
 

Cross section of the process e + e− → pp̄ in the vicinity of charmonium
ψð3770Þ including three-gluon and D-meson loop contributions
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The total cross section of the process eþe− → pp̄ is calculated within the energy range close to the mass
of ψð3770Þ charmonium state. It was shown that the main contribution to this cross section comes from
three gluon mechanism which is also responsible of the large phase with respect to the Born amplitude.
This phase provides the characteristic dip behavior of the cross section in contrast to the usual Breit-Wigner
peak shape. Okubo–Zweig–Iizuka-allowed mechanism with D-mesons in the intermediate state was also
estimated and gives relatively small contribution to the cross section and to the phase.
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I. INTRODUCTION

The electron-positron colliders allow to study different
physical processes with final particles in pure JPC ¼ 1−−

state. For example, single charmonium production gives the
possibility to look at the relativistic bound state of c-quarks,
elaborate and test new ideas of confinement description and
to search for possible exotic admixtures in the wave
function of the state.
One of the intriguing states of charmonium is ψð3770Þ

which was studied by many collaborations (for example, by
KEDR-VEPP-4M [1,2], CLEO [3] and more recently by
BES III [4,5]). Especially the latter one [5] made precise
measurement of the total cross section at the specific
kinematics of ψð3770Þ mass and showed that instead of
a Breit–Wigner peak one can see a dip in the dependence of
the total invariant mass squared s (see Fig. 2 in [5]). This
observation immediately led to the conclusion that there
must be some mechanism which generates large relative
phase ϕ between resonant and continuum terms in the
amplitude. And indeed soon some possible explanation of
this phase was suggested in Ref. [6] where is was attributed
to the OZI-violated three gluon mechanism of charmonium
ψð3770Þ transition into final proton-antiproton state. This
type of mechanism was already shown to give large phase
for another charmonium χ2ð3P2Þ in Ref. [7]: it was shown
that two gluon mechanism can produce the phase of order
of ϕ ∼ −90°.

Here we want to continue the elaboration of three gluon
model from Ref. [6] and to refine D-meson loop calcu-
lation. We compare our estimations of the total cross
section with the precise experimental data of ψð3770Þ
production obtained at BES III [5].
The paper is organized in the following manner: in

Sec. II the total cross section of the process eþe− → pp̄ in
Born approximation (that is the so-called continuum part) is
obtained and some kinematical notations are introduced;
Section III is the main calculation part of the paper, the
extra resonant contribution to the amplitude is added and
the formalism of how to take it into account in the cross
section is developed. There are two subsections: Sec. III A
describes the details of calculation of possible OZI-allowed
mechanism with D-meson loop, while Sec. III B briefly
reminds some key steps of three gluon mechanism calcu-
lation from [6] (with some minor corrections of typos and
errors in [6]); Section IV gives some numerical estimations
and comparison of our calculation with experimental data
from BES III [5]; Section V summarizes our results and
proposes some possible extension of this work in the future.

II. BORN APPROXIMATION

We consider the process of proton-antiproton pair
creation in an electron-positron collisions:

eþðqþÞ þ e−ðq−Þ → pðpþÞ þ p̄ðp−Þ; ð1Þ

where quantities in parenthesis are the 4-momenta of
the corresponding particles. In Born approximation [see
Fig. 1(a)] the electron-positron pair annihilates into virtual
photon, which then produces proton-antiproton pair. The
amplitude MB corresponding to this process has the form:
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MB ¼ 1

s
Jeē→γ
μ ðqÞJμγ→pp̄ðqÞ; ð2Þ

where s ¼ q2 ¼ ðqþ þ q−Þ2 ¼ ðpþ þ p−Þ2 is the total
invariant mass squared of the lepton pair (q is the momenta
of intermediate photon). The quantities Jeē→γ

μ and Jγ→pp̄
μ

from (2) are lepton and proton electromagnetic currents:

Jeē→γ
μ ðqÞ ¼ −e½v̄ðqþÞγμuðq−Þ�; ð3Þ

Jγ→pp̄
μ ðqÞ ¼ e½ūðpþÞΓμðqÞvðp−Þ�; ð4Þ

where e is the modulus of electron charge e ¼ ffiffiffiffiffiffiffiffi
4πα

p
and

α ≈ 1=137 is the fine structure constant [8]. The proton
current is described in terms of the proton electromagnetic
form factors:

ΓμðqÞ ¼ F1ðq2Þγμ −
F2ðq2Þ
4Mp

ðγμq̂ − q̂γμÞ: ð5Þ

where we use the notation â≡ aμγμ. Here Mp is the mass
of proton and functions F1;2ðq2Þ are the proton electro-
magnetic form factors normalized as F1ð0Þ ¼ 1 and
F2ð0Þ ¼ μp − 1, where μp is the proton anomalous mag-
netic moment. In paper [6] we used the result of the paper
[9] and assumed that energy range under our consideration,
i.e.,

ffiffiffi
s

p
∼ 3–4 GeV, is not far from pp̄ production thresh-

old and thus we can neglect by F2 and use the pointlike
proton approximation, putting F1 ¼ 1. However recent
analysis [10] showed that the situation is not so evident
and pointlike proton approximation is not valid at this
energy range. That is why we use the effective form
factor G(s):

jGðsÞj ¼ C
s2 log2ðs=Λ2Þ ; ð6Þ

(as it was done in [5] following to the results of [11]) which
is obtained in the assumption that electric GE and magnetic
GM form factors of the proton are equal: jGEj ¼ jGMj. That
assumption leads to F1ðsÞ ¼ GðsÞ and F2ðsÞ ¼ 0. The
form factor (6) is the pQCD inspired form factor [12,13],
which is in a fair agreement with the cross section of the
process (1) in the energy range

ffiffiffi
s

p
from 2 GeV to 3.07 GeV

measured by BES [14]. We note that expression (6) for the
form factor does not reproduce the near threshold behavior
which needs more delicate treatment of the final state
interaction for proton-antiproton pair. This was done, for
example, in paper [15]. The energy range of our interest lies
far enough from threshold and thus we do not need to take
into account these details.
In Eq. (6) the quantity Λ ¼ 300 MeV is the QCD scale

and C is a free parameter fitted in [5] to be equal to
C ¼ ð62.6� 4.1Þ GeV4. This fit also agrees with more
recent result [16] where this constant was fitted to be
C ¼ 72 GeV4 while Λ ¼ 520 MeV. During our numerical
estimations we use the BES values of C and Λ.
Using the amplitude MB from (2) one can write down

the cross section in the standard way:

dσB ¼ 1

8s

X
spins

jMBj2dΦ2; ð7Þ

where the summation of the amplitude square jMBj2 runs
over all possible initial and final particles spin states. We
also systematically neglect the mass of the electron me in
this paper. The phase volume of final particles dΦ2 has the
form:

dΦ2 ¼
1

ð2πÞ2 δðqþ þ q− − p− − pþÞ
dpþ
2Eþ

dp−

2E−

¼ jpj
24π2

ffiffiffi
s

p dΩp ¼ β

24π
d cos θp; ð8Þ

where dΩp ¼ dϕpd cos θp and ϕp and θp are the azimuthal
and polar angles of the final proton in the center-of-mass
reference frame (center of mass system, c.m.s), i.e., θp is
the angle between 3-momenta of the initial electron q− and
the final proton pþ (see Fig. 2) and jpj≡ jpþj ¼ jp−j ¼ffiffiffi
s

p
β=2 is the modulus of 3-momenta of the final proton or

antiproton. The quantity β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

p=s
q

is the final

proton velocity. Using the explicit form of MB from (2)
and integrating over the final particles phase space (8) from
(7) one obtains:

dσB
d cos θp

¼ πα2β

2s
ð2 − β2 sin2 θpÞjGðsÞj2: ð9Þ

(a)

(b)

FIG. 1. Feynman diagrams of the process eþe− → pp̄ in Born
approximation (left) and with the charmonium ψð3770Þ inter-
mediate state (right).
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The total cross section in the Born approximation then
reads as:

σBðsÞ ¼
2πα2

3s
βð3 − β2ÞjGðsÞj2; ð10Þ

which is in a good agreement with the experimental data
[5,17,18] on a wide energy range far from the resonance
ψð3770Þ, see Fig. 3.

III. THE QUARKONIUM ψð3770Þ
INTERMEDIATE STATE

As one can see in Fig. 3 the total cross section including
only the electromagnetic mechanism (10) fails to describe
this delicate behavior in the vicinity of the charmonium
resonance ψð3770Þ. Obviously in this region one should
take into account the additional contribution to the ampli-
tude which appears from the diagram with ψð3770Þ in the
intermediate state [see Fig. 1(b)] and is enhanced by Breit–
Wigner propagator. This leads the total amplitudeM of the
process (1) to become the sum of two terms:

M ¼ MB þMψ ; ð11Þ

where MB is the Born amplitude from (2) [see Fig. 1(a)]
and Mψ takes into account this second mechanism [see
Fig. 1(b)]:

Mψ ¼ gμν − qμqν=M2
ψ

s −M2
ψ þ iMψΓψ

Jeē→ψ
μ ðqÞJψ→pp̄

ν ðqÞ; ð12Þ

whereMψ and Γψ are the mass and the total decay width of
ψð3770Þ resonance and Jeē→ψ

μ and Jψ→pp̄
μ are the currents

which describe the transition of lepton pair into ψð3770Þ
resonance and the transition of the ψð3770Þ resonance
into proton-antiproton pair correspondingly. We notice
that the second term in the numerator of (12) does not
contribute since the currents have to be conserved:
qμJeē→ψ

μ ¼ qμJψ→pp̄
μ ¼ 0. Next step is to assume that

Jeē→ψ
μ has the same structure as Jeē→γ

μ from (3), i.e.,

Jeē→ψ
μ ðqÞ ¼ ge½v̄ðqþÞγμuðq−Þ�; ð13Þ

where the constant ge ¼ Fψ→pp̄
1 ðM2

ψÞ is the value of the
form factor of the vertex ψ → pp̄ at the ψð3770Þ mass-
shell (here we follow the same approximation as in the
Born case and assume that Fψ→pp̄

2 ðM2
ψÞ ¼ 0). This constant

is defined via ψ → eþe− decay width Γψ→eþe− ¼ 261 eV
[8] which gives the following value:

ge ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πΓψ→eþe−

Mψ

s
¼ 1.6 × 10−3: ð14Þ

We neglect a possible imaginary part of vertex eē → ψ
since it was shown in [7] that it is small, less than 10% of
the real part.
The strategy for calculating the contribution Mψ to the

cross section is the following. If we introduce the relative
phase ϕ between Born contribution MB and the additional
contribution Mψ then we can write the cross section as:

σ ∼ jMj2 ¼ jjMBj þ eiϕjMψ jj2
¼ jMBj2 þ 2 cosϕjMBj · jMψ j þ jMψ j2
∼ σB þ σint þ σψ : ð15Þ

Knowing the Born cross section σB from (10) and the
interference contribution σint with the phase ϕ one can
calculate the total cross section including both contribu-
tions using (15) and evaluating σψ in the following manner:

σψ ¼
�

σint
2 cosϕ

ffiffiffiffiffi
σB

p
�

2

: ð16Þ

Thus we need to evaluate only the interference of the
resonant amplitude Mψ with the Born amplitude MB

which has the standard form:

dσint ¼
1

8s

X
spins

2Re½Mþ
BMψ �dΦ2: ð17Þ

FIG. 2. The definition of scattering angle θp from (8) in the
center-of-mass reference frame.

FIG. 3. Experimental total cross section for the process eþ þ
e− → p̄þ p around charmonium ψð3770Þ.
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Our goal is to get the contribution to the total cross section
thus we integrate over the final particles phase space:

σintðsÞ ¼
1

4s2
Re

�P
sðJeē→γ

μ Þ�Jeē→ψ
ν

s −M2
ψ þ iMψΓψ

×
X
s0

Z
dΦ2ðJμγ→pp̄Þ�Jνψ→pp̄

�
; ð18Þ

where
P

s is the summation over the spin states of initial
particles and

P
s0 is the summation over the final particles

spin states. Next we use invariant integration trick:

X
s0

Z
dΦ2ðJμγ→pp̄Þ�Jνψ→pp̄

¼ 1

3

�
gμν −

qμqν

q2

�X
s0

Z
dΦ2ðJαγ→pp̄Þ�Jψ→pp̄

α :

Applying the conservation of the currents Jeē→γ
μ and Jeē→ψ

ν ,
recalling thatX

s

ðJeē→γ
μ Þ�Jμeē→ψ ≈ −egeSp½q̂−γμq̂þγμ� ≈ 4eges;

and using the phase volume from (8) we get the following
simplified expression of the interference contribution to the
total cross section:

σintðsÞ ¼
egeβ
48πs

Re

�
1

s −M2
ψ þ iMψΓψ

×
Z

1

−1
d cos θp

X
s0
ðJαγ→pp̄Þ�Jψ→pp̄

α

�
: ð19Þ

Thus we can present the interference contribution to the
total cross section in the form:

σintðsÞ ¼ Re

�
SiðsÞ

s −M2
ψ þ iMψΓψ

�
; ð20Þ

where SiðsÞ contains all the dynamics of the transformation
of charmonium into proton-antiproton pair and has the
following explicit form:

SiðsÞ ¼
egeβ
48πs

Z
1

−1
d cos θp

X
s0
ðJαγ→pp̄Þ�Jψ→pp̄

α : ð21Þ

The subscript index i above denotes the type ofmechanismof
this transformation. Since themass ofψð3770Þ is higher than
the threshold of D-meson pair production it is natural to
expect that theD-meson loop will be the main mechanism in
this reaction (see Fig. 4).However thismechanism appears to
be small since the mass of ψð3770Þ exceeds the D-meson
pair production threshold slightly (one can see that

ðMψ − 2MDÞ=Mψ ≈ 1%). Thus below, in Sec. III B, we
consider also the OZI-violated three gluon mechanism (see
Fig. 5) which appears to give the dominant contribution.

A. D-meson loop mechanism

The D-meson loop mechanism can be illustrated by the
diagram in Fig. 4. It is known that the ψð3770Þ structure is
somewhat complicated. For example it leads to a specific
peak shape of the cross section of the process eþe− → DD̄
in the vicinity of ψð3770Þ state mass. One of the strong
conjecture to interpret this fact is to suppose the presence of
a ψð2SÞ resonance with mass close to the ψð3770Þ [19]. We
however do not dive into this complicated consideration
sinceD-meson loop contribution appears to be small in our
case and one can limit oneself with single two quark state
with spin 1. We introduce the following parametrizations:
vertex

FIG. 4. D-meson loop mechanism.

FIG. 5. Three gluon mechanism.
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in the Fig. 4 gives the corresponding factor

−iGψDD̄ðq2; k21; k22Þðk1 þ ð−k2ÞÞμeμ; ð22Þ

in the amplitude, while vertex

leads to a factor

−iGΛDPðk2; p2Þiγ5: ð23Þ

Here eμ is the polarization vector of charmonium ψð3770Þ.
In the calculation we do not need to know the complete
functional dependence of functions GψDD̄ðq2; k21; k22Þ and
GΛDPðk2; p2Þ. We discuss this dependence in this sec-
tion below.
Let us write down the D-meson loop contribution to the

amplitude from the diagram in Fig. 4:

MD ¼ ge
16π2

½v̄ðqþÞγμuðq−Þ�
q2 −M2

ψ þ iMψΓψ

Z
dk
iπ2

×
½ūðpþÞγ5ðk̂þMΛÞγ5vðp−Þ�ð2kþ p− − pþÞμ

ðk2 −M2
ΛÞððk − pþÞ2 −M2

DÞððkþ p−Þ2 −M2
DÞ

×GψDD̄ðq2; ðkþ p−Þ2; ðk − pþÞ2Þ
×GΛDPðk2; ðk − pþÞ2ÞGΛDPðk2; ðkþ p−Þ2Þ; ð24Þ

whereMD andMΛ are masses ofD-meson and Λc-hyperon
correspondingly. Comparing this amplitude with the gen-
eral form (12) one can extract the current:

Jψ→pp̄
μ ðqÞ¼ 1

16π2

Z
dk
iπ2

×
½ūðpþÞγ5ðk̂þMΛÞγ5vðp−Þ�ð2kþp−−pþÞμ
ðk2−M2

ΛÞððk−pþÞ2−M2
DÞððkþp−Þ2−M2

DÞ
×GψDD̄ðs;ðkþp−Þ2;ðk−pþÞ2Þ
×GΛDPðk2;ðk−pþÞ2ÞGΛDPðk2;ðkþp−Þ2Þ;

ð25Þ

and insert it into (21). This gives the following contribution
of theD-meson loop to the cross section which is expressed
is terms of the quantity SD from (20):

SDðsÞ ¼ αDðsÞZDðsÞ; ð26Þ

where

αDðsÞ¼
αge
243π2

βGðsÞ;

ZDðsÞ¼
1

s

Z
dk
iπ2

×
SpDðs;k2Þ

ðk2−M2
ΛÞððk−pþÞ2−M2

DÞððkþp−Þ2−M2
DÞ

×GψDD̄ðs;ðkþp−Þ2;ðk−pþÞ2Þ
×GΛDPðk2;ðk−pþÞ2ÞGΛDPðk2;ðkþp−Þ2Þ; ð27Þ

and SpDðs; k2Þ is the trace of γ-matrices over the baryon
line:

SpDðs; k2Þ
¼ Sp½ðp̂þ þMpÞγ5ðk̂þMΛÞγ5ðp̂− −MpÞðk̂ −MpÞ�
¼ 2ððk2Þ2 þ k2ðs − 2ðM2

D þMpMΛÞÞ
−sMpMΛ þ cDÞ; ð28Þ

cD ¼ M4
D þ 2MpMΛM2

D þ 2MΛM3
p −M4

p: ð29Þ

Now we need to evaluate the quantity ZDðsÞ from (27). In
order to do this we use Cutkosky rule [20] for D-meson
propagators:

1

ðkþ p−Þ2 −M2
D
→ −2πiδððkþ p−Þ2 −M2

DÞ

× θððkþ p−Þ0Þ;
1

ðk − pþÞ2 −M2
D
→ −2πiδððk − pþÞ2 −M2

DÞ

× θð−ðk − pþÞ0Þ;

and obtain the imaginary part of this quantity:

2iImZDðsÞ ¼
ð−2πiÞ2

s

Z
dk
iπ2

SpD
k2 −M2

Λ

×GψDD̄ðs; ðkþ p−Þ2; ðk − pþÞ2Þ
×GΛDPðk2; ðk − pþÞ2ÞGΛDPðk2; ðkþ p−Þ2Þ
× δððkþ p−Þ2 −M2

DÞδððk − pþÞ2 −M2
DÞ

× θððkþ p−Þ0Þθð−ðk − pþÞ0Þ: ð30Þ

We notice that one can utilize these two δ-functions in (30)
to significantly simplify the evaluation of ImZD. For
example, one can see that usage of δ-functions leads to
the replacements:

δððk − pþÞ2 −M2
DÞ → 2ðkpþÞ ¼ k2 þM2

p −M2
D;

δððkþ p−Þ2 −M2
DÞ → 2ðkp−Þ ¼ M2

D −M2
p − k2;
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which we already used in (28). Performing the loop
integrations one gets:

ImZDðsÞ ¼ −
2π

s3=2
GψDD̄ðs;M2

D;M
2
DÞ

×
Z

1

Cð1Þ
k

dCkffiffiffiffiffiffi
D1

p
X
i¼1;2

k2ðiÞ
k2ðiÞ þM2

Λ

× SpDðs;−k2ðiÞÞG2
ΛDPð−k2ðiÞ;M2

DÞ; ð31Þ

with s > 4M2
D while the integration over cosine of polar

angleCk ¼ cos θk is evaluated numerically below. A details
the derivation of Eq. (31) and the definitions of the

quantities Cð1Þ
k , kðiÞ and D1.

Now we consider the explicit expression of form factors
which we need to evaluate ImZD from (31). First we see
that for ψ → DD̄ vertex we need only dependence over
charmonium virtuality q2 ¼ s, since D-meson legs are
on-mass-shell. We can start with the normalization of
function GψDD̄ðs;M2

D;M
2
DÞ to the decay of charmonium

ψð3770Þ into DD̄ final state. Calculating this decay width
one gets:

gψDD̄ ≡GψDD̄ðM2
ψ ;M2

D;M
2
DÞ

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πΓψ→DD̄

Mψβ
3
D

s
¼ 18.4; ð32Þ

where βD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

D=M
2
ψ

q
is the D-meson velocity in

this decay. The numerical value of gψDD̄ in (32) is obtained
by using the experimental value of the width of charmo-
nium decay into charged (DþD−) and neutral (D0D̄0)
mesons Γψ→DD̄ ¼ 25 MeV [8]. This let us to take into
account all these types of D-mesons in the loop in Fig. 4.
The dynamical dependence of functionGψDD̄ðs;M2

D;M
2
DÞ

we propose following to [21] in the form:

GψDD̄ðs;M2
D;M

2
DÞ ¼

CψDD̄

s logðs=Λ2
DÞ

; s > 0; ð33Þ

where constant CψDD̄ can be found from the normalization
(32) and we get CψDD̄ ¼ gψDD̄M

2
ψ logðM2

ψ=Λ2
DÞ. Finally we

use the following explicit form of function:

GψDD̄ðs;M2
D;M

2
DÞ ¼ gψDD̄

M2
ψ

s

logðM2
ψ=Λ2

DÞ
logðs=Λ2

DÞ
; ð34Þ

where scale ΛD we fix on the characteristic value of the
reaction ΛD ¼ 2MD.
Next we consider the function GΛDPðk2; p2Þ from (31).

And again the only dependence left after the application
of Cutkosky rule is the off-mass-shellness of Λc-hyperon

in the scattering regime, since here k2 ¼ −k2ðiÞ < 0.

The dependence over the virtuality of the D-meson has
disappeared, D-mesons are on mass shell. But still we need
to take into account the remnants of this dependence.
Following to [6] we use this form for ΛDP-vertex with the
off-mass-shell D-meson which was established in [22,23]:

gDðp2Þ ¼ 2M2
DfD

mu þmc

gDNΛ

p2 −M2
D
; ð35Þ

where fD ≈ 180 MeV. For quark masses the following
values are used: mu ≈ 280 MeV and mc ¼ 1.27 GeV [8].
The constant gDNΛ ≈ 6.74 was estimated in [23] in scatter-
ing regime, i.e., for p2 < 0. Thus in our calculation in
Eq. (31) we use the following expression:

GΛDPð−k2ðiÞ;M2
DÞ ¼

fDgDNΛ

mu þmc
; ð36Þ

which do not take the effects of the Λc-hyperon off-mass-
shellness. We expect that these effects are not very
important.
Now we are able to calculate the imaginary part of ZD

following to Eq. (31). The real part of this quantity is
restored by using the dispersion relation (see Appendix B).

B. Three gluon mechanism

The three gluon mechanism was considered in details in
[6] and thus we just briefly recall a few steps of this
calculation in order to correct some misprints and minor
mistakes in formulas of [6] which do not affect the
conclusions of the paper.
The three gluon mechanism presented in Fig. 5 gives the

following contribution to the quantity S3g from (20) (which
coincide with Eqs. (16) and (17) from [6]):

S3gðsÞ ¼ α3gðsÞZ3gðsÞ; ð37Þ

where

α3gðsÞ ¼
αα3s
233

gegcolϕβGðsÞGψ ðsÞ; ð38Þ

Z3gðsÞ ¼
4

π5s

Z
dk1
k21

dk2
k22

dk3
k23

×
Sp3gδðq − k1 − k2 − k3Þ

ððpþ − k1Þ2 −M2
pÞððp− − k3Þ2 −M2

pÞ
; ð39Þ

where the quantity Sp3g is the product of traces over proton
and c-quark lines:
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Sp3g ¼ Sp½Q̂αβγðp̂1 þmcÞγμðp̂2 −mcÞ�
× Sp½ðp̂þ þMpÞγαðp̂þ − k̂1 þMpÞγβ
× ð−p̂− þ k̂3 þMpÞγγðp̂− −MpÞγμ�;

with

Q̂αβγ ¼
γγð−p̂2 þ k̂3 þmcÞγβðp̂1 − k̂1 þmcÞγα
ððp2 − k3Þ2 −m2

cÞððp1 − k1Þ2 −m2
cÞ

þ ½gluon permutations�; ð40Þ

where the permutations over gluon vertices are performed
in the gray block in Fig. 5.
First we notice that there is a misprint in second proton

propagator denominator in Eq. (18) in [6] which is
corrected here in (39). This misprint leads to the following
mistakes in angular integrals in Eq. (21) and in the
Appendix B of [6]. The angular integration must be
performed over dc1dc3 instead of dc1dc2.
Next we also note that the quantity ϕ in α3gðsÞ in (38) is

similar to the quantity R from Eq. (17) of [6]. The
difference comes from the calculations of ψ → 3g decay
which we use for the normalization of the decay constant ϕ.
In paper [6] (see Appendix A there) the factor

ffiffiffiffiffiffiffiffi
2=3

p
was

missed in the amplitude of ψ → 3g decay (see Eq. (A.7)
there). This factor comes from missed 2 in the right-hand-
side of the sum over spins in the expression below Eq. (A.6)
in [6] and from the complete missing of symmetrization
factor 1=

ffiffiffi
3

p
in the color wave function of charmonium

ðq̄1q1 þ q̄2q2 þ q̄3q3Þ=
ffiffiffi
3

p
which is necessary for correct

normalization of this wave function (see, for example,
Eq. (5) in [22]). Thus, after correction of this missing factor
one gets:

ϕ ¼ jψðr ¼ 0Þj
M3=2

ψ

¼ Rffiffiffiffiffiffiffiffi
2=3

p ¼ α3=2s

3
ffiffiffiffiffiffi
3π

p : ð41Þ

A correction should be also applied to the color factor
gcol in (38). This factor was evaluated in Eq. (11) of
Ref. [6], taking into account the summation over gluon and
quark colors. But the probability of gluon connection with
the proton is evaluated by simple multiplication of a factor
of 3 which comes from 3 quarks in the proton. Taking into
account all the possibilities (see Fig. 6) we get a factor
of 27:

gcol ¼
1

4
hpjdijkTiTjTkjpi

¼ 27

4
hqj 10

9
Ijqi ¼ 15

2
: ð42Þ

The most important correction concerns the final proton-
antiproton state. The three gluons obtained from ψð3770Þ
decay produce three quark-antiquark pairs and it is

implicitly assumed that they form the proton-antiproton
final state. The details of this process is not touched in
Ref. [6] and it is mostly not important for the relative phase.
However here we want to reproduce the absolute value of
the cross section and thus we need to implement this
mechanism somehow. In general it is the mechanism of
transition of three gluons (with total angular momentum
equal to 1) into final proton-antiproton pair. We suggest
that this mechanism has much in common with proton-
antiproton pair production from the photon, i.e., the
electromagnetic vertex γ� → pp̄ in timelike region. Thus
we insert into (38) the extra form factor, similar to (6), but
with some other value of the parameter Cψ :

jGψðsÞj ¼
Cψ

s2 log2ðs=Λ2Þ : ð43Þ

We find the value of this parameter Cψ in Sec. IV. The
parameter Λ is still the QCD scale parameter since it takes
into account the running of αs coupling at micro-
scopic scale.
The strategy of the calculation of the quantity Z3gðsÞ is

the same as for the D-meson loop contribution in the
previous section: first we calculate its imaginary part
ImZ3gðsÞ by the use of Cutkosky rule for gluon propa-
gators:

1

k21 þ i0
1

k22 þ i0
1

k23 þ i0
→ ð−2πiÞ3δðk21Þδðk22Þδðk23Þ

× θðk01Þθðk02Þθðk03Þ; ð44Þ

then we restore the real part ReZ3gðsÞ by using dispersion
relation technic. This strategy is the same as in Ref. [6]. See
all the details of these calculation there.

(a) (b)

(c) (d)

(e)

FIG. 6. Possible connections of three gluons with quarks in the
proton.
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IV. NUMERICAL RESULTS

First we present the main ingredient of our calculation,
the quantities ZDðsÞ from (27) and Z3gðsÞ from (39) as a
function of total energy

ffiffiffi
s

p
in the range starting from the

threshold of the reaction s ¼ 4M2
p up to 4.5 GeV, see

Figs. 7(a) and 7(b). The position of the ψð3770Þ resonance
is marked by a vertical dashed line. One can see that the
quantity Z3g is much bigger than ZD and both have large
real and imaginary parts in that region. The imaginary part
of ZD below DD̄ threshold (i.e., at s < 4M2

D) is zero and
grows slightly up from this point with energy giving small
contribution to the observables.
Next we plot the cross section itself and compare it

with the data from the BESIII collaboration presented in
[5]. In Fig. 8 we present experimental data of BESIII scan
of total cross section of the reaction eþe− → pp̄ around the
mass of ψð3770Þ resonance and with the specific precise
measurement of the point at exactly the mass of ψð3770Þ.

We plot the Born cross section according to (10) with the
proton electromagnetic form factor GðsÞ from (6) as a gray
line in Fig. 8. We see that it overestimates the precise point
at ψð3770Þ resonance mass. Adding the D-meson loop
contribution (dashed line) does not reproduce the desired
ψð3770Þ resonance point. But if one replaces the D-meson
loop contribution with the three-gluon mechanism (dotted
line) then the tendency of the curve becomes rather similar
to the data. And if we take into account all three
contributions (solid line) then we see that our total curve
reproduce the precise ψð3770Þ resonance point and follows
the side shoulders, i.e., the experimental points that seem to
be higher below the ψð3770Þ and lower above the ψð3770Þ
resonance. In fact this coincidence of our total curve with
the precise data point is the result of fitting of the constant
Cψ from (43) to the best measured experimental point at
ψð3770Þ mass. Since the dependence of the total cross
section of the constant Cψ is quadratic we have two
solutions for it. Using the data point error bars we can
estimate that the range of the values of this constant should
be 33.7 GeV4 < Cψ < 59.1 GeV4 with the best fit to the
central point at two values:

Fit 1∶ Cψ ¼ 42.1 GeV4; ð45Þ

Fit 2∶ Cψ ¼ 50.6 GeV4: ð46Þ

We find this values to be rather close to the one from the
electromagnetic vertex case, see the value of parameter C
below Eq. (6). In all our numerical estimations we use the
value of Fit 1 from (45). The usage of Fit 2 gives the slight

(a)

(b)

FIG. 7. The quantities ZDðsÞ from (27) and Z3gðsÞ from (39) as
a function of the total invariant energy

ffiffiffi
s

p
starting from the

threshold
ffiffiffi
s

p ¼ 2Mp. The vertical dashed line shows the position
of ψð3770Þ.

FIG. 8. The total cross section (15) and its different contribu-
tions in the vicinity of ψð3770Þ resonance. The data are from the
BESIII Collaboration [5].
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change in the plot shoulders but keeps the central point
untouched.
Now we can compare our calculation with the fit of the

expression for the total cross section (1) in [5]:

σðsÞ ¼
��� ffiffiffiffiffiffiffiffiffiffiffi

σBðsÞ
p

þ ffiffiffiffiffiffi
σψ

p MψΓψ

s −M2
ψ þ iMψΓψ

eiϕψ

���2; ð47Þ

where the quantities σψ and ϕψ are considered as param-
eters to be fitted on the data. The fitting procedure gave two
solutions (see Table II in [5]):

Solution 1∶σψ ¼ ð0.059þ0.070
−0.020 � 0.012Þ pb;

ϕψ ¼ ð255.8þ39.0
−26.6 � 4.8Þ°;

Solution 2∶σψ ¼ ð2.57þ0.12
−0.13 � 0.12Þ pb;

ϕψ ¼ ð266.9þ6.1
−6.3 � 0.9Þ°:

We plot these two solutions in Fig. 9 at the ψð3770Þ
resonance mass (in Fig. 9(b) we shifted the points slightly
aside from ψð3770Þ resonance mass to make the points
seen separately). Assuming the form (47) we extract the
quantities σψ and ϕψ from our result for total cross
section (15) and plot them in Fig. 9. One can see that

both phases are consistent with our curve [see Fig. 9(b)]
while only one value for σψ agrees with our result [see
Fig. 9(a)]. Namely the solution 1 from Table II in [5] agrees
with our numbers:

σψ ¼ 0.075 pb; ϕψ ¼ 270°: ð48Þ

Finally we note that our calculation of three gluon
mechanism contains the QCD coupling constant αs at
charmonium scale (i.e., at s ∼M2

c) in rather high degree
[see Eq. (38)] and thus it is very sensitive to its value. We
use the value αsðMcÞ ¼ 0.28which is expected by the QCD
evolution of αs from the b-quark scale to the c-quark scale.
We should note that this value differs from the one for J=ψ
charmonium for which one must use much smaller value of
parameter αsðMcÞ ¼ 0.19 [24].

V. CONCLUSION

We considered the process of electron-positron annihi-
lation into proton-antiproton pair in the vicinity of char-
monium ψð3770Þ resonance. Besides the Born mechanism,
which is the pure QED, there are two contributions related
with intermediate charmonium ψð3770Þ state. One of
them is the D-meson loop and the other is three gluon
mechanism.
We showed that D-meson loop mechanism, being the

most probable candidate to describe this process, fails to
reproduce the value and the shape of the cross section.
It has been shown that the main contribution comes from

three gluon mechanism which can reproduce the position of
the precise experimental point at the ψð3770Þ resonance
mass and also grasps the shape of the curve shoulders
around it.
Having all the calculation in the hands we are able to

select one of the two fit solutions obtained in [5] and to
provide a solid basis for the consideration of similar
processes with binary final states and with charmonium
in the intermediate state. This will be the subject of our
future works.
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APPENDIX A: INTEGRATION OVER dk IN (30)
USING δ-FUNCTIONS

In this section we show how one can obtain (31) from
(30) utilizing the benefits of δ-functions in the integrand. In
order to do this we consider the following expression:

I¼
Z

1

−1
dcosθp

Z
∞

−∞
dk0

Z
∞

0

k2dk
Z

1

−1
dCk

Z
2π

0

dϕkFðk0;kÞ

×δððkþp−Þ2−M2
DÞδððk−pþÞ2−M2

DÞ
×θððkþp−Þ0Þθð−ðk−pþÞ0Þ; ðA1Þ

where Ck ≡ cos θk, θk and ϕk are the polar and azimuthal
angles of loop momentum k which are measured from the
direction of final proton momentum pþ (see Fig. 10). In this
section we use the notation k≡ jkj. The function Fðk0; kÞ
contains all nontrivial part of the integrand from (30):

Fðk0; kÞ ¼
SpDðs; k20 − k2Þ
k20 − k2 −M2

Λ
G2

ΛDPðk20 − k2;M2
DÞ: ðA2Þ

First we transform the second δ-function in (A1) to the
form:

δððk−pþÞ2−M2
DÞθððkþp−Þ0Þ¼

1ffiffiffiffi
D

p δðk0−kð1Þ0 Þ; ðA3Þ

where the quantity kð1Þ0 is one of the poles of the argument
of δ-function with respect to the variable k0:

kð1Þ0 ¼ 1

2
ð ffiffiffi

s
p

−
ffiffiffiffi
D

p
Þ;

D ¼ sþ 4ðk2 − ffiffiffi
s

p
βkCk −M2

p þM2
DÞ:

The remaining δ-function can be transformed into the
following form:

δððkþ p−Þ2 −M2
DÞθððkþ p−Þ0Þjk0→kð1Þ

0

¼ 1

2
ffiffiffiffiffiffi
D1

p
X
i¼1;2

δðk − kðiÞÞ; ðA4Þ

where kðiÞ are the poles of the argument of δ-function with
respect to the variable k:

kð1;2Þ ¼
1

2
ð ffiffiffi

s
p

βCk �
ffiffiffiffiffiffi
D1

p
Þ;

D1 ¼ sβ2C2
k − 4ðM2

D −M2
pÞ:

We note that if k ¼ kð1;2Þ then D ¼ s and thus

k0 ¼ kð1Þ0 ¼ 0. The requirement that D1 > 0 leads to the

restriction that Ck > Cð1Þ
k or Ck < Cð2Þ

k , where:

Cð1;2Þ
k ¼ � 2

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

D −M2
p

s

s
; ðA5Þ

while kð1;2Þ > 0 only for Ck > Cð1Þ
k . Gathering all this

together we can integrate over dk0 using δ-function (A3)
and over dk using δ-function (A4) in (A1) and obtain:

I ¼ 1

2
ffiffiffi
s

p
Z

1

−1
d cos θp

Z
2π

0

dϕk

Z
1

Cð1Þ
k

dCkffiffiffiffiffiffi
D1

p

×
X
i¼1;2

k2ðiÞFð0; kðiÞÞ; ðA6Þ

Finally, we notice that integration over d cos θp and dϕk is
trivial and gives 4π:

I ¼ 2πffiffiffi
s

p
Z

1

Cð1Þ
k

dCkffiffiffiffiffiffi
D1

p
X
i¼1;2

k2ðiÞFð0; kðiÞÞ: ðA7Þ

We should note that this quantity is nonzero only if

s > 4M2
D, since the integral is not zero only if Cð1Þ

k < 1.
Comparing (A1) and (A7) we prove that (31) follows
from (30).

APPENDIX B: DISPERSION RELATIONS

In this section we derive dispersion relations to restore
the real parts of the quantities ZD from (27) and Z3g from
(39). We apply dispersion relations over the variable s with
subtraction at the point s ¼ 0:

ReZiðsÞ ¼ReZið0Þþ
s
π
P
Z

∞

smin

ds1
s1ðs1− sÞ ImZiðs1Þ; ðB1Þ

where smin is the minimal threshold at which ImZiðs1Þ
becomes nonzero. The substraction constant ReZið0Þ
vanishes (i.e., ReZDð0Þ ¼ 0) since there are no open charm
in the proton and thus in the Compton limit the vertex
ψ → pp̄ must vanish.

FIG. 10. The definition of the polar angle θk and the azimuthal
angle ϕk for loop momentum k in (A1).
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Next we substitute the variable β:

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
p

s

s
; → s ¼ 4M2

p

1 − β2
;

β1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
p

s1

s
; → s1 ¼

4M2
p

1 − β21
; ðB2Þ

and thus:

ds1 ¼
8M2

pβ1
ð1 − β21Þ2

dβ1:

Substituting these replacements into (B1) one gets:

ReZiðβÞ ¼
P
π

Z
1

βmin

2β1dβ1
β21 − β2

ImZiðβ1Þ; ðB3Þ

where βmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

p=smin

q
. In order to improve the

numerical stability of this integral we transform it: we add
and subtract the regular part of the numerator in the point β:

ReZiðβÞ ¼
P
π

Z
1

βmin

2β1dβ1
β21 − β2

× ðImZiðβ1Þ − ImZiðβÞ þ ImZiðβÞÞ; ðB4Þ

and evaluate the part with ImZiðβÞ in the numerator:

ReZiðβÞ ¼
1

π

�
ImZiðβÞ log

���� 1 − β2

β2min − β2

����
þ
Z

1

βmin

2β1dβ1
β21 − β2

½ImZiðβ1Þ − ImZiðβÞ�
�
: ðB5Þ

The integral in braces is already regular at the point β1 ¼ β
and can be evaluated with ease by any standard numerical
method of integration.
We note that for the D-meson loop contribution the

imaginary part ImZDðβÞ from (31) is nonzero above thresh-
old (s > 4M2

D), thus the lower limit of integration in (B5) is

βmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

p=M2
D

q
. For the three gluon contribution the

threshold for the imaginary part ImZ3gðβÞ coincides with the
threshold of the reaction, i.e., smin ¼ 4M2

p and thus lower
limit of integration is βmin ¼ 0.
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