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We consider the calculation of the thermal self-energy of a neutrino that propagates in a medium
composed of fermions and scalars interacting via a Yukawa-type coupling, in the case that the neutrino
energy is much larger than the fermion and scalar masses, as well as the temperature and chemical
potentials of the background. In this kinematic regime the one-loop contribution to the imaginary part of the
self-energy is negligible. We consider the two-loop contribution and we encounter the so-called pinch
singularities which are known to arise in higher-loop self-energy calculations in thermal field theory. With a
judicious use of the properties and parametrizations of the thermal propagators the singularities are treated
effectively and actually disappear. From the imaginary part of the self-energy, we obtain a precise formula
for the damping matrix expressed in terms of integrals over the background particle distributions.
The formulas predict a specific dependence of the damping terms on the neutrino energy, depending on the
background conditions. For guidance in estimating the effects in specific contexts, we compute the
damping terms for several limiting cases of the momentum distribution functions of the background
particles. We discuss briefly the connection between the results of our calculations for the damping matrix
and the decoherence effects described in terms of the Lindblad equation.

DOI: 10.1103/PhysRevD.103.116026

I. INTRODUCTION AND SUMMARY

In several models and extensions of the standard electro-
weak theory, the neutrinos interact with scalar particles (ϕ)
and fermions (f) via a coupling of the form

Lint ¼
X
a

gaf̄RνLaϕþ H:c: ð1:1Þ

For definiteness we are assuming the presence of only one
f and ϕ, while the indices a; b; c;… label the neutrino
flavors. Those interactions produce nonstandard contribu-
tions to the neutrino index of refraction and effective
potential when the neutrino propagates in a background
of those particles. Couplings of this form have been
considered recently in the context of dark matter–neutrino

interactions [1–9]. Similar effects occur due to neutrino-
neutrino-scalar interactions of the form ν̄cRbνLaϕ when a
neutrino propagates in a neutrino background. This can
occur in the environment of a supernova, where the
neutrino-neutrino interactions lead to the collective neu-
trino oscillations and related phenomena (see for example
Refs. [10,11] and the works cited therein), and it can also
occur in the hot plasma of the early Universe before the
neutrinos decouple [12,13].
In previous works we have presented various calcula-

tions related to the propagation of neutrinos in that kind of
background [14–16]. In Ref. [14] we considered the real
part of the self-energy of a neutrino that propagates in a
medium consisting of fermions and scalars, with a coupling
of the form given in Eq. (1.1). We calculated the real part
(or more precisely the dispersive part) of the neutrino
thermal self-energy, denoted by Σr, from which the
dispersion relation and effective potential are determined.
Those interactions can also induce processes such as
νþ ϕ ↔ f and νþ f̄ ↔ ϕ̄, depending on the kinematic
conditions, that produce damping terms in the neutrino
dispersion relation and index of refraction. Thus in
Ref. [15], we continued our work to calculate the imaginary
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part (or more precisely the absorptive part) of the neutrino
thermal self-energy, denoted by Σi, in a scalar and fermion
background due to the f̄RνLϕ interaction. From Σi the
corresponding contribution to the damping matrix Γ in
the dispersion relation was obtained. The calculations
in Ref. [15] were based on the one-loop diagram for the
neutrino self-energy.
In Ref. [16] we noted that those couplings can induce

decoherence effects, of the form discussed in recent works
[17–21], due to the neutrino non-forward-scattering proc-
ess νa þ x → νb þ x, where x ¼ f;ϕ. As observed in
Ref. [16], the contribution to Γ due to these processes
can be determined from the two-loop calculation of Σi.
Thus, in that reference we performed the two-loop calcu-
lation of Σi and Γ or the case in which the background
contains only the fermions f, assuming that the ϕ particle is
heavy enough and the conditions are such that there are no
ϕ particles in the background. Under those conditions, the
two-loop contribution to Γ is the relevant one since the two-
body processes that contribute in one loop are kinemati-
cally forbidden.
The present work is a continuation of that previous work.

Here we consider the situation in which both f and ϕ may
be present in the background. We are particularly interested
in the kinematic regime

κ > mϕ; mf; T; ð1:2Þ

where κ is the neutrino momentum and T the background
temperature. That is, both f and ϕ are relatively light
compared to the neutrino energy. We refer to this as the
light background. It is the kinematic regime that is relevant
in the context of the possible existence of light scalars as
dark matter and the effects they may have on neutrino
experiments, that has been explored in the recent literature
[22,23]. The results can be useful also for the studies of the
environmental decoherence effects in long-baseline neu-
trino oscillation experiments that have been carried out
recently [24–27]. Again, in this kinematic regime the two-
body processes that contribute in one loop are inhibited and
the two-loop contribution is the relevant one.
Apart from the relevance for the applications already

mentioned, from a calculational point of view the present
calculation has a technical merit. There is one important
technical issue that shows up in the kinematic regime we
are considering in the present case and those we consid-
ered previously. The two-loop diagrams for the self-
energy, from which the damping matrix is determined,
suffer from the so-called pinch singularities [28]. These
arise from the fact that in the present case some of the
diagrams contain a product of two thermal propagators
with the same momentum. Since the thermal propagators
involve the on-shell delta functions, such products are ill
defined. As we show, by a judicious use of the properties
and parametrizations of the thermal propagators, the

expressions for the diagrams can be rearranged such that
the pinch singularities are absent in the final expressions,
allowing a straightforward evaluation of the self-energy
and whence the damping terms. While the conventional
wisdom is that indeed such singularities actually disap-
pear, our calculations provide an explicit proof of that fact
in a concrete and nontrivial example that can be gener-
alized to other calculations.
The final results are well-defined formulas for the

damping terms in the neutrino dispersion relation (or
effective potential) in terms of the model parameters
(i.e., couplings ga and masses mf;ϕ) and the environmental
parameters (e.g., temperature). In practical applications, the
possible values of all the parameters involved vary signifi-
cantly depending on the context, i.e., astrophysical, cos-
mological or neutrino oscillations. For example, in the
context of a supernova (such as SN1987A) the neutrino
interactions with ϕ as a cold dark matter candidate can
have effects on the observed neutrino flux for mϕ,
T ∼ a few MeV [1]. But these, and similar considerations
in other contexts, depend on the particle physics model as
well. Thus, for example, while we concentrate here on the
calculation involving the Lint interaction term, in isolation
from the Standard Model interactions, the two-loop dia-
grams in some models may involve the standard particles
and/or other nonstandard gauge boson interactions as well.
Nevertheless, subject to the limitation of the light back-
ground condition stated above, the particular results we
obtain for the damping terms can be used in the context of
many such models and conditions, and in fact the method to
treat the pinch singularities is applicable to those more
general cases as well.
In summary, our plan is as follows. In Sec. II we

summarize the framework in which we carry out the
calculations. There we explain that, while the effective
potential is determined from the one-loop diagram for the
self-energy, in the kinematic regime we consider [Eq. (1.2)]
the damping is determined form the two-loop diagrams. In
Sec. III we calculate the dispersive part of the self-energy
and determine the effective potential. In Sec. IV we
consider the calculation of the two-loop contribution to
the absorptive part of the self-energy, from which the
damping matrix is determined. There we indicate the
problem of the pinch singularities and present our treatment
to resolve it. The net result, summarized in Sec. IV D, is
the set of formulas for the two-loop contributions to the
absorptive part of the self-energy, free from the singular-
ities. In Sec. V we evaluate explicitly the corresponding
expressions for the damping matrix in the case of a scalar
background under various conditions and indicate the path
to generalize such calculations to consider more compli-
cated backgrounds. There we also discuss briefly the
connection between the damping matrix thus determined
and the decoherence described in terms of the Lindblad
equation. Finally Sec. VI has our conclusions.
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II. PRELIMINARIES—EFFECTIVE POTENTIAL
AND THE DAMPING MATRIX

To be self-contained we summarize the following
material borrowing from Ref. [16]. We denote by kμ the
momentum four-vector of the propagating neutrino, and as
usual we denote by uμ the velocity four-vector of the
background medium. In the background medium’s own rest
frame, it takes the form

uμ ¼ ð1; 0⃗Þ; ð2:1Þ

and in this frame we write

kμ ¼ ðω; κ⃗Þ: ð2:2Þ

Since we are considering only one background medium, it
can be taken to be at rest and therefore we adopt Eqs. (2.1)
and (2.2) throughout.
Let us consider first the case of one neutrino propagating

in the medium. The dispersion relation and the spinor of the
propagating mode are determined by solving the equation

ð=k − ΣeffÞψLðkÞ ¼ 0; ð2:3Þ

where Σeff is the neutrino thermal self-energy. It can be
decomposed in the form

Σeff ¼ Σr þ iΣi; ð2:4Þ

where Σr;i are the dispersive and absorptive parts,

Σr ¼
1

2
ðΣeff þ Σ̄effÞ;

Σi ¼
1

2i
ðΣeff − Σ̄effÞ; ð2:5Þ

respectively, with

Σ̄eff ¼ γ0Σ†
effγ

0: ð2:6Þ

In the context of thermal field theory Σr is given in terms of
the 11 element of the thermal self-energy matrix by

Σr ¼ Σ11r ≡ 1

2
ðΣ11 þ Σ̄11Þ: ð2:7Þ

On the other hand, Σi is more conveniently determined in
terms of the 12 element of the neutrino thermal self-energy
matrix by the formula

Σi ¼
Σ12

2inFðxνÞ
: ð2:8Þ

Here

nFðzÞ ¼
1

ez þ 1
ð2:9Þ

is the fermion distribution function, written in terms of a
dummy variable z, and the variable xνðkÞ is given by

xνðkÞ ¼ βk · u − αν; ð2:10Þ

where T ¼ 1=β is the temperature and αν is the neutrino
chemical potential.
The chirality of the neutrino interactions imply that1

Σeff ¼ VμγμL: ð2:11Þ

Here and below we use the notation L and R for the left and
right chiral projection matrices L; R ¼ 1

2
ð1 ∓ γ5Þ, respec-

tively. Corresponding to the decomposition in Eq. (2.4) we
also write

Vμ ¼ Vμ
r þ iVμ

i ð2:12Þ

and

Σr;i ¼ Vμ
r;iγμL: ð2:13Þ

In general, Vμ
r;i are functions of ω and κ⃗. We omit

those arguments ordinarily but we will restore them when
needed.
Writing the neutrino and antineutrino dispersion rela-

tions in the form

ωðν;ν̄ÞðκÞ ¼ ωðν;ν̄Þ
r ðκÞ − iγðν;ν̄ÞðκÞ

2
; ð2:14Þ

the solution of Eq. (2.3) gives

ωðν;ν̄Þ
r ¼ κ þ Vðν;ν̄Þ

eff ; ð2:15Þ

where Vðν;ν̄Þ
eff are the effective potentials

VðνÞ
eff ¼ n · Vrðκ; κ⃗Þ ¼ V0

rðκ; κ⃗Þ − κ̂ · V⃗rðκ; κ⃗Þ;
Vðν̄Þ
eff ¼ −n · Vrð−κ;−κ⃗Þ ¼ −V0

rð−κ;−κ⃗Þ þ κ̂ · V⃗rð−κ;−κ⃗Þ;
ð2:16Þ

with

nμ ¼ ð1; κ̂Þ: ð2:17Þ

On the other hand, for the imaginary part,

1In a strict sense this is correct in the massless neutrino limit,
which is valid in practice in the approximation that the neutrino
mass is neglected in the calculation of the relevant diagrams for
the self-energy.
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−
γðνÞðκ⃗Þ

2
¼ n · Viðκ; κ⃗Þ

1 − n · ∂Vrðω;κ⃗Þ∂ω jω¼κ

;

−
γðν̄Þðκ⃗Þ

2
¼ n · Við−κ;−κ⃗Þ

1 − n · ∂Vrðω;−κ⃗Þ∂ω jω¼−κ

; ð2:18Þ

where nμ is defined in Eq. (2.17). We will retain only the
dominant contribution to n · Vi in the numerator, which in
our case is the two-loop term as we argue below. Then to
leading order the formulas in Eq. (2.18) reduce to

−
γðνÞðκ⃗Þ

2
¼ n · Viðκ; κ⃗Þ;

−
γðν̄Þðκ⃗Þ

2
¼ n · Við−κ;−κ⃗Þ; ð2:19Þ

neglecting the correction due to the n · ∂Vrðω; κ⃗Þ=∂ω term
in the denominator.
In the case of various neutrino flavors, the vector Vμ in

Eq. (2.11) is a matrix in the neutrino flavor space. As shown
in Ref. [16], the generalization of the above discussion is
that the dispersion relations of the propagating modes are
determined by solving the following eigenvalue equation in
flavor space:

�
Hr − i

Γ
2

�
ξ ¼ ωξ; ð2:20Þ

where Hr and Γ are Hermitian matrices in flavor space
given by

Hr ¼
�
κ þ n · Vrðκ; κ⃗Þ ðνÞ;
κ − n · V�

rð−κ;−κ⃗Þ ðν̄Þ;

−
1

2
Γ ¼

�
n · Viðκ; κ⃗Þ ðνÞ;
n · V�

i ð−κ;−κ⃗Þ ðν̄Þ: ð2:21Þ

In coordinate space, this translates to the evolution equation

i∂tξðtÞ ¼
�
Hr − i

Γ
2

�
ξðtÞ: ð2:22Þ

We refer to Γ as the damping matrix and to its elements as
the damping terms. Our purpose in this work is to
determine the contribution to Hr, and specially Γ, due to
the presence of the light background.
The lowest-order diagram is shown in Fig. 1. From that

diagram we obtain Σ11 and Σ12, and whence the dispersive
and absorptive parts Σr;i by means of Eqs. (2.7) and (2.8).
The corresponding one-loop contribution to Vr and Γ are
then obtained from Eq. (2.21). However, as in the cases
discussed in Refs. [16,29], the one-loop contribution to Σ12

is negligible in this case also. The reason is that such
contributions arise from the two-body neutrino processes

such as νþ ϕ ↔ f, which are inhibited by the kinematics
in the regime we are considering [i.e., Eq. (1.2)].
To be more specific, the one-loop damping term is due to

real processes like

ðAÞ νþ f̄ ↔ ϕ̄ ðif mϕ > mfÞ;
ðBÞ νþ ϕ ↔ f ðif mf > mϕÞ: ð2:23Þ

The calculation of the one-loop damping terms for all such
conditions was carried out in Ref. [15]. Let us consider (A).
As shown in that reference, the damping is maximum for
values of the neutrino momentum

κ ∼
m2

ϕ

T
ðif T ≫ mfÞ;

κ ∼
m2

ϕ

mf
ðif T ≪ mfÞ: ð2:24Þ

Outside of those ranges the damping becomes exponen-
tially small. Analogous considerations apply to case (B) as
well. As a result, in the kinematic regime we are consid-
ering, the damping matrix is determined by the two-loop
diagrams for Σ12 shown in Fig. 2.
In summary, the neutrino and antineutrino effective

potential is given by Eq. (2.16), and the damping by
Eq. (2.19), where Vμ

r is determined from the calculation
of Σ11 using the one-loop diagram in Fig. 1, while Vμ

i is
determined from Σ12 calculated from the two-loop dia-
grams in Fig. 2. As already stated, in writing Eq. (2.19) we
are neglecting the correction due to the n · ∂Vrðω; κ⃗Þ=∂ω in
the overall denominator in Eq. (2.18), which corresponds to
keeping the leading order of the dominant term. As we have
emphasized, the expressions corresponding to the diagrams
in Fig. 2 suffer from the pinch singularities. After handling
the singularities, Σ12 is expressed in terms of integrals over
the background particle distribution functions that can be
evaluated in principle once the background conditions are
specified. Correspondingly, the final formula for the damp-
ing matrix that we determine by means of Eq. (2.21) is
expressed in terms of integrals over the background particle
distribution functions that we will evaluate explicitly for
some illustrative cases.

FIG. 1. One-loop diagram for the neutrino self-energy matrix
ðΣABÞba in a background of fermions f and scalars ϕ. a; b are
neutrino flavor indices while A and B label the thermal vertices,
that can take the values 1 or 2.
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III. EFFECTIVE POTENTIAL

A. Dispersive part Σr

The contribution of the diagram in Fig. 1 to the 11
component of the neutrino thermal self-energy matrix is
given by

−iðΣ11Þba ¼
Z

d4p
ð2πÞ4 iΔ

ðϕÞ
11 ðp − kÞðig�bRÞiSðfÞ11 ðpÞðigaLÞ:

ð3:1Þ
We write the 11 components of the f and ϕ thermal
propagators in the form

iSðfÞ11 ðpÞ¼ ðpþmfÞ
�

i
p2−m2þ iϵ

−2πδðp2−m2
fÞηfðpÞ

�
;

iΔðϕÞ
11 ðpÞ¼

i
p2−m2

ϕþ iϵ
þ2πδðp2−m2

ϕÞηϕðpÞ; ð3:2Þ

where

ηfðpÞ¼ nFðxfðpÞÞθðp ·uÞþnFð−xfðpÞÞθð−p ·uÞ;
ηϕðpÞ¼ nBðxfðpÞÞθðp ·uÞþnFð−xfðpÞÞθð−p ·uÞ; ð3:3Þ

(a)

(b)

(c)

FIG. 2. Two-loop diagram for the 12 element of the neutrino self-energy matrix in a background of fermions f and scalars ϕ, obtained
by inserting additional propagators in the one-loop diagram in Fig. 1. The meaning of the labels A, B are the same as in Fig. 1 while a, b,
c, d are neutrino flavor indices. To simplify the notation we are setting k0 ¼ kþ p − p0. Diagram C does not exist if ϕ is a complex
scalar field. For a real scalar diagram C must be included.
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with θ being the unit step function. Here nF is the fermion
momentum distribution function defined in Eq. (2.9), and
nB is the corresponding one for bosons,

nBðzÞ ¼
1

ez − 1
: ð3:4Þ

The variables xf;ϕ are given by

xfðpÞ ¼ βp · u − αf;

xϕðpÞ ¼ βp · u − αϕ; ð3:5Þ

where αf;ϕ are the chemical potentials. Discarding the pure
vacuum contribution in Eq. (3.1) we then have

Σr ¼ ΣðfÞ
r þ ΣðϕÞ

r ; ð3:6Þ

where

ðΣðfÞ
r Þba ¼ −g�bga

Z
d4p
ð2πÞ3

pL
ðp− kÞ2 −m2

ϕ

δðp2 −m2
fÞηfðpÞ;

ð3:7Þ

ðΣðϕÞ
r Þba ¼ g�bga

Z
d4p
ð2πÞ3

ðpþ =kÞL
ðpþ kÞ2 −m2

f

δðp2 −m2
ϕÞηϕðpÞ:

ð3:8Þ

B. Effective potential in the light background

For completeness and to make the present work self-
contained, here we consider specifically the case of the light
background in the sense of Eq. (1.2). In correspondence to
Eq. (2.13), we write the ΣðxÞ

r (x ¼ f;ϕ) in the form

ΣðxÞ
r ¼ VðxÞμ

r γμL; ð3:9Þ

and therefore

Vμ
r ¼ VðfÞμ

r þ VðϕÞμ
r : ð3:10Þ

From Eqs. (3.7) and (3.8) we then have

ðVðfÞμ
r ðω; κÞÞba ¼ −ðg�bgaÞ

Z
d4p
ð2πÞ3

pμ

ðp − kÞ2 −m2
ϕ

× δðp2 −m2
fÞηfðpÞ; ð3:11Þ

ðVðϕÞμ
r ðω; κÞÞba ¼ ðg�bgaÞ

Z
d4p
ð2πÞ3

ðpμ þ kμÞ
ðpþ kÞ2 −m2

f

× δðp2 −m2
ϕÞηϕðpÞ: ð3:12Þ

Under the conditions that we are considering [i.e.,
Eq. (1.2)], we can make the replacement

1

ðpþ kÞ2 −m2
f

→
1

2p · kþ k2
;

1

ðp − kÞ2 −m2
ϕ

→
−1

2p · k − k2
; ð3:13Þ

in Eqs. (3.11) and (3.12). Furthermore, since the effective
potential is defined by setting ω ¼ κ [i.e., Eq. (2.21)], we
can set

kμ ¼ κnμ; ð3:14Þ

where nμ is defined in Eq. (2.17). Thus,

ðVðfÞμ
r ðκ; κÞÞba ¼ ðg�bgaÞ

Z
d4p
ð2πÞ3

pμ

2p · k
δðp2 −m2

fÞηfðpÞ;

ð3:15Þ

ðVðϕÞμ
r ðκ; κÞÞba ¼ ðg�bgaÞ

Z
d4p
ð2πÞ3

ðpμ þ κnμÞ
2p · k

× δðp2 −m2
ϕÞηϕðpÞ: ð3:16Þ

Carrying out the integral over p0 with the help of the delta
function, we then have

ðVðfÞμ
r ðκ; κ⃗ÞÞba ¼

g�bga
2κ

Z
d3p

ð2πÞ32Ef

pμ

p ·n
½ffðEfÞþ ff̄ðEfÞ�;

ðVðϕÞμ
r ðκ; κ⃗ÞÞba ¼

g�bga
2κ

Z
d3p

ð2πÞ32Eϕ

1

p ·n

× fpμ½fϕðEϕÞþ fϕ̄ðEϕÞ�
þ κnμ½fϕðEϕÞ−fϕ̄ðEϕÞ�g; ð3:17Þ

and

VðxÞμ
r ð−κ;−κ⃗Þ ¼ VðxÞμ

r ðκ; κ⃗Þjnμ→−nμ : ð3:18Þ

In Eq. (3.17) we have introduced the f and ϕ momentum
distribution functions (in the rest frame of the medium)

ff;f̄ðEfÞ ¼
1

eβEf∓αf þ 1
;

fϕ;ϕ̄ðEϕÞ ¼
1

eβEϕ∓αϕ − 1
; ð3:19Þ

and it is understood that, in each integral,

pμ ¼ ðEx; p⃗Þðx ¼ f;ϕÞ; ð3:20Þ

with

Ex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

x

q
: ð3:21Þ
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Thus remembering that n2 ¼ 0,

ðn · VðxÞðκ; κ⃗ÞÞba ¼ −ðn · VðxÞð−κ;−κ⃗ÞÞba
¼ g�bga

2κ

Z
d3p

ð2πÞ32Ex
½fxðExÞ þ fx̄ðExÞ�:

ð3:22Þ

From Eq. (2.16), we then have

ðVðνÞ
eff ðκ⃗ÞÞba ¼ ðVðν̄Þ

eff ðκ⃗ÞÞba ¼ ðVfÞba þ ðVϕÞba; ð3:23Þ

where (x ¼ f;ϕ)

ðVxÞba ¼
g�bga
2κ

Jx ð3:24Þ

and we have defined

Jx ≡
Z

d3p
ð2πÞ32Ex

½fxðExÞ þ fx̄ðExÞ�: ð3:25Þ

Equations (3.23)–(3.25) reveal a number of differences in
contrast with the Wolfenstein term that gives standard
matter contribution to the effective potential [30]. The
effective potential in this case is momentum dependent,
proportional to 1=κ, has the same sign for neutrinos and
antineutrinos, and does not vanish in a particle-antiparticle
symmetric background. In fact, as is well known, for
practical purposes the parameters g�bgaJf and g�bgaJϕ act
as contributions to the vacuum squared mass matrix, with
the same value (and sign) for neutrinos and antineutrinos
(see e.g., Ref. [31]).
It is a simple matter to evaluate Jx for different

conditions of the background. For example, and for
reference purposes, in the nonrelativistic (NR) limit, or

in the ultrarelativistic (UR) limit and zero chemical
potential,

Jϕ ¼
� 1

2mϕ
ðnϕ þ nϕ̄Þ ðNRÞ;

T2

12
ðURÞ;

ð3:26Þ

and similarly for Jf. In Eq. (3.26), nϕ;ϕ̄ are the total number
densities of ϕ and ϕ̄, respectively, i.e.,

nϕ;ϕ̄ ¼
Z

d3p
ð2πÞ3 fϕ;ϕ̄ðEϕÞ: ð3:27Þ

In Eq. (3.26) we have assumed that ϕ is complex. For a real
ϕ, in the NR limit

Jϕ ¼ nϕ
mϕ

ðNRÞ: ð3:28Þ

In the UR limit the formula in Eq. (3.26) holds in this case
as well.

IV. TWO-LOOP DIAGRAMS—ABSENCE OF
PINCH SINGULARITIES

We reiterate that we assume κ to be high enough so that
the conditions such as those given in Eq. (2.24) [or the
analogous ones in case (B)] are satisfied and therefore the
one-loop contribution to the damping matrix, arising from
the two-body processes shown in Eq. (2.23), is negligible.
As we have already mentioned, in that case the damping
terms arise from the two-loop diagrams for Σ12 shown in
Fig. 2, which are obtained by inserting additional propa-
gators in the one-loop diagram in Fig. 1. The corresponding
expressions for their contributions to Σ12 are

− iðΣðAÞ
12 ðkÞÞba ¼

X
A;B

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 ðiη1g
�
bRÞiSðfÞ12 ðp0Þðiη2gaLÞiΔðϕÞ

2B ðp0 − kÞiΔðϕÞ
A1 ðp0 − kÞ

× ð−1ÞTrfðiηAgcLÞðiSðνÞABðk0ÞÞcdðiηBg�dRÞiSðfÞBAðpÞg; ð4:1Þ

−iðΣðBÞ
12 ðkÞÞba ¼

X
A;B

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
21 ðpÞiΔðϕÞ

AB ðp0Þðiη1g�bRÞiSðfÞ1A ðkþ pÞðiηAgcLÞ

× ðiSðνÞABðk0ÞÞcdðiηBg�dRÞiSðfÞB2 ðkþ pÞðiη2gaLÞ; ð4:2Þ

−iðΣðCÞ
12 ðkÞÞba ¼

X
A;B

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
2A ðpÞiΔðϕÞ

1B ðp0Þðiη1g�bRÞiSðfÞ1A ðk − p0ÞðiηAgcLÞ

× ðiSðνÞABðk0ÞÞcdðiηBg�dRÞiSðfÞB2 ðkþ pÞðiη2gaLÞ; ð4:3Þ
where
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k0 ¼ kþ p − p0: ð4:4Þ

As indicated in Figs. 1 and 2, the subscripts A, B label the
internal thermal vertices, and each of them can take the
values 1 or 2. Correspondingly, the factors ηA;B take into
account the sign of the coupling associated with each vertex
type, η1 ¼ 1, η2 ¼ −1.
Apart from the fact that there are many diagrams because

we have to sum over all the values of the internal thermal
vertices A, B in each one, if we attempt to evaluate the
expressions for each literally, we encounter the pinch
singularity problems in diagrams A and B. Take for
example diagram A. Since the ϕ propagators have the
same momentum, there will be diagrams in which two delta
functions (coming from the thermal part of the propagators)
with the same argument, appear. Something similar hap-
pens with the f propagators also in diagram B, while
diagram C does not have this problem. Therefore, before
we can proceed we must prove that those pinch singular-
ities actually disappear. This is what we do next. The end
result is a simplified expression for each contribution

ΣðA;B;CÞ
12 that we then evaluate explicitly (in the kinematic

regime that we are considering). For convenience and
future reference, the relevant formulas are summarized in
Sec. IV D.

A. Diagram A

We write the contribution from diagram A in Fig. 2,
given in Eq. (4.1), in the form

−iðΣðAÞ
12 ðkÞÞba¼

X
A;B

Z
d4p0

ð2πÞ4ðiη1g
�
bRÞiSðfÞ12 ðp0Þðiη2gaLÞ

×iΔðϕÞ
2B ðp0−kÞð−iπðϕÞBA ðp0−kÞÞiΔðϕÞ

A1 ðp0−kÞ;
ð4:5Þ

where

− iπðϕÞBA ðp0 − kÞ

¼ ð−1Þ
X
c;d

Z
d4p
ð2πÞ4

× TrfðiηAgcLÞðiSðνÞABðk0ÞÞcdðiηBg�dRÞiSðfÞBAðpÞg: ð4:6Þ

The main point is that in this form we can manipulate the
integration in Eq. (4.5), and in particular the pinch
singularity, using the symmetry properties and the para-
metrization of the scalar propagator as well as the scalar
self-energy. Thus we study (and manipulate)

X21ðqÞ≡
X
A;B

ΔðϕÞ
2B ðqÞπðϕÞBA ðqÞΔðϕÞ

A1 ðqÞ; ð4:7Þ

which we write in matrix notation:

X21 ¼ ðΔ̃ðϕÞπ̃ðϕÞΔ̃ðϕÞÞ21: ð4:8Þ

Δ̃ðϕÞ and π̃ðϕÞ are the scalar thermal propagator and self-
energy matrices, respectively. We omit the momentum
argument q except when required.
We will use the parametrizations given in Eqs (2.9) and

(2.34) of Ref. [32], namely

Δ̃ðϕÞ ¼ Uϕ

�
ΔðϕÞ

F 0

0 −ΔðϕÞ�
F

�
Uϕ;

π̃ðϕÞ ¼ U−1
ϕ

�
πðϕÞ 0

0 −πðϕÞ�

�
U−1

ϕ ; ð4:9Þ

where ΔðϕÞ
F is the (vacuum) Feynman propagator. The

matrix Uϕ is given by

Uϕ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ηϕðqÞ
p �

1þ ηϕðqÞ ηϕðqÞþ θð−q ·uÞ
ηϕðqÞþ θðq ·uÞ 1þ ηϕðqÞ

�
;

ð4:10Þ

where ηϕ is defined in Eq. (3.3). Therefore, we have

X̃ ≡ Δ̃ðϕÞπ̃ðϕÞΔ̃ðϕÞ

¼ Uϕ

�
ΔðϕÞ

F πðϕÞΔðϕÞ
F 0

0 −ΔðϕÞ�
F πðϕÞ�ΔðϕÞ�

F

�
Uϕ: ð4:11Þ

The key point is that the problematic terms ΔðϕÞ
F ΔðϕÞ�

F that
give rise to the pinch singularity are actually absent. The

quantity that enters in the expression for ΣðAÞ
12 is

X21 ¼ Uϕ11Uϕ21½ΔðϕÞ
F πðϕÞΔðϕÞ

F − ΔðϕÞ�
F πðϕÞ�ΔðϕÞ�

F �
¼ ðηϕðqÞ þ θðq · uÞÞ½ΔðϕÞ

F πðϕÞΔðϕÞ
F − ΔðϕÞ�

F πðϕÞ�ΔðϕÞ�
F �:
ð4:12Þ

Finally, it should be remembered that π can be calculated
by using the formulas

ReπðϕÞ ¼ ReπðϕÞ11 ;

ImπðϕÞ ¼ iπðϕÞ12

2½ηϕðqÞ þ θð−q · uÞ�

¼ iπðϕÞ21

2½ηϕðqÞ þ θðq · uÞ� ; ð4:13Þ

where the πðϕÞAB are given by the expressions in Eq. (4.6).
Thus in summary the procedure we need to follow is the

following.
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(1) Compute ReπðϕÞ11 ðp0 − kÞ and πðϕÞ12 ðp0 − kÞ using
Eq. (4.6), and from this determine π using Eq. (4.13).

(2) Determine the quantity

X21ðqÞ¼ ðηϕþθðq ·uÞÞ
× ½ΔðϕÞ

F πðϕÞΔðϕÞ
F −ΔðϕÞ�

F πðϕÞ�ΔðϕÞ�
F �; ð4:14Þ

where q ¼ p0 − k.t
(3) Compute ΣðAÞ

12 from

−iðΣðAÞ
12 ðkÞÞba ¼

Z
d4p0

ð2πÞ4 ðiη1g
�
bRÞiSðfÞ12 ðp0Þðiη2gaLÞ

× iX21ðp0 − kÞ: ð4:15Þ

At this point, by means of Eq. (4.15), these in-
structions provide a complete and consistent pro-
cedure for calculating the contribution to the
neutrino self-energy from diagram A, which is free
from the pinch singularities. However, for our
purposes, we can simplify the explicit computation
as follows.

(4) As we argue below, in the kinematic regime we are
considering, the ReπðϕÞ term in Eq. (4.14) contrib-
utes negligibly, so that we can take X21 to be

X21 ¼ −
1

2
½ΔðϕÞ

F πðϕÞ21 Δ
ðϕÞ
F þ ΔðϕÞ�

F π21Δ
ðϕÞ�
F �: ð4:16Þ

The argument concerning the contribution from

ReπðϕÞ is the following. The term ðΔðϕÞ
F Þ2−ðΔðϕÞ�

F Þ2
contributes only when the scalar is on shell, that is,
ðp0 − kÞ2 ≈m2

ϕ. Since the external neutrino momen-
tum k as well as the fermion momentum p0 are on
shell in Eq. (4.15), the ReπðϕÞ term corresponds to a

contribution to ΣðAÞ
12 arising from a process involving

two-body subprocesses νϕ ↔ f. Under the kin-
ematic conditions we are considering, such subpro-
cesses are suppressed by the same (two-body)
kinematics that suppress the one-loop contributions

to ΣðνÞ
12 (and the raison d’être for considering the

two-loop contributions) and therefore those terms
can be neglected.

(5) More specifically, in our case in which we consider
the high-k limit, we take

ΔðϕÞ
F ðp0 − kÞ → −1

2p0 · k
; ð4:17Þ

which we write in the form

ΔðϕÞ
F ðp0 − kÞ → Δ0ðp0;−kÞ; ð4:18Þ

where we define

Δ0ðl1;l2Þ≡ 1

2l1 · l2

: ð4:19Þ

This gives

− iðΣðAÞ
12 ðkÞÞba

¼
Z

d4p0

ð2πÞ4 ðiη1g
�
bRÞiSðfÞ12 ðp0Þðiη2gaLÞ

× ð−iΔ0ðp0;−kÞÞð−iπðϕÞ21 ðp0 − kÞÞiΔ0ðp0;−kÞ:
ð4:20Þ

This is just the expression that we would obtain from
Eq. (4.5) by considering only the term with A ¼ 1,
B ¼ 2, and retain only the high-k limit of the
vacuum part of the scalar propagator.

Thus explicitly,

− iðΣðAÞ
12 ðkÞÞba

¼
X
c;d

Z
d4p0

ð2πÞ4
d4p
ð2πÞ4 ðiη1g

�
bRÞ

× iSðfÞ12 ðp0Þðiη2gaLÞð−iΔ0ðp0;−kÞÞiΔ0ðp0;−kÞ
× ð−1ÞfTrðiη1gcLÞðiSðνÞ12 ðk0ÞÞcdðiη2g�dRÞiSðfÞ21 ðpÞg:

ð4:21Þ

B. Diagram B

We now consider the contribution from diagram B in
Fig. 2, given in Eq. (4.2). Here the pinch singularity
involves the fermion propagator. We write it in the form

−iðΣðBÞ
12 ðkÞÞba ¼

X
A;B

Z
d4p
ð2πÞ4 iΔ

ðϕÞ
21 ðpÞðiη1g�bRÞiSðfÞ1A ðkþpÞ

× ð−iΣðfÞ
ABðkþpÞÞiSðfÞB2 ðkþpÞðiη2gaLÞ;

ð4:22Þ

where

−iΣðfÞ
ABðkþ pÞ ¼

X
c;d

Z
d4p0

ð2πÞ4 iΔ
ðϕÞ
AB ðp0ÞðiηAgcLÞ

× ðiSðνÞABðk0ÞÞcdðiηBg�dRÞ: ð4:23Þ

Therefore, in analogy with the previous case, here we
denote by q ¼ kþ p the momentum of the virtual f and
consider the quantity

Y12ðqÞ≡
X
A;B

SðfÞ1AΣ
ðfÞ
ABS

ðfÞ
B2 ¼ ðS̃ðfÞΣ̃ðfÞS̃ðfÞÞ12; ð4:24Þ

using the parametrization of the fermion propagator,
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S̃ðfÞ ¼ Uf

�
SðfÞF 0

0 −S̄ðfÞF

�
Uf;

Σ̃ðfÞ ¼ U−1
f

�
ΣðfÞ 0

0 −Σ̄ðfÞ

�
U−1

f ; ð4:25Þ

where SðfÞF is the vacuum Feynman propagator. The matrix
Uf is given by taking the expression given in Eq. (4.10) and
replacing ηϕ → −ηf, with ηf defined in Eq. (3.3).
Therefore in correspondence with the scalar case here we

have

Ỹ ≡ S̃ðfÞΣ̃ðfÞS̃ðfÞ

¼ Uf

�
SðfÞF ΣðfÞSðfÞF 0

0 −S̄ðfÞF Σ̄ðfÞS̄ðfÞF

�
Uf: ð4:26Þ

Thus as in the scalar case, the problematic terms SðfÞF S̄ðfÞF
that give rise to the pinch singularity are actually absent.

The quantity that enters in the expression for ΣðBÞ
12 is

Y12 ¼ Uf11Uf12½SðfÞF ΣðfÞSðfÞF − S̄ðfÞF Σ̄ðfÞS̄ðfÞF �
¼ −ðηfðqÞ − θð−q · uÞÞ½SðfÞF ΣðfÞSðfÞF − S̄ðfÞF Σ̄ðfÞS̄ðfÞF �:

ð4:27Þ

Finally, it should be remembered that Σ can be calculated
by using the formulas

ReΣðfÞ ≡ 1

2
ðΣðfÞ þ Σ̄ðfÞÞ ¼ ReΣðfÞ

11 ;

ImΣðfÞ ≡ 1

2i
ðΣðfÞ − Σ̄ðfÞÞ ¼ ΣðfÞ

12

2i½ηfðqÞ − θð−q · uÞ�

¼ ΣðfÞ
21

2i½ηfðqÞ − θðq · uÞ� ; ð4:28Þ

where the ΣðfÞ
AB are given by the expressions in Eq. (4.23).

Thus in summary the procedure we need to follow is the
following.
(1) Compute ReΣðfÞ

11 ðkþ pÞ and ΣðfÞ
12 ðkþ pÞ using

Eq. (4.23), and from this determine ΣðfÞðkþ pÞ
using Eq. (4.28).

(2) Determine the quantity

Y12ðqÞ ¼ −ðηfðqÞ − θð−q · uÞÞ
× ½SðfÞF ΣðfÞSðfÞF − S̄ðfÞF Σ̄ðfÞS̄ðfÞF �: ð4:29Þ

(3) Compute ΣðBÞ
12 ðkÞ from

−iðΣðBÞ
12 ðkÞÞba ¼

Z
d4p
ð2πÞ4 iΔ

ðϕÞ
21 ðpÞðiη1g�bRÞ

× iY12ðpþ kÞðiη2gaLÞ: ð4:30Þ

This is the result for diagram B, analogous to
Eq. (4.15) for diagram A. It is free from the pinch
singularities, and while it provides a consistent
starting point, we can again simplify the explicit
computation by proceeding as we did for diagram A.

(4) As we argue below, in the kinematic regime we are
considering, the ReΣðfÞ term in Eq. (4.29) contrib-
utes negligibly, so that we can take Y12 to be

Y12 ¼ −
1

2
½SðfÞF ΣðfÞ

12 S
ðfÞ
F þ S̄ðfÞF ΣðfÞ

12 S̄
ðfÞ
F �: ð4:31Þ

The argument concerning the contribution from
ReΣðfÞ is similar to the scalar case in the discussion

of diagram (A). Schematically, the term SðfÞ2F − S̄ðfÞ2F
contributes only when the f is on shell, that is,
ðkþ pÞ2 ≈m2

f. Since the external neutrino momen-
tum k as well as the scalar momentum p are on shell
in Eq. (4.30), the ReΣðfÞ term corresponds to a

contribution to ΣðBÞ
12 arising from a process involving

two-body subprocesses νϕ ↔ f. Again, under the
kinematic conditions we are considering, such sub-
processes are suppressed by the same (two-body)
kinematics that suppress the one-loop contributions

to ΣðνÞ
12 (and the raison d’être for considering the

two-loop contributions) and therefore those terms
can be neglected.

(v) More specifically, in our case in which we consider
the high-k limit, we take

SðfÞF ðkþ pÞ → SðfÞ0 ðp; kÞ≡ =kþ pþmf

2p · k
; ð4:32Þ

which gives

−iðΣðBÞ
12 ðkÞÞba

¼
Z

d4p
ð2πÞ4 iΔ

ðϕÞ
21 ðpÞðiη1g�bRÞiSðfÞ0 ðp;kÞ

×ð−iΣðfÞ
12 ðpþkÞÞð−iSðfÞ0 ðp;kÞÞðiη2gaLÞ: ð4:33Þ

This is just the expression that we would obtain from
Eq. (4.22) by considering only the term with A ¼ 1,
B ¼ 2, and retain only the high-k limit of the
vacuum part of the f propagator.
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Thus, explicitly,

−iðΣðBÞ
12 ðkÞÞba ¼

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
21 ðpÞiΔðϕÞ

12 ðp0Þðiη1g�bRÞiSðfÞ0 ðp; kÞ

× ðiη1gcLÞðiSðνÞ12 ðk0ÞÞcdðiη2g�dRÞð−iSðfÞ0 ðp; kÞÞðiη2gaLÞ: ð4:34Þ

C. Diagram C

The contribution to the self-energy is

−iðΣðCÞ
12 ðkÞÞba ¼

X
A;B

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
2A ðpÞiΔðϕÞ

1B ðp0Þðiη1g�bRÞiSðfÞ1A ðk − p0ÞðiηAgcLÞ

× ðiSðνÞABðk0ÞÞcdðiηBg�dRÞiSðfÞB2 ðkþ pÞðiη2gaLÞ: ð4:35Þ

Considering the sum over A, B, there are four terms, corresponding to the combinations AB ¼ 12, 21, 11, 22. Consider the

third one, that is, A ¼ B ¼ 1. The integrand contains the factor SðfÞ12 ðkþ pÞΔðϕÞ
21 ðpÞ, and as a consequence of the delta

functions involved, the momentum integration will be suppressed by the same two-body kinematics we have already

alluded to. Similar arguments apply to the term A ¼ B ¼ 2, which contains the factor SðfÞ12 ðk − p0ÞΔðϕÞ
12 ðp0Þ.

On the other hand, the terms corresponding to AB ¼ 12, 21 are not suppressed in this way. We therefore write

ðΣðCÞ
12 Þba ¼ ðΣðCIÞ

12 Þba þ ðΣðCIIÞ
12 Þba; ð4:36Þ

where

−iðΣðCIÞ
12 ðkÞÞba ¼

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
21 ðpÞiΔðϕÞ

12 ðp0Þðiη1g�bRÞiSðfÞ11 ðk − p0Þðiη1gcLÞ

× ðiSðνÞ12 ðk0ÞÞcdðiη2g�dRÞiSðfÞ22 ðkþ pÞðiη2gaLÞ ð4:37Þ

and

−iðΣðCIIÞ
12 ðkÞÞba ¼

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
22 ðpÞiΔðϕÞ

11 ðp0Þðiη1g�bRÞiSðfÞ12 ðk − p0Þðiη2gcLÞ

× ðiSðνÞ21 ðk0ÞÞcdðiη1g�dRÞiSðfÞ12 ðkþ pÞðiη2gaLÞ: ð4:38Þ

For the purpose of carrying out the momentum integrations it is more convenient to relabel the momentum variables in the

expression for ðΣðCIIÞ
12 Þba according to the diagram shown in Fig. 3, which corresponds to

FIG. 3. Equivalent form of diagram C in Fig. 2, with a relabeling of the internal momentum variables. Here we have defined
k00 ¼ pþ p0 − k.
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−iðΣðCIIÞ
12 ðkÞba ¼

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
22 ðp − kÞiΔðϕÞ

11 ðk − p0Þðiη1g�bRÞiSðfÞ12 ðp0Þðiη2gcLÞ

× ðiSðνÞ21 ðk00ÞÞcdðiη1g�dRÞiSðfÞ12 ðpÞðiη2gaLÞ: ð4:39Þ

Invoking once again the two-body kinematics argument, we see that in Eq. (4.37) the contribution from the thermal part
of the diagonal f propagators is suppressed, as well as the contribution from the thermal part of the diagonal ϕ propagators
in Eq. (4.39). Thus, approximating the vacuum part of the diagonal propagators by their high-k limit,

−iðΣðCIÞ
12 ðkÞÞba ¼

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
21 ðpÞiΔðϕÞ

12 ðp0Þðiη1g�bRÞiSðfÞ0 ð−p0; kÞðiη1gcLÞ

× ðiSðνÞ12 ðk0ÞÞcdðiη2g�dRÞð−iSðfÞ0 ðp; kÞÞðiη2gaLÞ; ð4:40Þ

−iðΣðCIIÞ
12 ðkÞÞba ¼

X
c;d

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 ð−iΔ
ðϕÞ
0 ðp;−kÞÞiΔðϕÞ

0 ðp0;−kÞðiη1g�bRÞiSðfÞ12 ðp0Þðiη2gcLÞ

× ðiSðνÞ21 ðk00ÞÞcdðiη1g�dRÞiSðfÞ12 ðpÞðiη2gaLÞ: ð4:41Þ

D. Summary

In summary, we are left with four contributions:

ðΣ12Þba ¼ ðΣðAÞ
12 Þba þ ðΣðBÞ

12 Þba þ ðΣðCIÞ
12 Þba þ ðΣðCIIÞ

12 Þba;
ð4:42Þ

given by Eqs. (4.21), (4.34), (4.40) and (4.41). In those
formulas, ΔðϕÞ

0 and SðfÞ0 are the free fermion and scalar
propagators, respectively, in the high-energy limit, defined
in Eqs. (4.19) and (4.32). From the expressions in those
equations it follows that only B and CI contribute in a pure
ϕ background (no f in the background) while in a pure f
background (no ϕ in the background) only A and CII
contribute. In either case, the diagrams CI and CII exist
only if ϕ is a real scalar. For a complex ϕ only diagrams A
and B exist. In the next section we consider precisely the
former case, namely a pure ϕ background. We determine
the damping terms according to the scheme explained in
Sec. II and evaluate explicitly the integrals involved for
some illustrative background conditions.
Before moving ahead, it is worth to emphasize the

following. Only diagrams A and B suffer from the pinch
singularities. Equations (4.21) and (4.34) give us convenient
starting points to compute the contribution from diagrams A
and B, respectively, within the high-momentum approxima-
tion that we restrict ourselves here. However, the pinch
singularities are already tamed in Eqs. (4.15) and (4.30),
respectively, and those expressions can be used to compute
the corresponding contributions in other situations of interest.

V. A PURE ϕ BACKGROUND

For definiteness, in the remainder of this work we
consider only a ϕ background with no fermions f. We

will calculate Σi for this case next. From the result we will
determine the damping matrix in Sec. V B.

A. Expression for Σi

The starting point is the expression for each of the
diagrams B and CI we have obtained in Eqs. (4.34) and
(4.40), explicitly

−iðΣðBÞ
12 ðkÞÞba ¼ ð2KbaÞ

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
21 ðpÞiΔðϕÞ

12 ðp0Þ

×RiSðfÞ0 ðp;kÞLiSðνÞ12 ðk0ÞRð−iSðfÞ0 ðp;kÞÞL;

−iðΣðCIÞ
12 ðkÞÞba ¼ ð2KbaÞ

Z
d4p
ð2πÞ4

d4p0

ð2πÞ4 iΔ
ðϕÞ
21 ðpÞiΔðϕÞ

12 ðp0Þ

×RiSðfÞ0 ð−p0; kÞLiSðνÞ12 ðk0Þ
×Rð−iSðfÞ0 ðp;kÞÞL; ð5:1Þ

where

Kba ¼
1

2
g�bga

�X
c

jgcj2
�
: ð5:2Þ

We have used the fact that the neutrino propagator is
diagonal in flavor space, and we are defining Kba with the
factor of 1=2 for later convenience when we identify Σi. It it

understood that for a complex ϕ only ΣðBÞ
12 contributes,

while if ϕ is real then ΣðCIÞ
12 also contributes but in that case

the chemical potential αϕ ¼ 0 in the final evaluation of the
integrals involving the distribution functions.
We write the formulas for the propagators as follows. For

the fermion f, remembering Eq. (4.32), we have
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RSðfÞ0 ðp; kÞL ¼ Sfðp; kÞL; ð5:3Þ

with

Sfðp; kÞ≡ pþ =k
2p · k

: ð5:4Þ

For the neutrino and the scalar propagators,

SðνÞ12 ðk0Þ ¼ 2πiδðk02ÞnFðx0νÞϵðk0 · uÞLsνðk0Þ;
ΔðϕÞ

21 ðpÞ ¼ −2πiδðp2 −m2
ϕÞexϕnBðxϕÞϵðp · uÞ;

ΔðϕÞ
12 ðp0Þ ¼ −2πiδðp02 −m2

ϕÞnBðx0ϕÞϵðp0 · uÞ; ð5:5Þ

where

sνðk0Þ ¼ =k0; ð5:6Þ

ϵðzÞ ¼ θðzÞ − θð−zÞ with θðzÞ being the unit step function,
the fermion and boson distribution functions nF;B are
defined in Eqs. (2.9) and (3.4), and

x0ν ¼ βk0 · u − αν;

xϕ ¼ βp · u − αϕ;

x0ϕ ¼ βp0 · u − αϕ: ð5:7Þ

It is useful to remember that the relation k0 ¼ kþ p − p0
(actually the definition of k0) implies the following relation:

xν þ xϕ ¼ x0ν þ x0ϕ: ð5:8Þ

Substituting Eq. (5.5) in Eq. (5.1), we then have

−iðΣðBÞ
12 ðkÞÞba ¼ −ð2KbaÞ

Z
d4p
ð2πÞ3

d4p0

ð2πÞ3
d4k0

ð2πÞ3 ð2πÞ
4δð4Þðk0 þ p0 − k − pÞ

× δðp2 −m2
ϕÞδðp02 −m2

ϕÞδðk02Þϵðp · uÞϵðp0 · uÞϵðk0 · uÞ½Sfðp; kÞsνðk0ÞSfðp; kÞL�E0;

−iðΣðCIÞ
12 ðkÞÞba ¼ −ð2KbaÞ

Z
d4p
ð2πÞ3

d4p0

ð2πÞ3
d4k0

ð2πÞ3 ð2πÞ
4δð4Þðk0 þ p0 − k − pÞ

× δðp2 −m2
ϕÞδðp02 −m2

ϕÞδðk02Þϵðp · uÞϵðp0 · uÞϵðk0 · uÞ½Sfð−p0; kÞsνðk0ÞSfðp; kÞL�E0; ð5:9Þ

where

E0 ≡ exϕnBðxϕÞnBðx0ϕÞnFðx0νÞ: ð5:10Þ

In writing Eq. (5.9) we have taken k0 to be an arbitrary
variable but inserted a factor of δð4Þðkþ p − k0 − p0Þ and
integrated over k0.
Letting X ¼ B;CI, the corresponding contributions to

the absorptive part of the self-energy, identified by

ðΣiÞba ¼
Σ12

2inFðxνÞ
; ð5:11Þ

are then given by

ðΣðXÞ
i ðkÞÞba ¼ −Kba

Z
d4p
ð2πÞ3

d4p0

ð2πÞ3
d4k0

ð2πÞ3 ð2πÞ
4

× δð4Þðkþ p − k0 − p0Þ
× δðp2 −m2

ϕÞδðp02 −m2
ϕÞδðk02Þ

× ϵðp · uÞϵðp0 · uÞϵðk0 · uÞMðXÞ
ν E; ð5:12Þ

where we have used the identity

1

nFðxνÞ
E0 ≡ E

¼ nBðxϕÞð1þ nBðx0ϕÞÞ
− nFðx0νÞðnBðxϕÞ − nBðx0ϕÞÞ; ð5:13Þ

and we have defined

MðBÞ
ν ¼ Sfðp; kÞsνðk0ÞSfðp; kÞL;

MðCIÞ
ν ¼ Sfð−p0; kÞsνðk0ÞSfðp; kÞL: ð5:14Þ

Next we carry out the integrals over p0; p00; k00. Starting
with k00,

ðΣðXÞ
i ðkÞÞba ¼ −Kba

Z
d4p
ð2πÞ3

d4p0

ð2πÞ3
d3κ0

ð2πÞ32ωκ0
δðp2 −m2

ϕÞ

× δðp02 −m2
ϕÞϵðp · uÞϵðp0 · uÞ

× ð2πÞ4fδð4Þðkþ p − k0 − p0ÞMðXÞ
ν Eν

− δð4Þðkþ pþ k0 − p0ÞMðXÞ
ν̄ Eν̄g; ð5:15Þ

where
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Eν ¼ nBðxϕÞð1þ nBðx0ϕÞÞ − fνðωκ0 ÞðnBðxϕÞ − nBðx0ϕÞÞ;
Eν̄ ¼ nBðx0ϕÞð1þ nBðxϕÞÞ þ fν̄ðωκ0 ÞðnBðxϕÞ − nBðx0ϕÞÞ;

ð5:16Þ

and

MðXÞ
ν̄ ¼ MðXÞ

ν jk0→−k0 ; ð5:17Þ

understanding that from now on

k0 ¼ ðωκ0 ; κ⃗0Þ; ð5:18Þ

with ωκ0 ¼ jκ⃗0j≡ κ0. To arrive at Eq. (5.15) we have also
made the change of variable κ⃗0 → −κ⃗0 in the second term.
Proceeding in a similar way with the integrals over p0

and p00,

ðΣðXÞ
i ðkÞÞba¼−Kba

Z
d3p

ð2πÞ32Ep

d3p0

ð2πÞ32Ep0

d3κ0

ð2πÞ32ωκ0

×
X
λ;λ0

ð2πÞ4fδð4Þðkþλp−k0−λ0p0ÞMðXÞ
ν;λλ0Eν;λλ0

−δð4Þðkþλpþk0−λ0p0ÞMðXÞ
ν̄;λλ0Eν̄;λλ0 g; ð5:19Þ

where

MðBÞ
ν;λλ0 ¼ Sfðλp; kÞsνðk0ÞSfðλp; kÞL;

MðCIÞ
ν;λλ0 ¼ Sfð−λ0p0; kÞsνðk0ÞSfðλp; kÞL;

MðXÞ
ν̄;λλ0 ¼ MðXÞ

ν;λλ0 jk0→−k0 : ð5:20Þ

We have defined

Eν;λλ0 ¼ Eνjp→λp;p0→λ0p0 ð5:21Þ

and similarly for Eν̄;λλ0, and from now on p and p0 are on
shell. The formulas are given explicitly in Table I. To
simplify the notation in the formulas summarized in Table I
we have introduce the shorthand

f ¼ fϕðEpÞ; f0 ¼ fϕðEp0 Þ; f0ν ¼ fνðωκ0 Þ
f̄ ¼ fϕ̄ðEpÞ; f̄0 ¼ fϕ̄ðEp0 Þ; f̄0ν ¼ fν̄ðωκ0 Þ: ð5:22Þ

The formulas for Eν̄;λλ0 are obtained from those for Eν;λλ0 by
making the replacement f0ν → ð1 − f̄0νÞ. Each of the terms
in Eq. (5.19) represents a contribution to Σi from a specific
physical process, as indicated in Table I.

B. Damping matrix

We write Eq. (5.14) in the form

MðXÞ
ν ¼ NðXÞL

DðXÞ ; ð5:23Þ

where

DðBÞ ¼ ð2p · kÞ2;
DðCIÞ ¼ ð−2p0 · kÞð2p · kÞ; ð5:24Þ

and

NðBÞ ¼ ð=kþ pÞ=k0ð=kþ pÞ;
NðCIÞ ¼ ð=k − p0Þ=k0ð=kþ pÞ: ð5:25Þ

The expressions for the NðXÞ are reduced by using the
identity

γλγμγν ¼ Cλμνργ
ρ þ iϵλμνργργ5; ð5:26Þ

where

Cλμνρ ¼ gλμgνρ − gλνgμρ þ gλρgμν: ð5:27Þ

After the integrations over k0; p; p0 the only vectors
remaining are k and u, and then the terms with the
antisymmetric tensor vanish. Thus we can replace in the
integrand

NðXÞ → lðXÞργρ; ð5:28Þ

TABLE I. Correspondence between the Eν;λλ0 and Eν̄;λλ0 factors defined in Eq. (5.21), and the process that
contributes to the νðkÞ damping via Eq. (5.19). To simplify the notation we are using the shorthand shown in
Eq. (5.22) for the various distribution functions.

Eν;þþ ¼ fð1þ f0Þ − f0νðf − f0Þ νa;bðkÞ þ ϕðpÞ ↔ νiðk0Þ þ ϕðp0Þ
Eν;−þ ¼ −ð1þ f̄Þð1þ f0Þ þ f0νð1þ f̄ þ f0Þ νa;bðkÞ ↔ νiðk0Þ þ ϕ̄ðpÞ þ ϕðp0Þ
Eν;þ− ¼ −ff̄0 − f0νð1þ f þ f̄0Þ νa;bðkÞ þ ϕðpÞ þ ϕ̄ðp0Þ ↔ νiðk0Þ
Eν;−− ¼ ð1þ f̄Þf̄0 þ f0νðf̄ − f̄0Þ νa;bðkÞ þ ϕ̄ðp0Þ ↔ νiðk0Þ þ ϕ̄ðpÞ
Eν̄;þþ ¼ ð1þ fÞf0 þ f̄0νðf − f0Þ νa;bðkÞ þ ν̄iðk̄0Þ þ ϕðpÞ ↔ ϕðp0Þ
Eν̄;−þ ¼ −f̄f0 − f̄0νð1þ f̄ þ f0Þ νa;bðkÞ þ ν̄iðk̄0Þ ↔ ϕ̄ðpÞ þ ϕðp0Þ
Eν̄;þ− ¼ −ð1þ fÞð1þ f̄0Þ þ f̄0νð1þ f þ f̄0Þ νa;bðkÞ þ ν̄iðk̄0Þ þ ϕðpÞ þ ϕ̄ðp0Þ ↔ 0

Eν̄;−− ¼ f̄ð1þ f̄0Þ − f̄0νðf̄ − f̄0Þ νa;bðkÞ þ ν̄iðk̄0Þ þ ϕ̄ðp0Þ ↔ ϕ̄ðpÞ
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where

lðXÞ
ρ ¼ Cλμνρðkþ pÞλk0μðkþ pÞν;

lðXÞ
ρ ¼ Cλμνρðk − p0Þλk0μðkþ pÞν: ð5:29Þ

Then, corresponding to each diagram X ¼ B;CI we have

ðVðXÞμ
i ðω; κ⃗ÞÞba ¼−Kba

Z
d3p

ð2πÞ32Ep

d3p0

ð2πÞ32Ep0

d3κ0

ð2πÞ32ωκ0

×
X
λ;λ0

�
lðXÞμ
λλ0

DðXÞ
λλ0

�
ð2πÞ4

× fδð4Þðkþ λp− k0− λ0p0ÞEν;λλ0

þ δð4Þðkþ λpþ k0 − λ0p0ÞEν̄λλ0g; ð5:30Þ

where

lðXÞμ
λλ0 ≡ lðXÞμjp→λp;p0→λ0p0 ;

DðXÞ
λλ0 ≡DðXÞjp→λp;p0→λ0p0 : ð5:31Þ

Since the formulas for Γ are given in terms of n · Viðκ; κ⃗Þ
(for neutrinos), or n · Við−κ;−κ⃗Þ (for antineutrinos), we
consider the evaluation of Σi for kμ ¼ ωnμ (which in
particular implies k2 ¼ 0) and in the end put ω ¼ �κ
(for neutrinos or antineutrinos, respectively). From now on
we thus set k2 ¼ 0.
We evaluate n · l and n · l0, putting kμ ¼ ωnμ as we

already stated. Then doing the algebra, remembering to set
n2 ¼ 0,

n · lðBÞ ¼ 2ðn · pÞðk0 · pÞ;
n · lðCIÞ ¼ −ðn · pÞðk0 · p0Þ − ðn · p0Þðk0 · pÞ; ð5:32Þ

and therefore

n · lðBÞ

DðBÞ ¼ 1

2ω

k0 · p
k · p

;

n · lðCIÞ

DðCIÞ ¼ 1

4ω

k0 · p0

k · p0 þ
1

4ω

k0 · p
k · p

: ð5:33Þ

Up to thismomentwe have only used straightforward algebra
to arrive here fromEq. (5.23).Wenow invoke thehigh-energy
limit we are considering. The momentum delta functions set
k0 ¼ kþ p − p0. Therefore, to leading order in k, we put
k0 → k in the above and for either diagram we have

n · lðXÞ

DðXÞ ¼ 1

2ω
: ð5:34Þ

For the antineutrino part, the delta function gives
k0 ¼ −k − pþ p0; therefore the replacement is k0 → −k.
Putting all this together we then have, from Eq. (5.30),

ðn · VðXÞ
i ðω;ωκ̂ÞÞba

¼ −
Kba

2ω

Z
d3p

ð2πÞ32Ep

d3p0

ð2πÞ32Ep0

d3κ0

ð2πÞ32ωκ0

×
X
λ;λ0

ð2πÞ4fδð4Þðkþ λp − k0 − λ0p0ÞEν;λλ0

− δð4Þðkþ λpþ k0 − λ0p0ÞEν̄λλ0g: ð5:35Þ
The damping matrix is given by

−
1

2
Γð2Þ ¼

�
n · VðBÞ

i ðκ; κ⃗Þ ðνÞ;
n · VðBÞ�

i ð−κ;−κ⃗Þ ðν̄Þ
ð5:36Þ

or

−
1

2
Γð2Þ ¼

�
n · VðBÞ

i ðκ; κ⃗Þ þ n · VðCIÞ
i ðκ; κ⃗Þ ðνÞ;

n · VðBÞ�
i ð−κ;−κ⃗Þ þ n · VðCIÞ�

i ð−κ;−κ⃗Þ ðν̄Þ;
ð5:37Þ

for a complex or realϕ, respectively. The final expressions for

both diagram contributions n · VðXÞ
i , given in Eq. (5.35), are

formally the same. But it must be understood that for a real ϕ
the distribution functions of the ϕ have αϕ ¼ 0, or equiv-
alently fϕ̄ ¼ fϕ.
Not all the terms in Eq. (5.35) contribute, depending on

whether ω is positive or negative. Equivalently, the corre-
sponding processes are inhibited by the kinematics. In
addition we will assume that there are no neutrinos in the
background. The result is that for the neutrinos (ω positive)
only the terms Eν;þþ; Eν;−− contribute, while for the
antineutrinos (ω negative) only Eν̄;þþ; Eν̄;−− contribute.
Denoting by ΓðνÞ and Γðν̄Þ the matrices for neutrinos and

antineutrinos, respectively, for the case of a complex ϕ we
then have from Eq. (5.35)

1

2
ΓðνÞ
ba ¼ Kbaγ

ðνÞ

2κ
;

1

2
Γðν̄Þ
ba ¼ K�

baγ
ðν̄Þ

2κ
; ð5:38Þ

where

γðνÞ ¼
Z

d3p
ð2πÞ32Ep

d3p0

ð2πÞ32Ep0

d3κ0

ð2πÞ32ωκ0

× ð2πÞ4fδð4Þðkþ p − k0 − p0ÞEν;þþ
þ δð4Þðkþ p0 − k0 − pÞEν;−−g;

γðν̄Þ ¼
Z

d3p
ð2πÞ32Ep

d3p0

ð2πÞ32Ep0

d3κ0

ð2πÞ32ωκ0

× ð2πÞ4fδð4Þðkþ p0 − k0 − pÞEν̄;þþ
þ δð4Þðkþ p − k0 − p0ÞEν̄;−−g; ð5:39Þ
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with

Eνþþ ¼ fϕðEpÞð1þ fϕðEp0 ÞÞ;
Eν−− ¼ fϕ̄ðEp0 Þð1þ fϕ̄ðEpÞÞ;
Eν̄þþ ¼ fϕðEp0 Þð1þ fϕðEpÞÞ;
Eν̄−− ¼ fϕ̄ðEpÞð1þ fϕ̄ðEp0 ÞÞ: ð5:40Þ

Relabeling the p, p0 integration variables in some terms,
we \can see that γðν̄Þ ¼ γðνÞ. Therefore, in explicit form,
Eq. (5.38) becomes

1

2
ΓðνÞ
ba ¼ Kbaγ

ðϕÞ

2κ
;

1

2
Γðν̄Þ
ba ¼ K�

baγ
ðϕÞ

2κ
; ð5:41Þ

where

γϕ ≡
Z

d3p
ð2πÞ32Ep

d3p0

ð2πÞ32Ep0

d3κ0

ð2πÞ32ωκ0

× ð2πÞ4δð4Þðkþ p − k0 − p0Þ
× ffϕðEpÞð1þ fϕðEp0 ÞÞ þ fϕ̄ðEpÞð1þ fϕ̄ðEp0 ÞÞg:

ð5:42Þ

As already stated, Eq. (5.41) holds for a complex ϕ. For a
real ϕ the formula is the same but with the replacement
2κ → κ and putting fϕ̄ ¼ fϕ in Eq. (5.42).

C. Example evaluation of integrals

In the dilute gas approximation (i.e., neglecting the terms
with the product of the distribution function),

γϕ ¼
Z

d3p
ð2πÞ32Ep

ðfϕðEpÞ þ fϕ̄ðEpÞÞJ; ð5:43Þ

where

J ¼
Z

d3p0

ð2πÞ32Ep0

d3κ0

ð2πÞ32ωκ0
ð2πÞ4δð4Þðkþ p − k0 − p0Þ:

ð5:44Þ

It is straightforward to evaluate the J integral. Let us define

q ¼ kþ p ð5:45Þ

and

s ¼ q2: ð5:46Þ

We then obtain

J ¼ 1

4π

�
p0�ffiffiffi
s

p
�
θð ffiffiffi

s
p

− E�
p0 ÞθðE�

p0 −mϕÞ; ð5:47Þ

where

E�
p0 ¼

sþm2
ϕ

2
ffiffiffi
s

p ð5:48Þ

and

p0� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
p0 −m2

ϕ

q
¼ s −m2

ϕ

2
ffiffiffi
s

p : ð5:49Þ

From the definition in Eq. (5.46),

s ¼ m2
ϕ þ 2k · p

¼ m2
ϕ þ 2κEpð1 − vp cos θpÞ; ð5:50Þ

where

cos θp ¼ κ̂ · p̂ ð5:51Þ

and

vp ¼ jp⃗j
Ep

: ð5:52Þ

Thus for any value of p⃗, we have s > m2
ϕ, and this implies

that the two step functions in Eq. (5.47) are automatically
satisfied. Therefore, we can take J to be simply

J ¼ 1

8π

�
s −m2

ϕ

s

�
¼ 1

8π

�
1 −

m2
ϕ

s

�

¼ 1

8π

�
1 −

m2
ϕ

m2
ϕ þ κEpð1 − vp cos θpÞ

�
: ð5:53Þ

In principle we can use this to do the remaining integral
over p⃗ to evaluate γϕ for different background distribution
functions. However, since we are interested in the high-κ
limit, we retain just the leading term

J ¼ 1

8π
; ð5:54Þ

which in turn gives

γϕ ¼ 1

8π
Jϕ: ð5:55Þ

Thus from Eq. (5.41), for a complex ϕ,

1

2
ΓðνÞ
ba ¼ KbaJϕ

16πκ
; ð5:56Þ
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where Jϕ is defined in Eq. (3.25). For a real ϕ,

1

2
ΓðνÞ
ba ¼ KbaJϕ

8πκ
; ð5:57Þ

and Jϕ is evaluated putting fϕ̄ ¼ fϕ. In either case the

formula for ΓðνÞ
ba is obtained by replacing Kba → K�

ba. Thus,
for example, using Eq. (3.26), Eq. (5.56) yields

1

2
ΓðνÞ
ba ¼ Kba

( nϕþnϕ̄
32πκmϕ

ðNRÞ;
T2

192πκ ðURÞ:
ð5:58Þ

These are valid for a complex ϕ. For a real ϕ, the
corresponding formulas are

1

2
ΓðνÞ
ba ¼ Kba

( nϕ
8πκmϕ

ðNRÞ;
T2

96πκ ðURÞ:
ð5:59Þ

For the antineutrinos, the damping matrix is given by the
same formulas but replacing Kba → K�

ba.
Comparing Eq. (5.56) [or Eq. (5.57)] with Eq. (3.24) we

see that the ratio of the imaginary part (damping) to the real
part of the effective potential is ∼g2=16π. This contrasts
with the result in the case of a normal matter background. In
that case the same ratio is further suppressed by the mass
factor κme=m2

W (for κ > me) or κ2=m2
W (for me > κ) [29].

Therefore, in situations where the effective potential due to
a light scalar background may be relevant, the damping
effects may be important since they are not suppressed by
the mass factors. On the other hand, the relative importance
of such damping effects may be negligible if all ga
couplings are too small.

D. Discussion

We have obtained Eqs. (5.58) and (5.59), or their more
general versions given in Eqs. (5.56) and (5.57), by
purposely considering a background with only ϕ particles
and no fermions f. However the inclusion of the fermion
contribution can be carried out straightforwardly in analo-
gous fashion. It involves calculating in a similar way the

contributions denoted by ΣðAÞ
12 and ΣðCIIÞ

12 in Eq. (4.42).
From a physical point of view, the damping matrix Γ

induces decoherence effects in the propagation of neutri-
nos. As emphasized in our previous work Ref. [16] and
illustrated again here, the contribution to Γ from the
neutrino non-forward-scattering process νa þ x → νb þ x,
where x ¼ f;ϕ, can be determined from the two-loop
calculation of Σi. However, since in this case the initial
neutrino state is depleted but the neutrino does not actually
disappear (the initial neutrino transitions into a neutrino
of a different flavor but does not decay into a fϕ pair,
for example), we have argued that the effects of the
non-forward-scattering processes are more appropriately

interpreted in terms of decoherence phenomena rather
than damping. Specifically, the damping matrix should
be associated with decoherence effects in terms of the
Lindblad equation and the notion of the stochastic evolu-
tion of the state vector [33–37]. The idea is to assume that
the evolution due to the damping effects described by Γ is
accompanied by a stochastic evolution that cannot be
described by the coherent evolution of the state vector.
As discussed in detail in Ref. [16], the result of this idea is
that the evolution of the system is described by the density
matrix ρ (in the sense that we can use it to calculate
averages of quantum expectation values) that satisfies the
Lindblad equation

∂tρ ¼ −i½Hr; ρ�

þ
X
n

�
LnρL

†
n −

1

2
L†
nLnρ −

1

2
ρL†

nLn

�
; ð5:60Þ

where the Ln matrices, representing the jump operators, are
related to Γ by

Γ ¼
X
n

L†
nLn: ð5:61Þ

We refer to the terms involving the jump operators in the
right-hand side of Eq. (5.60) as the decoherence terms.
The damping matrix that we have determined from the

two-loop self-energy calculation can be expressed in
this form. For example, consider a real ϕ background.
Equation (5.57) can be written as

ΓðlÞ
ba ¼ ðLðlÞ†

ϕ LðlÞ
ϕ Þba

¼
X
c

ðLðlÞ
ϕ Þ�cbðLðlÞ

ϕ Þcaðl ¼ ν; ν̄Þ; ð5:62Þ

with

ðLðνÞ
ϕ Þca ¼

ffiffiffiffiffiffiffiffi
Jϕ
8πκ

r
gcga;

ðLðν̄Þ
ϕ Þca ¼ ðLðνÞ

ϕ Þ�ca: ð5:63Þ

The L matrices are expressed in terms of integrals over the
background particle distribution functions. Going a step
further, consider for illustrative purposes the NR limit.
Then using Eq. (3.28),

ðLðνÞ
ϕ Þca ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nϕ

8πκmϕ

r
gcga;

ðLðν̄Þ
ϕ Þca ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nϕ

8πκmϕ

r
g�cg�a: ð5:64Þ

It is straightforward to consider the addition of fermions
f in the background or in fact more complicated
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superpositions of different background species. The evalu-

ation of ΣðA;CIIÞ
12 would result in a matrix Lf contributing in

Eq. (5.61), so that

ΓðlÞ ¼ LðlÞ†
ϕ LðlÞ

ϕ þ LðlÞ†
f LðlÞ

f : ð5:65Þ

The matrix LðlÞ
f would be given in terms of the fermion

distribution by formulas analogous to Eq. (5.63). In general
these formulas predict, for example, a specific dependence
of the decoherence terms on the neutrino energy, depending
on the background conditions. This complements the
studies of the decoherence effects that are based on general
considerations at a phenomenological level without a
calculation of the decoherence terms. We do not pursue
this any further here, but our results and calculations show
the path for further applications along these lines.

VI. CONCLUSIONS AND OUTLOOK

In this work we have been concerned with the calculation
of the damping terms that result from non-forward-
scattering processes when neutrinos propagate in a back-
ground of fermions (f) and scalars (ϕ) interacting via a
Yukawa-type interaction. We determine the contribution of
those processes to the damping matrix Γ from the two-loop
calculation of the imaginary part of the thermal neutrino
self-energy using the methods of thermal field theory
(TFT). In the context of TFT the two-loop self-energy
diagrams suffer from the so-called pinch singularities,
which appear because the expressions contain two thermal
propagators with the same momentum argument. A sig-
nificant effort in this work was to show how those
singularities are effectively handled by a judicious use of

the properties and parametrizations of the thermal propa-
gators. The final result of that exercise is a set of formulas
for the two-loop contribution to the imaginary part of the
self-energy from which the damping matrix is determined.
The formulas are well-defined integrals over the back-
ground particle momentum distribution functions, which
can be evaluated straightforwardly for different background
conditions. For concreteness, we considered in detail a pure
ϕ background, with no fermions f. We obtained the
corresponding formulas for the damping terms and evalu-
ated them in some specific limits of the ϕ distribution
functions.
As a guide to applications, we discussed briefly in

Sec. V D the connection between Γ and the decoherence
described in terms of the Lindblad equation. There we
showed the explicit formulas obtained for the jump
operators that appear in the Lindblad equation using the
results of the calculation of Γ. We indicated how this
approach can be extended to consider more general back-
grounds that include the fermions f or other particles.
The results we have presented extend our previous work

and can be used to study the decoherence effects in a
variety of physical contexts and environments. As a by-
product, we have presented a detailed calculation of the
imaginary part of the two-loop neutrino thermal self-
energy, controlling the pinch singularities, using and
illustrating a method that can be applied to perform
similar calculations consistently in other situations of
interest.
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