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We consider the calculation of the thermal self-energy of a neutrino that propagates in a medium
composed of fermions and scalars interacting via a Yukawa-type coupling, in the case that the neutrino
energy is much larger than the fermion and scalar masses, as well as the temperature and chemical
potentials of the background. In this kinematic regime the one-loop contribution to the imaginary part of the
self-energy is negligible. We consider the two-loop contribution and we encounter the so-called pinch
singularities which are known to arise in higher-loop self-energy calculations in thermal field theory. With a
judicious use of the properties and parametrizations of the thermal propagators the singularities are treated
effectively and actually disappear. From the imaginary part of the self-energy, we obtain a precise formula
for the damping matrix expressed in terms of integrals over the background particle distributions.
The formulas predict a specific dependence of the damping terms on the neutrino energy, depending on the
background conditions. For guidance in estimating the effects in specific contexts, we compute the
damping terms for several limiting cases of the momentum distribution functions of the background
particles. We discuss briefly the connection between the results of our calculations for the damping matrix

and the decoherence effects described in terms of the Lindblad equation.

DOI: 10.1103/PhysRevD.103.116026

I. INTRODUCTION AND SUMMARY

In several models and extensions of the standard electro-
weak theory, the neutrinos interact with scalar particles (¢)
and fermions (f) via a coupling of the form

Ly = ZgafRVLa¢ + H.c. (11)

For definiteness we are assuming the presence of only one
f and ¢, while the indices a, b, c, ... label the neutrino
flavors. Those interactions produce nonstandard contribu-
tions to the neutrino index of refraction and effective
potential when the neutrino propagates in a background
of those particles. Couplings of this form have been
considered recently in the context of dark matter—neutrino
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interactions [1-9]. Similar effects occur due to neutrino-
neutrino-scalar interactions of the form ©%,v,,¢ when a
neutrino propagates in a neutrino background. This can
occur in the environment of a supernova, where the
neutrino-neutrino interactions lead to the collective neu-
trino oscillations and related phenomena (see for example
Refs. [10,11] and the works cited therein), and it can also
occur in the hot plasma of the early Universe before the
neutrinos decouple [12,13].

In previous works we have presented various calcula-
tions related to the propagation of neutrinos in that kind of
background [14-16]. In Ref. [14] we considered the real
part of the self-energy of a neutrino that propagates in a
medium consisting of fermions and scalars, with a coupling
of the form given in Eq. (1.1). We calculated the real part
(or more precisely the dispersive part) of the neutrino
thermal self-energy, denoted by X,, from which the
dispersion relation and effective potential are determined.
Those interactions can also induce processes such as
v+ ¢ < f and v+ f < ¢, depending on the kinematic
conditions, that produce damping terms in the neutrino
dispersion relation and index of refraction. Thus in
Ref. [15], we continued our work to calculate the imaginary

Published by the American Physical Society
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part (or more precisely the absorptive part) of the neutrino
thermal self-energy, denoted by X;, in a scalar and fermion
background due to the fzv, ¢ interaction. From X; the
corresponding contribution to the damping matrix I' in
the dispersion relation was obtained. The calculations
in Ref. [15] were based on the one-loop diagram for the
neutrino self-energy.

In Ref. [16] we noted that those couplings can induce
decoherence effects, of the form discussed in recent works
[17-21], due to the neutrino non-forward-scattering proc-
ess v, +x —v,+x, where x = f,¢. As observed in
Ref. [16], the contribution to I" due to these processes
can be determined from the two-loop calculation of X,.
Thus, in that reference we performed the two-loop calcu-
lation of ¥; and I" or the case in which the background
contains only the fermions f, assuming that the ¢ particle is
heavy enough and the conditions are such that there are no
¢ particles in the background. Under those conditions, the
two-loop contribution to I" is the relevant one since the two-
body processes that contribute in one loop are kinemati-
cally forbidden.

The present work is a continuation of that previous work.
Here we consider the situation in which both f and ¢ may
be present in the background. We are particularly interested
in the kinematic regime

k> my,m, T, (1.2)
where « is the neutrino momentum and 7" the background
temperature. That is, both f and ¢ are relatively light
compared to the neutrino energy. We refer to this as the
light background. It is the kinematic regime that is relevant
in the context of the possible existence of light scalars as
dark matter and the effects they may have on neutrino
experiments, that has been explored in the recent literature
[22,23]. The results can be useful also for the studies of the
environmental decoherence effects in long-baseline neu-
trino oscillation experiments that have been carried out
recently [24-27]. Again, in this kinematic regime the two-
body processes that contribute in one loop are inhibited and
the two-loop contribution is the relevant one.

Apart from the relevance for the applications already
mentioned, from a calculational point of view the present
calculation has a technical merit. There is one important
technical issue that shows up in the kinematic regime we
are considering in the present case and those we consid-
ered previously. The two-loop diagrams for the self-
energy, from which the damping matrix is determined,
suffer from the so-called pinch singularities [28]. These
arise from the fact that in the present case some of the
diagrams contain a product of two thermal propagators
with the same momentum. Since the thermal propagators
involve the on-shell delta functions, such products are ill
defined. As we show, by a judicious use of the properties
and parametrizations of the thermal propagators, the

expressions for the diagrams can be rearranged such that
the pinch singularities are absent in the final expressions,
allowing a straightforward evaluation of the self-energy
and whence the damping terms. While the conventional
wisdom is that indeed such singularities actually disap-
pear, our calculations provide an explicit proof of that fact
in a concrete and nontrivial example that can be gener-
alized to other calculations.

The final results are well-defined formulas for the
damping terms in the neutrino dispersion relation (or
effective potential) in terms of the model parameters
(i.e., couplings g, and masses my ;) and the environmental
parameters (e.g., temperature). In practical applications, the
possible values of all the parameters involved vary signifi-
cantly depending on the context, i.e., astrophysical, cos-
mological or neutrino oscillations. For example, in the
context of a supernova (such as SN1987A) the neutrino
interactions with ¢ as a cold dark matter candidate can
have effects on the observed neutrino flux for my,
T ~afew MeV [1]. But these, and similar considerations
in other contexts, depend on the particle physics model as
well. Thus, for example, while we concentrate here on the
calculation involving the L;, interaction term, in isolation
from the Standard Model interactions, the two-loop dia-
grams in some models may involve the standard particles
and/or other nonstandard gauge boson interactions as well.
Nevertheless, subject to the limitation of the light back-
ground condition stated above, the particular results we
obtain for the damping terms can be used in the context of
many such models and conditions, and in fact the method to
treat the pinch singularities is applicable to those more
general cases as well.

In summary, our plan is as follows. In Sec. II we
summarize the framework in which we carry out the
calculations. There we explain that, while the effective
potential is determined from the one-loop diagram for the
self-energy, in the kinematic regime we consider [Eq. (1.2)]
the damping is determined form the two-loop diagrams. In
Sec. III we calculate the dispersive part of the self-energy
and determine the effective potential. In Sec. IV we
consider the calculation of the two-loop contribution to
the absorptive part of the self-energy, from which the
damping matrix is determined. There we indicate the
problem of the pinch singularities and present our treatment
to resolve it. The net result, summarized in Sec. IV D, is
the set of formulas for the two-loop contributions to the
absorptive part of the self-energy, free from the singular-
ities. In Sec. V we evaluate explicitly the corresponding
expressions for the damping matrix in the case of a scalar
background under various conditions and indicate the path
to generalize such calculations to consider more compli-
cated backgrounds. There we also discuss briefly the
connection between the damping matrix thus determined
and the decoherence described in terms of the Lindblad
equation. Finally Sec. VI has our conclusions.
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II. PRELIMINARIES—EFFECTIVE POTENTIAL
AND THE DAMPING MATRIX

To be self-contained we summarize the following
material borrowing from Ref. [16]. We denote by k* the
momentum four-vector of the propagating neutrino, and as
usual we denote by u* the velocity four-vector of the
background medium. In the background medium’s own rest
frame, it takes the form

w = (1,0), (2.1)
and in this frame we write
k= (w,K). (2.2)

Since we are considering only one background medium, it
can be taken to be at rest and therefore we adopt Egs. (2.1)
and (2.2) throughout.

Let us consider first the case of one neutrino propagating
in the medium. The dispersion relation and the spinor of the
propagating mode are determined by solving the equation

(K = Zer)wr (k) = 0, (2.3)
where X is the neutrino thermal self-energy. It can be
decomposed in the form

et = 2, + 12, (2.4)
where X, ; are the dispersive and absorptive parts,
Z, = %(Zeff + Zerr),
%, = 5 (Tur = Zar) 23
respectively, with
Lo = VOZfoVO- (2.6)

In the context of thermal field theory X, is given in terms of
the 11 element of the thermal self-energy matrix by

1 _
L, =2, =5 E0 +Zn).

. (2.7)

On the other hand, %; is more conveniently determined in
terms of the 12 element of the neutrino thermal self-energy
matrix by the formula

z
s — 12

Here

1
et 41

np(z) = (2.9)
is the fermion distribution function, written in terms of a
dummy variable z, and the variable x, (k) is given by

x, (k) =pk-u—a,, (2.10)
where T = 1/ is the temperature and «, is the neutrino

chemical potential.
The chirality of the neutrino interactions imply that!

Zeff = V'uyﬂL. (211)
Here and below we use the notation L and R for the left and
right chiral projection matrices L, R =3 (1 F 75), respec-
tively. Corresponding to the decomposition in Eq. (2.4) we
also write

VE = VE 4 iV (2.12)

and

Z, = ViyL. (2.13)
In general, V%, are functions of @ and K. We omit
those arguments ordinarily but we will restore them when
needed.

Writing the neutrino and antineutrino dispersion rela-
tions in the form

0¥ (k) = o) A (2.14)
2
the solution of Eq. (2.3) gives
o =k 4+ VD, (2.15)
where Vgtlﬁ) are the effective potentials

VY = 0V, (x,8) = VO(k,R) — & V,(x, )
V& = =1V, (—k,—F) = =V, —F) + & - V,(~x. =R).
(2.16)

with
n* = (1,k).

(2.17)

On the other hand, for the imaginary part,

Tn a strict sense this is correct in the massless neutrino limit,
which is valid in practice in the approximation that the neutrino
mass is neglected in the calculation of the relevant diagrams for
the self-energy.
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_y(")(l_c') B n-Vi(k,K)
- oV, (w8 ’
2 l—n- v[?(m )|a>=1<
2 _p WeR) :

where n* is defined in Eq. (2.17). We will retain only the
dominant contribution to n - V; in the numerator, which in
our case is the two-loop term as we argue below. Then to
leading order the formulas in Eq. (2.18) reduce to

0)(%
_! (K):n Vi(k,K),

2

0 (%
! ;K)::n Vi(—x, =), (2.19)

neglecting the correction due to the n - OV ,.(w, K)/Ow term
in the denominator.

In the case of various neutrino flavors, the vector V¥ in
Eq. (2.11) is a matrix in the neutrino flavor space. As shown
in Ref. [16], the generalization of the above discussion is
that the dispersion relations of the propagating modes are
determined by solving the following eigenvalue equation in

flavor space:
r

where H, and I" are Hermitian matrices in flavor space
given by

(2.20)

H, {K+n-V,(1<,z?) (v),

k—n-Vi(—k,—K) (D),
1 n-Vi(k,K) (v),
2" {mWGm@ ().

(2.21)
In coordinate space, this translates to the evolution equation

10,E(1) = <H, - 1%) E(1). (2.22)

We refer to I' as the damping matrix and to its elements as
the damping terms. Our purpose in this work is to
determine the contribution to H,, and specially I, due to
the presence of the light background.

The lowest-order diagram is shown in Fig. 1. From that
diagram we obtain X;; and X,, and whence the dispersive
and absorptive parts X, ; by means of Egs. (2.7) and (2.8).
The corresponding one-loop contribution to V, and I are
then obtained from Eq. (2.21). However, as in the cases
discussed in Refs. [16,29], the one-loop contribution to X,
is negligible in this case also. The reason is that such
contributions arise from the two-body neutrino processes

o(p— k)
- > <
e N
/ \
/ \
I/Lb(k) H—j—<—;<— I/L,l(k)
B79;;R fR(p) Avg(lL
FIG. 1. One-loop diagram for the neutrino self-energy matrix

(Z48)pe in a background of fermions f and scalars ¢. a, b are
neutrino flavor indices while A and B label the thermal vertices,
that can take the values 1 or 2.

such as v 4 ¢ < f, which are inhibited by the kinematics
in the regime we are considering [i.e., Eq. (1.2)].

To be more specific, the one-loop damping term is due to
real processes like

(A) v+
B) v+op<f (if mp>my).

(if my > my),
(2.23)

The calculation of the one-loop damping terms for all such
conditions was carried out in Ref. [15]. Let us consider (A).
As shown in that reference, the damping is maximum for
values of the neutrino momentum

m2

(4 .
~— fT>m.),
K~ (i my)
k~— (if T < my). (2.24)
My

Outside of those ranges the damping becomes exponen-
tially small. Analogous considerations apply to case (B) as
well. As a result, in the kinematic regime we are consid-
ering, the damping matrix is determined by the two-loop
diagrams for X, shown in Fig. 2.

In summary, the neutrino and antineutrino effective
potential is given by Eq. (2.16), and the damping by
Eq. (2.19), where V/ is determined from the calculation
of ¥, using the one-loop diagram in Fig. 1, while V¥ is
determined from X;, calculated from the two-loop dia-
grams in Fig. 2. As already stated, in writing Eq. (2.19) we
are neglecting the correction due to the n - OV, (w, k) /0w in
the overall denominator in Eq. (2.18), which corresponds to
keeping the leading order of the dominant term. As we have
emphasized, the expressions corresponding to the diagrams
in Fig. 2 suffer from the pinch singularities. After handling
the singularities, X, is expressed in terms of integrals over
the background particle distribution functions that can be
evaluated in principle once the background conditions are
specified. Correspondingly, the final formula for the damp-
ing matrix that we determine by means of Eq. (2.21) is
expressed in terms of integrals over the background particle
distribution functions that we will evaluate explicitly for
some illustrative cases.
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Ir(p)
A,ch B792R
oW =k o~ T o k)
/ vy (K \
1LgR/ | 2,9.L
Z/Lb(k) < L f ? /) ! < I/La(k)
R\P
(@)
#(p)
- = > =
7 - =~ ~
7 N
v N
7 AN
LGR,  Agl w)  BgR gl
viy(k) < < < < <« vpe(k)
fr(k+p) ~ s fr(k+p)
o(p')
o)
_ < —
- - = ~
Lg;R - A.gcL N Bk 2,9aL
vy (k) *4—/4—\%%47 via(k)
fr(k—=p") < ve(k) Ir(k+p)
~ 7
- 5 — -
o(p)

FIG. 2. Two-loop diagram for the 12 element of the neutrino self-energy matrix in a background of fermions f and scalars ¢, obtained
by inserting additional propagators in the one-loop diagram in Fig. 1. The meaning of the labels A, B are the same as in Fig. 1 while a, b,
¢, d are neutrino flavor indices. To simplify the notation we are setting k' = k + p — p’. Diagram C does not exist if ¢ is a complex

scalar field. For a real scalar diagram C must be included.

III. EFFECTIVE POTENTIAL

A. Dispersive part X,

The contribution of the diagram in Fig. 1 to the 11
component of the neutrino thermal self-energy matrix is
given by

(S = / (‘2’7’)’41'A§"?<p — )(igR)iSY) (p)(igaL).
(3.1)

We write the 11 components of the f and ¢ thermal
propagators in the form

is(p) = (p+mp) | —228(p? —m2)ns(p) .

p>—m*+ie
A (p) = 2P =y (p). (32)
#
where
np(p) =np(xp(p))0(p-u) +np(—=x;(p))0(=p-u),
ny(p) =ng(xs(p)0(p-u)+np(=xs(p))0(=p-u), (3.3)
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with @ being the unit step function. Here ny is the fermion
momentum distribution function defined in Eq. (2.9), and
ng is the corresponding one for bosons,

1
ng(z) = 1 (3.4)
The variables x; 4 are given by
x¢(p) =PBp-u—ay,
xp(p) = Pp - u—ay. (3.5)

where a; 4 are the chemical potentials. Discarding the pure
vacuum contribution in Eq. (3.1) we then have

y, =3 3@ (3.6)
where
4
(f) . d’p ﬁL
PN —919, >6(p* —

(3.7)

E)pe = G394 / (d p_wtiL 8(p* = m3)ng(p)-

22)* (p + k)> —m3
(3.8)

B. Effective potential in the light background

For completeness and to make the present work self-
contained, here we consider specifically the case of the light
background in the sense of Eq (1.2). In correspondence to
Eq. (2.13), we write the X (x = f,¢) in the form

D L (3.9)

u

and therefore
Ve = vy (3.10)

From Eqgs. (3.7) and (3.8) we then have

d*p Py
-9 | G

x 8(p* = m7)ns(p),

(VI (0,6)) 5

(3.11)

d'p _(p"+K)
(gbga)/(Zﬂ') (p+k) _mf

x 8(p* = m3)ny(p).

(V((P)M(w K))
(3.12)

Under the conditions that we are considering [i.e.,
Eq. (1.2)], we can make the replacement

1 1
(p+k)?—mp  2p-k+k’
1 -1
, 3.13
(p—k)?—mj 2p-k—Kk (3.13)

in Egs. (3.11) and (3.12). Furthermore, since the effective
potential is defined by setting @ = « [i.e., Eq. (2.21)], we
can set

k= knt, (3.14)
where n* is defined in Eq. (2.17). Thus,
4
(f)n d’p Py 2 2
(VI 600 = (650 | 5 Es7oe ol = m (o).
(3.15)
4 “ JZ
o d*p (p" +«kn)
(V" ok = (s30) [ SE T
X 8(p* = m3)ng(p). (3.16)

Carrying out the integral over p® with the help of the delta
function, we then have

* 3
(/) gbga d’p
Vr ’ -
( (K E))ha /(27[) 2E p-n

Wy =y e [ dp 1
Vr ’ a -
( (K K))b 2k /(2n)32E,,,p-n

XA [f(Ep) + F3(Ep)]
+xn[f 4 (Ey) = f3(Ep)]}

[ (Ep)+17(Ef)].

(3.17)
and
= VIV (K, ) o

V¥ (—k, —R) (3.18)

In Eq. (3.17) we have introduced the f and ¢p momentum
distribution functions (in the rest frame of the medium)

fri(Ep) = m
Fi(Ed) = rrme— (3.19)
and it is understood that, in each integral,
p' = (E..p)(x = f.9). (3.20)
with
E,=\/P* +m;. (3.21)
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Thus remembering that n”> = 0,
(n- VO (k,K))py =

* " d3
= B [ () + 14(E)L

= (n- VO (=, =%))

(3.22)
From Eq. (2.16), we then have
(VA E)pe = VHE)py = V)pa + (Vi)po  (323)
where (x = f, ¢)
(Vo = 2247, (3.24)
and we have defined
d3
J = . + f+(E)]. 3.25
| G B+ AE). (2)

Equations (3.23)—(3.25) reveal a number of differences in
contrast with the Wolfenstein term that gives standard
matter contribution to the effective potential [30]. The
effective potential in this case is momentum dependent,
proportional to 1/x, has the same sign for neutrinos and
antineutrinos, and does not vanish in a particle-antiparticle
symmetric background. In fact, as is well known, for
practical purposes the parameters g;g,J; and g;g,J, act
as contributions to the vacuum squared mass matrix, with
the same value (and sign) for neutrinos and antineutrinos
(see e.g., Ref. [31]).

It is a simple matter to evaluate J, for different
conditions of the background. For example, and for
reference purposes, in the nonrelativistic (NR) limit, or

|

—i(z5 (k)

c,d

X

d4p d4 /
Z‘; (2n)* 2x)*

where

A.B
(- 1>Tr{<inAch><isAB<k’>>cd<mBg;R>is;C2(p)},

d'p &*p' .
(2m)* (2m)* !

B
X (iS3(K)) alinpgsR)iSY

in the ultrarelativistic (UR) limit and zero chemical
potential,

(NR),

S (ny + ny)
2m4, [ ¢
Jy= {T2 (3.26)

7 (UR),

and similarly for J. In Eq. (3.26), n,, 5 are the total number
densities of ¢ and ¢, respectively, i.e.,

d3
Npp = /(2”)3f¢(/7( r/))

In Eq. (3.26) we have assumed that ¢ is complex. For a real
¢, in the NR limit

(3.27)

Jp= u (NR).
gy

(3.28)
In the UR limit the formula in Eq. (3.26) holds in this case
as well.

IV. TWO-LOOP DIAGRAMS—ABSENCE OF
PINCH SINGULARITIES

We reiterate that we assume « to be high enough so that
the conditions such as those given in Eq. (2.24) [or the
analogous ones in case (B)] are satisfied and therefore the
one-loop contribution to the damping matrix, arising from
the two-body processes shown in Eq. (2.23), is negligible.
As we have already mentioned, in that case the damping
terms arise from the two-loop diagrams for X, shown in
Fig. 2, which are obtained by inserting additional propa-
gators in the one-loop diagram in Fig. 1. The corresponding
expressions for their contributions to X, are

p d4 ' . . . .
Z / L (imggR)iSY) (p) (imgaL)in%y) (p' = k)in'®) (p' = k)

(4.1)

(p)is%) (') (im gy R)iSY) (k + p)(inag.L)
(4.2)

A (p)ia%) (p') (i1 g5 R)IS\ (k — p') (inag.L)
(k+ p)(ing,L), (4.3)
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K=k+p-p. (4.4)
As indicated in Figs. 1 and 2, the subscripts A, B label the
internal thermal vertices, and each of them can take the
values 1 or 2. Correspondingly, the factors 7, 5 take into
account the sign of the coupling associated with each vertex
type, my =1, 1, = —1.

Apart from the fact that there are many diagrams because
we have to sum over all the values of the internal thermal
vertices A, B in each one, if we attempt to evaluate the
expressions for each literally, we encounter the pinch
singularity problems in diagrams A and B. Take for
example diagram A. Since the ¢ propagators have the
same momentum, there will be diagrams in which two delta
functions (coming from the thermal part of the propagators)
with the same argument, appear. Something similar hap-
pens with the f propagators also in diagram B, while
diagram C does not have this problem. Therefore, before
we can proceed we must prove that those pinch singular-
ities actually disappear. This is what we do next. The end

result is a simplified expression for each contribution

E(I/S’B’C) that we then evaluate explicitly (in the kinematic

regime that we are considering). For convenience and
future reference, the relevant formulas are summarized in
Sec. IV D.

A. Diagram A

We write the contribution from diagram A in Fig. 2,
given in Eq. (4.1), in the form

~i=WK)), /

xiAé"; (0 =k) (=in ) (p' = k))ia'®) (p' = k),

(imgR)iSY (p)(imgaL)

(4.5)
where
— iz} (p' = k)
x Tr{(inag.L) (iS5 (K')) g (inpgsR)iSHA(P)}. (4.6)

The main point is that in this form we can manipulate the
integration in Eq. (4.5), and in particular the pinch
singularity, using the symmetry properties and the para-
metrization of the scalar propagator as well as the scalar
self-energy. Thus we study (and manipulate)

Xoi(q) = Y AW (@rl (@Al (). @7)
AB

which we write in matrix notation:

X5 = (AD7WAD), . (4.8)
A and #%) are the scalar thermal propagator and self-
energy matrices, respectively. We omit the momentum
argument g except when required.

We will use the parametrizations given in Eqs (2.9) and
(2.34) of Ref. [32], namely

; AY 0
AW — U¢< g >U¢,
()
0 —A]

(¢) 0
70—y ” -1
7 Uy ( 0 _ﬂ(¢)*>U4”
(¢)

where A" is the (vacuum) Feynman propagator. The
matrix U, is given by

(4.9)

1+n4(q)

ny(q) +0(—q- u)>
(q)+60(q-u) (9)

1
S
1+n4(q) \1p 1+n,(q

(4.10)
where 7 is defined in Eq. (3.3). Therefore, we have
X =ADz@) A

(@) _(p) A (@)
INGPOING 0 )
- U¢< Uy (4.11)

The key point is that the problematic terms A(F@Aff)* that
give rise to the pinch singularity are actually absent. The

quantity that enters in the expression for ZS) is

Xy = U¢11U¢21[Ag)”((/)m§v¢) - Az(g))*”({/))*A}(f)*]
= (1(a) + 0(g - )AL 2P A — AL 2O AT,
(4.12)

Finally, it should be remembered that 7 can be calculated
by using the formulas

Rez®) = Rex\?,

izd)

2[ny(q) +0(=q - u)]

iﬂg(f)
= 2@ + 6q- W] (4.13)

Imz(?) =

where the nﬁ@ are given by the expressions in Eq. (4.6).

Thus in summary the procedure we need to follow is the
following.

116026-8
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ey
(@)

3

“)

&)

Compute Rezt%'{)) (p'—k) and ﬂgq;)(p/ — k) using

Eq. (4.6), and from this determine 7 using Eq. (4.13).
Determine the quantity

X51(q) = (ny+0(q-u))

. (4.14)

where ¢ = p' — k.t

(4)

Compute X},” from

4 7
~i(Z3 (k) = / (L;SL;(imng)iS@(p’)(inzgaL)
X iXqy, (p' — k). (4.15)

At this point, by means of Eq. (4.15), these in-
structions provide a complete and consistent pro-
cedure for calculating the contribution to the
neutrino self-energy from diagram A, which is free
from the pinch singularities. However, for our
purposes, we can simplify the explicit computation
as follows.

As we argue below, in the kinematic regime we are
considering, the Rez(?) term in Eq. (4.14) contrib-
utes negligibly, so that we can take X,; to be

1 ¢ b b h)x *
__[Ag’/)”g/l)A;‘d) + Ay) ﬂzlAgﬁ) ].

X =
21 B

(4.16)

The argument concerning the contribution from
Rez®) is the following. The term (Al?)2— (Al#)*)2
contributes only when the scalar is on shell, that is,
(p) —k)?=~ mé. Since the external neutrino momen-
tum k as well as the fermion momentum p’ are on
shell in Eq. (4.15), the Rez(?) term corresponds to a
contribution to ZYZ‘) arising from a process involving
two-body subprocesses v¢ <> f. Under the kin-
ematic conditions we are considering, such subpro-
cesses are suppressed by the same (two-body)
kinematics that suppress the one-loop contributions

to 2(1”2> (and the raison d’étre for considering the
two-loop contributions) and therefore those terms
can be neglected.

More specifically, in our case in which we consider
the high-k limit, we take

¢) -1
AP (p — k) =S (4.17)
which we write in the form
AD (' —k) > Ag(pl. k), (4.18)

where we define

Ag(t1.62) =5 fll. Z (4.19)
This gives
— i3 (),
d*p’ By
= [ 5 g Risy () imo.)
x (=il (p'. =) (—imy (p' = K))itg(p'. k).

(4.20)

This is just the expression that we would obtain from
Eq. (4.5) by considering only the term with A =1,
B =2, and retain only the high-k limit of the
vacuum part of the scalar propagator.

Thus explicitly,

— i (k)
d4 / d4
_Z/ P

x 1512( N(inag.L)(=ido(p', —k))ido(p', —k)

x (=D{Tr(in g.L) (iS5 (K')) g (imagR)iSS, ()}
(4.21)

7 (imgyR)

B. Diagram B

We now consider the contribution from diagram B in
Fig. 2, given in Eq. (4.2). Here the pinch singularity
involves the fermion propagator. We write it in the form

—i(Z(B)(k)) _Z d'p iA(¢)( )i *R)iS<f)(k—|— )
12 ba (271_)4 21 \P)\UM Gy 1A )4
A,B

x (=2 (k+ p))iSy) (k+ ) (imgal ),

(4.22)
where
. ap .
~izpli p) =3 [ G E G0 naa.L)
c,d
X (iSE3(K)) alinpgsR)- (4.23)

Therefore, in analogy with the previous case, here we
denote by ¢ = k 4+ p the momentum of the virtual f and
consider the quantity

Zsm AB 32 = (SWEDII),,,

Yi2(q (4.24)

using the parametrization of the fermion propagator,
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()
- S 0
0o -3

. =0
() = y-1 -1
== < 0 _i(f)>Uf ’
(f)

where Sy is the vacuum Feynman propagator. The matrix
Uy is given by taking the expression given in Eq. (4.10) and
replacing 14 — —ny, with i, defined in Eq. (3.3).

Therefore in correspondence with the scalar case here we
have

(4.25)

¥ = 3NENZY)

s () ¢f)
Spzs 0
= Uf( F i , >Uf. (4.26)

0 5503y

Thus as in the scalar case, the problematic terms S(Ff)S'(Ff>
that give rise to the pinch singularity are actually absent.
(B)
12

The quantity that enters in the expression for X, is

Yy = Uquflz[S(Ff)Z(f)Sg) - 55050
= ~(ns(q) = 0(=q - w)[sL=VsY — 5LENFD).
(4.27)

Finally, it should be remembered that X can be calculated
by using the formulas

1 _
Rex(f) = 3 (z(f) + z(f)) _ Rez(f{)’

1 _ ()
ImzV) = — () —E£U)) = — 12

21 2ilns(q) — (=g - u)]

(f)
z
= = (4.28)

2i[ns(q) — 0(q - u)]’

where the Zgjg are given by the expressions in Eq. (4.23).
Thus in summary the procedure we need to follow is the
following.
(1) Compute ReZg‘?(k +p) and Z&?(k + p) using
Eq. (4.23), and from this determine X)(k + p)
using Eq. (4.28).
(2) Determine the quantity

Y12(q) = =(ns(q) — 0(—q - u))

x [sP=Ns) — 5N,

(4.29)

116026-10
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Compute Zgg) (k) from

4
(2 W), = [ G (o) i

X iY15(p + k) (in2g4L). (4.30)

This is the result for diagram B, analogous to
Eq. (4.15) for diagram A. It is free from the pinch
singularities, and while it provides a consistent
starting point, we can again simplify the explicit
computation by proceeding as we did for diagram A.
As we argue below, in the kinematic regime we are
considering, the ReXZ(/) term in Eq. (4.29) contrib-
utes negligibly, so that we can take Y, to be

1 NP = () (f) =
Vi = -5 [sPEs + SPES (431
The argument concerning the contribution from

ReX (") is similar to the scalar case in the discussion

of diagram (A). Schematically, the term Sg)z - S‘S'f 2
contributes only when the f is on shell, that is,
(k+ p)* = m7. Since the external neutrino momen-
tum k as well as the scalar momentum p are on shell
in Eq. (4.30), the ReX) term corresponds to a
contribution to Zgg) arising from a process involving
two-body subprocesses v¢ <> f. Again, under the
kinematic conditions we are considering, such sub-
processes are suppressed by the same (two-body)
kinematics that suppress the one-loop contributions

to 2(1"2) (and the raison d’étre for considering the
two-loop contributions) and therefore those terms
can be neglected.

More specifically, in our case in which we consider
the high-k limit, we take

K+p+m
s+ p) = st () == ==L (432)
p-k

which gives

~i(2 (K)o

d4p . b . * . ao(f
:/(27)41 g/l)(P)("hgbR)lSé '(p.k)
x (—iZ) (p+K)) (=SS (p.k)) (imgal ). (4.33)

This is just the expression that we would obtain from
Eq. (4.22) by considering only the term with A = 1,
B =2, and retain only the high-k limit of the
vacuum part of the f propagator.
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Thus, explicitly,

AL (p)iaD) (p") (im gy R)iSY (p, k)

—i( Z/ < Cf )4

x (imL)(isSz’(k/>>cd<ng;R><—iséf> (P, k) (inm29aL). (4.34)

C. Diagram C
The contribution to the self-energy is

. d'p d* p y
~i(2i5 (k) / G Gyt A (PO () iy gL RIS K = ) (gL
x <isi”;<k/>>cd<inggzk>is%; (k+ p)(imgaL). (4.35)

Considering the sum over A, B, there are four terms, corresponding to the combinations AB = 12, 21, 11, 22. Consider the
third one, that is, A = B = 1. The integrand contains the factor S(lé)(k + p)Aé"f)( p), and as a consequence of the delta
functions involved, the momentum integration will be suppressed by the same two-body kinematics we have already

alluded to. Similar arguments apply to the term A = B = 2, which contains the factor § 5’;) (k—p' )Ag)( ).

On the other hand, the terms corresponding to AB = 12, 21 are not suppressed in this way. We therefore write

C C C
(2(12))27{1 = (Zg2l>)ba + (2(12”))27{1’ (4.36)
where
. d4p d“ . . .
—i=S) () / @ (p)id®) (o) (im g RYISY) (k = p')(img. L)
x <z'sl”2 <k’>>cd<inzng>iS§?<k + p)(imgal) (4.37)
and
cin d4P d4 A®) By i eoriclh) N
_l( Z Ay'(p )lAn (P")(imgyR)iSyy (k — p')(ing.L)
x <is£3(k’»cd(mlgzze)isiz)(k+p><ngaL>. (4.38)

For the purpose of carrying out the momentum integrations it is more convenient to relabel the momentum variables in the
. 11 . . R .
expression for (255 )) »a According to the diagram shown in Fig. 3, which corresponds to

ok —p')

é(p— k)

FIG. 3. Equivalent form of diagram C in Fig. 2, with a relabeling of the internal momentum variables. Here we have defined
K'=p+p —k

116026-11
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d* d4
_l cn Z/ P

x (i <k">>cd<img;R>is$?<p><ngaL>.

D (p = k)in\y (k= p')(im g R)iSt (p') (img.L)

(4.39)

Invoking once again the two-body kinematics argument, we see that in Eq. (4.37) the contribution from the thermal part
of the diagonal f propagators is suppressed, as well as the contribution from the thermal part of the diagonal ¢ propagators
in Eq. (4.39). Thus, approximating the vacuum part of the diagonal propagators by their high-k limit,

d4 d4 /
. <(C p d'p . . s ;
_1(2(121>(k))b Z/ (2”)4 (27[)4 IAE?)(p)lA(lqzs)(p/)(lnlgbR)lSE)f)(_p/3 k)(”?lch)
d
X (i1 (k) g (im93R) (=S5 (p, K)) (in129,L), (4.40)
(D d4P 'y W (B el

—i(2Z), 2ﬂ)4 —iAy " (p.—k))iAy" (p', —k)(img;R)iS{y (p')(inag.L)

Ld

x (isy) <k”>>cd<imng>isé><p><imgaL>. (4.41)

D. Summary

In summary, we are left with four contributions:

A B cr cir
(Z12)pe = (252))ba + (2(12))ba + (2(12 ))ba + (2(12 ))bm
(4.42)

given by E s 4.21), ;4 .34), (4.40) and (4.41). In those
formulas, ) and S are the free fermion and scalar
propagators respectlvely, in the high-energy limit, defined
in Egs. (4.19) and (4.32). From the expressions in those
equations it follows that only B and CI contribute in a pure
¢ background (no f in the background) while in a pure f
background (no ¢ in the background) only A and CI/
contribute. In either case, the diagrams CI and CII exist
only if ¢ is a real scalar. For a complex ¢ only diagrams A
and B exist. In the next section we consider precisely the
former case, namely a pure ¢ background. We determine
the damping terms according to the scheme explained in
Sec. II and evaluate explicitly the integrals involved for
some illustrative background conditions.

Before moving ahead, it is worth to emphasize the
following. Only diagrams A and B suffer from the pinch
singularities. Equations (4.21) and (4.34) give us convenient
starting points to compute the contribution from diagrams A
and B, respectively, within the high-momentum approxima-
tion that we restrict ourselves here. However, the pinch
singularities are already famed in Egs. (4.15) and (4.30),
respectively, and those expressions can be used to compute
the corresponding contributions in other situations of interest.

V. A PURE ¢ BACKGROUND

For definiteness, in the remainder of this work we
consider only a ¢ background with no fermions f. We

will calculate Z; for this case next. From the result we will
determine the damping matrix in Sec. V B.

A. Expression for X%;

The starting point is the expression for each of the
diagrams B and CI we have obtained in Egs. (4.34) and
(4.40), explicitly

o= k) [ SE AL i pyisld )
x RiS§ (p.k)LiS\) (K)R(=iS (p.K))L.
S () = (2K [ ST ial (i )
x RiSY" (=p k) Lis\Y) (k')
R(-iSy (p. k)L,

(5.1)

where

(5.2)

1
_ * E 2
Kba _Egbga< - |gc| >

We have used the fact that the neutrino propagator is
diagonal in flavor space, and we are defining K, with the
factor of 1/2 for later convenience when we identify X;. It it

(B)

understood that for a complex ¢ only X},” contributes,

while if ¢ is real then 2531) also contributes but in that case
the chemical potential ay = 0 in the final evaluation of the
integrals involving the distribution functions.

We write the formulas for the propagators as follows. For
the fermion f, remembering Eq. (4.32), we have

116026-12
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RS(()f)(p, k)L = S(p, k)L, (5.3)  €(z) = 0(z) — 0(—z) with 6(z) being the unit step function,
the fermion and boson distribution functions npp are
with defined in Egs. (2.9) and (3.4), and
¥
Si(p, k) =7—. 54 ! — Bk oy —
7(p.k) 2k (5.4) x, =pK -u—a,,
. Xp=Pp-u—ag
For the neutrino and the scalar propagators, , ,
Xy =pp'u—ay. (5.7)
S (K') = 2mis(k™)np(x) e (k' u)Ls, (K).
@) iS22 ot ] It is useful to remember that the relation k' = k + p — p’
axr(p) 27id(p " Jettn(xp)ep - u). (actually the definition of k) implies the following relation:
A (p') = =2xi8(p? = m3)ng(xp)e(p' - ), (5.5)
where X, + Xy = x, + Xy (5.8)
s, (K) =¥, (5.6) Substituting Eq. (5.5) in Eq. (5.1), we then have
|
d4p d4p/ d4k/
i W, = ~(2Ks) [ GBS @ny W 4 =k p)
x 8(p* — m3)5 <p m3)s(k2)e(p - w)e(p' - we(K - u)[S(p. k)5, (K)S;(p. K)LIE
d4 / d4k/
S () = ~(2K1) [ S AL R a5 W+ k= p)
x8(p* - mi)5<p’2 - m¢) (K2)e(p - u)e(p" - u)e(k' - u)[Sp(=p' k)s,(K)S¢(p. K)LIE',  (5.9)
where 1 P=F
ng (xv>
E' = e*ng(x,)ng(xy)ng(x,). (5.10) = np(xy)(1 + np(x))
- - ), 5.13
In writing Eq. (5.9) we have taken &’ to be an arbitrary nr(3,) (n5(x) nB(x¢) ) ( )
variable but inserted a factor of 6*)(k + p — k' — p') and
integrated over . and we have defined
Letting X = B, CI, the corresponding contributions to
the absorptive part of the self-energy, identified by MiB) = S;(p.k)s,(K)S;(p. k)L,
cr
s, M = Sy(=p' k)5, (K)S,(p. k)L, (5.14)
E)ba =57 ’ (5.11)
21”F<xu)
Next we carry out the integrals over p°, p’0, k°. Starting
are then given by with &,
(X) k d4p d4p/ d*k 2)t (Z(X)(k)) K / d4p d4p/ d*’ 5( 2 2)
2 =-K i a — " Rba pm—m
(X7 (k) g ba/(zﬂ)s (2n) (2”)3( 7) b (27)° (27) (27)* 2w, ¢
Dk+p—-K-p) x 8(p"* —mg)e(p - u)e(p’ - u)
x 3(p? = m3)(p" — m)5(K) x (2m)" (89 (k + p~ K — p)MVE,
xe(p-ue(p' - welk - uMPE,  (5.12) —sW(k+p+k - p)MYEY,  (5.15)

where we have used the identity

where
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E, = np(xy)(1 + ng(xy)) = fo (@) (np(xg) — np(xy)).
E; = np(xy) (1 4 ng(xy)) + fo(we) (np(xy) — np(xy)),

(5.16)
and
M(EX) = M£X)|k’—>—k” (5.17)
understanding that from now on
K = (w¢,K), (5.18)

with we = || = «’. To arrive at Eq. (5.15) we have also
made the change of variable ¥ — —¥' in the second term.
Proceeding in a similar way with the integrals over p°

and p’,

d3 d3 / d3 /
e =Knn | oo o E T
(27)°2E, (27)°2Ey (27) 2w,
x> @r)H{W (k+Ap—kK =2 p\MPLE,
A
— 69 (k- Ap+K =2 p M) Ep i}, (5.19)
where
M), = 5;(ap. k)s,(K')S;(Ap. k)L,
Cl
M) = S, (=1'p' K)s,(K)S, (2p. k)L,
X X
M(D,/I)ﬁ’ = MI(J,A)/l’|k'_>_k/' (520)
We have defined
El/,/l/ == El/|p—>ﬂp,p’—>/1'p’ (521)

and similarly for E; 5, and from now on p and p’ are on
shell. The formulas are given explicitly in Table 1. To
simplify the notation in the formulas summarized in Table I
we have introduce the shorthand

TABLE 1.

fzI/ :fv(wk’)
]_[1// :fi(wk’)'

f:f(ﬁ(Ep)’ f/:fdb(Ep’),

F=ryEy).  [=fi(Ep), (5.22)

The formulas for £, are obtained from those for £, by

making the replacement f,, — (1 — f7). Each of the terms
in Eq. (5.19) represents a contribution to Z; from a specific
physical process, as indicated in Table L

B. Damping matrix
We write Eq. (5.14) in the form

MY = ]\,/3( );L (5.23)
where
DB = (2p - k)2,
D) = (=2p" - k)(2p - k), (5.24)
and
NE = [+ K+ ),
N = (k=K K+ p). (5.25)

The expressions for the N*X) are reduced by using the
identity

Ya¥lulv = Cﬂm//)},/) + ieﬂﬂp/)ypysv (526)

where

Cﬂm//) = GuGvp — 9wup + Gip G- (527)
After the integrations over k', p,p’ the only vectors
remaining are k and u, and then the terms with the
antisymmetric tensor vanish. Thus we can replace in the
integrand

N — £Xry (5.28)

Correspondence between the E, ;; and Ej;,y factors defined in Eq. (5.21), and the process that

contributes to the v(k) damping via Eq. (5.19). To simplify the notation we are using the shorthand shown in

Eq. (5.22) for the various distribution functions.

Eu,++:f(1+lf/)—f;/(f_f/) _
B,y ==+ DA+ )+ L0+F+F)
Eye=—fF = f(1+f+])

E, =+ + L7 -7)

E; = (1_+f)J_N+f,u(_f—f/)
ED,*+:_ff/_f1//(l+_f+f_/) ~
B =-(1+NA+/)+ L0+ f+F)
E,__=f(1+f)=f.(f-1)

Vap(k) + ¢(p) < vi(K) + ¢ (p')
Vap (k) g Vi(k/) + ¢(P) + ¢(pl)
Van(K) + d(p) + B(p') < 1K)
Vap (k) + ¢(p') < vi(K) + ¢(p)
Vap (k) +2i(K) + d(p) < ¢(p)
Vap (k) + 0i(K') < ¢(p) + ¢(p')
Vo) + T1(F) + ¢(p) + §(p') < 0
Vap(k) + 0 (K') + ¢(p') < ¢(p)
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where

5 = Copuplk+ pYRM(k + p),
25 = Cyppk = p)HM(k + p)P. (5.29)

Then, corresponding to each diagram X = B, CI we have

d3p d3p/ A
(2m)*2E, (27)*2E, (27) 20,
fgj(/)ﬂ
X Z( (x)) (2r)*

A a0
x{8W(k+ap—K =V p)E, 1

(V¥ (@0,8))0 = Ko /

+6W (k+Ap+K =2 p)Esy},  (5.30)
where
Xu _
ot =M it
X
Dﬁﬂ) = D(X>|,ng,p/—>z’p/- (5.31)

Since the formulas for I are given in terms of - V;(«, k)
(for neutrinos), or n-V,;(—k,—K) (for antineutrinos), we
consider the evaluation of X; for k# = wn* (which in
particular implies k> = 0) and in the end put @ = +x
(for neutrinos or antineutrinos, respectively). From now on
we thus set k> = 0.

We evaluate n-¢ and n- ¢, putting k* = wn” as we
already stated. Then doing the algebra, remembering to set
n? =0,

n-¢® =2(n-p)(K-p),

n- € — —(n-p)k-p)=(n-p)K-p), (532)
and therefore
n-£B) _ik/'p
DB 2wk-p’
e K 1K
N EER)
DD 4o k-p' dwk-p

Up to this moment we have only used straightforward algebra
to arrive here from Eq. (5.23). We now invoke the high-energy
limit we are considering. The momentum delta functions set
k' = k+ p — p’. Therefore, to leading order in k, we put
k' — k in the above and for either diagram we have

n-¢% 1
DX 20

(5.34)

For the antineutrino part, the delta function gives
k' = —k — p + p'; therefore the replacement is k' — —k.
Putting all this together we then have, from Eq. (5.30),

- &/ d3p d3pl K
2w ) (22)32E, (27)*2E, (27)*2w,

x Y (2m)H8W (k+Ap =k = X p)E,
A4

— W (k+Ap+ K =N p)E; ). (5.35)
The damping matrix is given by
LyB)
e - {” V"B (k. ) ®). (5.36)
2 n- VIV =k, k) (2)
or
rer={" Vi e R) - Vi (e R) ).
n- VSB)*(—K —K)+n- V,(»Cl) (—x,—K) (D),
(5.37)

for a complex or real ¢, respectively. The final expressions for
both diagram contributions 7 - VEX), given in Eq. (5.35), are
formally the same. But it must be understood that for a real ¢
the distribution functions of the ¢ have a;, = 0, or equiv-
alently f5 = f4.

Not all the terms in Eq. (5.35) contribute, depending on
whether w is positive or negative. Equivalently, the corre-
sponding processes are inhibited by the kinematics. In
addition we will assume that there are no neutrinos in the
background. The result is that for the neutrinos (@ positive)
only the terms E, ., E,__ contribute, while for the
antineutrinos (w negative) only Ej; , ., E; __ contribute.

Denoting by I'®) and I'®) the matrices for neutrinos and
antineutrinos, respectively, for the case of a complex ¢ we
then have from Eq. (5.35)

) Kha}/(y)

() _
ba 2k ’
K}«m},(ﬁ)

ry =Kt

1
2
1
- 5.38
2 2K ( )
where
},(u _ / d3p d3p/ dSK/
(27[)32Ep (271)32Ep/ (27) 2w,
x 2n){sW(k+p—K - p')E,
+6W(k+p' =K - p)E,__},
},(D _ / d3p d3p/ d3K/
(2m)32E, (27)*2E ; (27m)* 2w,
x 2n){8W(k + p' =k — p)E; .,
+6W(k+p -k —pE;,__},

(5.39)
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with

b++ - fd)(Ep)(l +f¢(Ep’))’
p—— = f¢(Ep’)(1 +f(}§(Ep))v
Eppy = f(Ey)(1+ fy(Ep)),
( )

E; = f3(E,)(1 + f3(Ey)). (5.40)

Relabeling the p, p’ integration variables in some terms,

we \can see that y@) = y<”>. Therefore, in explicit form,
Eq. (5.38) becomes

%p@) KbT}:(@ (5.41)
where
d3 d3p/ dSKl
0= / (27)2E, (27)2E,; (27) 2w,
x (27)*89) (k + p— K — p')
X {fp(Ep)(L+ fy(Ey)) + f3(E,)(1+ f3(Ep))}
(5.42)

As already stated, Eq. (5.41) holds for a complex ¢. For a
real ¢ the formula is the same but with the replacement
2k — k and putting f5 = f, in Eq. (5.42).

C. Example evaluation of integrals

In the dilute gas approximation (i.e., neglecting the terms
with the product of the distribution function),

3
1= | Gayiar UetEe) +

where

d3p/ dSK'/
J = / (271')32E . (277)326() / (27[)45(4) (k +p—k - P’).
p K

(5.44)

+HEN, (5.43)

It is straightforward to evaluate the J integral. Let us define
g=k+p (5.45)
and

s =q°. (5.46)

‘We then obtain

1= (Z2)o05 - By 0iEy ~mg). (547
where
2
E, = S;\Z"’ (5.48)
and
e +2 2 _ 57 mé
pr=\E;—my = N (5.49)
From the definition in Eq. (5.46),
s =my+2k-p
= mj + 2kE,(1 = v, cos0,), (5.50)
where
cosf, =Rk-p (5.51)
and
v, = %. (5.52)

Thus for any value of p, we have s > m{z/), and this implies

that the two step functions in Eq. (5.47) are automatically
satisfied. Therefore, we can take J to be simply

2 2
I i AN S
8 S 87 K
2

(e )
= — 1— ) .
8r my +KkE,(1 —v,cos0,)

(5.53)

In principle we can use this to do the remaining integral
over p to evaluate v for different background distribution
functions. However, since we are interested in the high-x
limit, we retain just the leading term

J = 3 (5.54)
which in turn gives
1
Yy = g-]qs- (5.55)
Thus from Eq. (5.41), for a complex ¢,
%ﬁbﬁ) = Iigﬂjk ’ (5.56)
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where J; is defined in Eq. (3.25). For a real ¢,

1 o Kot
@ _ Kaly

2 ba 8k

(5.57)

and Jy is evaluated putting fj = f. In either case the

formula for F;,”a) is obtained by replacing K, — Kj . Thus,

for example, using Eq. (3.26), Eq. (5.56) yields

n¢+néﬁ

1 v 32mkmy, (NR)’

Erg(j —K,m{ . (5.58)
1927k (UR)

These are valid for a complex ¢. For a real ¢, the
corresponding formulas are

)
1 v 8mkm, (NR ’
EFE,J Kba{ o (5.59)
967K (UR)

For the antineutrinos, the damping matrix is given by the
same formulas but replacing K, — K, .

Comparing Eq. (5.56) [or Eq. (5.57)] with Eq. (3.24) we
see that the ratio of the imaginary part (damping) to the real
part of the effective potential is ~g?>/16x. This contrasts
with the result in the case of a normal matter background. In
that case the same ratio is further suppressed by the mass
factor km,/m3, (for k > m,) or k*/m3, (for m, > «) [29].
Therefore, in situations where the effective potential due to
a light scalar background may be relevant, the damping
effects may be important since they are not suppressed by
the mass factors. On the other hand, the relative importance
of such damping effects may be negligible if all g,
couplings are too small.

D. Discussion

We have obtained Egs. (5.58) and (5.59), or their more
general versions given in Egs. (5.56) and (5.57), by
purposely considering a background with only ¢ particles
and no fermions f. However the inclusion of the fermion
contribution can be carried out straightforwardly in analo-
gous fashion. It involves calculating in a similar way the
contributions denoted by ZY;) and 2(1(2:”) in Eq. (4.42).

From a physical point of view, the damping matrix I"
induces decoherence effects in the propagation of neutri-
nos. As emphasized in our previous work Ref. [16] and
illustrated again here, the contribution to I' from the
neutrino non-forward-scattering process v, + x — v, + X,
where x = f, ¢, can be determined from the two-loop
calculation of X,. However, since in this case the initial
neutrino state is depleted but the neutrino does not actually
disappear (the initial neutrino transitions into a neutrino
of a different flavor but does not decay into a f¢ pair,
for example), we have argued that the effects of the
non-forward-scattering processes are more appropriately

interpreted in terms of decoherence phenomena rather
than damping. Specifically, the damping matrix should
be associated with decoherence effects in terms of the
Lindblad equation and the notion of the stochastic evolu-
tion of the state vector [33—37]. The idea is to assume that
the evolution due to the damping effects described by I is
accompanied by a stochastic evolution that cannot be
described by the coherent evolution of the state vector.
As discussed in detail in Ref. [16], the result of this idea is
that the evolution of the system is described by the density
matrix p (in the sense that we can use it to calculate
averages of quantum expectation values) that satisfies the
Lindblad equation

Op = _i[Hw p]

o1 1
+ Z{anL,, —5LiLp =5 pL,T,L,,}, (5.60)

where the L, matrices, representing the jump operators, are
related to I" by

(5.61)

r=> LiL,.
n

We refer to the terms involving the jump operators in the
right-hand side of Eq. (5.60) as the decoherence terms.

The damping matrix that we have determined from the
two-loop self-energy calculation can be expressed in
this form. For example, consider a real ¢ background.
Equation (5.57) can be written as

14 Oty (€
I_‘(ba) = (st) Lg(b ))ba
=S @ (L) (6 = v.0). (5.62)
with
J
®) ¢
L /2.
( ¢ )ca 87[K_gcga
(L) e = (LY )i (5.63)

The L matrices are expressed in terms of integrals over the
background particle distribution functions. Going a step
further, consider for illustrative purposes the NR limit.
Then using Eq. (3.28),

Wy _ ng
L 9
( ¢ )ca 871'Km¢gcga
v n .
(LY)ea = 8ﬂkin¢gcga (5.64)

It is straightforward to consider the addition of fermions
f in the background or in fact more complicated
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superpositions of different background species. The evalu-

ation of ZS'CU) would result in a matrix L, contributing in

Eq. (5.61), so that

6 _ 1O (@) | (O (@)
rO=r,"Ly + Ly Ly (5.65)

The matrix L(ff) would be given in terms of the fermion
distribution by formulas analogous to Eq. (5.63). In general
these formulas predict, for example, a specific dependence
of the decoherence terms on the neutrino energy, depending
on the background conditions. This complements the
studies of the decoherence effects that are based on general
considerations at a phenomenological level without a
calculation of the decoherence terms. We do not pursue
this any further here, but our results and calculations show
the path for further applications along these lines.

VI. CONCLUSIONS AND OUTLOOK

In this work we have been concerned with the calculation
of the damping terms that result from non-forward-
scattering processes when neutrinos propagate in a back-
ground of fermions (f) and scalars (¢) interacting via a
Yukawa-type interaction. We determine the contribution of
those processes to the damping matrix I" from the two-loop
calculation of the imaginary part of the thermal neutrino
self-energy using the methods of thermal field theory
(TFT). In the context of TFT the two-loop self-energy
diagrams suffer from the so-called pinch singularities,
which appear because the expressions contain two thermal
propagators with the same momentum argument. A sig-
nificant effort in this work was to show how those
singularities are effectively handled by a judicious use of

the properties and parametrizations of the thermal propa-
gators. The final result of that exercise is a set of formulas
for the two-loop contribution to the imaginary part of the
self-energy from which the damping matrix is determined.
The formulas are well-defined integrals over the back-
ground particle momentum distribution functions, which
can be evaluated straightforwardly for different background
conditions. For concreteness, we considered in detail a pure
¢ background, with no fermions f. We obtained the
corresponding formulas for the damping terms and evalu-
ated them in some specific limits of the ¢ distribution
functions.

As a guide to applications, we discussed briefly in
Sec. VD the connection between I' and the decoherence
described in terms of the Lindblad equation. There we
showed the explicit formulas obtained for the jump
operators that appear in the Lindblad equation using the
results of the calculation of I We indicated how this
approach can be extended to consider more general back-
grounds that include the fermions f or other particles.

The results we have presented extend our previous work
and can be used to study the decoherence effects in a
variety of physical contexts and environments. As a by-
product, we have presented a detailed calculation of the
imaginary part of the two-loop neutrino thermal self-
energy, controlling the pinch singularities, using and
illustrating a method that can be applied to perform
similar calculations consistently in other situations of
interest.
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