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It is nontrivial to recognize phase transitions and track dynamics inside a stochastic process because of
its intrinsic stochasticity. In this paper, we employ the deep learning method to classify the phase orders and
predict the damping coefficient of fluctuating systems under Langevin description. As a concrete setup, we
demonstrate this paradigm for the scalar condensation in QCD matter near the critical point, in which the
order parameter of the chiral phase transition can be characterized in a 1þ 1-dimensional Langevin
equation for the σ field. In a supervised learning manner, convolutional neural networks accurately classify
the first-order phase transition and crossover based on σ field configurations with fluctuations. Noise in the
stochastic process does not significantly hinder the performance of the well-trained neural network for
phase order recognition. For mixed dynamics with diverse dynamical parameters, we further devise and
train the machine to predict the damping coefficients η in a broad range. The results show that it is robust to
extract the dynamics from the bumpy field configurations.
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I. INTRODUCTION

The phenomena of phase transition are extensively
observed in various many-body systems. Through meas-
uring thermodynamic quantities such as the susceptibility
or heat capacity, the information about the phase transition
(e.g., the order of the phase transition, the critical exponent,
etc.) could be extracted no matter in classical or quantum
systems. In addition to its own intricacy for quantum
systems, the situation becomes more complicated in a
nonequilibrium dynamical evolution, especially for a sto-
chastic process. The intrinsic randomness breaks the
deterministic description for such stochastic dynamics,
which hinders our further understanding to those exotic
nonequilibrium systems, e.g., cold atoms in a moving
optical lattice [1] or heavy-quark diffusion in the quark-
gluon plasma (QGP) [2,3].
Deep learning with a hierarchical structure of artificial

neural networks is emerging as a novel tool to deal with
high-level representations of intricate data [4]. With the
advancement of hardware and computational power, there
is significant progress of applications of deep learning in an
increasing number of fields, such as audio recognition,
medical image analysis, computer vision, and board game
programs, etc. In these cases, the machine has produced
results comparable or even superior to human experts.
Recently, the deep learning method has also been utilized in
the field of physics research [5], such as in nuclear physics

[6–12], particle physics [13–17], and condensed matter
physics [18–24]. The advantage of the deep learning
method is that it could help us extract hidden correlations
from complex nonlinear physical systems, which might be
difficult to tackle in conventional computation.
Model-free prediction with machine learning on state

evolution has been discussed in recent years for nonlinear
and chaotic dynamical systems [25–27]. In the present
paper, we explore application of deep learning to detect
phase transition and dynamical information in stochastic
processes, which would be of great potential application in
a variety of fields. In such problems, unlike the case with
thermal equilibrium, the raw observations (configurations)
for the system are nothing but the stochastic time series
data. To uncover the phase transition or the dynamical
information from limited raw data with stochasticity is, in
principle, challenging but crucial for studying the proper-
ties of the dynamical system. A related paradigm that has
been developed for a deterministic (with minor stochas-
ticity in some stages) dynamical system [10,11] is to train a
deep neural network with supervision to identify the phase
order of the QCD equation of state in heavy-ion collisions.
We generalize the idea further to recognize the phase order
and extract the dynamical parameters in a stochastic
dynamical process with a phase transition. With regard
to the effective inputs to the deep neural networks, while
the final-state particle spectra could be a proper choice for
deterministic systems [10,11], we feed the event-by-event
temporal-spatial scalar field configurations in the final
stage to the neural network to identify the dynamics,*zhou@fias.uni-frankfurt.de

PHYSICAL REVIEW D 103, 116023 (2021)

2470-0010=2021=103(11)=116023(8) 116023-1 © 2021 American Physical Society

https://orcid.org/0000-0003-3757-3403
https://orcid.org/0000-0001-9859-1758
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.116023&domain=pdf&date_stamp=2021-06-25
https://doi.org/10.1103/PhysRevD.103.116023
https://doi.org/10.1103/PhysRevD.103.116023
https://doi.org/10.1103/PhysRevD.103.116023
https://doi.org/10.1103/PhysRevD.103.116023


including the phase order and dynamical parameter.
Specifically, we design a deep convolutional neural net-
work (CNN) to track the dynamical process with a phase
transition. It is worth noting that the magnitude of the noise
in the dynamical evolution does not hinder the classifica-
tion ability of the well-trained CNNs noticeably. The neural
network have a consistent performance on predicting the
phase order of the configuration with unknown fluctua-
tions. Moreover, we utilize the machine to predict the
damping coefficient from configurations in the final stage
of the stochastic process. In this part, we evolve the system
within the crossover scenario with diverse damping coef-
ficients. As the dominant dynamical parameter, the damp-
ing coefficient is set inside a limited range for the training
datasets. The test on a broader range of the damping
achieves a good performance, which suggests that deep
CNNs could help extract crucial dynamical information in
such stochastic Langevin dynamics given just the limited
raw states.
The paper is organized as following: In Sec. II, we

introduce the paradigm that apply deep learning to
Langevin dynamics of QCD matter, in which the parameter
setups and details of the event-by-event simulation in
1þ 1D Langevin equation are described. In Sec. III, the
CNNs are adopted to classify the first-order transition and
crossover from σ field configurations with fluctuations. The
stability of the performance is evaluated for datasets with
various noise. In Sec. IV, we prepare mixed configurations
with a damping coefficient in the range of (1.0–2.5) and
ð4.6–5.5Þ fm−1 for training the machine to recognize the
damping coefficient; however, the predictions to the
dynamics are made for a broader range beyond training.
It is found that the dynamics recognition from such a
stochastic process with a neural network is robust. In
Sec. V, we summarize the main findings in this work and
conclude the potentials of our paradigm.

II. DEEP LEARNING LANGEVIN DYNAMICS

In this section, we introduce a deep learning approach to
track the stochastic process driven by a Langevin equation,
in which the scalar σ field evolves as the order parameter
of QCD phase transition [28–31] near the critical point
[32,33]. Although the dynamical process is discussed in the
context of high-energy heavy-ion collision systems, it can
be naturally extended into general nonequilibrium stochas-
tic systems [34] in a broader areas.
In particular, we implement deep CNNs to explore the

dynamical process as the flowchart in Fig. 1 shows. To
prepare the training data for the CNNs, we numerically
solve the event-by-event Langevin equation for the scalar σ
field. The temporal-spatial information of the field con-
figurations σðx; tÞ is recorded when the system temperature
drops far below the critical temperature Tc. To perform
supervised learning, the configurations labeled with cross-
over and first-order phase transition are prepared to be our

training set, with which we train the CNNs to classify the
order of the phase transition given configurations only in a
later stage of the dynamical evolution. As a demonstration
of robustness, we test the trained CNNs in various cases
with different magnitudes of noise. Furthermore, we also
show that, as the key dynamical information, the damping
coefficient η can be well recognized via deep CNNs.
With increasing temperature T and/or baryon chemical

potential μ, the QCD matter will undergo a phase transition
from hadronic matter to the QGP phase. Furthermore, the
QCD transition is conjectured to be a crossover at small
chemical potential μ (and moderately high temperature)
and first order at moderate values of μ (and lower temper-
ature), with a critical point separating the two. Although the
QCD phase transition is complicated [35,36], its general
thermodynamics and phase behaviors could be describe
effectively by models such as the Nambu–Jona-Lasinio
model [37–39], quark-meson model [40,41], or linear
sigma model (LSM) [42]. As a practical example, the
effective potential from the LSM presents a scenario in
which the crossover locates at the small chemical potential
region and first-order phase transition occurs at the large
chemical potential region [43]. In heavy-ion collision (HIC)
experiments, the hot and dense fireball created sets an
extreme dynamical environment where the QCD phase
transition can happen [44–46]. To model the phase tran-
sition processes in HICs, the Langevin equation is adopted
to describe the semiclassical evolution for the long-
wavelength mode of the σ field (for more context and
details, see [47,48]):

∂μ∂μσðt; xÞ þ η∂tσðt; xÞ þ
δVeffðσÞ

δσ
¼ ξðt; xÞ; ð1Þ

FIG. 1. The architecture of the deep CNNs for recognizing
the phase order and predicting the damping coefficient from
the σ field configurations. Details of the network structure can be
found in the text, especially for the damping regression task.
The loss function “categorical cross entropy” is defined as
loss ¼ −

P
C
i¼1 yi log fiðxÞ, where x is input, fiðxÞ is output,

yi is the ground truth, and C is the number of the categories.
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where η is the damping coefficient, ξðt; xÞ is the noise term,
and the effective potential Veff decides the type of phase
transition in the stochastic process as shown in Fig. 2
(see more details in Ref. [28]). The terms η and ξ are both
from the interaction between the σ field and the thermal
background, which follow the fluctuation-dissipation theo-
rem. In the zero-momentum mode limit, the correlation has
the form hξðtÞξðt0Þi ¼ 1

V mση cothðmσ
2TÞδðt − t0Þ [47].

In our calculation, η is taken as a free parameter, while
the noise is set as white noise. Note that the above zero-
momentum approximation suits only the critical point,
where the correlation length is infinite. To be realistic in
the crossover and first-order phase transition scenario, we

set the spatial noise as ξðxÞ ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V mση cothðmσ

2TÞ 1
dt

q
GðxÞ,

where B is a free parameter being encoded in the noise term
to control the strength of the white noise and GðxÞ is a
random number generator of the standard normal distribu-
tion. Since the correlation length in the crossover and first-
order phase transition scenario is finite, the difference of
the σ field at different spatial points is large; thus, the
magnitude of B reflects the strength of the σ correlation at
different spatial points: A larger B corresponds to a weaker
σ correlation. Besides, B also eliminates the unreasonable
reliance of the noise on the spatial grid size.
In a practical implementation, we adopt the method

proposed in Ref. [30] to construct the initial profiles of
the σ field, according to the probability distribution
function PðσÞ ∼ exp ð−EðσÞ=TÞ with the energy function
E½σðxÞ� ¼ R

d3x½1
2
ð∇σðxÞÞ2 þ VeffðσðxÞÞ�. To mimic the

realistic dynamical process in HICs where the created
fireball expands and cools rapidly, in principle, we need to
embed the local temperature Tðt; x; y; zÞ and baryon
chemical potential μðt; x; y; zÞ into the effective potential.
For simplicity but without loss of generality, we assume the
heat bath evolves along trajectories with constant baryon

chemical potential, and the temperature drops down in a
Hubble-like way:

TðtÞ
T0

¼
�
t
t0

�
−0.45

; ð2Þ

where T0ð> TcÞ is the initial temperature and t0 ¼ 1 fm is
the initial time for the evolution. With regard to the
dynamical evolution of the σ field, we set the damping
coefficient η to be constant across the evolution with values
ranging from 1.0 to 5.5 fm−1. As for the details of the
numerical setup, we simulate the evolution of the σ field in
one-dimensional space with range L ¼ 6.0 fm, and the
spatial grid size dx ¼ 0.2 fm. The duration of the evolution
is 16 fm at most with the temporal step size dt ¼ 0.1 fm=c.
With the above setups and initial profiles, the σ field was
evolved according to Eq. (1) on an event-by-event basis. As
a practical choice, the configurations from later episodes
well after phase transition with 4 fm duration of the σ field
are censored as the input dataset. Thus, the input is in
t ∈ ½7; 11� fm−1, or in the last 40 time steps from the
evolution, where the ambient temperature is already much
lower than Tc, ensuring that the potential phase transition
already happened. Therefore, the prepared input configu-
ration contains N ¼ 40 × 30 ¼ 1200 pixels in each event.

III. RECOGNIZING PHASE TRANSITION
IN STOCHASTIC PROCESS

In this section, we first demonstrate that QCD phase
order could be recognized from the stochastic process
by a deep CNN. Despite that the evolution is simulated in
1þ 1-dimensional space for our Langevin systems, its
stochastic nature induces elusiveness because of the ran-
domness from interactions. For time series data analysis,
long short-term memory (LSTM) neural networks are
routinely adopted. However, it is laborious to capture the
dynamics in such simplified stochastic processes [49] with
LSTM networks. As a succinct alternative, we adopt CNNs
to classify the QCD phase order from noisy configurations,
since the deep CNN could unearth sufficient correlations in
high-dimensional data [50]. The main architecture of the
deep CNNs is shown in Fig. 1. The configurations of the σ
field with a 40 × 30 temporal-spatial “resolution” are fed
into the deep CNN as images, followed by three convolu-
tional layers with rectified linear unit (ReLU) activation
functions as the core structure. For each layer, there are 32
filters with size 3 × 3. To avoid overfitting, dropout is
applied after the second convolutional layer. After all CNN
layers, the outputs are flattened and further fed into a
128-neuron fully connected layer, with ReLU activation
function and dropout follows. To tackle this binary clas-
sification task, the final output layer of the model is another
fully connected layer with softmax activation and two
neurons to indicate the two phase transition classes.

FIG. 2. Dynamical evolution of a scalar σ field in different
phase transition scenarios with solid lines standing for crossover
and dashed lines for first-order phase transition, with the small
box in the upper right corner masking the input range we chose
for the CNNs. The right figures are the corresponding effective
potential which induces the different phase transitions, in which
the upper one shows the crossover with temperature across the
critical temperature Tc and the bottom one shows the first-order
transition.
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To perform supervised learning for the binary classifi-
cation task here, configurations labeled with typical QCD
phase transition types (i.e., crossover and first order) serve
as the nuts and bolts. To prepare the two categories of
configurations, two trajectories in the T − μ phase diagram
are adopted for the dynamical cooling process: The temper-
ature decreases in a Hubble-like way shown in Eq. (2) with
a fixed baryon chemical potential as μ ¼ 180 MeV and
μ ¼ 240 MeV, separately. Both of the two trajectories
would experience the phase transition, which provides a
homogeneous description to the dynamical evolution.
Since the initial configurations of the σ field are different
in the two trajectories, the one with μ ¼ 180 MeV mimics
the crossover transition type and is labeled as (0,1) in the
training set, while the other one at μ ¼ 240 MeV mimics
the first-order phase transition and is labeled as (1,0). The σ
field evolution processes are recorded as images with size
40 × 30, where Nt ¼ 40 is time grids and Ns ¼ 30 is
spatial grids. It is worth noting that the white noise
introduced in Eq. (1) leads to intrinsic differences in the
event-by-event-generated configurations. The correspond-
ing damping coefficient is set to be η ¼ 1 fm−1 in this
section.
For preparing datasets, we simulated 10000 events at

each parameter setup we considered in our following tasks.
Typical σ field time evolutions are demonstrated in Fig. 2,
with two different phase transition scenarios shown. Note
that the phase order could not be naively recognized by
eye from the spatial-averaged time evolution shown in the
figure and much less provided only the final episode
evolution after the phase transition happening. As a matter
of fact, the effective inputs we adopt for the deep CNNs are
demonstrated in Fig. 3, i.e., typical σ field configurations
with the final episode masked to be the input. They are
two-dimensional images containing the spatiotemporal
information for the evolution, which thus embed more
correlations from both the time and space of the dynamics.
Different magnitudes of noise B are presented in the typical
configurations shown in Fig. 3. As the magnitude of the
noise is enlarged from B ¼ 1 to B ¼ 3, the configurations
become jouncy, since the fluctuations are increasing for the
dynamical evolution.
In the following, for applying the CNN to the phase

transition identification task, from the generated events,
20% of the events are randomly chosen as the test set, and
the left part of the data is used for training the neural
network. Thus, the training dataset consists of 20000 events
with configurations at B ¼ 0.5 and 20000 at B ¼ 1 (half
with first-order and half with crossover phase transition),
which are fed to the neural network with batch size 16. The
training runs 2000 epochs, after which the validation
accuracy reaches to 99.9%; see the details in Fig. 4. The
validation loss tends to decrease with the training epoch
increasing; in other words, it behaves similar to training
loss, in which there is no distinct overfitting. The loss is an

abbreviation of the loss function values in training the deep
neural network model. Minimizing the loss leads us to a
higher accuracy of prediction on the order of the phase
transition in our case. The definition of the loss is shown in
the caption of Fig. 1, and the accuracy is the number of
correct predictions divided by the total number of pre-
dictions. With the trained CNN, we further make the test on
a previously unseen dataset. As shown in Fig. 5, the deep
CNN has an extraordinary performance on recognizing the
order of the phase transition. It is worth noting that the
input to the network is solely the final episode of the σ field
configuration after phase transition. The test accuracy is

FIG. 3. Dynamical evolution of the σ field in space-time
coordinate with noise term B ¼ 1, 2, 3, separately (from top
to bottom). The color bar listed on the right-hand side represents
the strength of the field. The inputs to the CNNs are marked by
the dashed box shown in the top figure, which applies to every
configuration.
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99% for configurations with B ¼ 0.5 and B ¼ 1, implying
the existence of phase order information projected onto the
final episode configurations from the dynamical evolution.
We also trained a different neural network with LSTM
layers to the task based on the same datasets, but the test
accuracy reached only 68.7%. Furthermore, as shown in
Fig. 5, the trained CNN could recognize with above 70%
accuracy the phase order information from the configura-
tions which have quite different noise magnitude than
included in the training dataset. Notably, for B ¼ 1.5,
although the fluctuations are already so large that they
can eventually break the deterministic evolution, the test
accuracy achieves 95%. It means that the neural network
has learned the underlying evolutionary patterns of the
phase transition. Even though the σ configurations are
totally different from the learned ones due to the intense
noise, the machine could keep an accurate prediction on the
phase order in each event. In the case of larger noise B ¼ 2
or B ¼ 2.5, the machine’s performance decreased, which
could be ameliorated by introducing more diverse con-
figurations inside the training set to the deep CNN.

IV. TRACKING DYNAMICAL PARAMETERS
FROM EVOLUTION

In Eq. (1), the damping coefficient η drives the diffusion
process for the σ field as a main dynamical parameter.
In general, the σ field eventually reaches its vacuum
expectation value faster in a smaller damping environment.
However, the damping coefficient can influence not only
the thermal diffusion speed of the system, but also the
fluctuations due to the Einstein relation. Because of its
ambiguity, it is hard to measure the η in quantum dynamical

FIG. 5. The accuracy and loss on test datasets with different
noise parameters B ¼ 0.5, 1, 1.5, 2, and 2.5. The performance is
snapped at training epoch 1000.
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FIG. 4. The accuracy and loss on training and validation
datasets with different noise parameters B ¼ 0.5, 1, 1.5, 2,
and 2.5.

FIG. 6. Dynamical evolution of the σ field in space-time
coordinates with the damping coefficients η ¼ 1, 3, and
5 fm−1, separately (from top to bottom). The color bar listed
on the right-hand side represents the strength of the field. The
inputs to the CNNs are marked by the dashed box shown in the
top figure, which applies to every configurations.
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systems, no matter whether it is the cold atoms or hot dense
QGP. In this section, with a well-trained deep CNN, the
good testing results indicate that the damping coefficient
could be extracted from the bumpy field configurations
collected as the “final episode states” of the stochastic
process. To deploy supervised learning on the damping
coefficient regression task, we employ a similar training
strategy as used above for the phase transition binary
classification. Specifically, for preparing the training data-
sets, we used events generated under the Langevin equation
on both the crossover and the first-order side with
the damping coefficient η in the range of (1.0–2.5) and
ð4.6–5.5Þ fm−1, where η varies with size dη ¼ 0.1. Within
each η bin, 1000 events are generated. Three representative
examples of the evolution with different η values are shown
in Fig. 6, in which there are no distinctive features to
recognize different η. To reduce the bias in datasets, we mix
and shuffle the configurations with different η values
and randomly divide them into two parts: 20% for
validation and the remaining 80% configurations for train-
ing. To investigate the generalization ability of the machine,
configurations with different damping coefficient values
beyond the training set will be utilized to test the network
prediction performance.
A network with similar architecture as shown in Fig. 1 is

deployed, to which slight changes are performed to target
this regression task. Specifically, the dropout layers are
removed, and one more fully connected layer with 32
neurons is inserted before the final output layer. The latter is
with one neuron representing the values of η. The activation
functions are all changed to parameterized ReLU, and the
loss function is set to be the mean squared error between
the true values and network predictions. With that, the
training process is depicted in Fig. 7, where the coefficient
of determination R2 are calculated to indicate the regression
quality:

R2 ¼ 1 −
SSres
SStot

; ð3Þ

with SSres ¼
P

iðηi;truth − η̄truthÞ and SStot ¼
P

iðηi;truth −
ηi;predÞ the residual sum of squares and the total sum of
squares, respectively. The R2 is implemented to quantita-
tively evaluate the correlation between the ground truth and
the prediction from the neural networks. As training goes
on, R2 grows quickly from 87% to 93% and from 91% to
97% for the crossover and the first-order scenario, respec-
tively, and tends to be stable with the increasing epoch,
which reveals that the deep CNNs have advantages to
capture the hidden correlation in image-type inputs [51].
With regard to the inset in Fig. 7, the trained regression
CNN is tested on previously unseen σ field configurations
with different values of the damping coefficients. The
results demonstrate that the predictions retain high con-
sistency with the value of the damping coefficient for

diverse configurations with stochasticity. The predicted η
value versus the corresponding ground truth lies around
the diagonal line, with a band indicating the deviation.
Remarkably, it is found that, although inside the training set
there is no supervision in the region of η ∼ ð2.6–4.5Þ fm−1,
the predictions of the trained network still keep a reason-
able performance in this range. In such an interpolation
region, the large damping will induce fluctuations defi-
nitely non-negligible for the evolution, which makes it hard
to decode the dynamical parameters via any conventional
analysis. The deep learning approach in our work offers an
alternative way to track the dynamics of the stochastic
process from intricate configurations driven by the damp-
ing coefficient.

V. SUMMARY AND OUTLOOK

In this paper, we introduced a method applying deep
learning to identify phase transition information and also
track the dynamics for a stochastic dynamical models
near the QCD critical point. We numerically simulate
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FIG. 7. The training process in predicting the damping coef-
ficient from configurations. The upper panel is prediction results
for the crossover scenario; the lower panel is prediction results
for the first-order scenario. For both panels, the blue dashed line
in the main figure is the training curve, which contains the
coefficient of determination R2 increasing with epochs. The inset
part consists of 4600 orange dots, which are labeled by the
damping coefficients of the ground truth and predictions from the
trained CNNs.
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the time evolution of the fluctuating 1þ 1-dimensional σ
field within the framework of Langevin dynamics in an
event-by-event manner and collect its spatial-temporal field
configurations to form the datasets for the deep learning
study on our tasks.
Based on the generated data, the machine can be trained to

identify the nature of the phase transition: first-order or
crossover type, encoded inside the stochastic field dynamical
evolution. Although the field configurations are totally differ-
ent fromeach other due to thenoise terms and also the random
initial conditions, the machine successfully learns to make an
accurate prediction on the phase order for previously unseen
evolution events in the testing stage. This is related to the
powerful capability of deep CNNs for extracting hidden
correlations in an image-type dataset, which facilitates the
presented phase order identification from the field configu-
rations. We further designed a regressive CNN to decode
the dynamical parameter—damping coefficient—inside the
Langevin dynamics from the evolution. It is found that
extracting dynamics from such a stochastic process with
the trained CNN shows robustness, which also reveals an
acceptable generalization ability when tested on configura-
tions containing damping beyond the training set. In sum-
mary, we demonstrate that the framework is effective in
extracting the Langevin dynamics from complicated con-
figurations associated with intrinsic stochasticity.
It should be noted that the critical point shows unique

critical behavior in the thermal equilibrium context.
However, when we focus on the dynamic evolution of
the system based on the Langevin equation, the phase
transition point is just an instantaneous point, so the
dynamical process in the critical point scenario is similar
to that in the crossover scenario. On the contrary, due to the
minimum value coexisting in the phase transition region,
the first-order phase transition shows different dynamic
evolution of the σ field. Therefore, in this work, we choose
the dynamic evolution of the σ field in the conditions of
crossover and the first-order phase transition to analyze.
The present method can be helpful for a broader field; for
example, there is a potential application in a topological-
dependent stochastic process [52], in which the topological
charge could be extracted by deep CNNs in a similar
manner. Moreover, transfer learning could also help us to
understand the stochastic process through introducing well-
trained deep CNNs into real physical observations [53].
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APPENDIX: RECOGNIZING PHASE
TRANSITION IN 2+ 1-DIMENSIONAL EVENTS

To show the robustness of our deep learning approach,
in this Appendix, we present the investigation of recogniz-
ing a phase transition in a higher spatial dimension.
We prepared 20000 events with σ field configurations at
B ¼ 0.5 and 20000 at B ¼ 1 (half with first-order and half
with crossover phase transition) in 2þ 1-dimensional
space. The configurations of the σ field with a 40 × 10 ×
10 “resolution” are input to the neural network for training
and testing, where Nt ¼ 40 is time grids and Nx ¼ 10,
Ny ¼ 10 is spatial grids.
The main architecture of the deep CNNs is kept similar

to that in Sec. III. There are again three convolutional layers
with ReLU activation functions as the core structure. For
the first two convolutional layers, there are 16 filters with
size 3 × 3 × 3. The dropout between the second and the
third convolutional layers is omitted, and we add a
maxpooling with the pool size 2 × 2 × 2. A third convolu-
tional layer follows the maxpooling with 64 filters and size
3 × 3 × 3. The remaining setup is unchanged from that in
Sec. III.
Similar to the training process in Sec. III, 20% of the

events are randomly chosen as the test set, and the
remaining part of the data is used for training the neural
network. With the trained CNN, we further make the test
on a previously unseen dataset with B ¼ 1.5. As shown in
Fig. 8, the deep CNN has an extraordinary performance
on recognizing the order of the phase transition in the
unknown events.
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FIG. 8. The accuracy and loss on test datasets with the noise
parameter B ¼ 1.5.
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