtained
without assuming a unique value of δκs across events, using
the hierarchical approach of Sec. III B. With 90% credi-
bility, this analysis determines δκs ¼ −23.2þ52.2−62.4 , which
indicates that the events considered are consistent with a
population dominated by Kerr BBHs (within the given
uncertainty). The distribution hyperparameters are also
consistent with the null-hypothesis (μ ¼ σ ¼ 0), with μ ¼
−24.6þ30.7−35.3 and σ < 52.7. Both μ and the population-
marginalized posterior of Fig. 10 inherit the asymmetry
of the individual events, which tend to be skewed towards
δκs < 0 (cf. inset in Fig. 9); this suggests that negative
values of δκs are harder to constrain. Conditional on

positive values, the generic population results constrain
δκs < 59.97.
The red curve in Fig. 10 represents the joint-likelihood

posterior obtained by restricting κs to take the same value
for all the events. Under that assumption, we find δκs ¼
−15.2þ15.9−19.0 and, conditional on positive values, δκs < 9.01.
The hypothesis that all of the events considered are Kerr
BBHs (δκs ¼ 0) is preferred over an alternative proposal
that all of them are not with a shared δκs ≠ 0, with a log
Bayes factor of log10BKerr

δκs≠0 ¼ 1.1, or log Bayes factor of
log10BKerr

δκs≥0 ¼ 2.0 if only allowing δκs ≥ 0.

VI. TESTS OF GRAVITATIONAL
WAVE PROPAGATION

In GR, GWs far from their source propagate along null
geodesics, with energy E and momentum p related by the
dispersion relation E2 ¼ p2c2, where c is the speed of light.
Extensions to GR may violate this in several ways, e.g., by
endowing the graviton with a mass. To probe generalized
dispersion relations, we adopt the common phenomeno-
logical modification to GR introduced in [189] and applied
to LIGO and Virgo data in [8,15],

E2 ¼ p2c2 þ Aαpαcα; ð6Þ

where Aα and α are phenomenological parameters, and GR
is recovered if Aα ¼ 0 for all α. To leading order, Eq. (6)
may encompass a variety of predictions from different
extensions to GR [7,189–195]; this includes massive
gravity for α ¼ 0 and Aα > 0, with a graviton mass mg ¼
A1=2
0 c−2 [190]. As in [15], we consider α values from 0 to 4

FIG. 9. Posterior probability distribution on the spin-induced
quadrupole moment parameter δκs from the GWTC-2 events
listed in the SIM column of Table I. We highlight GW151226,
GW190412, GW190720_000836, and GW190728_064510, as
they yield the tightest distributions (with standard deviation
σδκs < 150); other events are shown in gray. The inset expands
the plot range to the full range of the prior, removing GW190412
to facilitate display of the other events. The vertical dashed line at
δκs ¼ 0 marks the Kerr BBH expectation.

FIG. 10. Combined measurement on the spin-induced quadru-
pole moment parameter δκs from the set of all of events in Fig. 9.
The red curve (restricted) represents the posterior obtained
assuming δκs takes the same value for all events. The blue
histogram (generic) was obtained by hierarchically combining
events without that assumption, as in Eq. (1). Dotted lines
bound symmetric 90%-credible intervals, δκs ¼ −23.2þ52.2−62.4
(δκs ¼ −15.2þ15.9−19.0) for the generic (restricted) case. The Kerr
BBH value (δκs ¼ 0) is marked by a dashed line.
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in steps of 0.5, excluding α ¼ 2, which is degenerate with
an overall time delay. A nonzero Aα manifests itself in the
data as a frequency-dependent dephasing of the GW signal,
which builds up as the wave propagates towards Earth and
hence increases with the source comoving distance, poten-
tially enhancing weak GR deviations. The analysis makes
use of a modified version of the IMRPHENOMPV2 waveform
(checks for systematics using SEOBNRV4HM_ROM were
presented in [15]). We use Eq. (3) of [15] to compute
the dephasing for a given Aα.

5 This expression was derived
in [189] by treating waves emitted at a given time as
particles that travel at the particle velocity vp ¼ pc2=E
associated with the wave’s instantaneous frequency.
Different dephasings can arise from different prescriptions,
e.g., using the group velocity instead, but the corresponding
bound on Aα can be obtained by rescaling with an
appropriate factor in most cases. See discussions after
Eq. (5) in [15] for details.
We assume priors flat in Aα except when reporting the

mass of the graviton, where we use a prior flat in that
quantity. We analyze 31 events from GWTC-2 satisfying
our FAR threshold (see Sec. II and Table I).6 Since we can
take Aα and mg to be universal parameters, results from
different events can be easily combined by multiplying the
individual likelihoods. Although we only discuss the
overall combined results here, individual-event posteriors
are available in [53], as for other tests.
We show our results in Table VII and Figs. 11 and 12.

Table VII and Fig. 11 present constraints on the allowed
amount of dispersion through the 90%-credible upper
limits on jAαj, computed separately for Aα > 0 and
Aα < 0. There is noticeable improvement when combining

GWTC-2 results with respect to the previous result in [15].
This is the case for both positive and negative amplitudes,
meaning that we are more tightly constraining these
quantities closer to the nondispersive, GR prediction
(Aα ¼ 0). The average improvement in the jAαj upper
limits relative to [15] is a factor 2.6, although this fluctuates
slightly across choices of α. Overall, this is consistent with
the factor of

ffiffiffiffiffiffiffiffiffiffi
31=7

p
≈ 2.1 naively expected from the

increase in the number of events analyzed.7

Upper limits on the Aα parameters can be uncertain due
to the difficulty in accurately sampling the long tails of the
posteriors. To quantify this uncertainty, we follow a
Bayesian bootstrapping procedure [196], as done previ-
ously in [8,15], with 2000 bootstrap realizations for each
value of α and sign of Aα. We find that the average width of
the 90%-credible interval of the individual-event upper
limits is a factor of 0.12 of the reported upper limit itself;
i.e., the average uncertainty in the upper limit is 0.12. Out
of all upper limits, nine carry fractional uncertainties larger
than 0.5. The most uncertain upper limit is that for
GW190828_065509 and A4 < 0, with a fractional uncer-
tainty of 1.7.
Figure 12 shows the overall posterior obtained for

negative and positive values of Aα. The enhanced strin-
gency of our measurements relative to our previous
GWTC-1 results is also visible here, as seen in the smaller
size of the blue violins with respect to the gray, and the fact
that the medians (blue circles) are generally closer to the
GR value. The latter is also manifested in the GR quantiles
QGR ¼ PðAα < 0Þ in Table VII, which tend to be closer to
50% (QGR ¼ 50% implies the distribution is centered on
the GR value).
From our combinedGWTC-2 data, we bound the graviton

mass to be mg ≤ 1.76 × 10−23 eV=c2, with 90% credibility
(TableVII). This represents an improvement of a factor of 2.7
relative to [15]. The new measurement is 1.8 times more
stringent than the most recent Solar System bound of
3.16 × 10−23 eV=c2, also with 90% credibility [197].

TABLE VII. Results for the modified dispersion analysis (Sec. VI). The table shows 90%-credible upper bounds on the graviton mass
mg and the absolute value of the modified dispersion relation parameter Aα, as well as the GR quantilesQGR. The < and> labels denote
the upper bound on jAαj when assuming Aα < 0 and > 0, respectively, and Āα ¼ Aα=eV2−α is dimensionless. Rows compare the
GWTC-1 results from [15] to the GWTC-2 results.

mg
jĀ0j jĀ0.5j jĀ1j jĀ1.5j jĀ2.5j jĀ3j jĀ3.5j jĀ4j

½10−23 < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR

eV=c2� [10−45] [%] [10−38] [%] [10−32] [%] [10−26] [%] [10−14] [%] [10−8] [%] [10−2] [%] [104] [%]

GWTC-1 4.70 7.99 3.39 79 1.17 0.70 73 2.51 1.21 70 6.96 3.70 86 5.05 8.01 28 2.94 3.66 25 2.01 3.73 35 1.44 2.34 34
GWTC-2 1.76 1.75 1.37 66 0.46 0.28 66 1.00 0.52 79 3.35 1.47 83 1.74 2.43 31 1.08 2.17 17 0.76 1.57 12 0.64 0.88 25

5There was a typographic error in Eq. (4) of Ref. [15]: the
1=ðα − 2Þ exponent should instead be 1=ð2 − αÞ.

6We do not consider GW190521 because we were unable to
obtain well-converged results for that event without using HMs,
which are not yet implemented for this test. We have analyzed
GW190412 and GW190814 without HMs, despite evidence that
HMs contribute to those signals. However, we have checked that
this does not bias the results through an injection study for
GW190412 and α ¼ 0. We have also confirmed that excluding
GW190412 and GW190814 would affect the combined results in
Table I by only ∼5% on average (12% in the worst case).

7We have analyzed eight events from GWTC-1, one more than
for the combined results in [15] because those excluded
GW170818.
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VII. REMNANT PROPERTIES

A. Ringdown

In GR, the remnant object resulting from the coalescence
of two astrophysical BHs is a perturbed Kerr BH. This
remnant BH will gradually relax to its Kerr stationary state
by emitting GWs corresponding to a specific set of
characteristic quasinormal modes (QNMs), whose fre-
quency f and damping time τ depend solely on the BH
mass Mf and the dimensionless spin χf . This last stage of
the coalescence is known as ringdown. The description of
the ringdown stage is based on the final state conjecture
[198–201] stating that the physical spectrum of QNMs is

exclusively determined by the final BH mass and spin (the
no-hair conjecture [162,202–208]) and that the Kerr sol-
ution is an attractor of BH spacetimes in astrophysical
scenarios.8

By analyzing the postmerger signal from a BBH coa-
lescence independently of the preceding inspiral, we can
verify the final state conjecture, test the nature of the
remnant object (complementary to the searches for GW
echoes discussed in Sec. VII B), and estimate directly the
remnant mass and spin assuming it is a Kerr BH—which, in
turn, allows us to test GR’s prediction for the energy and
angular momentum emitted during the coalescence (com-
plementary to the IMR consistency test discussed in
Sec. IV B, and the postinspiral parameters in Sec. VA).
This set of analyses is referred to as BH spectroscopy
[122,123,212–221]. Unlike the IMR consistency test, a
ringdown-only analysis is not contaminated by frequency
mixing with other phases of the signal, and it does not
require a large amount of SNR in the inspiral regime (the
lack of such SNR is why the IMR consistency test was
unable to be applied to GW190521 [82,83], for instance).
The complex-valued GW waveform during ringdown

can be expressed as a superposition of damped sinusoids,

hþðtÞ − ih×ðtÞ ¼
Xþ∞

l¼2

Xþl

m¼−l

Xþ∞

n¼0

Almn exp

�
−

t − t0
ð1þ zÞτlmn

�

× exp

�
2πiflmnðt − t0Þ

1þ z

�
−2Slmnðθ;ϕ; χfÞ;

ð7Þ

where z is the cosmological redshift, and the ðl; m; nÞ
indices label the QNMs. The angular multipoles are
denoted by l and m, while n orders modes of a given
ðl; mÞ by decreasing damping time. The frequency and the
damping time for each ringdown mode can be computed for
a perturbed isolated BH as a function of its mass Mf and
spin χf [222–225]. For each ðl; m; nÞ, there are in principle
two associated frequencies and damping times: those for a
prograde mode, with sgnðflmnÞ ¼ sgnðmÞ, and those for a
retrograde mode, with sgnðflmnÞ ≠ sgnðmÞ—retrograde
modes are not expected to be relevant [214], so we do not
include them in Eq. (7). The frequency and damping time
of the þjmj mode are related to those of the −jmj mode by
flmn ¼ −fl−mn and τlmn ¼ τl−mn for m ≠ 0. The complex
amplitudes Almn characterize the excitation and the phase
of each ringdown mode at a reference time t0, which for a
BBH merger can be predicted from numerical simulations
[226–228]. In general, Almn is independent of Al−mn.

FIG. 11. 90% credible upper bounds on the absolute value of
the modified dispersion relation parameter Aα. The upper limits
are derived from the distributions in Fig. 12, treating the positive
and negative values of Aα separately. Picoelectronvolts provide a
convenient scale because 1 peV ≃ h × 250 Hz, where 250 Hz is
close to the most sensitive frequencies of the LIGO and Virgo
instruments. Marker style distinguishes the new GWTC-2 results
from the previous GWTC-1 results in [15].

FIG. 12. Violin plots of the full posteriors on the modified
dispersion relation parameter Aα calculated from the GWTC-2
events (blue), with the 90% credible interval around the median
indicated. For comparison, we also show the GWTC-1 previous
measurement (gray), reported in [15].

8In principle such frequencies and damping times would also
depend on the electric charge of the remnant BH. However, for
astrophysically relevant scenarios the BH charge is expected to be
negligible [209–211].
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The angular dependence of the GW waveform is con-
tained in the spin-weighted spheroidal harmonics

−2Slmnðθ;ϕ; χfÞ, where θ;ϕ are the polar and azimuthal
angles in a frame centered on the remnant BH and aligned
with its angular momentum. We approximate these func-
tions through the spin-weighted spherical harmonics

−2Ylmðθ;ϕÞ, which introduces mode-mixing between
QNMs with the same m index but different l indices
[229–231]. Except in one case, as indicated below, models
in this section do not account for this effect. However,
mode-mixing is expected to be negligible for the modes we
consider, in particular for the dominant l ¼ jmj ¼ 2
moments of the radiation [229–231].
We present results from two approaches: a time-domain

ringdown analysis PYRING [122,123] and a parametrized
version of an aligned-spin EOBwaveform model with HMs
called PSEOBNRV4HM [105,218].

1. The PYRING analysis

The PYRING analysis infers the remnant BH parameters
based on the ringdown part of a signal alone. The analysis
is completely formulated in the time domain [122,123] for
both the likelihood function and waveform templates,
hence avoiding spectral leakage from previous stages of
the coalescence as would arise in a frequency-domain
analysis when Fourier transforming a template with an
abrupt start [122,123,232]. We employ four different
waveform templates, each constructed with different sets
of assumptions in order to obtain agnostic measurements of
the QNM frequencies and damping times, and to explore
the contribution of modes other than the least damped
mode (n ¼ 0).
The Kerr220 template corresponds to the l ¼ jmj ¼

2; n ¼ 0 contribution (i.e., the 220 mode) of Eq. (7), where
the frequencies and damping times are predicted as a
function of ðMf ; χfÞ by GR, while the complex amplitudes
are kept as free parameters. The remnant mass and spin
were sampled with uniform priors. The Kerr221 template is
similar to Kerr220 but incorporates the first overtone
(n ¼ 1) for l ¼ jmj ¼ 2 in addition to the fundamental
mode. We do not consider a higher number of overtones
since they are not expected to be relevant at current
sensitivity [123,233–235]. Uniform priors on the remnant
mass and spin were also adopted.
The KerrHM template includes all fundamental prograde

modes with l ≤ 4, with the angular dependence para-
metrized using spin-weighted spherical harmonics, taking
into account mode-mixing [228]. NR fits are used to
compute amplitudes as a function of the initial binary
parameters, and frequencies and damping times as a
function of the remnant parameters where both the initial
binary parameters and the remnant parameters are sampled
independently with uniform priors.
We use as a reference time t0, which is chosen based on

an estimate of the peak of the strain ðh2þ þ h2×Þ from the full

IMR analyses assuming GR.9 When overtones (n > 0) are
included in a template, we fit the data starting at t0 itself
[123,233], while in all other cases we start the fit
10GMfð1þ zÞ=c3 after t0, which is when the least damped
mode is expected to dominate the signal. The sky locations
and start times at each detector are released in [53].
We analyze all the GWTC-2 BBHs and report results for

those events where the remnant parameters were con-
strained compared to the adopted prior bounds, and for
which the Bayesian evidence favors the presence of a signal
over pure Gaussian noise when using our most sensitive
template (Kerr221). Estimates of the remnant parameters
obtained through the three waveform templates (Kerr220,
Kerr221, and KerrHM) are reported in Table VIII. Fitting the
data at an earlier time increases the SNR available when
using this template, which is reflected in tighter constraints
of the remnant parameters as shown in Table VIII for the
Kerr221 template. In all cases the estimated remnant
quantities from the three waveform templates agree with
the corresponding GR predictions coming from the full
IMR analyses [16]. For GW190521, the results reported in
[82,83] are not identical to the ones reported here as the
previous analyses did not include the negative-mmode, and
we have updated to use a more precise value for the
reference time. The lower frequency cutoff for this event
was also changed from 20 Hz to 11 Hz. None of the
conclusions previously reported for GW190521 are
affected by these small changes.
We use log Bayes factors to quantify the contribution of

overtones or HMs during ringdown. In Table VIII, we
report the log Bayes factors log10 BHM

220 comparing a fit with
all modes in KerrHM, versus one with only the l¼jmj¼2;
n¼0 mode; this computation provides no strong evidence
for the presence of HMs. We also present the log Bayes
factors log10 B221

220 comparing the results obtained when
fitting the full postmerger signal using the n ¼ 0, 1 modes
against the template including the n ¼ 0 mode only, with
both templates starting at the reference time t0. The data
show evidence for the presence of overtones only for loud
signals (for example GW190521_074359 shows such
evidence), although in all cases estimates of the remnant
parameters tend to get closer to the full IMR waveform
estimates when including overtones.
To achieve a test of the final state conjecture and quantify

the level of agreement with GR, we modify the Kerr221
template to allow for fractional deviations in the frequency
and damping time with respect to their GR predictions for
the 221 mode (the first overtone). Meanwhile, the fre-
quency and the damping time of the better-measured 220

9For events in O1 and O2, the waveform approximant used in
the full IMR analyses was SEOBNRV4_ROM. As for events in O3a,
the waveform approximant used in the full IMR analyses was
IMRPHENOMPV2, except for GW190521, where NRSUR7DQ4 was
used instead.
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mode remain the same as their GR predictions as functions
of the remnant mass Mf and spin χf to help constrain the
remnant properties. This approach, compared to allowing
for deviations in the fundamental mode, has the advantage
of lowering the impact of priors on the remnant mass and
spin recovery, as well as the impact of correlations among
the deviation parameters and the remnant parameters. We
sample over the regular Kerr parameters and the fractional
deviations with uniform priors in the ½−1; 1� range for the
frequency δf̂221 and in the ½−0.9; 1� range for the damping
time δτ̂221.

10 The posteriors on the fractional deviations
quantify the agreement of the 221 mode with the Kerr
prediction.
Additionally, we may follow [24,25,216] to compute a

log odds ratio log10OmodGR
GR for deviations from the Kerr

ringdown. We define the baseline GR hypothesisHGR to be
the proposition that both the fractional deviation parameters
vanish, i.e., δf̂221 ¼ δτ̂221 ¼ 0. Similarly, we define the
modified GR hypothesis HmodGR to be the proposition that
at least one of the fractional deviation parameters is
nonzero, with the priors above. We may construct
HmodGR from three subhypotheses, which we label
Hδf̂221

, Hδτ̂221 , and Hδf̂221;δτ̂221
. For Hδf̂221

, we write the
frequencies and damping times for the 220 and the 221
mode as

Hδf̂221
≡

8>>>>><
>>>>>:

f220 ¼ fGR220ðMf ; χfÞ
τ220 ¼ τGR220ðMf ; χfÞ
f221 ¼ fGR221ðMf ; χfÞð1þ δf̂221Þ
τ221 ¼ τGR221ðMf ; χfÞ

; ð8Þ

where the “GR” superscript indicates the Kerr value
corresponding to a given Mf and χf . Similarly, for
Hδτ̂221 , we write the frequencies and damping times for
the 220 and the 221 mode as

Hδτ̂221 ≡

8>>>>><
>>>>>:

f220 ¼ fGR220ðMf ; χfÞ
τ220 ¼ τGR220ðMf ; χfÞ
f221 ¼ fGR221ðMf ; χfÞ
τ221 ¼ τGR221ðMf ; χfÞð1þ δτ̂221Þ

: ð9Þ

Finally, for Hδf̂221;δτ̂221
, we again write the frequencies and

damping times as

Hδf̂221;δτ̂221
≡

8>>>>><
>>>>>:

f220 ¼ fGR220ðMf ; χfÞ
τ220 ¼ τGR220ðMf ; χfÞ
f221 ¼ fGR221ðMf ; χfÞð1þ δf̂221Þ
τ221 ¼ τGR221ðMf ; χfÞð1þ δτ̂221Þ

; ð10Þ

allowing deviations in both frequency and damping time of
the 221 mode simultaneously.
If we assign equal prior weight to both the GR and

modified-GR hypotheses, then the odds ratio is

OmodGR
GR ¼ 1

3
ðBδf̂221

GR þ Bδτ̂221
GR þ Bδf̂221;δτ̂221

GR Þ: ð11Þ

The log odds ratios log10OmodGR
GR are reported in Table VIII

for each event. Among all the events considered,
GW190602_175927 has the highest log10OmodGR

GR with a
value of 0.32, which is not statistically significant. We also
find a catalog-combined log odds ratio of −0.70, in favor of
the GR hypothesis that the Kerr metric is sufficient to
describe the observed ringdown signals.
Figure 13 shows both the 1D marginal and the joint

posterior distributions for δf̂221 and δτ̂221 obtained from
individual GW events where we allow both the frequency
and the damping time of the 221 mode to deviate from the
GR predictions (i.e., the Hδf̂221;δτ̂221

hypothesis). We only
show results from GW events where the data prefer the
waveform model with both the fundamental and the first
overtone (n ¼ 0, 1) modes over the model with only the
n ¼ 0 fundamental mode with log10 B221

220 > 0. The mea-
surements show consistency with GR for the frequency. As
for the damping time, it is essentially unconstrained, except
for events with low SNR in the ringdown (such as
GW190727_060333) where the posterior distribution of
δτ̂221 rails towards the lower prior bound −0.9, as the data
show little evidence of the first overtone. The results
broadly agree with previous analyses for GW150914
[123], although the truncation time chosen here
(t0 ¼ 1126259462.42335 GPS in Hanford) is slightly later
than in [5,123]. A hierarchical analysis of the set of
measurements using all 17 events constrains the frequency
deviations to δf̂221 ¼ 0.04þ0.27

−0.32 , in agreement with the Kerr
hypothesis. The hierarchical analysis is uninformative for
δτ̂221 within the prior bounds considered.
Finally, as another test of the consistency of the ring-

down signals with GR, we use a template which consists of
a single damped sinusoid to fit the data, where the
frequency, damping time, and complex amplitude are
considered as free parameters without imposing any pre-
dictions from GR. This means that, for this template, we
assume neither that the remnant object is a Kerr BH, nor
that it originated from a BBH coalescence. We place
uniform priors on the frequency, damping time, log of
the magnitude, and the phase of the complex amplitude.
The frequency and damping time obtained by fitting this

10The lower prior bound on the damping time deviation is set
by the discrete analysis time resolution.
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template to the data are shown in Table IX, where we
report 90% credible intervals from the marginalized
posteriors for each of these two parameters. The values
show good agreement with the results from full
IMR analyses where GR is assumed, except for
GW170814, GW190512_180714, GW190828_063405,
and GW190910_112807, where the estimates of the damp-
ing time from the PYRING analysis are higher than the
estimates from the full IMR analyses. Nevertheless, in all
these cases the contours of the 90% credible region in the
frequency-damping time space from the two analyses
actually do overlap. We observed that events with low
SNR in the ringdown often show overestimations of the
damping time with respect to the median value obtained
using the full IMR waveform. To assess whether the
overestimation is caused by detector noise fluctuations,
we injected simulated IMR waveforms with parameters
consistent with GW190828_063405, close to the
coalescence time of the event. The injections show a
similar behavior to what was observed in the actual event,
with three out of ten injections having the injected

value lying outside the 90% credible interval of the
damping time. The same injections performed in a
zero noise configuration instead always have the pos-
terior distributions of the damping time peaking at the
injected value, suggesting that the overestimation of the
damping time is associated with the detector noise
fluctuations.

2. The PSEOBNRV4HM analysis

The PSEOBNRV4HM ringdown analysis uses a parame-
trized version of a spinning EOB waveform model with
HMs, calibrated on nonprecessing binaries [105,218]. The
analysis uses the frequency-domain likelihood function
while the waveform model is constructed in the time
domain. In this model the effective frequency and damping
time of the 220 mode are written in terms of fractional
deviations from their nominal GR values: f220 ¼ fGR220ð1þ
δf̂220Þ and τ220 ¼ τGR220ð1þ δτ̂220Þ [218], where δf̂220 and
δτ̂220 are estimated directly from the data using the
parameter inference techniques described in Sec. III, and
fGR220, τ

GR
220 are computed using the mass and spin of the BH

remnant as determined by NR fits reported in [105].
We performed this analysis only on O3a events with a

median redshifted total mass> 90 M⊙ since this analysis is
computationally expensive, and we expect these events to
give the best measurements among all the O3a events.
Table IX shows the redshifted effective frequency f220 and
the redshifted effective damping time τ220 of the 220 mode
inferred from this analysis.
The frequency and the damping time inferred from the

PSEOB analysis are also in good agreement with the full IMR
measurements that assume GR, except for GW190521,
GW190727_060333, and GW190910_112807 where the
estimates of the damping time from the PSEOB analysis are
higher than the estimates from the full IMR analyses.
Nevertheless, in all these cases the 2D 90% credible regions
do overlap. In order to better understand this issue, we
investigated possible biases due to properties of the detector
noise. We injected a set of simulated numerical relativity
signals with parameters consistent with GW190521 into
real data immediately adjacent to the event, and ran the
PSEOB analysis on them. For three out of five injections
around the event we recover posteriors that overestimate
the damping time and for which the injected GR value lies
outside the 90% credible interval, suggesting that the
overestimation of the damping time for GW190521 is a
possible artifact of noise fluctuations. A similar study was
conducted with PYRING using the damped sinusoid model
for GW190828_063405, and we also observed overesti-
mations of the damping time. This suggests that the
overestimation of the damping time is a common system-
atic error for low-SNR signals.
In Fig. 14, we show the 90% credible region of the joint

posterior distribution of the frequency and damping time
deviations, as well as their respective marginalized

FIG. 13. The 90% credible region of the joint posterior
distribution of the fractional deviations of the frequency δf̂221
and the damping time δτ̂221, and their marginalized posterior
distributions, for the l ¼ jmj ¼ 2; n ¼ 1 mode from the PYRING

analysis, where we allow both the frequency and the damping
time of the 221 mode to deviate from the GR predictions. Here we
show measurements from individual events where the data prefer
the waveform model with both the fundamental and the first
overtone (n ¼ 0, 1) modes over the model with only the n ¼ 0
fundamental mode. The measurements of the fractional deviation
of the frequency from individual events, and as a set of
measurements (using all 17 events), both show consistency with
GR. The fractional deviation of the damping time is mostly
unconstrained.
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distributions. We only include events that have SNR > 8 in
both the inspiral and postinspiral regimes, with cutoff
frequencies as in Table IV. This is because, in order to
make meaningful inferences about δf̂220 and δτ̂220 with
PSEOB in the absence of measurable HMs, the signal must
contain sufficient information in the inspiral and merger
stages to break the degeneracy between the binary total
mass and the GR deviations. The fractional deviations
obtained this way quantify the agreement between the pre-
and postmerger portions of the waveform, and are thus not
fully analogous to the PYRING quantities.
From Fig. 14, the frequency and the damping time of the

220 mode are consistent with the GR prediction (δf̂220 ¼
δτ̂220 ¼ 0) for GW190519_153544 and GW190521_
074359, while for GW190910_112807 it shows excellent
agreement with GR for δf̂220 but the GR prediction has
only little support in the marginalized posterior distribution
of δτ̂220.
In spite of the low number of events, we also apply the

hierarchical framework to the marginal distributions in
Fig. 14. The population-marginalized constraints are
δf̂220 ¼ 0.03þ0.38

−0.35 and δτ̂220 ¼ 0.16þ0.98
−0.98 , which are con-

sistent with GR for both parameters. The δτ̂220 measure-
ment is uninformative, which is not surprising given the
spread of the GW190910_112807 result and the low
number of events. The hyperparameters also reflect this,
since they are constrained for δf̂220 (μ ¼ 0.03þ0.17

−0.18 ,

σ < 0.37) but uninformative for δτ̂220 (μ ¼ 0.16þ0.47
−0.46 ,

σ < 0.88). The bounds for the fractional deviation in
frequency for the 220 mode, from the PSEOB analysis,
and for the 221 mode, from the PYRING analysis, can be
used to cast constraints on specific theories of modified
gravity that predict non-zero values of these deviations
[236,237], as well as to bound possible deviations in the
ringdown spectrum caused by a non-Kerr-BH remnant
object (see, e.g., [238]).

B. Echoes

It is hypothesized that there may be compact objects
having a light ring and a reflective surface located between
the light ring and the would-be event horizon. These
compact objects are referred to as exotic compact objects
(ECOs), for example gravastars [239] and fuzzballs
[240,241]. When an ECO is formed as the remnant of a
compact binary coalescence, a train of repeating pulses
known as GWechoes are emitted from the ECO in the late
postmerger stage in addition to the usual ringdown we
expect from BHs. The effective potential barrier and the
reflective surface act like a cavity trapping the GWs.
Unlike BHs, which have a purely in-going boundary
condition at the event horizon, the GWs trapped in the
cavity will be reflected back and forth between the
potential barrier and the surface, emitting pulses of waves
towards infinity when some of the waves are transmitted

TABLE IX. The median value and symmetric 90% credible interval of the redshifted frequency and damping time estimated using the
full IMR analysis (IMR), the PYRING analysis with a single damped sinusoid (DS), and the PSEOBNRV4HM analysis (pSEOB).

Redshifted frequency [Hz] Redshifted damping time [ms]

Event IMR DS pSEOB IMR DS pSEOB

GW150914 248þ8
−7 247þ14

−16 � � � 4.2þ0.3
−0.2 4.8þ3.7

−1.9 � � �
GW170104 287þ15

−25 228þ71
−102 � � � 3.5þ0.4

−0.3 3.6þ36.2
−2.1 � � �

GW170814 293þ11
−14 527þ340

−332 � � � 3.7þ0.3
−0.2 25.1þ22.2

−19.0 � � �
GW170823 197þ17

−17 222þ664
−62 � � � 5.5þ1.0

−0.8 13.4þ31.8
−9.8 � � �

GW190408_181802 319þ11
−20 504þ479

−459 � � � 3.2þ0.3
−0.3 10.0þ32.5

−8.9 � � �
GW190421_213856 162þ14

−14 � � � 171þ50
−16 6.3þ1.2

−0.8 � � � 8.5þ5.3
−4.2

GW190503_185404 191þ17
−15 � � � 265þ501

−79 5.3þ0.8
−0.8 � � � 3.5þ3.4

−1.8
GW190512_180714 381þ33

−42 220þ686
−42 � � � 2.6þ0.2

−0.2 26.1þ21.3
−22.9 � � �

GW190513_205428 241þ26
−28 250þ493

−88 � � � 4.3þ1.1
−0.4 5.3þ19.2

−3.8 � � �
GW190519_153544 127þ9

−9 123þ11
−19 124þ12

−13 9.5þ1.7
−1.5 9.7þ9.0

−3.8 10.3þ3.6
−3.1

GW190521 68þ4
−4 65þ3

−3 67þ2
−2 15.8þ3.9

−2.5 22.1þ12.4
−7.4 30.7þ7.7

−7.4
GW190521_074359 198þ7

−7 197þ15
−15 205þ15

−12 5.4þ0.4
−0.4 7.7þ6.4

−3.3 5.3þ1.5
−1.2

GW190602_175927 105þ10
−9 93þ13

−22 99þ15
−15 10.0þ2.0

−1.4 10.0þ17.2
−4.5 8.8þ5.4

−3.6
GW190706_222641 108þ11

−10 109þ7
−12 112þ7

−8 10.9þ2.4
−2.2 20.4þ25.2

−12.9 19.4þ7.2
−8.9

GW190708_232457 497þ10
−46 642þ279

−596 � � � 2.1þ0.2
−0.1 24.6þ23.0

−22.6 � � �
GW190727_060333 178þ18

−16 345þ587
−267 201þ11

−21 6.1þ1.1
−0.8 21.1þ25.6

−17.9 15.4þ5.3
−6.1

GW190828_063405 239þ10
−11 247þ350

−15 � � � 4.8þ0.6
−0.5 17.3þ25.3

−10.4 � � �
GW190910_112807 177þ8

−8 166þ9
−8 174þ12

−8 5.9þ0.8
−0.5 13.2þ17.1

−6.2 9.5þ3.1
−2.7

GW190915_235702 232þ14
−18 534þ371

−493 � � � 4.6þ0.8
−0.6 15.0þ30.1

−13.1 � � �
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through the potential barrier and escape [242–247].
Detecting these GW echoes would be clear evidence of
the existence of these proposed ECOs [248–250], though
there are still no full and viable models of ECOs that
produce echoes [247,251–254].
We employ a template-based approach [255] that uses

the model proposed in [256] to search for GW echoes. The
waveform model takes the ringdown part of an IMR
waveform and repeats the modulated ringdown waveform
according to five additional echo parameters which control
the relative amplitude of the echoes, the damping factor
between each echo, the start time of ringdown, the time of
the first echo with respect to the merger, and the time delay
between each echo. We adopt a uniform prior for each of
the echo parameters. We used IMRPHENOMPV2 as the IMR
waveform approximant for all the events we analyzed
except for GW190521 where NRSUR7DQ4 was used instead.
The pipeline computes the log Bayes factor log10 BIMRE

IMR of
the data being describable by an inspiral-merger-ringdown-
echoes (IMRE) waveform versus an IMR waveform and
uses it as the detection statistic to identify the existence of
echoes in the data.
We analyze 31 BBH signals from GWTC-2 passing our

false-alarm rate threshold (see Sec. II and Table I) and

report the search results of GW echoes in Table X.11 No
statistically significant evidence of echoes was found in the
data; it was reported in [255] that for detector noise
fluctuations typical for O1, a detection threshold for
log10 BIMRE

IMR was found to be roughly 2.48 by empirically
constructing the background distribution of the Bayes
factor if we require the false-alarm probability to be
≲3 × 10−7. The event GW190915_235702 has the highest
log10 BIMRE

IMR of merely 0.17, which indicates negligible
support for the presence of GW echoes in the data. While
we did not present the Bayes factor for GW151012 and
GW170729 here as their corresponding FARs are above the
threshold, the results are consistent with no significant
evidence of echoes being found in the data. The null results
for O1 and O2 events are consistent with what was reported
in [255,257–261]. The posterior distributions of the extra
echo parameters mostly recover their corresponding prior
distributions, consistent with the fact that we did not detect
any echoes in the data.

VIII. POLARIZATIONS

Generic metric theories of gravity may allow up to six
GW polarizations [262,263]. These correspond to the two
tensor modes (helicity �2) allowed in GR, plus two
additional vector modes (helicity �1), and two scalar
modes (helicity 0). The polarization content of a GW is
imprinted in the relative amplitudes of the outputs at

FIG. 14. The 90% credible region of the joint posterior
distribution of the fractional deviations of the frequency δf̂220
and the damping time δτ̂220, and their marginalized posterior
distributions, for the l ¼ jmj ¼ 2; n ¼ 0 mode from the
PSEOBNRV4HM analysis. We only include events that have
SNR > 8 in both the inspiral and postinspiral stage in this plot
where we have sufficient information to break the degeneracy
between the binary total mass and the fractional deviation
parameters in the absence of measurable HMs. The measure-
ments of the fractional deviations for individual events, and as a
set of measurements, both show consistency with GR.

TABLE X. Results of search for GW echoes. A positive value
of the log Bayes factor log10 BIMRE

IMR indicates a preference for the
IMRE model over the IMR model, while a negative value of the
log Bayes factor suggests instead a preference for the IMR model
over the IMRE model.

Event log10 BIMRE
IMR Event log10 BIMRE

IMR

GW150914 −0.57 GW170809 −0.22
GW151226 −0.08 GW170814 −0.49
GW170104 −0.53 GW170818 −0.62
GW170608 −0.44 GW170823 −0.34
GW190408_181802 −0.93 GW190706_222641 −0.10
GW190412 −1.30 GW190707_093326 0.08
GW190421_213856 −0.11 GW190708_232457 −0.87
GW190503_185404 −0.36 GW190720_000836 −0.45
GW190512_180714 −0.56 GW190727_060333 0.01
GW190513_205428 −0.03 GW190728_064510 0.01
GW190517_055101 0.16 GW190828_063405 0.10
GW190519_153544 −0.10 GW190828_065509 −0.01
GW190521 −1.82 GW190910_112807 −0.22
GW190521_074359 −0.72 GW190915_235702 0.17
GW190602_175927 0.13 GW190924_021846 −0.03
GW190630_185205 0.08

11We do not analyze GW190814 because the long data
segment and high sampling rate it requires makes the analysis
prohibitively expensive.
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different detectors, as determined by the corresponding
antenna patterns [1,264–267]. This fact can be used to
reconstruct the GW polarization content from the data,
although a five-detector network would be needed to do
this optimally with transient signals. The existing three-
detector network may be used to distinguish between some
specific subsets of all the possible polarization combinations.
We previously reported constraints on extreme polari-

zation alternatives (full tensor versus full vector, and
full tensor versus full scalar) in [13–15], using a simplified
analysis that relied on GR templates [267]. None
of the events analyzed (GW170814, GW170817, and
GW170818) disfavored the tensorial hypothesis. Because
the source sky location was known from electromagnetic
observations [268], the results were strongest for
GW170817, which we found to be highly inconsistent
with the full-vector and full-scalar hypotheses with (base
ten) log Bayes factors ≳20 [14]. Although this is strong
evidence against vector or scalar being the only possible
GW polarization, it does not strictly preclude scenarios in
which only some sources produce vector-only or scalar-
only GWs.
Here we probe the same extreme polarization hypotheses

as in previous studies, but through a different technique that
does not rely on specific waveform models. This null-
stream based polarization test is a Bayesian implementation
of the null stream construct proposed in [269], generalized
to vector and scalar antenna patterns [88,264]. A null
stream is a linear combination of the data streams from
different detectors that is known to be free of true GWs with
a given helicity and sky location, irrespective of the GW
waveform. Any excess power remaining in the null stream
must have been produced by a GW signal whose helicity or
sky location is not what was assumed. We quantify such
excess power by means of the null energy, as defined in
[87]. If the polarization modes and the sky location of the
GW signal are correctly specified, this quantity will
fluctuate solely due to instrumental noise and will follow
a chi-squared distribution [87]. This provides a likelihood
function for the hypothesis that the data contain a signal
with a given helicity and sky location. By marginalizing
over the source location, we may obtain the evidences of
different polarization hypotheses and compute Bayes
factors comparing them. We take a uniform distribution
over the celestial sphere as our sky-location prior and
compute evidences through an extended version of the
BANTAM pipeline presented in [88].
In Table XI, we present the resulting Bayes factors for

full-tensor versus full-vector BT
V, and full-tensor versus full-

scalar BT
S. None of the signals analyzed favor either of the

non-GR hypotheses (full-vector, or full-scalar) to any
significant degree. The Bayes factors in Table XI are less
informative than those in [13–15] because the present
method does not attempt to track the signal phase across
time, relying only on signal power added incoherently

across time–frequency pixels of the null stream [87].
The events yielding the lowest Bayes factors are
GW190503_185404 and GW190720_000836, with
log10BT

V ¼ −0.072 and log10BT
S ¼ −0.074 respectively;

on the other hand, the event yielding the highest Bayes

TABLE XI. Base-ten logarithms of Bayes factors for different
polarization hypotheses: full-tensor versus full-vector (log10 BT

V),
and full-tensor versus full-scalar (log10 BT

S ). These results were
obtained with the waveform independent method described in
Sec. VIII. They are less informative than those in [13–15] because
the present method does not attempt to track the signal phase
across time.

Event log10 BT
V log10 BT

S

GW170809 0.078 0.421
GW170814 −0.032 0.740
GW170818 0.002 0.344
GW190408_181802 0.076 0.480
GW190412 0.079 0.539
GW190503_185404 −0.072 1.245
GW190512_180714 −0.024 0.346
GW190513_205428 0.139 1.380
GW190517_055101 0.008 0.730
GW190519_153544 0.067 0.799
GW190521 0.093 1.156
GW190602_175927 −0.064 0.373
GW190706_222641 0.052 0.771
GW190720_000836 0.034 0.074
GW190727_060333 0.087 1.024
GW190728_064510 −0.024 0.083
GW190828_063405 0.063 0.851
GW190828_065509 −0.034 0.084
GW190915_235702 0.020 1.238
GW190924_021846 −0.051 0.384

FIG. 15. Distribution of log10 Bayes factors for different
polarization hypotheses: full-tensor versus full-vector (red),
and full-tensor versus full-scalar (blue). The horizontal axis of
this strip plot represents the logarithm of BT

V=S in Table XI, with
each red/blue marker corresponding to a single event; the vertical
axis carries no meaning. Values of log10 BT

V=S < 0 indicate a
preference for the nontensor hypothesis (hatched region). The
different spreads of the sets of markers are as expected for GR
signals, and no event reaches large negative values of log10 BT

V=S,
meaning all signals are consistent with tensor polarizations.
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factors is GW190513_205428 for both vector and scalar,
with log10BT

V ¼ 0.139 and log10BT
S ¼ 1.380 respectively.

The distributions of log10 BT
V and log10 BT

S are as
expected from GR signals with the observed SNRs
[270]. As is clear from Fig. 15, the scalar results more
decisively favor the tensor hypothesis than the vector ones.
The asymmetry between the vector and scalar results is
explained by the intrinsic geometries of the LIGO–Virgo
antenna patterns, which make scalar waves easier to
distinguish [270]. As in previous studies, we conclude
there is no evidence for pure vector or pure scalar
polarizations.

IX. CONCLUSIONS AND OUTLOOK

GWs give us an opportunity to observationally probe the
nature of gravity in its strong-field, dynamical regime,
which is difficult to access by other means. With an ever-
growing number of detections, we are now able to put GR
to the test with increasing precision and in qualitatively new
ways. In this paper, we presented eight tests of GR and the
nature of BHs using signals from the latest LIGO-Virgo
catalog, GWTC-2 [16]. These tests leverage different
aspects of GW physics to constrain the null hypothesis
that our signals were produced by merging Kerr BHs in
agreement with Einstein’s theory, and that our GR-based
models are sufficient to capture their behavior. We find that
all of the LIGO-Virgo detections analyzed are consistent
with GR, and do not find any evidence for deviations from
theoretical expectations, or unknown systematics.
We began by checking the consistency of the data with

the GR prediction in a generic way through the residuals
and IMR consistency tests (Sec. IV). We found that, for
all events, residual data obtained after subtracting a
best-fit GR waveform are consistent with instrumental
noise (Sec. IVA) and confirmed that events return com-
patible parameter estimates when the low- and high-
frequency regimes are analyzed separately (Sec. IV B).
Next we focused on controlled deviations away from the

GR prediction for the GW waveform (Sec. VA). Allowing
for corrections to the GW phasing through inspiral PN
parameters, as well as phenomenological merger-ringdown
coefficients, we found no evidence for GR deviations, and
improved previous constraints in [15] by a factor of ∼2. We
also targeted specific deviations in the GW phasing due to
modifications to the spin-induced quadrupole moment of
the binary components, obtaining broad constraints in
agreement with the Kerr hypothesis (Sec. V B). Through
a generalized dispersion relation, we tested GR’s prediction
that GWs propagate without dispersion and that the
graviton is massless (Sec. VI). We found no evidence
for GW dispersion, and tightened previous constraints on
Lorentz-violating dispersion parameters by a factor of
∼2.6. Notably, we constrained the mass of the graviton
to be mg ≤ 1.76 × 10−23 eV=c2 with 90% credibility—an

improvement of a factor of 2.7 over the GWTC-1 meas-
urement [15], and of 1.8 over Solar System bounds [197].
The detection of relatively high-mass events, coupled with

the development of novel analysis techniques, allowed us to
probe the properties of the merger remnant through targeted
studies of the signal aftermerger.Wevalidated the expectation
that the remnants wereKerr BHs, constrainingQNMfrequen-
cies and damping times (Sec. VII A). The results show
agreement with Kerr remnants: the population-marginalized
constraint on the fractional deviation away from the Kerr
frequency is δf̂220 ¼ 0.03þ0.38

−0.35 for the 220mode, and δf̂221 ¼
0.04þ0.27

−0.32 for the 221 mode at 90% credibility. In addition, we
considered the existence of GW echoes—repetitions of the
postmerger signal that could signal the presence of some
reflective structure near the presumed event horizon of the
remnant object, absent for classical BHs (Sec. VII B). A
search for such excess power after the main signal using
periodic templates yielded no significant evidence for echoes.
Finally, we studied the polarization content of GWs with

a new approach that does not make use of templates to
reconstruct the signal power (Sec. VIII). With only three
active detectors, we cannot simultaneously constrain all the
six possible GW polarizations allowed in generic metric
theories of gravity (scalar, vector, and tensor). Instead, as in
previous studies, we compared the likelihood of having
purely scalar or purely vector polarizations against the pure
tensor case, predicted by GR. We found no evidence in
favor of nontensor GWs.
Our conclusions come from the analysis of multiple

BBH signals, studied individually and collectively. To
understand our measurements holistically, we made use
of a variety of statistical techniques, including hierarchical
Bayesian inference, to evaluate the agreement of our set of
measurements with the expectation from GR. As the
number of GW detections continues to grow, these strat-
egies will become increasingly indispensable as tools to
properly interpret our data and their agreement with theory,
as well as to tease out potential disagreements that would be
indiscernible from individual signals. With constantly
improving detectors and analysis capabilities, we will
continue to expand the scope and sensitivity of our tests
of GR and our probes of the nature of BHs when analyzing
data from O3b and future observing runs.
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APPENDIX A: RESIDUALS p-VALUE
UNCERTAINTY

The light-blue band in Fig. 2 represents the 90%-credible
band on the cumulative distribution of p-values from the

residuals analysis (Sec. IVA). This incorporates two types
of uncertainty [284]:

(i) uncertainty in the true p-value for any specific event,
due to the finite number of noise instantiations used
to compute the background SNR90;

(ii) uncertainty in the fraction of events yielding a p-
value below any given benchmark, due to the finite
number of events observed.

These two types of ignorance translate into uncertainty in the
abscissa and ordinate values in Fig. 2, respectively. We
compute the corresponding credible band as explained below.
The true (unknown) p-value for a given event is

estimated by counting the number of noise instances n
that yield an SNR90 greater than or equal to the on-source
threshold SNRthr

90 , out of a total N ¼ 193 trials. We denote
the true p-value by p ¼ PðSNRthr

90 ≤ SNR90Þ, and the
estimate from finite noise instances as p̂ ¼ n=N. For a
given true value of p, the expected likelihood of observed p̂
will be given by the binomial distribution,

Pðn;NjpÞ ¼
�
N

n

�
pnð1 − pÞN−n; ðA1Þ

by definition of the p-value. Under the null hypothesis, we
expect p to be uniformly distributed, so we may set this as
our prior and obtain a posterior distribution on p func-
tionally identical to the likelihood. With p as the variable,
this is a beta distribution,

p ∼ Betaðnþ 1; N − nþ 1Þ; ðA2Þ

which has mean hpi ¼ ðnþ 1Þ=ðN þ 2Þ ≈ p̂. The central
blue line in Fig. 2 corresponds to p̂, rather than hpi, but the
two are effectively equivalent.
To produce the credible band in Fig. 2, we further need to

understand the expected distribution of p̂’s for a set of
Ne ¼ 34 events. To do this, we produce a large number of
synthetic p-value sets by drawing each of the Ne elements
from Eq. (A2), with n andN corresponding to the measured
values for each event. Each individual simulation produces
a PP curve akin to the central line in Fig. 2. These curves
are contained within the light blue band 90% of the time.

APPENDIX B: INSPIRAL-MERGER-RINGDOWN
CONSISTENCY TEST SYSTEMATICS

1. Redshifted total mass

From the study of simulated signals, it is known that the
IMR consistency test of Sec. IV B may be strongly biased
for heavy BBHs. This is because sources with high
redshifted mass lead to short signals in the detectors and
do not contain sufficient information about the inspiral
regime. For this reason, most of the results discussed in the
main text (namely, Figs. 3 and 4) imposed a criterion on the
median redshifted total mass so that ð1þ zÞM < 100 M⊙.
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Here we discuss the results for the events that did not make
that cut.
Excessively high redshifted masses can lead to strong

systematic biases in ΔMf=M̄f . This is evident in Fig. 16,
which is the equivalent of Fig. 3 for the heavy events with
median ð1þ zÞM > 100 M⊙ that we excluded in the main
text. In spite of this, the joint posterior obtained by
multiplying the individual results is hardly affected by
the inclusion of the biased events (cf. gray and black
distributions in Fig. 16). This is because the joint posterior
is driven by the individual events whose distributions have
the narrowest support: the deviations towards high
ΔMf=M̄f get washed out, and the combined result thus
fails to identify that a significant fraction of the signals do
not conform to the null hypothesis.
The hierarchical results are, on the other hand, sensitive

to this sort of effect. This can be seen most clearly in the
posterior for the ΔMf=M̄f hyperdistribution mean μ and
standard deviation σ, as defined in Sec. III B. Figure 17
shows the marginal distributions for these parameters as
obtained when including (excluding) the events with ð1þ
zÞM > 100 M⊙ in red (blue). The subpopulation of biased
events manifests itself in anomalous distributions for the
hyperparameters that disfavor μ ¼ σ ¼ 0. Removing the
heavy events, which are known to be biased, restores
support for μ ¼ σ ¼ 0, and yields the nominal observed
distribution shown in Fig. 4.

2. Waveform modeling

In order to gauge systematic errors arising from imper-
fect waveform modeling, we perform the IMR consistency
test using both IMRPHENOMPV2 and SEOBNRV4_ROM.
Although SEOBNRV4_ROM is a nonprecessing waveform
approximant, we find that the posteriors are in broad
agreement with no qualitative differences between the

FIG. 16. As in Fig. 3 of the main text, but for the events
excluded for having median ð1þ zÞM > 100 M⊙ (Table IV).
These events present a systematic bias in ΔMf=M̄f . The gray
distribution corresponds to the same joint posterior as in Fig. 3,
while the thin black one is obtained if the heavy events are also
included.

FIG. 17. Marginal posteriors for the hyperdistribution mean μ
and standard deviation σ for the ΔMf=M̄f measurements in
GWTC-2. If the biased events with median ð1þ zÞM > 100 M⊙
are included (red) the analysis mildly suggests a deviation from
the null-hypothesis (μ ¼ σ ¼ 0); as expected, this goes away if
the heavy events are excluded (blue). The nominal blue posteriors
correspond to the population distribution presented in Fig. 4.

FIG. 18. As per Fig. 3 but using the nonprecessing SEOBNRV4_-
ROM waveform model. Posteriors for the heavier events in Fig. 17
are not shown here, but are included in the data release for this
paper [53]. Results for GW190412 and GW190814 are not
included due to the relative importance of HMs, as discussed in
Sec. IV B.
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results (Fig. 18). Assuming that the fractional deviations
take the same value for all events, at 90% credibility we
find ΔMf=M̄f ¼ 0.01þ0.09−0.08 and Δχf=χ̄f ¼ −0.05þ0.11−0.09 when
using SEOBNRV4_ROM, consistent with the GR values.
The differences in individual posteriors are expected due

to differing physics and modeling of the final state between
the approximants. For the two events in the IMR test where
HMs are important, GW190412 [111] and GW190814
[66], we use IMRPHENOMPV3HM as the preferred waveform
approximant. As systematic errors are demonstrably larger
when neglecting HMs for these two events, they are
excluded when constructing the joint posteriors for the
SEOBNRV4_ROM analysis.

APPENDIX C: IMPACT OF HIGHER MOMENTS
ON PARAMETRIZED TESTS

For the tests detailed in Sec. VA, the majority of events
were analyzed using IMRPHENOMPV2 and SEOBNRV4_ROM,
which only model the dominant l ¼ 2 modes and neglect
subdominant spherical harmonic multipoles. However, two
of the BBHs considered in our analysis, GW190412 [111]
and GW190814 [66], have asymmetric component masses
and detailed investigations show strong evidence for the
presence of HMs. Using approximants that only capture the
dominant l ¼ 2multipole moments could therefore lead to
systematic errors and biases that present as false deviations
of GR. In order to mitigate such systematics, we analyzed
both these events using IMRPHENOMPV3HM, a precessing
waveform approximant incorporating HMs, and
GW190814 with SEOBNRV4HM_ROM, an aligned-spin
approximant with HMs, as described in Sec. III.

In Fig. 19 we show the marginalized 1D posteriors for
the parametrized violations of GR using IMRPHENOMPV3HM

and SEOBNRV4HM_ROM. As this is the first time that
constraints are obtained using approximants with HMs,
we explicitly show the marginalized 1D posteriors for the
deviation coefficients. As mentioned in the main text, it is
not necessarily surprising that we find some events for
which the GR values fall in the tail of the posterior, as is the
case for GW190814. The fact that this takes place for
several GW190814 coefficients is also not necessarily
abnormal, since these are not statistically independent
measurements. In addition, due to the way in which the
parametrized tests are implemented, certain regions of the
parameter space can lead to unphysical and pathological
features in the waveform, potentially leading to multimodal
posteriors and poor convergence of the posterior samples.
Such features are observed in the δφ6 and δφ7 posteriors for
the IMRPHENOMPV3HM analysis of GW190814, as in
Fig. 19, and pathologies were found to occur when δφ6

(δφ7) becomes too negative (positive). We urge caution
about the use and interpretation of these two coefficients in
further studies, but find that these GW190814 results do not
have any notable impact on the combined posteriors and the
resulting hierarchical analysis. GW190814 is highly asym-
metric and occurs in a region of the parameter space in
which parametrized tests have not been systematically
studied. For future analyses, detailed studies across the
parameter space will be important in characterizing sys-
tematic errors, biases, and waveform pathologies as well as
their impact on parameter estimation.

FIG. 19. Posteriors for parametrized violations of GR inferred using IMRPHENOMPV3HM and SEOBNRV4HM_ROM (black solid lines).
The horizontal solid lines indicate the 90% credible intervals and the white dashed line marks the median. The horizontal dashed line at
δp̂i ¼ 0 denote the GR values. Posteriors for GW190412 are shown in blue and for GW190814 in red.
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83Università di Roma “La Sapienza”, I-00185 Roma, Italy

84Univ Rennes, CNRS, Institut FOTON—UMR6082, F-3500 Rennes, France
85The Pennsylvania State University, University Park, Pennsylvania 16802, USA
86Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India

87Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France,
F-75005 Paris, France
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103Università di Roma Tor Vergata, I-00133 Roma, Italy

104Departamento de Astronomía y Astrofísica, Universitat de València,
E-46100 Burjassot, València, Spain
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