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We apply the method of graphical functions that was recently extended to six dimensions for scalar
theories, to ϕ3 theory and compute the β function, the wave function anomalous dimension as well as the
mass anomalous dimension in the MS scheme to five-loops. From the results we derive the corresponding
renormalization group functions for the Lee-Yang edge singularity problem and percolation theory. After
determining the ε expansions of the respective critical exponents to Oðε5Þ we apply recent resummation
technology to obtain improved exponent estimates in three, four and five dimensions. These compare
favorably with estimates from fixed dimension numerical techniques and refine the four loop results.
To assist with this comparison we collated a substantial amount of data from numerical techniques which
are included in tables for each exponent.
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I. INTRODUCTION

One of the core quantum field theories with applications
to various areas of physics is that of a scalar field with a
cubic self-interaction. It has many interesting properties.
For instance, it is known to be asymptotically free in six
dimensions [1,2] which is also its critical dimension. As
such it offered a much simpler forum to study this property
rather than in the more complicated non-Abelian gauge
field theory underlying the strong interactions which also
has this property. Another major area where scalar ϕ3

theory has important consequences is that of condensed
matter physics. For example, the nonunitary version of the
model [3] describes the phase transitions of the Lee-Yang
edge singularity problem. In particular the critical expo-
nents computed in the cubic theory produce estimates
which are not out of line with those of other methods [4,5].
Having an accurate estimate for the exponent σ for the Lee-
Yang edge singularity is important in lattice gauge theory
studies of quantum chromodynamics (QCD) [6,7].
Specifically it governs the analytic behavior of the partition
function in the smooth chiral symmetry crossover when

there is a nonzero chemical potential. The latter is included
in QCD as an purely imaginary parameter that leads to loss
of unitarity. Though for the region of application in
Refs. [6,7] physical meaningful results can still be
extracted. In addition endowing the cubic model with
specific symmetries means it can also describe phase
transitions in percolation problems. This follows from
taking the replica limit of the (N þ 1)-state Potts model
[8]. The critical dynamics of the phase transition in
percolation has been widely studied using Monte Carlo
or series methods, on discrete or spin systems. References
for this comprehensive body of work will be provided in
later sections. Indeed such analyses proceed over a range of
integer dimensions from two to six inclusive where the
latter would correspond to the mean field approximation
given its relation to the critical dimension. The relation of
the discrete percolation theory models to that of a con-
tinuum field theory resides in the fact that at the phase
transition both scalar ϕ3 theory and the spin models lie in
the same universality class. What differs of course in both
approaches are the techniques used to estimate the physi-
cally measurable critical exponents. On the continuum
quantum field theory side these are renormalization group
invariants that are determined from high perturbative loop
order renormalization group functions. While these func-
tions are scheme dependent, the critical exponents at the
d-dimensional Wilson-Fisher fixed point [9] are scheme
independent. In more recent years other continuum field
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theory techniques have been developed. Two of the main
ones are the functional renormalization group and the
modern manifestation of the conformal bootstrap and
applied to the Lee-Yang and percolation problem for
example in Refs. [10–12] and [13–15], respectively.
In terms of basic scalar ϕ3 theory the multiloop renorm-

alization of the model has proceeded in stages over the last
half century or so. The one and two loop renormalization
group functions were determined in Ref. [1]. This was
extended to the OðNÞ group in Ref. [2] where the leading
order value of N for the existence of the conformal window
was determined. The extension to three loops for both the
Lee-Yang edge singularity and percolation problems was
carried out in Refs. [4,5]. From the point of view of
hindsight that computation was well ahead of its time given
the difficulty of several of the three loop vertex graphs that
needed to be evaluated. Moreover, estimates for the
exponents in the percolation and Lee-Yang problems were
extracted in dimensions d in the range 2 < d < 6 that were
competitive with other results available then. To achieve a
high degree of accuracy the analysis benefited from
improved resummation techniques such as Padé approx-
imants and Borel transformations, where in the latter
conformal mappings were applied and the behavior of
the ε expansion was incorporated. Thereafter progress in
systematically renormalizing theories to higher loop order
was hindered in general by a lack of technology to push to
four loops. Indeed three loop calculations were only viable
due to the integration by parts (IBP) method introduced in
Ref. [16]. However, with the development of Laporta’s
integration by parts algorithm [17] and its implementation
within a variety of publicly available packages, the four
loop renormalization of ϕ3 was carried out in Ref. [18].
That article covered a range of applications to various
problems that had emerged in the interim. For instance, in
recent years it has been shown that there is a connection of
ϕ3 theory with dualities in higher spin AdS/CFTs [19,20].
This generated an interest in understanding the conformal
window of ϕ3 theories for various symmetry groups such as
OðNÞ and SpðNÞ [21–23]. One highlight of the four loop
result of Ref. [18] was the improvement in estimates for the
Lee-Yang and percolation theory exponents. What this
analysis benefited immensely from was the progress in
classifying two-dimensional conformal field theories in the
years after [4,5]. Specifically the values of the exponents of
each problem in two dimensions were found exactly. For
instance, the exponent σ in one and two dimensions was
determined exactly in Ref. [24]. For percolation theory the
two-dimensional values can be derived from the unitary
minimal conformal field theories of Ref. [25] when m ¼ 2
and the central charge is c ¼ 0. Therefore it was possible to
use that data, together with hyperscaling relations, to
construct constrained Padé approximants motivated by
the application of this idea given in Ref. [26]. The upshot
was that exponent estimates based on four loop results for

three dimensions were within one standard deviation of
Monte Carlo and series results. This is all the more
remarkable when one recalls this is the resummation of
a series that is more reliable near six dimensions down to
three dimensions. We note that for brevity we will refer to
results from noncontinuum field theories as Monte Carlo
but this will cover those from series methods too. We note
that in this respect we have compiled exponent estimates
from as many sources as we could. These will also include
strong coupling methods, functional renormalization group
techniques and several specialized approaches. An excel-
lent live source for percolation exponents is Ref. [27].
While the Laporta approach has revolutionized our

ability to extend results for many theories to loop orders
that what would have been impossible to conceive of a
decade ago, one is always interested in going beyond even
those orders. In the short term any such developments have
to proceed in simpler theories. Indeed this has been the case
for scalar ϕ4 theory which was renormalized at five-loops
in the 1990s in Refs. [28,29] but not extended to six loops
until around a quarter of a century later [30,31]. Moreover
the latter article [31] contained a most comprehensive
analysis of the resummation of exponents using the
asymptotic properties of the series. Such an analysis was
much needed after the huge jump in precision. Indeed it
revisited the assumptions made in earlier approaches in the
literature. Subsequent to Refs. [30,31] a novel method was
applied to scalar ϕ4 theory in Ref. [32] which is termed
graphical functions. This extended the renormalization
group functions to the staggeringly high seven loop order.1

One highlight was the appearance of a new period in the β
function which is conjectured to not be expressible in terms
of a multiple zeta value (MZV) [32,34]. En route expect-
ations concerning the non-MZV content predicted in
Ref. [35] at high loop order were confirmed.
One lesson from Ref. [32] was the potential usefulness of

the graphical function technique to extend the renormal-
ization group functions. An obstruction that limited the
technique to four-dimensional problems was overcome by
the first and fourth authors, who extended the method to
arbitrary even dimensions. The details of this extension will
be given elsewhere [36]. This availability of graphical
functions in arbitrary even dimensions immediately opened
up new possibilities for the computation of the renormal-
ization group functions in ϕ3 theory in six dimensions. In
this article we make use of this new tool and provide the
renormalization group functions of ϕ3 theory up to five-
loops. We emphasize that we will make no use at all of
integration by parts in our computation. Consequently we
will find the next term in the ε expansion of the critical
exponents for the Lee-Yang singularity and percolation
problems. This will form the first part of the article. The

1The eight loop evaluation of the field anomalous dimension
has now been determined [33].
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second part will be devoted to a comprehensive resumma-
tion analysis of the respective critical exponents from the ε
expansion in the region between two and six dimensions.
This resummation analysis will be based on technology
from Ref. [31] but combined with constraints from two-
dimensional theories as in Ref. [18]. Thanks to the
additional perturbative order and the more advanced
resummation technology we are able to improve on the
estimates obtained in Ref. [18]. In broad terms our
estimates of the critical exponents are consistent with
Monte Carlo and series results which have been similarly
refined in recent years. In order to make this comparison of
our five-loop estimates with numerical data we have carried
out an analysis on all exponent estimates in the literature
that had error bars and produced a global average.
The paper is organized as follows. In Sec. II we introduce

the scalar cubic theory for the cases where there is one scalar
field and the Lagrangian which is relevant for the percolation
problem. The core machinery of the graphical function
formalism used to compute the five-loop renormalization
group functions is discussed in depth in Sec. III. Theoutcome
of this mammoth task is provided via the explicit five-loop
expressions for the β function, field anomalous dimension
and the mass anomalous dimension in Sec. IV for both the
Lee-Yang and percolation problems. As a corollary the ε
expansion of the three corresponding critical exponents are
determined to Oðε5Þ too. In the subsequent section we
introduce and discuss aspects of the different resummation
methods we use to extract exponent estimates. Then Sec. VI
will provide the full consequences of that analysis for both
the Lee-Yang problem and percolation theory. A central
element of this section is the compilation of tables for each
exponent for both problems. Each table provides compre-
hensive data of fixeddimension exponent estimates aswell as
the outcomeof each of our resummations.Anoverall average
is provided for each dimension for bothMonteCarlo data and
our five-loop results in order to have a common comparison
point. Concluding remarks are provided in Sec. VII.
Throughout the article we will in general follow the notation
of Ref. [37].

II. BACKGROUND

We begin by outlining the essential background to the
problem of extracting critical exponents for both the Lee-
Yang and percolation problems. First the action for the
basic cubic theory is

Sðϕ0Þ ¼ −
Z

ddx

�
1

2
ð∂ϕ0Þ2 þ

1

2
m2

0ϕ
2
0 þ

g0
3!

ϕ3
0

�
; ð1Þ

where ϕ0, m0 and g0 are the bare field, mass and coupling
constant, respectively. It is this version of the theory that
was shown to be asymptotically free in six dimensions [1].
The connection to the action underlying the Lee-Yang edge
singularity problem is given by the coupling constant

mapping g0 → ig0, which yields a nonunitary theory [3].
The analogous action for percolation theory requires N
fields ϕi prior to taking the replica limit defined formally by
N → 0. First we note that the most general renormalizable
ϕ3 theory type action in six dimensions is

Sðϕ0Þ ¼−
Z

ddx

�
1

2
ð∂ϕ0iÞ2þ

1

2
m2

0ϕ
2
0iþ

g0
3!
dijkϕ0iϕ0jϕ0k

�
;

ð2Þ

where the indices run from 1 to N. Specific values for the
fully symmetric tensor dijk correspond to different prob-
lems and eventually lead to different prefactors which
multiply the individual scalar Feynman integrals in the
respective perturbative expansions. For percolation theory
the dijk tensor is related to the vertices of an N-dimensional
tetrahedron [38] and corresponds to the (N þ 1)-state Potts
model [39]. In particular dijk is given by

dijk ¼
XNþ1

α¼1

eiαe
j
αekα; ð3Þ

where the N-dimensional vectors ei1;…; eiNþ1 satisfy the
algebra [38]

XNþ1

α¼1

eiα ¼ 0;
XNþ1

α¼1

eiαe
j
α ¼ ðN þ 1Þδij;

XN
i¼1

eiαeiβ ¼ ðN þ 1Þδαβ − 1: ð4Þ

In previous calculations [5,18] these algebraic rules were
used to compute the N dependence of each individual
graph. For instance in Ref. [5] the renormalization group
functions were written in terms of invariants which corre-
sponded with the primitively divergent Feynman integrals.
Therefore the algebra was used to determine the N
dependence of the invariants as well as their subsequent
value in the replica limit. Here we use a presumably new
diagrammatic approach which is based on a similar one
given in Ref. [5] to calculate the necessary prefactors for
each individual graph. The details of this approach will be
given in Sec. III C.
For both the Lee-Yang and the percolation problem we

renormalize in the modified minimal subtraction (MS)
scheme in the dimensionally regularized theory in d ¼
6 − ε which retains multiplicative renormalizability.2 This
means that the number of independent renormalization
constants equates to the number of terms in each action.

2The three loop renormalization group calculations [4,5] were
also performed in d ¼ 6 − ε, while the most recent four loop
computations [18] used d ¼ 6 − 2ε, which is more common in
high-energy physics.
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Thus the renormalized action in terms of renormalized
entities for the general theory is

SRðϕÞ ¼ −
Z

ddx

�
1

2
Z1ð∂ϕiÞ2 þ

1

2
Z2m2ϕ2

i

þ gμε=2

3!
Z3dijkϕiϕjϕk

�
; ð5Þ

where

ϕ0i ¼ ϕiZϕ; m2
0 ¼ m2Zm2 ; g0 ¼ gμε=2Zg;

Z1 ¼ Z2
ϕ; Z2 ¼ Zm2Z2

ϕ; Z3 ¼ ZgZ3
ϕ; ð6Þ

andwe have defined the field renormalization constant in the
way which is more common in statistical physics. We
highlight this explicitly in contradistinction to the high-
energy physics convention where it is usually defined as
“ϕ0i ¼ ϕiZ

1=2
ϕ .”Aswe use theMS schemewe recall that the

coupling constant and ε dependence of the renormalization
constants Zn is given by

Zn ¼ Znðg; εÞ ¼ 1þ
X∞
k¼1

Zn;kðgÞ
εk

: ð7Þ

These are determined perturbatively by requiring the
finiteness of the renormalized 1-PI Green’s functions
ΓR
n ðg;m; μÞ ¼ ðZϕÞnΓnðg0; m0Þ. The conventional method

to ensure finiteness is to use the Bogoliubov-Parasiuk
R-operation [40,41], as well as the R�-operation [42–45].
These allow for the use of infrared regularization or infrared
rearrangement for Feynmandiagramson an individual basis.
This significantly simplifies the calculations. In this article
however we will use the much more powerful technique of
graphical functions to calculate the divergences of all the
diagrams. This will be discussed in the next section. One
major advantage of that approach is that it enables us to
compute all diagrams in a straightforward way without any
infrared rearrangement and R=R�-operations. The only
simplification we use is to consider purely massless graphs
throughout. To extract themass renormalization constant we
evaluate a two-pointGreen’s functionwith themass operator
inserted at zero momentum.
Once we have extracted the renormalization constants to

five-loops the next stage is to produce the corresponding
renormalization group functions βðgÞ, γϕðgÞ and γm2ðgÞ
which are defined, respectively, by

βðgÞ ≔ μ
∂g
∂μ

����
g0

¼ −εg=2
1þ g∂g lnðZgÞ

;

γϕðgÞ ≔ μ
∂
∂μ lnðZϕÞ

����
g0

¼ βðgÞ ∂
∂g lnðZϕÞ;

γm2ðgÞ ≔ μ
∂
∂μ lnðZm2Þ

����
g0

¼ βðgÞ ∂
∂g lnðZm2Þ: ð8Þ

These ensure that after renormalization all finite renorma-
lized n-point 1-PI Green’s functions ΓR

n will satisfy the
renormalization group equation

½μ∂μ þ βðgÞ∂g − γm2ðgÞm2∂m2 − nγϕðgÞ�ΓR
n ¼ 0; ð9Þ

where ∂g ¼ ∂
∂g for instance. Once the renormalization group

functions have been established, they lay the foundation for
our application to critical exponents. In general if there is a
nontrivial infrared fixed point of the β function at g� with
βðg�Þ ¼ 0, then in the limit g → g� Eq. (9) transforms to an
equation describing critical scaling with exponents γ�ϕ ¼
γϕðg�Þ and γ�m2 ¼ γm2ðg�Þ. In addition the correction to
scaling exponent β0� ¼ ∂gβðgÞjg¼g� corresponding to the β
function slope at criticality will be of interest. In terms of
the notation used in statistical physics the connection
between these critical point renormalization group func-
tions and the critical exponents is

η¼ 2γ�ϕ; 1=ν¼ 2þ γ�m2 ¼ ηO−ηþ2; ω¼ β0�; ð10Þ

where ηO is the anomalous dimension derived from Z2

evaluated at g� and ν corresponds to the correlation length
exponent. Knowledge of the two basic exponents η and ν
means that other critical exponents can be accessed via
hyperscaling relations. These are given by

α ¼ 2 − dν; β ¼ 1

2
ðd − 2þ ηÞν;

γ ¼ ð2 − ηÞν; δ ¼ dþ 2 − η

d − 2þ η
;

σ ¼ 2

ðdþ 2 − ηÞν ; τ ¼ 1þ 2d
dþ 2 − η

;

Ω ¼ 2ω

dþ 2 − η
: ð11Þ

These will be our main focus for the percolation problem.
For the Lee-Yang problem we will concentrate on η, ν, σ
and ω specifically.

III. COMPUTATIONAL TECHNIQUE

A. Graphical functions

For the evaluation of the required Feynman integrals, we
made heavy use of the graphical function technique that has
been introduced in d ¼ 4 by the fourth author in Ref. [46],
extended to d ¼ 4 − ε in Ref. [32] and recently generalized
to all even dimensions ≥4 by the first and the fourth
authors [36].
Recall that the massless scalar propagator in d-dimen-

sional Euclidean spacetime is the Green’s function for the
respective massless Klein-Gordon equation,
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□x
1

jx − yjd−2 ¼ −
4

Γðd=2 − 1Þ δ
ðdÞðx − yÞ; ð12Þ

where ΓðxÞ ¼ R
∞
0 tx−1 expð−tÞdt is the gamma function.

Up to a rescaling and a reparametrization which will be
specified later, a graphical function is an Euclidean mass-
less position space three-point correlation function which
can be written as an integral over a product of such
propagators,

GΓðxa; xb; xcÞ ¼
� Y

v∈V int
Γ

Z
Rd

dxv
πd=2

� Y
fv;wg∈EΓ

1

jxv − xwjd−2
:

ð13Þ

It is determined by a graph Γwith edgesEΓ, internal vertices
in V int

Γ and external vertices fa; b; cg ¼ Vext
Γ such that

V int
Γ ∩ Vext

Γ ¼ ∅. Note that in our position space setting,
external vertices can have any number of incident edges.
Such a three-point function GΓ has translation, rotation and
scaling symmetries, such that for all xa; xb; xc ∈ Rd,

GΓðxa;xb;xcÞ ¼ GΓðxa þ v;xb þ v;xc þ vÞ for all v ∈ Rd

¼ GΓðΛxa;Λxb;ΛxcÞ for all Λ ∈ SOðdÞ
¼ ξ−ΔΓGΓðξxa; ξxb; ξxcÞ for all ξ ∈ R>0;

ð14Þ

with the superficial degree of divergence given by

ΔΓ ¼ djV int
Γ j − ðd − 2ÞjEΓj:

It follows that two degrees of freedom together with ΔΓ are
sufficient to parameterize the three-point function GΓ.
A convenient parameterization is given by a single complex
variable z ∈ C,

zz̄ ¼ x2ac
x2ab

; ð1 − zÞð1 − z̄Þ ¼ x2bc
x2ab

; ð15Þ

where xij ¼ xj − xi. Using this parameterization, we can
write GΓ as

GΓðxa; xb; xcÞ ¼ jxabjΔΓfΓðzÞ; ð16Þ

where fΓ∶ C → R, the graphical function, is independent
of the overall scale.
An important feature is that fΓðzÞ is a single-valued real

analytic function on Cnf0; 1g [47]. Furthermore, a graphi-
cal function admits expansions of log-Laurent type at the
singular points 0, 1 and ∞ [36,46]:

fΓðzÞ ¼
XLa

l¼0

X∞
m;m̄¼Ma

cal;m;m̄½logðz− aÞðz̄− aÞ�lðz− aÞm

× ðz̄− aÞm̄; jz− aj < 1; a ∈ f0;1g; ð17Þ

fΓðzÞ¼
XL∞

l¼0

XM∞

m;m̄¼−∞
c∞l;m;m̄½logðzz̄Þ�lzmz̄m̄; jzj> 1: ð18Þ

Due to the existence of the expansion at infinity in Eq. (18)
the graphical function naturally lives on the Riemann
sphere C ∪ f∞g.
These fundamental structures of graphical functions are

vital for the efficiency of the graphical function method.
After going from the xa; xb; xc ∈ Rd coordinates to z; z̄ via
the parameterization in Eq. (15), it is convenient to rename
the external vertices a, b and c to 0,1 and z. The reason for
this is that Eq. (15) effectively identifies the plane that is
spanned in d-dimensional space by the points xa, xb, xc
with the complex plane C such that 0 is mapped to xa, 1 is
mapped to xb and z to xc.
Graphical functions fulfill a large number of combina-

torial identities. We can depict a general graph with the
three labeled external vertices as

and identify the graph with its associated graphical function
(as long as no confusion is possible)

In this notation we have the following identities which can
be used to add and remove edges between external vertices:

ð19Þ

A permutation of the external vertices 0,1 and z corre-
sponds to a specific Möbius transformation of the z
variables together with an overall conformal rescaling:

ð20Þ
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These two identities generate the full permutation group
of the external vertices.The factorization rules inEq. (19) and
the permutation identities in Eq. (20) follow immediately
from Eq. (16), the definition of a position space three-point
function in Eq. (13) and the parametrization in Eq. (15).
Up to this point, all statements on graphical functions are

valid in even dimensions ≥4. To handle quantum field
theories (QFTs) with subdivergences we need to use a
regulator. It is convenient to use dimensional regularization
because the concept of graphical functions is based on the
complex plane which is independent of the ambient space.
Hence, it is stable under the deformation of the dimension
to real numbers. In fact, all the previous identities work for
general dimensions. We use the notation

d ¼ 2nþ 4 − ε; n ∈ f0; 1; 2; 3;…g; ε ∈ R:

The general idea is to consider graphical functions in d
dimensions as Laurent series in ε. The coefficient of every
power in ε conjecturally reflects the structure of graphical
functions in fixed even dimensions. In particular, every
coefficient is a single-valued real analytic function on
Cnf0; 1g and admits log-Laurent expansions [Eqs. (17)
and (18)] at 0, 1, and ∞.

The most important identity for the graphical function
technique follows from the definition of the propagator,
Eq. (12), combined with Eqs. (13) and (15). The intuition
behind this identity is that, according to Eq. (12), the box
operator can be used to “amputate” single external edges of
a position space Feynman diagram: Two position space
three-point functions GΓ̃ and GΓ whose underlying
Feynman graphs Γ̃ and Γ only differ by an appended edge
along the external vertex c,

fulfill the partial differential equation

□xcGΓ̃ðxa; xb; xcÞ ¼ −
4

Γðd=2 − 1ÞGΓðxa; xb; xcÞ: ð21Þ

In fact, such combinatorial differential equations hold for
arbitrary n-point functions. In our case of the three-point
function we can translate the Laplacian □xc via Eq. (15)
into an operator on the space of complex functions in z and
z̄ to get an effective Laplacian, which operates on graphical
functions,

ð22Þ

To obtain a graphical function of higher complexity from a
graphical function of lower complexity, we would like to
solve this partial differential equation for the graphical
function with the appended edge. To do this, we need to
invert the effective Laplacian. This inversion can be
roughly separated into two related problems: First, we
have to find a general solution of the differential equation.
Second, we need to specify the solution that gives the
wanted graphical function.
The first problem is reasonably easy in four dimensions,

i.e., n ¼ 0. As long as ε ¼ 0 the partial differential operator
Δ0 factorizes into ∂z and ∂ z̄. Even though naively integrat-
ing with respect to z and z̄ results in undetermined
integration constants which may be arbitrary functions of
z̄ and z, respectively, these integration constants are
restricted if we require the result to be single valued.
Single-valued integration needs to be performed on a
suitable class of functions. Because of the denominator
z − z̄ the class of single-valued multiple polylogarithms as
studied in Refs. [48,49] is not enough. However, there
exists a generalization by the fourth author to generalized
single-valued hyperlogarithms (GSVHs) which exactly

accommodates the situation [50]. This theory comes with
general and conveniently fast algorithms for single-valued
integration in z and z̄. For ε > 0 the generalization is
straightforward: We are not interested in a full result but
rather in a Laurent series in ε. This allows us to treat the ε
term in Eq. (22) as a perturbation and to solve the
differential equation by iteratively inverting Δ0.
The situation is much more complicated for n ≥ 1 (i.e.,

d ≥ 6). Note that the effective Laplacian Δn is a partial
differential operator in z and z̄ which in general does not
admit a simple solution by integration. However, somewhat
surprisingly, a general solution of Eq. (22) for all n ¼
0; 1; 2; 3;… in the case ε ¼ 0was found by the first and the
fourth authors [36]. The function space of GSVHs is
perfectly suitable for general n. The case ε > 0 is again
treated as a perturbation.
The second problem—specifying the exact solution—is

solved for ε ¼ 0 by a theorem [36,46]: The structures of
graphical functions—single-valuedness and log-Laurent
expansions—are so restrictive that they fully specify the
solution. That means there is always only one special
solution among the family of general solutions that behaves
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like a graphical function. Finding this special solution is
solved by an algorithm given in Ref. [36]. For ε > 0,
handling subdivergences in this context is a bit subtle but
always possible. Altogether we obtain a general and
surprisingly efficient algorithm to append an edge to the
external label z of a graphical function.
Using the three basic operations—adding edges between

external vertices, permuting external vertices, and
appending an edge—allows one to construct a wide class
of graphical functions from the empty graphical function
(the graphical function with neither edges nor internal
vertices), which is the constant 1. See Fig. 1 for a nontrivial
example of a two-point function in ϕ4 theory that can be
constructed from these basic operations.
In practice, there exist a few more elementary operations

(products, factors, completion) that provide combinatorial
relations between different graphical functions. A graphical
function that can be expressed as a sequence these
elementary operation applied to the trivial graphical func-
tion is called constructible and can be calculated to any
reasonable order in ε (limited by time and memory
demands). We want to emphasize that this concept of
constructible graphical functions can easily be applied to
any massless QFT in even dimensions.
Still, starting at some loop order, there exist graphical

functions which cannot be constructed. Some of these
graphical functions may be amendable to some reductions
by elementary operations, but eventually a nonempty
irreducible graphical function will be reached that has to
be calculated by other means. Beyond constructibility there
exists a toolbox of additional identities which has some
resemblance to standard momentum space techniques (e.g.,
momentum space IBPs). Explicitly we have special iden-
tities, approximations in ε and position space IBPs that can
be used to further simplify the calculations. However this
toolbox is still in its infancy and small additions may lead to

dramatic increases in the applicability of the overall
graphical function technique.
Eventually, some (typically small) set of (typically small)

graphical functions remains that has to be integrated by
different means. A brute force approach is to write the
respective graphical functions as parametric integrals [47]
which in many cases can be integrated using an algorithm
by F. Brown [51] which is implemented as HyperInt by
Panzer [52]. In four dimensions this parametric integration
often works quite well, even though it is always very slow
compared to operations on graphical functions. In six or
higher dimensions the use of parametric integration is
limited by the existence on squares and higher powers in
the denominators of the parametric integrals as this causes
problems in the implementation of HyperInt and results in
large time and memory consumption. For the present fifth
order computation in ϕ3 theory the use of HyperInt was not
necessary as all contributing graphical functions can be
reduced to the trivial one via identities.
For six loops approximately 80% of the Feynman

integrals are calculated. Because of the vast number and
the higher complexity of graphs at six loops it is necessary
to make better use of some techniques in the theory of
graphical functions. Most prominently, making full use of a
generalized Δ − Y identity and position space IBP requires
the (notoriously tedious) solution of large linear systems. In
the primitive case these identities (with some others) were
implemented by the first author. This solved all primitive
six loop integrals in ϕ3 theory [53]. Even at seven loops
92% of the primitive integrals could be calculated [53]. The
implementation for subdivergent graphs is straightforward
but still lacking. We expect that the implementation of
position space IBP will solve ϕ3 theory up to six loops
in perturbation theory. It might be necessary to use some
minor additions from other techniques such as R=R�
[42–44] or its Hopf algebraic version [54] that make it
possible to exclusively work with finite expressions. A
hypothetical extension to seven loops might already require
the addition of numerical methods such as tropical para-
metric integration [55] to evaluate a small number of
primitive graphs that cannot be evaluated via GSVHs. Such
graphs are known to appear in ϕ4 theory at eight loops [56].

B. Periods and renormalization group functions

To determine renormalization functions it is sufficient to
calculate (ε-dependent) periods, i.e., the Feynman integrals
of graphs with two external vertices. If a graph has two
external vertices xa, xb, then translation and scale invari-
ance [Eq. (14)] forces the respective position space
Feynman integral to evaluate to jxabjΔΓPΓðεÞ where the
period PΓðεÞ is only a function of ε.
The calculation of periods is much simpler than the

calculation of graphical functions: One can complete a
period by adding an edge between xa and xb with a specific
weight so that one is free to choose an arbitrary set of three

FIG. 1. Example of the graphical reduction of a two-point
function in ϕ4 theory. The explicit expression can be obtained by
following the arrows which start from the trivial graphical
function which is equal to 1.
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external vertices 0, 1, z to obtain a graphical function. If this
graphical function can be calculated, it is always possible to
efficiently integrate over the third vertex z to obtain the
period. This freedom is of great benefit for calculating
periods. Often there exists a particularly convenient choice
which facilitates the calculation. In a certain sense graphi-
cal functions were originally invented to use them for the
calculation of periods with exactly this concept. Figure 1
shows an example of a full reduction chain of a period in ϕ4

theory.
The graphical function technique is powerful enough to

take a naive approach to renormalization. We calculate each
amplitude to the necessary order in ε. Instead of calculating
the three-point function directly in terms of graphical
functions, we set one external vertex to infinity and
calculate the simpler period of the resulting truncated
three-point function as an effective two-point function.
We add all amplitudes to get regularized (effective) two-
point functions from which we read off the Z factors by the
condition that renormalization renders the (effective) two-
point functions finite; see Eq. (5). From the Z factors we
read off the renormalization functions; see Eq. (6).

A detailed explanation of the graphical function method
will be in Ref. [57]. All algorithms are implemented as
Maple procedures in HyperlogProcedures by the fourth
author [33]. The calculation of the fifth order result in
six-dimensional ϕ3 theory is fully automated in
HyperlogProcedures and takes about 2 days on a single
core consuming 38 GB of memory. It can easily be
parallelized.

C. Percolation theory prefactors

Our diagrammatic approach to compute the combinato-
rial prefactors CΓ for percolation theory follows from
Eqs. (3) and (4) via the diagrammatic discussion in
Ref. [5], Eq. (3.21) and the paragraph that follows. For
a graph Γ, we write the associated completed graph as Γ̄. A
graph is completed by attaching all external legs to an
additional vertex [58]. Completion utilizes the fact that the
tensor structure of two- and three-point graphs is fixed up to
a constant. Adapting the notation of Ref. [31], for the
percolation theory problem we find the following relations
of the combinatorial factors CΓ, which follow from the
algebraic rules above:

CΓðαÞ ¼ CΓ̄ ·

8<
:

ðNþ1Þδα1 ;α2−1
ðNþ1ÞN if Γis a two-point function;

ðNþ1Þ2δα1 ;α2δα1 ;α3−ðNþ1Þðδα1 ;α2þδα1 ;α3þδα2 ;α3 Þþ2

ðNþ1ÞNðN−1Þ if Γis a three-point function;
ð23Þ

where α1, α2 and α3 are associated with the two or three
external tensor indices of the respective n-point functions.
The combinatorial factors of the completed graphs are
readily computed by contraction deletion:

CΓ̄ ¼ ðN þ 1ÞCΓ̄=e −CΓ̄ne for each edge e ∈ Γ̄;

CΓ̄1Γ̄2
¼ CΓ̄1

·CΓ̄2
for the disjoint union Γ̄1Γ̄2;

C• ¼ N þ 1 for the single vertex •; ð24Þ

where Γ̄=e and Γ̄ne denote the contraction and
deletion, respectively, of the edge e in the graph Γ̄. The
contraction of a self-loop is the deletion of the loop in this
context.

The percolation theory problem is described by sub-
sequently taking the N → 0 limit for each prefactor.

IV. FIVE-LOOP RENORMALIZATION
GROUP FUNCTIONS

With the major task of calculating all the integrals and
carrying out the renormalization completed, we devote this
section solely to recording the results of the full five-loop
renormalization in the context of the two critical systems
that we are interested in.

A. Lee-Yang edge singularity

For the Lee-Yang (LY) edge singularity problem the five-
loop MS renormalization group functions are

βðLYÞðgÞ ¼ −
ε

2
gþ 3

4
g3 −

125g5

144
þ
�
33085

20736
þ 5ζ3

8

�
g7 þ

�
15ζ4
32

−
3404365

746496
−
4891ζ3
864

þ 5ζ5
3

�
g9

þ
�
75ζ6
32

−
46519ζ4
9216

þ 102052031

6718464
þ 99ζ3

2

16
þ 366647ζ3

6912
þ 151795ζ5

3456
−
5495ζ7
64

�
g11

þOðg13Þ; ð25Þ
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γðLYÞϕ ðgÞ ¼ −
1

12
g2 þ 13

432
g4 þ

�
−

5195

62208
þ 1

24
ζ3

�
g6 þ

�
53449

248832
þ 7ζ4

96
þ 35ζ3

864
−
5ζ5
18

�
g8

þ
�
−
125ζ6
288

−
5651ζ4
27648

−
16492987

20155392
−
25ζ3

2

144
−
56693ζ3
62208

þ 4471ζ5
10368

þ 147ζ7
64

�
g10 þOðg12Þ; ð26Þ

γðLYÞm2 ðgÞ ¼ −
5

6
g2 þ 97

108
g4 þ

�
−
52225

31104
−
7ζ3
12

�
g6 þ

�
−
19ζ4
48

þ 445589

93312
þ 821ζ3

144
−
35ζ5
18

�
g8

þ
�
−
25ζ6
9

þ 66953ζ4
13824

−
40331135

2519424
−
229ζ3

2

36
−
839129ζ3
15552

−
225457ζ5
5184

þ 2821ζ7
32

�
g10 þOðg12Þ; ð27Þ

where ζz is the Riemann zeta function. Each expression agrees with the earlier expressions given in Refs. [1,4,5,18] up to
four loops after the coupling constant mapping is undone. We note that the five-loop expression also agrees with the recent
calculation of Ref. [59]. Equipped with these it is straightforward to derive the respective critical exponents which are

ηðLYÞðεÞ ¼ −
1

9
ε −

43

729
ε2 þ

�
−

8375

236196
þ 16ζ3

243

�
ε3 þ

�
−

3883409

76527504
þ 4ζ4

81
−
716ζ3
19683

−
80ζ5
2187

�
ε4

þ
�
−
100ζ6
2187

−
179ζ4
6561

−
1545362585

24794911296
þ 136ζ3

2

2187
þ 37643ζ3

59049
þ 80524ζ5

59049
−
4172ζ7
2187

�
ε5 þOðε6Þ

¼ −0.11111ε − 0.058985ε2 þ 0.043693ε3 − 0.078951ε4 þ 0.20843ε5 þOðε6Þ; ð28Þ

ηðLYÞO ðεÞ ¼ −
2

3
ε −

43

486
ε2 þ

�
−

8375

157464
þ 8ζ3

81

�
ε3 þ

�
2ζ4
27

−
3883409

51018336
−
358ζ3
6561

−
40ζ5
729

�
ε4

þ
�
−
50ζ6
729

−
179ζ4
4374

−
1545362585

16529940864
þ 68ζ3

2

729
þ 37643ζ3

39366
þ 40262ζ5

19683
−
2086ζ7
729

�
ε5 þOðε6Þ

¼ −0.66667ε − 0.088477ε2 þ 0.065543ε3 − 0.11843ε4 þ 0.31241ε5 þOðε6Þ; ð29Þ

1=νðLYÞðεÞ ¼ 2 −
5

9
ε −

43

1458
ε2 þ

�
−

8375

472392
þ 8ζ3
243

�
ε3 þ

�
2ζ4
81

−
3883409

153055008
−
358ζ3
19683

−
40ζ5
2187

�
ε4

þ
�
−

1545362585

49589822592
−
50ζ6
2187

−
179ζ4
13122

þ 37643ζ3
118098

þ 40262ζ5
59049

þ 68ζ3
2

2187
−
2086ζ7
2187

�
ε5 þOðε6Þ

¼ 2 − 0.55556ε − 0.029493ε2 þ 0.021845ε3 − 0.039477ε4 þ 0.10413ε5 þOðε6Þ; ð30Þ

ωðLYÞðεÞ ¼ ε −
125

162
ε2 þ

�
36755

52488
þ 20ζ3

27

�
ε3 þ

�
5

9
ζ4 −

31725355

17006112
−
9673ζ3
2187

þ 160ζ5
81

�
ε4

þ
�
200ζ6
81

−
9673ζ4
2916

þ 17088604709

5509980288
þ 1384ζ3

2

243
þ 12094613ζ3

354294
þ 1050770ζ5

19683
−
21980ζ7
243

�
ε5 þOðε6Þ

¼ ε − 0.77160ε2 þ 1.5907ε3 − 4.5329ε4 þ 15.440ε5 þOðε6Þ; ð31Þ

σðLYÞðεÞ ¼ 1

2
−

1

12
ε −

79

3888
ε2 þ

�
−

10445

1259712
þ ζ3
81

�
ε3 þ

�
ζ4
108

−
4047533

408146688
−
161ζ3
26244

−
5ζ5
729

�
ε4

þ
�
−
25ζ6
2916

−
161ζ4
34992

−
1601178731

132239526912
þ 17ζ3

2

1458
þ 112399ζ3

944784
þ 20101ζ5

78732
−
1043ζ7
2916

�
ε5 þOðε6Þ

¼ 0.50000 − 0.083333ε − 0.020319ε2 þ 0.0065494ε3 − 0.014381ε4 þ 0.038131ε5 þOðε6Þ; ð32Þ

where we have also recorded the numerical value of each coefficient in the ε expansion.
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B. Percolation theory

For the percolation problem, denoted by P, the analogous five-loop renormalization group functions after taking the
replica limit as described in Sec. III C are

βðPÞðgÞ ¼ −
ε

2
g −

7

4
g3 −

671

144
g5 þ

�
−
414031

20736
−
93ζ3
8

�
g7 þ

�
651ζ4
32

−
84156383

746496
−
121109ζ3

864
−
595ζ5
6

�
g9

þ
�
−
74773124579

107495424
þ 930967ζ4

3072
þ 20825ζ6

64
−
7411ζ3

2

32
−
56477573ζ3

27648
−
11846549ζ5

3456
þ 97293ζ7

64

�
g11

þOðg13Þ; ð33Þ

γðPÞϕ ðgÞ ¼ 1

12
g2 þ 37

432
g4 þ

�
29297

62208
−
5ζ3
24

�
g6 þ

�
225455

82944
þ 33ζ4

32
þ 233ζ3

864
−
55ζ5
18

�
g8

þ
�
5907303973

322486272
þ 169325ζ4

27648
þ 10675ζ6

576
þ 719ζ3

2

288
þ 3841369ζ3

248832
þ 5443ζ5

10368
−
3969ζ7
64

�
g10 þOðg12Þ; ð34Þ

γðPÞ
m2 ðgÞ ¼ 5

6
g2 þ 193

108
g4 þ

�
41ζ3
12

þ 237751

31104

�
g6 þ

�
3299ζ3
72

þ 190ζ5
9

−
33ζ4
8

þ 4114259

93312

�
g8

þ
�
11167ζ3

2

144
þ 91152569ζ3

124416
þ 5839991ζ5

5184
−
26117ζ7

32
−
1100099ζ4
13824

−
11725ζ6
288

þ 44535597533

161243136

�
g10

þOðg12Þ: ð35Þ

Again the four loop expressions are in agreement with previous MS computations [1,4,5,18]. Consequently the critical
exponents are

ηðPÞðεÞ ¼ −
1

21
ε −

206

9261
ε2 þ

�
−

93619

8168202
þ 256ζ3

7203

�
ε3 þ

�
−

103309103

14408708328
þ 64ζ4
2401

þ 189376ζ3
9529569

−
320ζ5
3087

�
ε4

þ
�
−

43137745921

3630994498656
þ 47344ζ4
3176523

−
400ζ6
3087

−
187744ζ3

2

7411887
þ 77003747ζ3

600362847
þ 2337824ζ5

9529569
−
664ζ7
16807

�
ε5 þOðε6Þ

¼ −0.047619ε − 0.022244ε2 þ 0.031263ε3 − 0.061922ε4 þ 0.20454ε5 þOðε6Þ; ð36Þ

ηðPÞO ðεÞ ¼ −
2

7
ε −

355

6174
ε2 þ

�
204ζ3
2401

−
235495

10890936

�
ε3 þ

�
153ζ4
2401

−
157609181

19211611104
þ 99865ζ3
3176523

−
2000ζ5
7203

�
ε4

þ
�
99865ζ4
4235364

−
2500ζ6
7203

−
97373066851

4841325998208
−
107248ζ3

2

2470629
þ 202024997ζ3

800483796
þ 1860076ζ5

3176523
þ 2288ζ7

16807

�
ε5 þOðε6Þ

¼ −0.28571ε − 0.057499ε2 þ 0.080517ε3 − 0.18935ε4 þ 0.63749ε5 þOðε6Þ; ð37Þ

1=νðPÞðεÞ¼ 2−
5ε

21
−
653ε2

18522
þ
�
−

332009

32672808
þ356ζ3

7203

�
ε3þ

�
89ζ4
2401

−
59591131

57634833312
þ110219ζ3

9529569
−
3760ζ5
21609

�
ε4

þ
�
−

119568216869

14523977994624
þ 110219ζ4
12706092

−
4700ζ6
21609

þ298060003ζ3
2401451388

þ3242404ζ5
9529569

þ2952ζ7
16807

−
134000ζ3

2

7411887

�
ε5þOðε6Þ

¼ 2−0.238095ε−0.035255ε2þ0.049249ε3−0.12744ε4þ0.43287ε5þOðε6Þ; ð38Þ

ωðPÞðεÞ ¼ ε−
671

882
ε2þ

�
40639

57624
þ 372ζ3

343

�
ε3þ

�
279ζ4
343

−
317288185

304946208
−
348539ζ3
151263

−
1360ζ5
343

�
ε4

þ
�
601352852897

691617999744
−
348539ζ4
201684

−
1700ζ6
343

þ 207440ζ3
2

117649
þ 11664257531ζ3

800483796
þ 17305178ζ5

453789
−
55596ζ7
2401

�
ε5þOðε6Þ

¼ ε− 0.76077ε2þ 2.0089ε3 − 7.0413ε4þ 30.216ε5þOðε6Þ: ð39Þ
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Examining the numerical values one can easily see that the
series for the critical exponents has growing alternating
coefficients, which is typical for an asymptotic series.
Therefore in order to obtain reliable estimates for the
exponents one needs to apply resummation methods.

V. RESUMMATION STRATEGY

While our focus so far has been in relation to renorm-
alizing ϕ3 theory in six dimensions, the physical problems
of interest are in lower dimensions. As noted we require a
strategy to resum the asymptotic series in ε for the critical
exponents in order to extract meaningful estimates in for
example three dimensions. In this case ε itself would
take the value 3 which is clearly not small as d ¼ 6 − ε.
Therefore we devote this section to discussing the various
resummation techniques that we will apply to both the Lee-
Yang and percolation problems.
First we recall aspects of the resummation formalism that

is well established in this area of quantum field theory. In
general, an ε-expansion series, fðεÞ, for a critical exponent
is asymptotic with factorially growing coefficients [60–62]:

fðεÞ ¼
X∞
k¼0

fkεk; fk ∝ k!ð−aÞkkb for k → ∞; ð40Þ

where the constant a > 0 is related to the position of the
closest singularity −1=a in the Borel plane. This number is
the same for all exponents of the underlying model. By
contrast the parameter b is related to the type of singularity
and may take a different value for different exponents. In
the two cases considered here we will only use the
parameter a.
For the Lee-Yang problem we take a ¼ 5=18 [63–65].

For percolation theory we use a ¼ 15=28 [66]. In Ref. [67]
the slightly lower value of 10=21 was obtained, but later on
in Ref. [68] it was shown that there was a discrepancy
caused by an incorrect integration contour in Refs. [67,69].
If the contour is corrected, then the approach suggested in
Ref. [67] leads to the same results as Ref. [66]. Given that
the precise value of a is still not fully resolved yet, in our
subsequent resummation for percolation we have carried
out the analysis for both cases. It transpires that using either
value of a produces estimates that are almost the same. The
resulting error bars are consistently of similar size and the
difference of the two central values is completely negligible
within these error bars. For this reason, we only provide the
results based on the choice a ¼ 15=28. Finally we note that
even though the value of the implicit proportionality
constant in Eq. (40) remains controversial [62,70], its
precise value is not required for the analysis we have
performed for either problem.
In order to obtain reliable estimates for critical exponents

we have applied a number of different resummation
techniques. These are Padé, Padé-Borel-Leroy (PBL),

Borel resummation with conformal mapping (KP17)
[31], double-sided Padé and constrained versions of
Padé, PBL and KP17. The main purpose of implementing
double-sided Padé and constrained resummations is to
produce more accurate estimates especially in lower
dimensions such as d ¼ 3. For both problems the constraint
arises from the known exact values for exponents in two
dimensions. Those for percolation are derived from a
minimal conformal field theory with m ¼ 2 and central
charge c ¼ 0. These conformal field theories have been
classified [25]. It turns out that taking into account the
known exact value at d ¼ 2 significantly improves esti-
mates. For the Lee-Yang problem exact values for some
exponents are also are known in d ¼ 1. We will now
discuss technical aspects of each of the resummation
methods we used separately.

A. Padé, double-sided Padé

Applying the method of Padé approximants is regarded
as one of the most simple resummation methods. It does not
require any knowledge about the properties of the series
considered. Specifically the approximant is constructed as a
rational function

P½L=M�ðεÞ ≔
PLðεÞ
PMðεÞ

; ð41Þ

where PLðεÞ and PMðεÞ are polynomials of order L andM,
respectively. The polynomials are chosen in such a way that
the expansion of the approximant up to N ¼ LþM þ 1
coincides precisely with the initial series. For a double-sided
Padé expansion information from both sides of the expan-
sion interval is used. For the lower end,which is d ¼ 2 in our
case, we only know the first term of the expansion from
conformal field theory. So to find an estimate for the series
up to εN one needs to consider approximants with
LþM þ 1 ¼ N þ 1. Given that d ¼ 1 data are available
for the Lee-Yang problem too we need to consider approx-
imants with LþM þ 1 ¼ N þ 2 in that case.
One of the problems with Padé approximants is that

different L=M approximants can produce significantly
different estimates and one has to choose a “proper”
approximant. Such subjective choices might be ill con-
ceived and hence provide an incorrect estimate. In this
article we follow the strategy suggested in Ref. [71] which
is as follows. In order to obtain an estimate and error bar
(apparent accuracy) of order N we will consider all non-
marginal approximants of order N and N − 1 and view
them as “independent measurements”:

xk ≔ P½Lk=Mk�ðεphysÞ for k ¼ 1;…; n; ð42Þ

where εphys is the value of the expansion parameter where
the estimate is computed. This gives the estimate and error
bar as
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hxi ¼ x1 þ � � � þ xn
n

;

Δx ¼ t0.95;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhxi − x1Þ2 þ � � � þ ðhxi − xnÞ2

nðn − 1Þ

s
; ð43Þ

respectively, where t0.95;n is the t-distribution with p ¼
0.95 confidence level. In the situation where fewer than
three approximants survive, we do not provide an error bar
since usually this error bar is unreliable. We consider Padé
approximants as marginal if the denominator in Eq. (41)
has a root in the interval ½0; 2εphys�.
The standard Padé technique also suffers from problems

when the argument becomes large because power law
asymptotics εL−M become dominant. In this case the
estimates have little predictive value. Thus we limit our-
selves to approximants with jL −Mj < 3 for which the
asymptotics are not so strong and become dominant at much
larger values. The double-sided Padé is free of this problem
because the asymptotic growth at physical values of the
expansion parameter is limited by the constraint imposed at
d ¼ 2 or d ¼ 1.

B. Padé-Borel-Leroy

By contrast the Padé-Borel-Leroy method is one of the
simplest methods of Borel resummation. The series under
consideration is assumed to be Borel summable with
factorially growing and sign-alternating coefficients as in
Eq. (40). In this case details of the large order behavior such
as the parameters a and b are not relevant. To obtain an
estimate and error bar we also follow the technique
suggested in Ref. [71] which is almost similar to the above
Padé strategy.

C. Borel resummation with conformal mapping

An extension of the previous approach is Borel resum-
mation with conformal mapping which has proved itself as
one of the most reliable and precise resummation methods
for the ε expansion [31,72–75]. It allows one to utilize
information about the large order asymptotics and other
properties of the series under consideration. Meanwhile
there are plenty of realizations of this approach. For
instance, in this paper we use the KP17 procedure which
was developed in Ref. [31] for studying the ε expansion of
ϕ4 theory critical exponents at six loops. It is very reliable
and well documented with the technical details provided in
Sec. V of Ref. [31].

D. Constrained resummations

The idea of the constrained Borel resummation was
proposed by Guida and Zinn-Justin in Ref. [75] where it
was called resummation with boundary condition. We have
also applied this idea not only to the KP17 procedure,
which is very similar to the method used in Ref. [75],

but also to the above Padé and PBL methods. It should be
noted that Padé approximants are not Borel resummable. It
is more natural to apply constraints in the way described for
double-sided Padé, but we retain Padé approximants here
as it provides an additional view on constrained resumma-
tion. Also results from constrained and double-sided Padé
are in fact different because Padé approximants apply to
different series. Constrained resummation is based on the
following series transformation:

fðεÞ ¼
X∞
n¼0

fnεn ¼ fðεbcÞ þ ðεbc − εÞ
X∞
n¼0

hnεn; ð44Þ

where fðεbcÞ is the known value of the expanded exponent
at εbc with bc standing for boundary condition. The
resummation is then applied to the series hðεÞ ¼P∞

n¼0 hnε
n before being substituted into Eq. (44) to obtain

an estimate for fðεÞ. Uncertainties are computed for hðεÞ as
described earlier for each method before being transformed
to an uncertainty for fðεÞ by standard algebraic rules.
It should be noted that this approach allows one to apply

only one constraint. So for the Lee-Yang problem we will
provide two constrained resummations for each method.
There will be one using the value of the exponent in d ¼ 1
and another for d ¼ 2. We will distinguish these two
constrained procedures as “cfMethodg-fdbcg.” So for
instance cPadé-1 is the constrained Padé with the d ¼ 1
constraint.

E. Overall estimate

Given that we will have a large number of estimates for
each exponent from different methods we must present an
overall final estimate to summarize all our results. One of
the problems is that there is no method which provides the
smallest uncertainty for every exponent. Here we introduce
an automatic algorithm that gives higher weight to results
from methods which have smaller uncertainty. So we will
compute final estimates as a weighted average of all
estimates with weights wi proportional to the inverse
uncertainties. Specifically we define

Afinal ¼
P

i AiwiP
i wi

; ð45Þ

which allows us to discard almost all estimates with very
large errors. If instead we were to perform a simple
averaging, that would significantly shift the final estimate
to an incorrect value.
The error estimate is computed from two parts which are

the weighted standard deviation and weighted average
of the uncertainties given by
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Efinal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 þ E2

2

q
; where E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðAfinal − AiÞ2wiP

iwi

s
;

E2 ¼
1P
iwi

: ð46Þ

This strategy results in the following:
(1) Methods with very large error bars almost always do

not contribute to an estimate and only slightly
increase the error bar;

(2) if methods provide significantly different results
with comparable error bars, then the overall error
bar increases;

(3) if all methods provide almost the same value, then
the error decreases.

In parallel to analyzing the estimates from the five-loop
exponents we have also repeated this exercise for
Monte Carlo and series data in each integer dimension.
In this way we can compare data for exponents from
perturbation theory and simulations on the same level.

VI. RESUMMATION ANALYSIS

Having outlined the technical description of each of the
resummation methods we have used to extract critical
exponents as well as how we arrive at our error estimates,
we devote this section to recording the actual values for a
wide range of exponents. For both Lee-Yang edge singu-
larity and percolation theory a table is provided for each
exponent. In addition we illustrate that data with an
associated figure. Each figure shows the exponent estimates
with errors for dimensions 2, 3, 4 and 5 together with our
overall Monte Carlo summary values where these are
available. The horizontal axis in each figure corresponds
to dimension d.

A. Lee-Yang edge singularity

For our Lee-Yang singularity analysis we focus on a
small set of exponents. As the main work of others has
centered primarily around the exponent σ we have com-
piled as comprehensive an amount of independent results as
possible in order to draw comparisons. For η and ν, aside
from the three loop work of Ref. [5], we were only able to
find one study of these exponents which was Ref. [11].
That used the functional renormalization group approach
and determined η and σ directly. An additional exponent
termed νc was also computed. From the hyperscaling
relations given in Ref. [11], it can be related to our η
and ν via the expression ν ¼ νc=σ. We have used the values
for η and νc of Ref. [11] to produce an independent estimate
for ν to benchmark our results against. Each of the tables
follows a common theme. The top part of each is a
compilation of data from numerical methods with sources.
This is followed by our resummation analysis for both
four and five-loops. The former is provided to gauge

convergence. In each case three lines summarize the
unconstrained and constrained estimates as well as the
combination of both. This can be compared to a similar
estimate from Monte Carlo (MC) and series (srs) data.
For the exponent η our results are in Table I and Fig. 2.

We see that the estimates for the three key dimensions are
stable from four to five-loops. However for the only
available study that we could locate [11] there is some
overlap agreement for the three-dimensional estimate in
contrast to those for higher dimensions. Although this
exponent is ordinarily regarded as one of the more difficult
ones to reconcile between different methods since it is very
close to zero, this is not the case here.
Our direct estimate of ν suffered from singularity issues.

To illustrate this situation we have included Table II where
data from those few techniques that did render a reliable
estimate are presented. However the resultant large error
bars mean that these values cannot be regarded as reliable.
Instead we took a different tack and applied our resumma-
tion to the series for 1=ν before inverting the final numerical
value. This gave problem-free data for all our approaches
which are recorded in Table III and Fig. 3. The behavior of
ν over the dimensions indicates that there is a maximum.
Clearly ν is positive and increases as d decreases to a large
value in three dimensions before becoming negative in two
dimensions where the exact values are known. The func-
tional renormalization group results have a similar behavior
and we are in qualitative accord at the very least.
For σ a similar picture emerges in Fig. 4 and Table IV

wherehdsc andhdbcc indicate results ind dimensions from
separate simulations. Also FRG denotes the functional
renormalization group and LPA indicates the use of the
local potential approximation. In compiling the overall
estimate and error for the first bank of the table we have
excluded the results of Ref. [5] and the LPA data of Ref. [12]
due to the absence of errors.We provide two estimates in five
dimensions. The first includes the FRG result of Ref. [12]
while the second omits it. Clearly with the increase in the
order of ε the individual constrained estimates are in good
agreement for four and five dimensions but less so for three
dimensions. This is primarily because the monotonic
decrease in the value of σ from six down to two dimensions
where it is positive in the critical dimension but negative in
one and twomeans that at some noninteger dimension it will
vanish. This appears to be in the neighborhood of three
dimensions as indicated by the relatively small value in the
hundredths. Indeed this is similar to the situation alluded to
for η in certain problems. Moreover the same feature is
present in three-dimensional estimates from the other
methods we have provided in Table IV. This is ultimately
reflected in our final five-loop estimate and in particular in
the error. This should not overlook however the very good
agreement for four and five dimensions.
One way of gauging the accuracy of our Lee-Yang

exponents is to use them to provide exponent estimates in a
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FIG. 2. Plot of estimates for Lee-Yang η.

TABLE I. Estimates for Lee-Yang η.

Reference d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact −1.0 −0.8

MC/srs [11] (2016) −0.586ð29Þ −0.316ð16Þ −0.126ð6Þ
Overall −0.586ð29Þ −0.316ð16Þ −0.126ð6Þ

Four loops Padé −1.177 −0.8655 −0.5893 −0.38ð11Þ −0.153ð12Þ
KP17 −1.2ð9Þ −0.9ð5Þ −0.6ð3Þ −0.45ð10Þ −0.161ð8Þ
cPadé-1 −0.77ð4Þ −0.55ð4Þ −0.34ð2Þ −0.149ð4Þ
cPadé-2 −0.56ð2Þ −0.344ð15Þ −0.149ð4Þ
cPBL-1 −0.78ð2Þ −0.56ð3Þ −0.345ð14Þ −0.150ð3Þ
cPBL-2 −0.570ð13Þ −0.349ð10Þ −0.151ð2Þ
cKP17-1 −0.763ð8Þ −0.539ð11Þ −0.332ð9Þ −0.147ð3Þ
cKP17-2 −0.556ð9Þ −0.338ð8Þ −0.148ð3Þ

Constrained Padé −0.581ð11Þ −0.356ð10Þ −0.152ð3Þ
Unconstrained −1.2ð9Þ −0.9ð5Þ −0.6ð3Þ −0.42ð11Þ −0.158ð10Þ
Constrained −0.77ð2Þ −0.56ð2Þ −0.343ð14Þ −0.149ð3Þ

All −1.2ð9Þ −0.77ð3Þ −0.56ð2Þ −0.35ð2Þ −0.150ð5Þ
Five-loops Padé −1.249 −0.9148 −0.6185 −0.39ð9Þ −0.154ð7Þ

PBL −0.9ð5Þ −0.8ð3Þ −0.55ð12Þ −0.34ð4Þ −0.150ð3Þ
KP17 −1.2ð2Þ −0.91ð11Þ −0.61ð4Þ −0.36ð7Þ −0.152ð11Þ
cPadé-1 −0.78ð3Þ −0.56ð2Þ −0.346ð11Þ −0.151ð2Þ
cPadé-2 −0.570ð13Þ −0.349ð8Þ −0.1509ð14Þ
cPBL-1 −0.785ð11Þ −0.564ð11Þ −0.348ð6Þ −0.1508ð11Þ
cPBL-2 −0.571ð6Þ −0.350ð4Þ −0.1511ð8Þ
cKP17-1 −0.765ð7Þ −0.542ð9Þ −0.334ð8Þ −0.148ð4Þ
cKP17-2 −0.557ð9Þ −0.338ð8Þ −0.148ð3Þ

Constrained Padé −0.580ð7Þ −0.356ð6Þ −0.1521ð13Þ
Unconstrained −1.2ð3Þ −0.9ð2Þ −0.60ð7Þ −0.36ð6Þ −0.152ð6Þ
Constrained −0.774ð15Þ −0.565ð15Þ −0.347ð10Þ −0.151ð2Þ

All −1.2ð3Þ −0.78ð3Þ −0.57ð2Þ −0.347ð12Þ −0.151ð2Þ
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related model. One such example is the lattice animal
problem, reviewed in Ref. [78], which at criticality is
related to the Lee-Yang edge singularity problem [79]. In
particular it was shown there that the Lee-Yang critical

exponents in d dimensions are the same as those of the
lattice animal problem in (dþ 2) dimensions. In Ref. [80]
estimates were given for the exponents denoted by γH and
νH by calculating general dimension series up to the

TABLE III. Estimates for Lee-Yang ν using the series for 1=ν.

Reference d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact −1.0 −2.5

MC/srs [11] (2016) (4.826146) (1.187477) (0.696008)

Overall

Four loops Padé −1.1ð1.1Þ −3ð5Þ 4(3) 1.18(10) 0.701(4)
PBL −1ð2Þ −4ð11Þ 3(3) 1.17(14) 0.700(6)
KP17 −0.8ð3Þ −2.1ð1.1Þ 6(4) 1.23(5) 0.702(3)
cPadé-1 −2.58ð11Þ 4.5(3) 1.205(14) 0.7015(10)
cPadé-2 4.6(2) 1.208(10) 0.7016(8)
cPBL-1 −2.56ð8Þ 4.5(3) 1.208(10) 0.7017(6)
cPBL-2 4.64(14) 1.211(7) 0.7019(5)
cKP17-1 −2.61ð7Þ 4.4(3) 1.20(2) 0.701(2)
cKP17-2 4.58(12) 1.206(8) 0.7017(11)

Constrained Padé 4.74(2) 1.215(2) 0.7022(2)

Unconstrained −1.0ð7Þ −2ð3Þ 4(3) 1.20(9) 0.701(4)
Constrained −2.58ð9Þ 4.67(13) 1.211(8) 0.7019(6)

All −1.0ð7Þ −2.6ð2Þ 4.7(2) 1.211(11) 0.7019(9)

Five-loops Padé −1.0ð4Þ −2.4ð1.3Þ 5(2) 1.22(4) 0.7022(12)
PBL −2ð2Þ −5ð11Þ 3(2) 1.17(8) 0.701(2)
KP17 −0.92ð15Þ −2.3ð5Þ 5.0(1.2) 1.22(2) 0.7021(11)
cPadé-1 −2.55ð8Þ 4.6(2) 1.209(8) 0.7019(4)
cPadé-2 4.65(14) 1.211(6) 0.7020(3)
cPBL-1 −2.54ð4Þ 4.60(11) 1.210(4) 0.7019(2)
cPBL-2 4.66(6) 1.212(2) 0.70199(14)
cKP17-1 −2.61ð9Þ 4.4(3) 1.211(15) 0.7020(5)
cKP17-2 4.58(14) 1.212(10) 0.7020(7)

Constrained Padé 4.71(7) 1.214(4) 0.7021(2)

Unconstrained −1.0ð3Þ −2.4ð1.2Þ 4(2) 1.21(4) 0.7019(14)
Constrained −2.56ð6Þ 4.61(14) 1.211(5) 0.7020(3)

All −1.0ð3Þ −2.6ð2Þ 4.6(2) 1.211(8) 0.7020(4)

TABLE II. Estimates for Lee-Yang ν.

Reference d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

MC/srs [11] (2016) (4.826146) (1.187477) (0.696008)

Overall

Four loops Padé 1.088 0.701(4)
KP17 1.6(1.2) 1.3(9) 1.1(6) 0.9(3) 0.69(3)

Unconstrained 1.6(1.2) 1.3(9) 1.1(6) 0.9(3) 0.699(8)
All 1.6(1.2) 1.3(9) 1.1(6) 0.9(3) 0.699(8)

Five-loops Padé 0.7022(12)
PBL 2(2) 1.6(1.2) 1.3(5) 0.98(10) 0.696(3)
KP17 1.6(1.3) 1.4(1.0) 1.1(7) 0.9(2) 0.70(2)

Unconstrained 2(2) 1.5(1.1) 1.2(6) 0.95(14) 0.700(4)
All 2(2) 1.5(1.1) 1.2(6) 0.95(14) 0.700(4)
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15th order. The relation these two exponents have to the
Lee-Yang σ exponent studied here is [79]

γH ¼ 1 − σ; νH ¼ ð1þ σÞ
d

: ð47Þ

With these we have compiled Table V which records our
estimates for both exponents using our five-loop cKP17-2
Lee-Yang values for σ. The table also records the summary
results of TableVII ofRef. [80] for comparison. It is reassuring
to note that our estimates are consistent with Ref. [80].
Finally the situation with the exponent ω is less clear.

This is primarily due to the lack of an exact value for this
exponent in two dimensions. Therefore we are only able to
record the results of unconstrained resummations which are

given in Table VI and Fig. 5. Equally we were unable to
compare the estimates with Monte Carlo studies. So no
definite conclusions should be drawn for ω in the Lee-
Yang study.

B. Percolation theory

For percolation theory we recall the exact two-
dimensional values of the various exponents in
Table VII that were used when constraints were imple-
mented as indicated in Sec. V. We will use the two-
dimensional estimate for the unconstrained resummations
as a benchmark to gauge whether our extrapolation is
consistent with the exact value. In several instances there
was either a significant undershoot or overshoot for both

FIG. 4. Plot of estimates for Lee-Yang σ.

FIG. 3. Plot of estimates (from 1=ν) for Lee-Yang ν.
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the unconstrained and constrained case. This gave a strong
indication that the higher-dimensional estimates could be
unreliable. Consequently we examined the ε expansion of
various functions of the exponent, such as its reciprocal.
Some of these gave improved estimates and a projection to
two dimensions that was more in keeping with the exact
values. This is illustrated in Table VII which also

summarizes our five-loop two-dimensional estimates from
the various resummation methods. The table also records
the summary of Ref. [27]; see also Table 2 in Ref. [81].
While the exact values derive from two-dimensional
conformal field theory we note that a Monte Carlo study
[82] which predated Ref. [25] gave estimates that were in
remarkably good agreement. For instance, the values
of α ¼ −0.708� 0.030, β ¼ 0.138ðþ0.006;−0.005Þ,
γ ¼ 2.432� 0.035, δ ¼ 18.6� 0.6, ν ¼ 1.354� 0.015
and η ¼ 0.204� 0.006 were determined in Ref. [82].
We note that here we use the value of 3=2 for ω and

72=91 for Ω. This is in contrast with the value of 2 for ω
used in Ref. [18] based on Ref. [83] which also gave an
argument that Ω was 96=91. The discrepancy between the
exact two-dimensional values for ω and Ω was discussed at
length in Ref. [84]. In both cases the ratio ω=Ω is the same

TABLE V. Comparison of exponents γH and νH for the lattice
animal problem derived from our Lee-Yang cKP17-2 values of σ.

d γH this work γH of [80] νH this work νH of [80]

3 0.925(6) 0.90(3) 0.358(2) 0.367(11)
4 0.741(2) 0.70(4) 0.314(1) 0.325(10)
5 0.6016(4) 0.59(3) 0.2796(1) 0.282(6)

TABLE IV. Estimates for Lee-Yang σ.

Reference d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact −0.5 −0.1667

MC/srs [5] (1981) −0.146 –−0.166 0.079–0.091 0.262–0.266 0.399–0.400
[76] (1995) −0.165ð6Þ 0.080(6) 0.261(12) 0.40(2)

(hdsc) [26] (2012) −0.1662ð5Þ 0.077(2) 0.258(5) 0.401(9)
(hdbcc) [26] (2012) −0.1662ð5Þ 0.076(2) 0.261(4) 0.402(2)

[77] (2014) −0.161ð8Þ 0.0877(25) 0.2648(16) 0.402(5)
[10] (2014) −0.1664ð5Þ 0.085(1) 0.2685(1) 0.4105(5)
[11] (2016) 0.0742(56) 0.2667(32) 0.4033(12)

(FRG) [12] (2017) 0.2648(6) 0.40166(2)
(LPA) [12] (2017) −0.193 0.0588 0.245 0.394

Overall −0.1661ð11Þ 0.081(5) 0.267(2) 0.402(2)/0.407(4)

Four loops Padé −0.1ð4Þ 0.0(2) 0.16(12) 0.27(4) 0.400(4)
PBL −0.1ð4Þ 0.0(2) 0.16(12) 0.28(4) 0.401(4)
KP17 0.1(6) −0.3ð4Þ 0.0(2) 0.24(2) 0.397(3)
cPadé-1 −0.18ð2Þ 0.07(2) 0.258(7) 0.3983(12)
cPadé-2 0.073(10) 0.259(6) 0.3983(10)
cKP17-1 −0.17ð3Þ 0.07(3) 0.258(11) 0.398(2)
cKP17-2 0.074(12) 0.258(8) 0.398(2)

Constrained Padé 0.077(2) 0.260(2) 0.3985(5)

Unconstrained −0.1ð5Þ −0.1ð3Þ 0.1(2) 0.26(4) 0.399(4)
Constrained −0.18ð3Þ 0.075(7) 0.259(5) 0.3984(7)

All −0.1ð5Þ −0.16ð9Þ 0.08(2) 0.259(9) 0.3985(11)

Five-loops Padé −0.3113 −0.0923 0.1002 0.26(3) 0.398(2)
PBL −0.2ð2Þ −0.02ð12Þ 0.13(5) 0.272(13) 0.3991(8)
KP17 −0.21ð10Þ 0.06(6) 0.257(14) 0.3982(12)
cPadé-1 −0.18ð2Þ 0.068(12) 0.257(4) 0.3983(8)
cPadé-2 0.072(6) 0.258(3) 0.3981(4)
cPBL-1 −0.18ð3Þ 0.07(2) 0.257(7) 0.3981(7)
cPBL-2 0.072(11) 0.258(5) 0.3981(6)
cKP17-1 −0.17ð2Þ 0.072(12) 0.258(4) 0.3983(5)
cKP17-2 0.075(6) 0.259(2) 0.3984(4)

Constrained Padé 0.078(2) 0.2602(14) 0.3984(2)

Unconstrained −0.2ð2Þ −0.12ð14Þ 0.10(6) 0.26(2) 0.3986(13)
Constrained −0.18ð2Þ 0.075(7) 0.259(3) 0.3983(5)

All −0.2ð2Þ −0.17ð5Þ 0.075(11) 0.259(5) 0.3983(6)
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and corresponds to the fractal dimension of the system.
Further a summary is given in Ref. [84] of independent
calculations of both exponents. These appear to be more
consistent with the respective exact values of 3=2 and
72=91. One test is the value of the exponent Δ1 ¼ Ω=σ
which is 2 for Ω ¼ 72=91 but 8=3 for Ref. [83]. We
note that naively taking our central values gives 2.04545
for Δ1.
We now discuss the results for each exponent in

alphabetical order. In Tables VIII–XIX we have summa-
rized the estimates for the various exponents in the
literature. One excellent source we benefited from in this
respect is the table of Ref. [27] which is regularly updated.
Included in this are our results for the various resumma-
tions. In several of our tables we also have a line designated
as ε4. This records the results of the constrained Padé
method at four loops given in Ref. [18].

To open with, our estimates for α are presented in
Table VIII and Fig. 6. One aspect that is evident is the close
agreement of the estimates from both the constrained and
unconstrained approaches for both four and five dimensions
and to a lesser extent for three dimensions. The latter is in
essence due to the overshoot of the two-dimensional exact
value for the unconstrained methods. Indeed the five-loop
value has amore pronounced discrepancy than at four loops.
Given the slower decrease in the constrained estimate as d
decreases, we would take the position that those estimates
are probably more reliable. Independent Monte Carlo data
for each dimension would be useful to compare with.
For β the situation is much clearer in that we have several

independent results provided in Table IX and Fig. 7. Again
there is a large degree of stability within each of the
comparable methods and loop order although the uncon-
strained Padé clearly overshoots the two-dimensional exact
result. From four to five-loops the final estimates are

FIG. 5. Plot of estimates for Lee-Yang ω.

TABLE VI. Estimates for Lee-Yang ω.

Reference d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Four loops Padé 1(4) 1(3) 1.3(1.4) 1.1(5) 0.69(10)
PBL 2.4(5) 2.1(3) 1.7(2) 1.22(6) 0.704(11)
KP17 2.3(6) 1.9(4) 1.6(3) 1.18(14) 0.69(3)

Unconstrained 2.3(8) 2.0(5) 1.6(3) 1.20(13) 0.70(2)
All 2.3(8) 2.0(5) 1.6(3) 1.20(13) 0.70(2)

Five-loops Padé 1(4) 1(2) 1.2(1.1) 1.0(4) 0.69(6)
PBL 1.7(3) 1.6(2) 1.42(8) 1.12(3) 0.689(3)
KP17 2.3(4) 2.2(3) 1.70(15) 1.22(6) 0.701(11)

Unconstrained 1.9(6) 1.8(4) 1.5(2) 1.15(7) 0.691(8)
All 1.9(6) 1.8(4) 1.5(2) 1.15(7) 0.691(8)
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remarkably stable. Comparing, however, with Refs. [85,86]
the loop estimates are all slightly larger even for five
dimensions.
In the case of γ the independent Monte Carlo data were

only available from the same articles as our comparison for
β. There was a similar picture for our estimates in that there
was remarkable stability between four and five-loops for
the three dimensions of interest as is clear from Table X and
Fig. 8. However the check estimate for two dimensions was
much closer to the exact value than that for β. This may be
one of the reasons why our final values for five-loops are in

remarkably good agreement with theMonte Carlo results of
Ref. [86]. There was no error bar for the three-dimensional
result of Ref. [85]. So it is not clear how to interpret the
central value that is 12% lower than both Ref. [86] and our
estimate at five-loops.
The situation with δ was much less straightforward and

we include two tables with data. In Table XI we have
applied our various resummation techniques directly to the
ε expansion of δ. This illustrates one immediate difficulty
in obtaining reliable values for low d. The value for δ in
exactly six dimensions is 2 whereas it is exactly 18.2 in two

TABLE VII. Exact values of exponents in d ¼ 2 together with our estimates.

Four loop Five-loop

Exponent Exact Numerical Overall Padé PBL KP17 Overall

α −2=3 −0.667 −0.56ð9Þ −0.57ð6Þ −0.49ð13Þ −0.41ð12Þ −0.51ð11Þ
β 5=36 0.139 0.2(3) 0.3(3) 0.3(3) 0.04(40) 0.2(3)
γ 43=18 2.39 1.9(4) 2.0(4) 1.8(3) 2.2(3) 2.0(4)
δ 91=5 18.2 4(2) 3(5) 4(2) 4(3)
δð1=δÞ 7(15) 16.78 10(6) −25ð75Þ 7(14)
η 5=24 0.208 −0.32ð11Þ −0.32ð12Þ −0.1ð2Þ −0.31ð10Þ −0.28ð15Þ
ν 4=3 1.33 0.87(15) 0.9315 0.86(13) 0.8(3) 0.9(2)
νð1=νÞ 1.1(4) 1.1(2) 0.99(13) 1.17(12) 1.1(2)
σ 36=91 0.396 0.46(4) 0.44(4) 0.446(13) 0.44(5) 0.44(2)
τ 197=91 2.06 2.08(10) 2.07(4) 2.08(2) 2.00(13) 2.07(4)
Ω 72=91 0.791 0.76(2) 0.6(3) 0.96(5) 0.7(2) 0.9(2)
ω 3=2 1.5 2.6(2) 2(2) 2.37(5) 2.8(7) 2.4(2)

TABLE VIII. Estimates for α in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact −0.6667

Four loops Padé −0.58ð6Þ −0.67ð4Þ −0.76ð2Þ −0.873ð3Þ
PBL −0.57ð6Þ −0.66ð4Þ −0.76ð2Þ −0.872ð3Þ
KP17 −0.46ð15Þ −0.60ð7Þ −0.74ð3Þ −0.869ð4Þ
cPadé-2 −0.708ð11Þ −0.778ð9Þ −0.875ð3Þ
cPBL-2 −0.710ð13Þ −0.780ð11Þ −0.876ð4Þ
cKP17-2 −0.72ð2Þ −0.79ð2Þ −0.874ð6Þ

Constrained Padé −0.7212ð4Þ −0.782ð14Þ −0.877ð5Þ
Unconstrained −0.56ð9Þ −0.65ð5Þ −0.76ð2Þ −0.871ð4Þ
Constrained −0.720ð3Þ −0.781ð13Þ −0.876ð4Þ

All −0.56ð9Þ −0.719ð12Þ −0.77ð2Þ −0.874ð5Þ
Five-loops Padé −0.57ð6Þ −0.66ð3Þ −0.759ð12Þ −0.872ð2Þ

PBL −0.49ð13Þ −0.62ð6Þ −0.75ð2Þ −0.871ð2Þ
KP17 −0.41ð12Þ −0.59ð4Þ −0.736ð7Þ −0.8690ð6Þ
cPadé-2 −0.703ð14Þ −0.773ð9Þ −0.8739ð13Þ
cPBL-2 −0.69ð4Þ −0.77ð2Þ −0.872ð4Þ
cKP17-2 −0.72ð2Þ −0.78ð2Þ −0.870ð6Þ

Constrained Padé −0.723ð2Þ −0.78ð2Þ −0.880ð10Þ
Unconstrained −0.51ð11Þ −0.62ð5Þ −0.745ð15Þ −0.870ð2Þ
Constrained −0.720ð11Þ −0.77ð3Þ −0.873ð6Þ

All −0.51ð11Þ −0.71ð3Þ −0.76ð2Þ −0.870ð3Þ
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dimensions. The latter places a big restriction on the ability
of the ε expansion to manufacture large corrections as d
decreases. This is clear in both our four and five-loop
estimates from both our unconstrained and constrained
resummations. Moreover the skew that is necessary to meet

the two-dimensional constraint clearly makes the conver-
gence between loops in three dimensions impossible.
Equally there is no agreement with the few independent
estimates which both have more precise values. Although
the direct ε expansion approach is problematic we have

TABLE IX. Estimates for β in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 0.1389

ε4 [18] (2015) 0.4273 0.6590 0.8457

MC/srs [85] (1976) 0.41(1)
[86] (1990) 0.405(25) 0.639(20) 0.835(5)

Overall 0.409(14) 0.64(2) 0.835(5)

Four loops Padé 0.3(3) 0.49(13) 0.68(4) 0.847(4)
KP17 0.0(4) 0.40(9) 0.65(2) 0.845(4)
cPadé-2 0.426(8) 0.657(5) 0.8453(12)
cPBL-2 0.419(7) 0.653(5) 0.8444(12)
cKP17-2 0.424(11) 0.656(7) 0.845(2)

Constrained Padé 0.4303 0.6599(2) 0.8458

Unconstrained 0.2(3) 0.43(11) 0.66(3) 0.846(4)
Constrained 0.423(9) 0.656(6) 0.8449(14)

All 0.2(3) 0.42(2) 0.656(10) 0.845(2)

Five-loops Padé 0.3(3) 0.49(13) 0.68(4) 0.845(4)
PBL 0.3(3) 0.48(13) 0.67(4) 0.847(4)
KP17 0.0(4) 0.39(6) 0.650(11) 0.8447(10)
cPadé-2 0.427(6) 0.658(4) 0.8455(6)
cPBL-2 0.417(5) 0.653(2) 0.8448(2)
cKP17-2 0.422(5) 0.655(3) 0.8450(5)

Constrained Padé 0.42(2) 0.656(12) 0.8453(15)

Unconstrained 0.2(3) 0.44(10) 0.66(2) 0.845(2)
Constrained 0.420(8) 0.655(4) 0.8449(5)

All 0.2(3) 0.42(2) 0.655(7) 0.8449(7)

FIG. 6. Plot of estimates for α in percolation.

BORINSKY, GRACEY, KOMPANIETS, and SCHNETZ PHYS. REV. D 103, 116024 (2021)

116024-20



provided it here partly to be transparent in the application of
our methods but also to highlight the hidden pitfalls in
naively applying various resummation methods. Equally to
address this problem we have instead tried a second
approach which was to sum the ε expansion of 1=δ,
determine a numerical value and then invert this. The
results of this exercise are given in Table XII and Fig. 9.
Many of the failings with the direct evaluation are absent
now. There is a degree of stability between the various four
and five-loop results especially in three dimensions.
Equally and more importantly we find that this and the
four-dimensional results are certainly not out of line with

the results of Refs. [85,88] although our three-dimensional
result has large errors. While the extrapolation to two
dimensions has larger errors it does accommodate the exact
value. In some sense this much more consistent agreement
across Table XII is an a posteriori justification of following
this second strategy.
We now turn to one of the more widely measured

exponents which is η with data recorded in Table XIII and
Fig. 10. As is the case with η in other problems its value in
percolation is relatively small and close to zero being
associated with the wave function anomalous dimension.
Consequently it is difficult to obtain an accurate value

FIG. 7. Plot of estimates for β in percolation.

FIG. 8. Plot of estimates for γ in percolation.
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TABLE X. Estimates for γ in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 2.3889

ε4 [18] (2015) 1.8357 1.4500 1.1817

MC/srs [85] (1976) 1.6
[86] (1990) 1.805(20) 1.435(15) 1.185(5)

Overall 1.805(20) 1.435(15) 1.185(5)

Four loops Padé 1.946 1.7(3) 1.44(6) 1.179(7)
PBL 1.9(3) 1.65(14) 1.40(5) 1.175(7)
KP17 1.9(8) 1.8(2) 1.44(6) 1.181(4)
cPadé-2 1.83(3) 1.45(2) 1.181(3)
cKP17-2 1.82(6) 1.44(4) 1.180(6)

Constrained Padé 1.82(4) 1.44(2) 1.180(3)

Unconstrained 1.9(4) 1.7(2) 1.42(6) 1.179(6)
Constrained 1.82(4) 1.44(2) 1.180(4)

All 1.9(4) 1.81(8) 1.44(3) 1.180(5)

Five-loops Padé 2.0(4) 1.8(2) 1.45(4) 1.181(4)
PBL 1.8(3) 1.6(2) 1.38(4) 1.176(3)
KP17 2.2(3) 1.77(13) 1.43(2) 1.179(2)
cPadé-2 1.83(3) 1.448(13) 1.181(2)
cPBL-2 1.83(4) 1.45(2) 1.181(3)
cKP17-2 1.81(5) 1.437(13) 1.1797(14)

Constrained Padé 1.83(3) 1.444(14) 1.181(2)

Unconstrained 2.0(4) 1.7(2) 1.42(4) 1.179(3)
Constrained 1.82(4) 1.44(2) 1.180(2)

All 2.0(4) 1.81(8) 1.44(3) 1.180(3)

TABLE XI. Estimates for δ in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 18.2

MC/srs [85] (1976) 3.198(6)
[87] (1980) 5.3 3.9 3.0
[88] (1998) 5.29(6)

Overall 5.29(6) 3.198(6)

Four loops Padé 4.756 3.742 3.1(2) 2.391(14)
KP17 4(2) 3.3(1.3) 3.1(4) 2.39(3)
cPadé-2 7.831 3.2(3) 2.40(2)
cPBL-2 11(4) 6(4) 2.6(4)
cKP17-2 10(4) 3(2) 2.40(11)

Constrained Padé 5.1(2) 3.15(5) 2.393(5)

Unconstrained 4(2) 3.3(1.3) 3.1(3) 2.39(2)
Constrained 6(2) 3.2(3) 2.40(2)

All 4(2) 5(2) 3.2(3) 2.40(2)

Five-loops Padé 3.15(8) 2.396(5)
PBL 3(5) 3(3) 2.5(1.5) 2.3(2)
KP17 4(2) 3.3(1.5) 3.2(2) 2.396(6)
cPadé-2 7.831 3.3(3) 2.40(2)
cPBL-2 8.92(5) 3.84(2) 2.4061(12)
cKP17-2 10(4) 3.3(1.3) 2.40(5)

Constrained Padé 5.16(7) 3.175(14) 2.3954(11)

Unconstrained 4(3) 3(2) 3.1(2) 2.395(12)
Constrained 7(2) 3.4(3) 2.401(6)
Overall 4(3) 7(2) 3.4(3) 2.400(7)
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for it that is in consistent agreement with other estimates.
This is evident in the numerical values of Refs. [86,88–91]
in three and four dimensions although those of
Refs. [89,91] are the most accurate and do overlap.

On the ε expansion side the Padé resummations suffered
from the presence of at least one singularity in 2 < d < 6 or
were not monotonic. For this casewe indirectly estimated η
using the respective scaling and hyperscaling relations

TABLE XII. Estimates for δ in percolation using the series for 1=δ.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 18.2

MC/srs [85] (1976) 3.198(6)
[87] (1980) 5.3 3.9 3.0
[88] (1998) 5.29(6)

Overall 5.29(6) 3.198(6)

Four loops Padé 8(10) 5(2) 3.1(2) 2.391(14)
PBL 8(10) 4.4(1.4) 3.1(2) 2.39(2)
KP17 −20ð120Þ 6.3(1.5) 3.25(9) 2.399(4)
cPadé-2 5.13(11) 3.17(3) 2.395(3)
cPBL-2 5.19(8) 3.18(2) 2.396(2)
cKP17-2 5.15(12) 3.17(3) 2.395(5)

Constrained Padé 5.2(2) 3.17(6) 2.394(6)

Unconstrained 7(15) 5(2) 3.2(2) 2.395(9)
Constrained 5.17(12) 3.18(3) 2.395(3)

All 7(15) 5.2(3) 3.18(5) 2.395(5)

Five-loops Padé 16.78 6(2) 3.22(15) 2.397(7)
PBL 10(6) 4.7(6) 3.13(7) 2.393(3)
KP17 −25ð75Þ 6.1(1.5) 3.25(9) 2.398(4)
cPadé-2 5.16(5) 3.179(14) 2.3956(12)
cPBL-2 5.18(7) 3.179(14) 2.3956(11)
cKP17-2 5.16(3) 3.175(8) 2.3952(10)

Constrained Padé 5.1(2) 3.17(3) 2.395(2)

Unconstrained 7(14) 5.2(1.2) 3.19(11) 2.396(5)
Constrained 5.16(6) 3.176(14) 2.3954(12)

All 7(14) 5.16(15) 3.18(3) 2.396(2)

FIG. 9. Plot of estimates (from 1=δ) for δ in percolation.
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FIG. 10. Plot of estimates for η in percolation.

TABLE XIII. Estimates for η in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 0.2083

ε4 [18] (2015) −0.0470 −0.0954 −0.0565

MC=srs [86] (1990) −0.07ð5Þ −0.12ð4Þ −0.075ð20Þ
[89] (1996) −0.0944ð28Þ
[88] (1998) −0.046ð8Þ
[90] (1998) −0.059ð9Þ
[91] (2001) −0.0929ð9Þ
Overall −0.054ð14Þ −0.094ð4Þ −0.075ð20Þ

Four loops Padé −0.32ð13Þ −0.21ð6Þ −0.13ð2Þ −0.059ð3Þ
KP17 −0.33ð10Þ −0.23ð5Þ −0.14ð2Þ −0.061ð3Þ
cPadé-2 0.01143 −0.06287 −0.055ð7Þ
cPBL-2 0.04(9) −0.06ð3Þ −0.051ð6Þ
cKP17-2 −0.09ð12Þ −0.10ð3Þ −0.057ð3Þ

Unconstrained −0.32ð11Þ −0.22ð5Þ −0.13ð2Þ −0.060ð3Þ
Constrained −0.02ð12Þ −0.08ð4Þ −0.055ð5Þ

All −0.32ð11Þ −0.15ð13Þ −0.12ð4Þ −0.057ð5Þ
Five-loops Padé −0.32ð12Þ −0.22ð5Þ −0.13ð2Þ −0.059ð2Þ

PBL −0.1ð2Þ −0.14ð10Þ −0.11ð3Þ −0.057ð3Þ
KP17 −0.31ð10Þ −0.23ð5Þ −0.14ð2Þ −0.061ð3Þ
cPadé-2 −0.003ð13Þ −0.074ð7Þ −0.056ð4Þ
cPBL-2 0.06(7) −0.03ð5Þ −0.049ð5Þ
cKP17-2 −0.04ð2Þ −0.091ð8Þ −0.0553ð9Þ

Scaling Padé ð−0.0566Þ ð−0.0833Þ ð−0.0545Þ
Hyperscaling Padé ð−0.0176Þ ð−0.0790Þ ð−0.0540Þ
Unconstrained −0.28ð15Þ −0.20ð7Þ −0.13ð2Þ −0.059ð3Þ
Constrained −0.01ð4Þ −0.08ð2Þ −0.055ð3Þ

All −0.28ð15Þ −0.06ð10Þ −0.10ð3Þ −0.056ð3Þ
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η ¼ 2 −
γ

ν
; η ¼ dþ 2 − ðd − 2Þδ

1þ δ
: ð48Þ

The numerical values for each of these are bracketed to
indicate that theywere not derived directly. Amore difficult
issue to circumvent for η in the constrained approach is the
relatively large and positive exact value in two dimensions.
This means that η would have to be identically zero
somewhere between three and two dimensions as d
decreases. So while our final three-dimensional estimate
of η has shown an improvement from four to five-loops
this is to be balanced against a necessarily large
error.
The situation for ν is similar as can be seen in Tables XIV

and XV where we note that there has been a significant
number of independent measurements of ν especially in

three dimensions. This has provided us with a very reliable
benchmark to compare with. Again we had to apply our
resummation methods to both ν and 1=ν since the estimate
of the former undershot the exact two-dimensional value.
This was not the case for the latter which we would
regard as our results for ν. From Table XV and Fig. 11 it is
clear that our four- and five-dimensional five-loop esti-
mates are in very good accord with the Monte Carlo values
and are an improvement on the four loop ones. The
situation for three dimensions is good and also closer to
numerical values.
Examining Table XVI and Fig. 12 which summarizes our

investigation for σ, we note that the only independent
estimates are in three dimensions. We have clearly obtained
excellent agreement with these which exceed the situation
with other exponents. This outcome has to be qualified by

TABLE XIV. Estimates for ν in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 1.3333

ε4 [18] (2015) 0.8960 0.6920 0.5746

MC/srs [92] (1975) 0.80(5)
[85] (1976) 0.8(1)
[86] (1990) 0.872(70) 0.678(50) 0.571(3)
[89] (1997) 0.689(10)
[88] (1998) 0.875(1)
[93] (2000) 0.8765(18)
[94] (2013) 0.8764(12)
[95] (2014) 0.8751(11)
[96] (2014) 0.87619(11)
[97] (2016) 0.8774(13) 0.6852(28) 0.5723(18)
[13] (2018) 0.693
[98] (2020) 0.6845(6) 0.5757(7)

Overall 0.876(4) 0.685(2) 0.574(2)

Four loops Padé 0.8812 0.78(8) 0.68(2) 0.573(2)
PBL 0.88(10) 0.77(5) 0.66(2) 0.572(3)
KP17 0.8(3) 0.9(2) 0.68(3) 0.574(3)
cPadé-2 0.9496 0.697(15) 0.575(2)
cKP17-2 0.95(12) 0.69(4) 0.574(3)

Constrained Padé 0.896(3) 0.6916(12) 0.5746(2)

Unconstrained 0.87(15) 0.79(9) 0.67(2) 0.573(3)
Constrained 0.897(10) 0.692(4) 0.5746(5)

All 0.87(15) 0.89(4) 0.690(9) 0.5744(11)

Five-loops Padé 0.9315 0.81(5) 0.681(13) 0.5737(10)
PBL 0.86(13) 0.78(4) 0.669(6) 0.5730(2)
KP17 0.8(3) 0.85(8) 0.682(11) 0.5737(7)
cPadé-2 0.9496 0.697(15) 0.575(2)
cPBL-2 0.93(3) 0.703(14) 0.575(2)
cKP17-2 0.88(7) 0.69(2) 0.5738(12)

Constrained Padé 0.89(2) 0.689(6) 0.5743(7)

Unconstrained 0.9(2) 0.80(6) 0.675(11) 0.5732(5)
Constrained 0.90(4) 0.692(13) 0.563(13)

All 0.9(2) 0.87(7) 0.685(15) 0.570(9)
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noting that in strictly six dimensions σ is 0.5 with the exact
result in two dimensions being just under 0.4. In other
words the behavior of σ in the intervening dimensions is a
shallow decrease as d decreases which underpins the very
good overlap. Consequently even though there have been
no measurements of σ in four and five dimensions that we
can compare with, we would expect our five-loop estimates
to be in line with any future Monte Carlo studies in those
dimensions.
There is a similar picture for τ which is apparent in

Table XVII and Fig. 13. Again the behavior of τ from two
to six dimensions is relatively flat due to the exact values in
these dimensions being of a similar order. In this case
there are independent data in four and five dimensions.
In the absence of these we could have repeated our
final comment for σ. So it is reassuring that our five-loop

four- and five-dimensional estimates are indeed in excellent
agreement with the independent studies. The situation with
our three-dimensional result is in similar accord.
For the exponent Ω there are again a large number of

independent measurements that we have shown in
Table XVIII and Fig. 14 though mostly in three dimensions.
However these and those in four dimensions have a wide
range of central values as well as a range of errors that are
10% or more in some cases. By contrast to σ and τ there is a
much larger variation in Ω across the dimensions rising
from zero in strictly six dimensions as d decreases. Despite
this both our constrained and unconstrained resummations
as well as from four to five-loops appear to have a degree of
stability. Although our check estimate against the exact
two-dimensional value is not as good as for other expo-
nents, it is encouraging that our three-dimensional five-loop

TABLE XV. Estimates for ν in percolation using the series for 1=ν.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 1.3333

ε4 [18] (2015) 0.8960 0.6920 0.5746

MC/srs [92] (1975) 0.80(5)
[85] (1976) 0.8(1)
[86] (1990) 0.872(70) 0.678(50) 0.571(3)
[89] (1997) 0.689(10)
[88] (1998) 0.875(1)
[93] (2000) 0.8765(18)
[94] (2013) 0.8764(12)
[95] (2014) 0.8751(11)
[96] (2014) 0.87619(11)
[97] (2016) 0.8774(13) 0.6852(28) 0.5723(18)
[13] (2018) 0.693
[98] (2020) 0.6845(6) 0.5757(7)

Overall 0.876(4) 0.685(2) 0.574(2)

Four loops Padé 1.1(3) 0.82(9) 0.68(2) 0.573(3)
PBL 1.0(3) 0.80(9) 0.67(2) 0.572(3)
KP17 1.5(7) 0.91(10) 0.69(2) 0.574(2)
cPadé-2 0.896(3) 0.6916(12) 0.5746(2)
cPBL-2 0.896(2) 0.6918(11) 0.5746(2)
cKP17-2 0.90(3) 0.685(10) 0.5739(9)

Constrained Padé 0.895(5) 0.691(2) 0.5745(3)

Unconstrained 1.1(4) 0.84(10) 0.68(2) 0.573(2)
Constrained 0.896(4) 0.691(2) 0.5745(3)

All 1.1(4) 0.894(14) 0.691(5) 0.5744(7)

Five-loops Padé 1.1(2) 0.84(7) 0.681(13) 0.5737(10)
PBL 0.99(13) 0.81(4) 0.675(8) 0.5733(6)
KP17 1.17(12) 0.86(3) 0.683(6) 0.5738(5)
cPadé-2 0.895(3) 0.6914(13) 0.5746(2)
cPBL-2 0.88(3) 0.687(11) 0.5741(11)
cKP17-2 0.89(3) 0.685(5) 0.5738(3)

Constrained Padé 0.899(11) 0.6913(12) 0.5744(5)

Unconstrained 1.1(2) 0.84(5) 0.680(9) 0.5736(7)
Constrained 0.894(9) 0.690(3) 0.5743(5)

All 1.1(2) 0.89(3) 0.689(5) 0.5741(6)
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estimate has overlap with independent data. This is clearly
more pronounced for four and five dimensions. For
instance, our final five-loop four-dimensional estimate of
0.41(2) for Ω is consistent with the recent four-dimensional
value of 0.40(4) [103].
Finally we arrive at the correction to scaling exponent ω

with the situation summarized in Table XIX and Fig. 15. As
mentioned earlier for our constrained resummations we
have taken the exact value in two dimensions to be 3=2.
The independent data is mostly available in three dimen-
sions and like Ω covers a wide range from around 1.0 to
1.62. Again similar to Ω, ω rises from zero to a large two-
dimensional value. The overall picture is that in three

dimensions our five-loop estimates are close to one
standard deviation away from our calculated global value
from the Monte Carlo data, though the constrained data in
three dimensions are in better accord. However the two-
dimensional projected value for our unconstrained resum-
mations is not close to the exact value. What would be
useful are independent numerical studies in four and five
dimensions to compare our results with.
For the most part our focus in this section has been on

providing estimates for various exponents. To do this we
used the ε expansion expressions for η and ν and then
derived Oðε5Þ expansions for the other exponents through
the scaling and hyperscaling relations of Eq. (11). We then

FIG. 11. Plot of estimates (from 1=ν) for ν in percolation.

FIG. 12. Plot of estimates for σ in percolation.
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applied various different summation methods to each
exponent to arrive at estimates for the three dimensions
of interest. One question arises as a consequence of this and
concerns whether the individual estimates are then con-
sistent with the scaling and hyperscaling relations. Equally
another question is which pair of exponents could reason-
ably be regarded as the ones from which all the other
estimates can be accurately described and thereby be our
final exponent estimates. To this end we have presented our
analysis in Table XX. In particular we have chosen σ and τ
as our two independent exponents and note that the results
using the cKP17-2 technique are the most reasonable to use
for final predictions. This is because the two-dimensional
constraints have been implemented and these two expo-
nents are accurate with a tight error bar in each dimension.
Using these cKP17-2 values we have computed the
exponents for α, β, γ, δ, η and ν using Eq. (11). In the
table the independent values for σ and τ are given above
the rule with the values derived from scaling relations
recorded below. For the remaining two exponents ω and Ω,
their cKP17-2 values have not been included as they are not
accessible by scaling or hyperscaling relations and those
estimates are already in their respective tables.

Comparing these scaling relation values of Table XX
with those from the direct summation ones given in the
earlier tables, none look far out of line. One exception
might possibly be the three-dimensional value of α as it
appears to be more consistent with the unconstrained
analysis. However looking at the extrapolation to two
dimensions suggests it is probably on a better trajectory.
The lack of Monte Carlo or series computations for this
exponent means that we have no way of gauging our α
estimates against an independent analysis. For the other
exponents the view is that the individual resummations are
consistent with the scaling relations and also with inde-
pendent data from other methods where that is substantial.
In the case of δ where there are only a few such other cases
the estimates in Table XX are not inconsistent. Our final
three-dimensional estimate for η appears to be on the low
side but this exponent is difficult to measure accurately. For
ν our four- and five-dimensional values are remarkably
close to the global average we compiled. While that for
three dimensions is not as accurate, it does lie within the
errors of the global estimate.
In presenting our final estimates in this table we need to

be clear in stating that this shows our results are consistent

TABLE XVI. Estimates for σ in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 0.3956

ε4 [18] (2015) 0.4419 0.4642 0.4933

MC/srs [99] (1976) 0.42(6)
[89] (1996) 0.4522(8)
[88] (1998) 0.445(10)
[96] (2014) 0.45237(8)

Overall 0.4523(13)

Four loops Padé 0.45(5) 0.47(3) 0.483(10) 0.494(2)
PBL 0.45(3) 0.470(14) 0.484(5) 0.4946(10)
KP17 0.47(6) 0.48(4) 0.475(13) 0.4937(13)
cPadé-2 0.442(2) 0.476(6) 0.4934(10)
cPBL-2 0.440(6) 0.473(3) 0.4930(5)
cKP17-2 0.448(9) 0.478(5) 0.4939(7)

Constrained Padé 0.444(11) 0.475(6) 0.4932(13)

Unconstrained 0.46(4) 0.47(2) 0.482(9) 0.4943(13)
Constrained 0.443(6) 0.475(5) 0.4934(8)

All 0.46(4) 0.447(13) 0.477(7) 0.4937(11)

Five-loops Padé 0.44(4) 0.46(2) 0.480(6) 0.4940(8)
PBL 0.446(13) 0.465(5) 0.4814(15) 0.49409(14)
KP17 0.44(5) 0.45(2) 0.478(4) 0.4939(3)
cPadé-2 0.4425 0.476(6) 0.4934(7)
cPBL-2 0.443(15) 0.475(9) 0.4935(11)
cKP17-2 0.452(7) 0.4789(14) 0.49396(13)

Constrained Padé 0.447(9) 0.477(5) 0.4937(8)

Unconstrained 0.44(2) 0.462(12) 0.480(3) 0.4940(3)
Constrained 0.448(12) 0.478(4) 0.4939(4)
Overall 0.44(2) 0.454(14) 0.479(4) 0.4940(3)
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TABLE XVII. Estimates for τ in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 2.0549

ε4 [18] (2015) 2.1888 2.3124 2.4171

MC/srs [87] (1980) 2.26 2.33
[89] (1996) 2.18906(8) 2.3127(6)
[90] (1998) 2.186(2)
[88] (1998) 2.189(2)
[100] (2001) 2.313(3) 2.412(4)
[91] (2001) 2.190(2) 2.313(2)
[101] (2006) 2.189(1)
[96] (2014) 2.18909(5)

(Site) [102] (2018) 2.1892(1) 2.3142(5) 2.419(1)
(Bond) [102] (2018) 2.1890(2) 2.311(2) 2.422(4)

[103] (2019) 2.3135(5)

Overall 2.1891(4) 2.3133(12) 2.418(4)

Four loops Padé 2.10(7) 2.20(5) 2.318(13) 2.4180(15)
PBL 2.11(7) 2.22(3) 2.323(10) 2.4186(14)
KP17 1.9(2) 2.16(11) 2.31(2) 2.417(2)
cPadé-2 2.195(4) 2.315(3) 2.4176(5)
cPBL-2 2.193(3) 2.314(2) 2.4174(3)
cKP17-2 2.194(4) 2.315(3) 2.4175(9)

Constrained Padé 2.197(9) 2.317(6) 2.4179(10)

Unconstrained 2.08(10) 2.20(5) 2.318(14) 2.418(2)
Constrained 2.194(5) 2.315(3) 2.4176(6)

All 2.08(10) 2.194(9) 2.315(5) 2.4176(8)

Five-loops Padé 2.07(4) 2.19(3) 2.314(8) 2.4174(7)
PBL 2.08(2) 2.202(8) 2.317(2) 2.4176(2)
KP17 2.00(13) 2.17(4) 2.312(9) 2.4173(8)
cPadé-2 2.194(2) 2.3146(14) 2.4174(2)
cPBL-2 2.193(3) 2.3145(14) 2.4174(2)
cKP17-2 2.1938(12) 2.3150(8) 2.4175(2)

Constrained Padé 2.194(2) 2.3148(14) 2.4174(2)

Unconstrained 2.07(4) 2.20(2) 2.316(5) 2.4176(5)
Constrained 2.194(2) 2.3149(12) 2.4175(2)

All 2.07(4) 2.194(4) 2.315(2) 2.4175(3)

FIG. 13. Plot of estimates for τ in percolation.
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FIG. 14. Plot of estimates for Ω in percolation.

TABLE XVIII. Estimates for Ω in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 0.7912

ε4 [18] (2015) 0.4008 0.2304

MC/srs [86] (1990) 0.50(9) 0.31(5) 0.27(7)
[89] (1996) 0.37(4)
[88] (1998) 0.64(2)
[90] (1998) 0.73(8)
[93] (1999) 0.64(5)
[104] (2000) 0.65(2)
[91] (2001) 0.60(8) 0.5(1)
[102] (2018) 0.77(3)
[103] (2019) 0.40(4)

Overall 0.66(8) 0.38(8) 0.27(7)

Four loops Padé 0.6(3) 0.5(2) 0.37(7) 0.201(14)
PBL 0.768(4) 0.583(2) 0.3956(8) 0.20593(14)
KP17 0.7(2) 0.51(15) 0.36(7) 0.205(15)
cPadé-2 0.58(3) 0.39(2) 0.205(6)
cPBL-2 0.59425(2) 0.399952(15) 0.206613(5)
cKP17-2 0.593(5) 0.399(5) 0.206(2)

Constrained Padé 0.599(4) 0.405(5) 0.209(3)

Unconstrained 0.76(2) 0.581(13) 0.395(5) 0.2059(6)
Constrained 0.5943(5) 0.4000(4) 0.20661(10)

All 0.76(2) 0.594(2) 0.3999(10) 0.2066(2)

Five-loops Padé 0.6(3) 0.50(15) 0.36(6) 0.21(3)
PBL 0.96(5) 0.68(2) 0.432(5) 0.2112(3)
KP17 0.7(2) 0.5(2) 0.47(9) 0.215(14)
cPadé-2 0.58(3) 0.39(2) 0.205(5)
cPBL-2 0.608(6) 0.411(5) 0.2095(12)
cKP17-2 0.595(3) 0.400(3) 0.2067(12)

Constrained Padé 0.597(2) 0.403(2) 0.2079(11)

Unconstrained 0.9(2) 0.65(8) 0.43(2) 0.2112(9)
Constrained 0.598(7) 0.404(6) 0.208(2)

All 0.9(2) 0.60(2) 0.409(15) 0.210(2)
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TABLE XIX. Estimates for ω in percolation.

Reference d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

Exact 1.5

ε4 [18] (2015) 1.6334 1.2198 0.7178

MC/srs [86] (1990) 1.26(23) 0.94(15) 0.96(26)
[89] (1996) 1.13(10)
[88] (1998) 1.61(5)
[93] (1999) 1.62(13)
[105] (2010) 1.0(2)

Overall 1.4(3) 0.94(15) 1.0(3)

Four loops Padé 2(2) 1.5(1.3) 1.2(5) 0.73(10)
PBL 2.58(4) 1.99(2) 1.388(7) 0.7544(14)
KP17 2.2(8) 1.8(4) 1.3(2) 0.77(3)
cPadé-2 1.36(7) 1.12(6) 0.70(2)
cPBL-2 1.38(6) 1.13(6) 0.70(2)
cKP17-2 1.38(9) 1.13(9) 0.70(3)

Constrained Padé 1.35(4) 1.10(5) 0.70(2)

Unconstrained 2.6(2) 1.98(9) 1.38(4) 0.755(6)
Constrained 1.37(6) 1.12(6) 0.70(2)

All 2.6(2) 1.6(3) 1.30(13) 0.74(2)

Five-loops Padé 2(2) 1.5(1.1) 1.2(4) 0.75(10)
PBL 2.37(5) 1.88(2) 1.349(6) 0.7483(6)
KP17 2.8(7) 2.1(4) 1.43(12) 0.76(2)
cPadé-2 1.37(8) 1.13(7) 0.71(2)
cPBL-2 1.44(9) 1.19(8) 0.73(2)
cKP17-2 1.39(9) 1.14(9) 0.71(3)

Constrained Padé 1.35(5) 1.10(6) 0.69(3)

Unconstrained 2.4(2) 1.89(9) 1.35(3) 0.749(3)
Constrained 1.39(11) 1.15(11) 0.71(4)

All 2.4(2) 1.7(3) 1.31(9) 0.746(11)

FIG. 15. Plot of estimates for ω in percolation.

FIVE-LOOP RENORMALIZATION OF ϕ3 THEORY WITH … PHYS. REV. D 103, 116024 (2021)

116024-31



with scaling relations both by constructing the ε equations
directly and resumming them before comparing the esti-
mates obtained from using two independent summed
values in the (hyper)scaling relations. So in essence it is
a self-consistency check. By contrast it is usually the case
that in the Monte Carlo and series approaches the focus is
on one or two specific exponents. Those values are then
used to generate the remaining exponents via Eq. (11)
rather than make extra measurements. So until all tech-
niques have achieved a large degree of computational
accuracy it is probably the case that in comparing exponent
estimates the overall picture is still not perfect.

VII. CONCLUSIONS

The main result of this paper is clearly the provision of
the five-loop renormalization group functions of ϕ3 theory
in six dimensions in the MS scheme. This level of precision
could not have been achieved without the use of the
graphical function formalism developed in Refs. [32,46].
That method was originally pioneered in four dimensions
to renormalize ϕ4 theory to seven loops in the same scheme
[32,57]. To achieve the level of five-loop accuracy here
required the extension of graphical functions to six dimen-
sions that was provided in Refs. [36,53]. An indication of
the advantage of such new and powerful techniques can be
gained from the dates that the previous loop order results
became available for the cubic theory. The one and two
loop renormalization group functions were recorded in the
early 1970s [1] with the three loop extension appearing
within 7 yr [4,5]. Similar to the extension of ϕ4 theory from
five to six loops, there was a quarter of a century lull before
ϕ3 theory was renormalized at four loops [18]. The
relatively quick extension, in terms of time, to five-loops
here is suggestive that with suitable investment in the
underlying mathematics of the graphical functions
approach, higher loop orders are potentially within reach
in this and other theories.
Such higher order computations are not purely academic

exercises since the second part of our study was to extract
improved estimates for critical exponents in two important

problems. Both the Lee-Yang edge singularity and perco-
lation problems at criticality lie in separate universality
classes but both have a ϕ3 continuum field theory at their
heart. The main difference is that the respective versions of
the cubic theory are decorated with different symmetry
properties. Given that we have renormalized the pure ϕ3

Lagrangian at five-loops, it was a relatively simple exercise
to include the respective symmetry decorations and deter-
mine the two sets of renormalization group functions. From
these the ε expansion of the critical exponents were
constructed to Oðε5Þ before a variety of resummation
techniques were applied to extract numerical estimates.
Moreover, we devoted a significant part of determining
estimates to a careful error analysis using the same
formalism provided in Ref. [31] for ϕ4 theory. What ought
to be recognized is that on the whole not only do the five-
loop results improve upon the four loop results, as well as
showing convergence, but also that there is good agreement
with other techniques in both problems for the dimensions
of interest. These include Monte Carlo and strong coupling
methods to name but a few. In making this remark it should
not be overlooked that this includes three dimensions where
we have summed from d ¼ 6 − ε down to d ¼ 3 with a
large value of ε. In one sense this confirms the role of ϕ3

theory as being in the same universality class. What was
useful in making this comparison between the exponents
from discrete systems and the continuum field theory was
collating the available data for the former to produce a
global average. The associated error bars were produced
with the same routine that we used for the five-loop results
from the various resummations. In this respect we were
endeavoring to compare the picture in the discrete and
continuum sides in the same way.
The determination of the five-loop renormalization group

functions in the core cubic theory opens up the possibility of
studying related six-dimensional cubic theories to the same
level of precision. For instance the conformal bootstrap
formalism represents a powerful tool to calculate exponents.
It was used in Ref. [106] to determine exponents for ϕ3

theory in a variety of representations of the Lie group F4.
While the three loop comparison in that article was in
reasonable agreement for various exponents calculated with
the bootstrap, the four loop study of Ref. [107] gave an
improvement toward convergence. It would therefore be
interesting, given the accuracy of results in Ref. [106], to
extend to theF4 studyofRef. [107] to five-loops.Aside from
this particular symmetry of the cubic theory, an intriguing
property of ϕ3 with a bi-adjoint symmetry was observed in
Ref. [108]. For any Lie group it transpires that this theory is
asymptotically free due to the two loop coefficient of the β
function; the one loop term is identically zero. One feature of
the four loop result was the appearance of higher order group
Casimirs at three loops. This is one order earlier than in four-
dimensional non-Abelian gauge theories. So the bi-adjoint
theory offers a window into the type of group Casimirs that

TABLE XX. Estimates of percolation exponents from hyper-
scaling relations using Oðε5Þ cKP17-2 estimates of σ and τ as
input.

Exponent d ¼ 3 d ¼ 4 d ¼ 5

σ 0.452(7) 0.4789(14) 0.49396(13)
τ 2.1938(12) 2.3150(8) 2.4175(2)

α −0.64ð4Þ −0.75ð2Þ −0.870ð1Þ
β 0.429(4) 0.658(1) 0.8452(2)
γ 1.78(3) 1.430(6) 1.1792(7)
δ 5.16(4) 3.175(8) 2.3952(12)
η −0.03ð1Þ −0.084ð4Þ −0.0547ð10Þ
ν 0.88(2) 0.686(2) 0.5739(1)
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could appear in six loop gauge theory β functions such as
QCD.Although such problems areworth pursuing, themore
interesting extension of our current workwould clearly be to
six loops. This would obviously provide a higher level of
precision with which to compare future numerical studies of
the discrete spin models in the same universality class. The
graphical functions method that was used here and was
successful in extending ϕ4 theory to seven loops [32,57]
should be regarded as a starting point to achieve the six loop
renormalization of ϕ3 theory.
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