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We discuss several aspects of a generalization of the Chern-Simons action containing the pseudodiffer-

ential operator
ffiffiffiffiffiffiffiffi
−□

p
, which we shall call pseudo-Chern-Simons (PCS). First, we derive the PCS from the

bosonization of free massive Dirac particles in ð2þ 1ÞD in the limit when m2 ≪ p2, where m is the
fermion mass and p is its momentum. In this regime, the whole bosonized action also has a modified
Maxwell term, involving the same pseudodifferential operator. Furthermore, the large-mass m2 ≫ p2

regime is also considered. We also investigate the main effects of the PCS term into the pseudo-quantum
electrodynamics (PQED), which describes the electromagnetic interactions between charged particles in
ð2þ 1ÞD. We show that the massless gauge field of PQED becomes massive in the presence of a PCS term,
without the need of a Higgs mechanism. In the nonrelativistic limit, we show that the static potential has a
repulsive term (given by the Coulomb potential) and an attractive part (given by a sum of special functions),
whose competition generates bound states of particles with the same charge. Having in mind two-
dimensional materials, we also conclude that the presence of a PCS term does not affect the renormalization
either of the Fermi velocity or of the band gap in a Dirac-like material.

DOI: 10.1103/PhysRevD.103.116022

I. INTRODUCTION

After the experimental realization of graphene [1], quan-
tum electrodynamics (QED) has been used as an efficient tool
for describing the electronic properties in planar materials. In
this case, the quasiparticles are described, at low energies,
through amassless Dirac field and several applications of this
fact have been made [2]. For related materials exhibiting a
sublattice-symmetry breaking, it is possible to show that other
planar materials, such as silicene and the transition metals
dichalcogenides (TMDs) [3], are described by a massive
Dirac field, opening possibilities of new applications within a
quantum-electrodynamical approach where electronic inter-
actions are naturally included.
PQED [4] (also referred to as reduced quantum electro-

dynamics RQED [5–7]) is a theory formulated in ð2þ 1ÞD,
which describes the electromagnetic interactions of charged
particles constrained to move on a plane and it is a very
useful tool for calculating either new topological states
of matter [8] or renormalized parameters [9,10]. It is

unitary [11], local [12], gauge invariant, and it has been
shown to be an example of conformal field theory [13].
Several results have been obtained from this model so far
[14–16], in particular, the formation of electron-hole
bounded states (excitons) in TMDs [17].
In a previous work Ref. [18], we have shown that the

usual Chern-Simons term, when coupled to PQED, pro-
vides an effective description of the screening of the
dielectric constant in two-dimensional materials. In this
case, therefore, there is no mass generation for the gauge
field, unlike the well-known topological mass generation
that occurs in the Maxwell-Chern-Simons theory [19].
Within the nonperturbative regime, the effects of the
Chern-Simons term into PQED has also been investigated
in Refs. [20,21].
The main reason for the absence of mass generation in

Ref. [18] is the canonical dimension of the gauge field in
PQED, which implies a dimensionless θ-parameter. On the
other hand, an important feature of this gauge field is that it
may be obtained from the bosonization of free massless
Dirac particles in ð2þ 1ÞD [4]. The gauge field obtained
from the bosonization of free massive Dirac particles,
nevertheless, has not been obtained up to now. As we shall
conclude later, this gauge field has a PCS term, providing a
massive θ-parameter and mass generation. This is similar to
what happens in the Maxwell-Chern-Simons theory.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 116022 (2021)

2470-0010=2021=103(11)=116022(10) 116022-1 Published by the American Physical Society

https://orcid.org/0000-0001-6071-9699
https://orcid.org/0000-0001-8396-7089
https://orcid.org/0000-0003-2090-0420
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.116022&domain=pdf&date_stamp=2021-06-25
https://doi.org/10.1103/PhysRevD.103.116022
https://doi.org/10.1103/PhysRevD.103.116022
https://doi.org/10.1103/PhysRevD.103.116022
https://doi.org/10.1103/PhysRevD.103.116022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Here, we investigate the bosonization of free massive
Dirac particles in (2þ 1) dimensions, which is a gener-
alization of the result in Ref. [22]. For massive electrons,
we conclude that the bosonized action has the PQED term
plus the PCS action, given by

iθϵμναAμ∂νAα=
ffiffiffiffiffiffiffiffi
−□

p
ð1Þ

in the small-mass limit m2 ≪ p2. Furthermore, we remark
that, in the opposite limit m2 ≫ p2, the bosonized action is
equal to the Maxwell-Chern-Simons theory. This closes our
results about noninteracting particles. Note that, as pointed
out in Ref. [23], the PCS term coupled to PQED may also
be obtained from dual transformations of the Higgs-Chern-
Simons action. Therefore, we consider a case of Dirac
particles coupled with PQED and the PCS term. From that,
we calculate the static potential VðrÞ for an electron
coupled to this gauge field. In this case, it is shown that
VðrÞ is given by a nonsymmetric potential around a
stationary point r ¼ r0, while for r ≪ r0 it is given by
the Coulomb potential and r0 ∝ 1=θ. This allow us to
discuss the formation of bounded pairs of particles in this
model. In the static regime, from the analysis of the
renormalization group, we use the perturbative approach
for calculating the beta functions of the Fermi velocity and
the electron mass. These, however, are shown to be the
same as in the case with θ ¼ 0.
The outline of this paper is the following: In Sec. II, we

investigate the bosonization of massive Dirac particles. In
Sec. III, we couple PQED with the nonlocal Chern-Simons
action and we analyze the formation of bound states. In
Sec. IV, we calculate the screening effect on the gauge-field
propagator and its consequence for the static interaction
potential. In Sec. V, we calculate the anisotropic electron
self-energy in the static regime using the two-component
representation for the spinor and obtain the renormalization
of the mass and the Fermi velocity. We summarize our
results in Sec. IV. In Appendix A, we show some details of
the renormalization group. Finally, in Appendix B, we
calculated the screening effect on the static interaction
potential using the RPA approach and adopting the 4 × 4
representation for the Dirac matrices.

II. BOSONIZATION OF FREE MASSIVE
DIRAC FERMIONS

We start with the massive Dirac theory in the
D-dimensional Euclidean space-time, given by

LD ¼ ψ̄ðiγμ∂μ −mÞψ ; ð2Þ

where ψ is the Dirac field, γμ are the Dirac matrices, and m
is the electron bare mass. Therefore, the generating func-
tional of the current-current correlation function reads

Zψ ½J� ¼ Zψ
0

Z
Dψ̄Dψe−SDþ

R
dDxjμJμ ; ð3Þ

where jμ ¼ eψ̄γμψ is the matter current, Zψ
0 is a normali-

zation constant, and Jμ is an external source. Equation (3) is
quadratic in the Dirac field, and, therefore, using Eq. (2) in
Eq. (3), we may solve the integral over ψ to find

Zψ ½J� ¼ det

�
1þ eγνJν

ðiγμ∂μ −mÞ
�

¼ exp

�
Tr ln

�
1þ eγνJν

ðiγμ∂μ −mÞ
��

¼ exp

�
Tr

X∞
N¼1

ð−1ÞN−1

N

�
eγνJν

ðiγμ∂μ −mÞ
�
N
�
; ð4Þ

where we have used the arbitrary constant Zψ
0 such

that Zψ ½0� ¼ 1. From Eq. (4), it follows that Zψ ½J� ¼
Zψ
2 ½J�Zψ

N>2½J�, where lnZψ
2 ½J� is a quadratic term in the

external sources Jμ and lnZψ
N>2½J� are the higher-order

polynomials in Jμ. In particular, Zψ
2 ½J� reads

Zψ
2 ½J� ¼ exp

�
1

2

Z
dDxdDyJμðxÞΠμνðx − yÞJνðyÞ

�
; ð5Þ

where Πμν is the vacuum polarization tensor. It is clear,
from these results, that now we may calculate the N-point
current-current correlation functions. As an example, let us
consider the two-point current-current correlation, namely,
hjμjνi, given by

hjμðxÞjνðyÞi ¼
δ2Zψ ½J�

δJμðxÞδJνðyÞ
����
J¼0

¼ Πμνðx − yÞ: ð6Þ

Since we are considering free particles, let us take only
the quadratic terms in the external sources, such that
Zψ ½J� ¼ Zψ

2 ½J� properly yields our two-point correlation
function. Next, we follow the bosonization method, which
has been recently reviewed in Ref. [24] and applied for
massless Dirac particles in Ref. [22]. Here, we generalize
this method for the massive case. The main goal is to
calculate the bosonic version of the action in Eq. (2).

A. Two-dimensional electrons

For two-dimensional electrons, the natural bosonic
action is defined by a gauge field Bμ. The action of this
model reads

LB ¼ 1

2
BμAμνBν þ GF; ð7Þ

and the generating functional is given by
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ZB½J� ¼ ZB
0

Z
DBμe

−SBþ
R

dDxJμKμνBν ; ð8Þ

where Aμν and Kμν are unknown tensors and GF stands for
the usual gauge-fixing term.
Following similar steps, after integrating over Bμ in

Eq. (8), one obtains

ZB½J� ¼ exp

�
1

2

Z
dDxdDyJμ½KμσðA−1ÞσλKλν�Jν

�
; ð9Þ

where ZB
0 is chosen such that ZB½0� ¼ 1. Note that the

gauge-fixing term does not appear in Eq. (9) because
of current conservation. The bosonization follows from
assuming that Zψ

2 ½J� ¼ ZB½J�. Hence, after comparing
Eq. (5) and Eq. (9), we find that ½KμσðA−1ÞσλKλν� ¼ Πμν,
which is satisfied by taking the simplest solution
Aμν ¼ Kμν ¼ Πμν. Using the dimensional regularization
scheme for 2 × 2 Dirac matrices, we find [25]

Πμνðp;mÞ ¼ Π1ðp;mÞPμν þ Π2ðp;mÞϵμανpα; ð10Þ

where

Π1 ¼ −
e2

2π

Z
1

0

dx
p2xð1 − xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp2 þm2
p ð11Þ

and

Π2 ¼
e2

4π

Z
1

0

dx
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp2 þm2
p : ð12Þ

Finally, after comparing Eq. (3) and Eq. (8), we find

ψ̄ðiγμ∂μ −mÞψ ¼ 1

2
BμΠμνBν ð13Þ

and

eψ̄γμψ ¼ ΠμνBν: ð14Þ

Note that Eq. (13) yields the bosonization relation between
the fermionic and bosonic kinetic terms, while Eq. (14)
gives the fermionic matter current in terms of the bosonic
gauge field Bμ, identically conserved in Eq. (14). Having
this in mind, one may calculate the two-point current-
current correlation function as

hjμjνi ¼ ΠμαΠνβhBαBβi ¼ Πμν: ð15Þ

Note that, for deriving the last identity in Eq. (15), we use
the fact that the Bμ-field propagator is the inverse of Πμν, as
we can infer from the right-hand side (rhs) of Eq. (13). As
expected, we conclude that the bosonized model yields the
same result of the fermionic theory.

Using Eq. (10) in Eqs. (13) and (14), one finds a general
bosonized theory for any value of m. Next, for the sake of
simplicity, we consider the solution either in the small-mass
limit m2 ≪ p2 or in the large-mass limit m2 ≫ p2.

1. The case m2 ≪ p2

In this case, the lowest-order terms of Eqs. (11) and (12)
are

Π1 ≈ −
e2

ffiffiffiffiffi
p2

p
16

�
1þO

�
m2

p2

	�
ð16Þ

and

Π2 ≈ e2
m

4
ffiffiffiffiffi
p2

p �
1þO

�
m2

p2

	�
; ð17Þ

respectively. The main step is to replace the Fourier trans-
form of Eqs. (16) and (17) in Eq. (7) with Aμν ¼ Πμν. After

scaling the gauge-field as Bμ →
ffiffiffiffiffi
32

p
B̃μ=e, we find

LNCS ¼
1

2

B̃μνB̃μνffiffiffiffiffiffiffiffi
−□

p þ 4imffiffiffiffiffiffiffiffi
−□

p ϵμναB̃μ∂νB̃α þ GF; ð18Þ

where B̃μν ¼ ∂μB̃ν − ∂νB̃μ is the field intensity tensor of B̃μ

with ½B̃μ� ¼ 1, i.e., the bosonic field has dimension of mass.
Therefore, we conclude that

LD ¼ ψ̄ðiγμ∂μ −mÞψ

≈
1

2

B̃μνB̃μνffiffiffiffiffiffiffiffi
−□

p þ 4imffiffiffiffiffiffiffiffi
−□

p ϵμναB̃μ∂νB̃α; ð19Þ

which gives the bosonization of the kinetic term and

jμ ¼ eψ̄γμψ

≈
e

4
ffiffiffi
2

p ∂νB̃μνffiffiffiffiffiffiffiffi
−□

p þ iemϵμνα

ffiffiffiffiffiffiffiffiffiffiffi
2

ð−□Þ

s
∂νB̃α; ð20Þ

providing the bosonization of the matter current.
Surprisingly, a new kind of Chern-Simons term naturally
appears in Eq. (18). This has a pseudodifferential operator
ð−□Þ−1=2 that resembles the PQED model. On the other
hand, this new term has the same classical symmetries as
the standard Chern-Simons term, i.e., it is gauge invariant
and breaks the parity symmetry. A final remark about
classical properties is that the pole of the gauge-field
propagator (similarly to the fermionic field) occurs at
p2
Mik ¼ m2, where Mik refers to the Minkowski space.

Finally, as expected, note that the matter current in
Eq. (20) is identically conserved. Next, we discuss the
opposite limit when m2 ≫ p2.
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2. The case m2 ≫ p2

After considering the limit m2 ≫ p2 in Eq. (10), the
lowest-order terms read

Π1 ≈
e2p2

12mπ
þO

�
p3

m3

	
ð21Þ

and

Π2 ≈
e2

4π
þO

�
p2

m2

	
: ð22Þ

Similarly to the previous case, we use Eqs. (21) and (22)
in Eq. (7). After scaling the gauge-field field as
Bμ →

ffiffiffiffiffiffiffiffiffiffiffiffi
12mπ

p
B̄μ=e, we find

LMCS ¼
1

4
B̄μνB̄μν þ

3m
2

ϵμναB̄μ∂νB̄α þ GF; ð23Þ

where B̄μν ¼ ∂μB̄ν − ∂νB̄μ with ½B̄μ� ¼ 1=2. Therefore, we
conclude that

LD ¼ ψ̄ðiγμ∂μ −mÞψ

≈
1

4
B̄μνB̄μν þ

3m
2

ϵμναB̄μ∂νB̄α; ð24Þ

which gives the bosonization of the kinetic term and

jμ ¼ eψ̄γμψ

≈
e

2
ffiffiffiffiffiffiffiffiffi
3mπ

p ∂νB̄μν þ ie
2

ffiffiffiffiffiffiffi
3m
π

r
ϵμνα∂νB̄α; ð25Þ

providing the bosonization of the matter current.
Note that Eq. (23) is, essentially, the Maxwell-Chern-

Simons model, where the Chern-Simons parameter 3m=2
provides a topological mass for the gauge field. This term
breaks the parity symmetry, however, this is not an anomaly
because we start with a massive electron. For the sake of
completeness, note that when starting with m → 0, one
finds the so-called parity anomaly and the gauge field term
is given by PQED, as it has been discussed in Ref. [22].

III. THE PSEUDO-CHERN-SIMONS MODEL

In the previous section, we showed that the bosonization
approach of the massive Dirac theory, in the regime where
m2 ≪ p2, generates an effective Lagrangian given by
Eq. (18), in which both Maxwell and Chern-Simons terms
are modified by the ð−□Þ−1=2 factor, and as a consequence
of this, the gauge field acquires mass. Here, we consider a
model describing the interaction of this gauge field with
Dirac particles, given by (in Euclidian space-time),

L ¼ 1

2

FμνFμνffiffiffiffiffiffiffiffiffiffiffið−□Þp þ λ

2

ð∂μAμÞ2ffiffiffiffiffiffiffiffiffiffiffið−□Þp þ iθ
2

ϵμνγAγ∂νAμffiffiffiffiffiffiffiffiffiffiffið−□Þp
þ
XNf

j¼1

ψ̄ jðiγμ∂μ −mþ eγμAμÞψ j; ð26Þ

whereNf is the number of flavors, Aμ is the gauge field, e is
the dimensionless coupling constant, and θ is the Chern-
Simon parameter. Note that their dimensions, in the natural
system of units, are given by ½A� ¼ 1, ½θ� ¼ 1, and ½e� ¼ 0,
respectively.
In general grounds, the main purpose of Eq. (26) is to

generalize the PQED model by introducing a massive
parameter θ for the gauge field. In order to do so, and
having in mind the canonical dimension of the gauge field
½Aμ� ¼ 1, it is not difficult to conclude that we must have
the pseudodifferential operator ð−□Þ−1=2 in the Chern-
Simons term in Eq. (26).

A. Feynman rules

The gauge-field propagator of the model in Eq. (26)
reads

Δð0Þ
μν ¼ 1

2ε
ffiffiffiffiffi
p2

p 1

ðp2 þ θ2Þ ½p
2Pμν þ θϵμναkα� þ ΔðGFÞ

μν ;

ð27Þ

where Pμν ¼ δμν − pμpν=p2, p2 ¼ p2
0 þ p2, and the

parameter ε is included in order to describe the dielectric
constant. In the limit θ → 0, Eq. (27) provides the usual
PQED propagator. The gauge-fixing term is given by

ΔðGFÞ
μν ðλ; pÞ ¼ 1

2λ

�
pμpν=p2

ðp2Þ1=2 þ θ2ðp2Þ−1=2

þ θ2pμpν=p2

ðp2Þ3=2 þ θ2ðp2Þ−3=2
�
; ð28Þ

which vanishes in the Landau gauge λ ¼ ∞. The Dirac
field propagator is

Sð0ÞF ¼ −1
γμpμ −m

: ð29Þ

The pole of Eq. (27) yields a physical mass at p2
M ¼

−p2 ¼ θ2 for the gauge field, where p2
M is the four-

momentum in the Minkowski space. Note that the usual
Chern-Simons term generates this mass for the Maxwell
field, but it is dimensionless for PQED [18]. Therefore, in
order to find a mass for the gauge-field in PQED, we need
our pseudo-Chern-Simons term. In particular, this term
preserves the gauge symmetry and breaks parity, which
indicates that such description (using PQED) is suitable for

MAGALHÃES, ALVES, NASCIMENTO, and MARINO PHYS. REV. D 103, 116022 (2021)

116022-4



describing topological effects instead of spontaneous sym-
metry breaking.
Interesting, as shown in Ref. [23], the same effective

Lagrangian is obtained through the dualization procedure
of the Abelian Chern-Simons-Higgs model. In fact, the
dual transformation of L¼−iΘ

4
ϵμνγAμFνγþjDμϕj2þVðjϕjÞ,

where Dμ ≡ ∂μ þ ieAμ is the covariant derivative, Θ is
the Chern-Simons parameter, and VðjϕjÞ is a spontaneous
symmetry breaking potential, yields a pseudo-
Chern-Simons action ∼ − iθϵμνγaμ∂ν½ 1

ð−□Þ1=2�aγ , where

θ ¼ 2e2ρ20=Θ, that plays the role of the new Chern-
Simons parameter in dual theory, and ρ0 ¼ jhϕij is the
vacuum expectation value of the Higgs field ϕ. Although
the dual model originally describes the interaction between
vortices, we can consider other types of matter current,
such as the fermionic current coupled to this gauge field.
This may have some relevance for the description of two-
dimensional materials such as graphene and transition
metal dichalcogenides (TMD’s) [17,26]. This approach
results in a theory similar to Eq. (18) with the PCS term,
but more general, because it is valid for any regime of m,
independent on the Dirac matrices adopted.
Next, we investigate the main effect of θ for the matter

field in the static limit.

IV. SCREENING EFFECT ON
THE GAUGE FIELD

As shown in Ref. [23], the static potential for the theory
represented by the Lagrangian in Eq. (26) is given by

VðrÞ ¼ e2

4πε

�
1

r
þ θπ

2
½L0ðθrÞ − I0ðθrÞ�

�
; ð30Þ

a non-symmetric potential around a stationary point
r0 ≃ 2.229=θ, where L0 is a zero-order Struve L function
and I0 is a zero-order Bessel I function. Note that, in
the limit θ → 0, the static interaction is the Coulomb
potential, which is an expected feature of PQED.
Furthermore, the depth of the potential is given by
Vðr0Þ ≃ ð−3.0 × 10−3Þθ=ε, providing an energy scale for
which this state may be observed. In Fig. 1, we plot the
interaction potential given by Eq. (30) for different values
of θ. Note that the presence of the mass θ modifies the
Coulomb potential by producing a region with VðrÞ < 0,
where bounded states are expected to emerge. The potential
of Eq. (30) represents a competition between the repulsive
Coulomb potential (∝ 1=r) and an attractive potential
(∝ θ). The final result presents a similar shape to the well
known Lennard-Jones potential [27,28], which, in some
cases, the attractive character is due to the electron-phonon
interaction, just as the repulsive character is due to the
electron-electron interaction.
It is interesting to note that, as highlighted in

Refs. [16,29], if the mass of the PQED field is produced

by an action that breaks the gauge invariance, as the Proca
action ∼MAμAμ, hence, the gauge-field propagator reads

Δð0Þ
μν ¼ δμν

2
ffiffiffiffiffi
p2

p
þM

; ð31Þ

where M is the mass term. Therefore, the electron-electron
interaction static potential, in this case with the breaking of
gauge invariance, is given by the combination of the
Coulombian potential with the Keldysh potential, namely,

VðrÞ ¼ e2

4π

�
1

r
−
πM
4

�
H0

�
Mr
2

	
− Y0

�
Mr
2

	��
; ð32Þ

where H0 is a Struve function and Y0 is a Bessel function.
This electron-electron potential also has a competition
between the Coulomb term and those proportional to M,
nevertheless, it clearly does not generates bound states of
particles with the same charge for any M value.
Next, considering the Lagrangian in Eq. (26), we

investigate the effect of the vacuum polarization tensor
on the photon propagator, and on the interaction potential
between two charged particles.
The corrected gauge-field propagator is obtained from

the Schwinger-Dyson equation

Δμν ¼ Δð0Þ
μα ðδαν − ΠαβΔð0Þ

βν Þ−1; ð33Þ

where Δð0Þ
μα is the free gauge-field propagator given

by Eq. (27).
For electrons in the honeycomb lattice, we may

use the two-component representation for the spinor,
i.e., ψ†

a ¼ ðψ�
Aψ

�
BÞa, where ðA;BÞ are the sublattices and

FIG. 1. The static potential modified by the nonlocal Chern-
Simons term. This plot shows the behavior of the static potential
in Eq. (30) as a function of the distance r between the fermions,
varying the parameter θ. The solid line (blue), dashed (orange),
and dotted-dashed (green) show the static potential for θ ¼ 0,
θ ¼ 10, and θ ¼ 20 in units of inverse of r, respectively.
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a ¼ K;K0;↑;↓ are the valley and spins indexes, respec-
tively [4,8,30]. Therefore, we haveNf ¼ 4, which specifies
to which valley the electron belong, as well as its spin
orientation.
Substituting Eq. (27) in the Landau gauge and Eq. (10)

into Eq. (33), we find

Δμν ¼ TPμν þ Lϵμνρpρ; ð34Þ

where

T ¼ p2

2ε
ffiffiffiffiffi
p2

p
ðp2 þ θ2Þ

f1þ b − cθg; ð35Þ

and

L ¼ 1

2ε
ffiffiffiffiffi
p2

p
ðp2 þ θ2Þ

fθð1þ bÞ þ cp2g: ð36Þ

The auxiliary variables b and c are given by

b ¼ −
Π2

2p
2 þ 2Π2θ

ffiffiffiffiffi
p2

p
− 2Π1

ffiffiffiffiffi
p2

p
þ Π2

1

4θ2 þ ðΠ2
2 þ 4Þp2 − 4ðΠ1 − Π2θÞ

ffiffiffiffiffi
p2

p
þ Π2

1

ð37Þ

and

c ¼ 2ðΠ1θ þ Π2p2Þffiffiffiffiffi
p2

p
ð4θ2 þ ðΠ2

2 þ 4Þp2 − 4ðΠ1 − Π2θÞ
ffiffiffiffiffi
p2

p
þ Π2

1Þ
:

ð38Þ

Here, due to the spin and valley degeneracy, we must
multiply Eq.s (11) and (12) byNf ¼ 4 in order to obtainΠ1

and Π2. For simplicity, in this section, we will restrict
our discussion to the case m2 ≪ p2. In this situation, up to
first order in m=p, we have Π1 ¼ −e2

ffiffiffiffiffi
p2

p
=4 and

Π2 ¼ e2m=
ffiffiffiffiffi
p2

p
. Therefore, Eq. (34) reads

Δμν ¼
4e2

ffiffiffiffiffi
p2

p
ðθð8m − θÞ þ p2Þ þ 4

ffiffiffiffiffi
p2

p
ð8θ2 þ 8p2ÞPμν

ϵðθ2 þ p2Þðe4ð16m2 þ p2Þ þ 16e2ð4θmþ p2Þ þ 64ðθ2 þ p2ÞÞ

þ 16ðe2mþ 2θÞϵμναpαffiffiffiffiffi
p2

p
ϵðe4ð16m2 þ p2Þ þ 16e2ð4θmþ p2Þ þ 64ðθ2 þ p2ÞÞ

: ð39Þ

Using an expansion, up to second order, for small
amounts of e, we find

Δμν ¼
1

2
ffiffiffiffiffi
p2

p
εðθ2 þ p2Þ

�
p2Pμν

ð1þ e2
8
Þ

þ
�
θ −

e2ð2θ2m − 2mp2 þ θp2Þ
4ðθ2 þ p2Þ

�
ϵμναpα

�
: ð40Þ

Using Eq. (40), we may calculate the static potential,
similarly to the calculations in the previous section,
given by

VðrÞ ¼ e2

4πεð1þ e2
8
Þ

�
1

r
þ θπ

2
½L0ðθrÞ − I0ðθrÞ�

�
: ð41Þ

Note that the dielectric constant is modified due to the
vacuum polarization effect, hence, providing an effective
dielectric constant given by εeff ¼ εð1þe2=8Þ, as expected.
As an extra case, in Appendix B, we calculate the gauge-
field propagator in the 4 × 4 representation of Dirac
matrices, using the RPA approach, and its respective static
potential. Next, we calculate the electron self-energy of
Eq. (26).

V. THE ANISOTROPIC ELECTRON
SELF-ENERGY

Here, we shall consider Eq. (26) with a Lorentz sym-
metry breaking, which describes electrons that propagates
with the Fermi velocity vF instead of the light velocity.
This is easily performed by taking ∂μ → ð∂0; vF∂iÞ in the
electron propagator and in the vertex γi → vFγi, for c ¼ 1,

Γμ ¼ eðγ0; vFγiÞ ð42Þ

and the fermion propagator Eq. (29),

Sð0ÞF ¼ −1
γ0p0 þ vFγipi −m

: ð43Þ

In this case, the electron self-energy Σ is written as

Σðp;m; θÞ ¼ Ce2

2ε

Z
dDk
ð2πÞ3

1

ðk2Þ12
k2

ðk2 þ θ2Þ

·
ð−γ0ðp0 − k0Þ þ vFγiðpi − kiÞ −mÞ
ððp0 − k0Þ2 þ v2Fðp − kÞ2 þm2Þ ; ð44Þ

where D ¼ dþ 1 is the space-time dimension, and
C ¼ ð1þ e2

8
Þ−1.

The denominator of Eq. (44) has three terms. Therefore,
we use the following Feynman parameterization
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1

a1a2a
1
2

3

¼ 3

4

Z
1

0

dx
Z

1−x

0

dy
ð1 − x − yÞ−1

2

½a1xþ a2yþ a3ð1 − x − yÞ�52 :

ð45Þ

The values of a1, a2, and a3 are chosen as

a1 ¼ ðp0 − k0Þ2 þ v2Fðp − kÞ2 þm2;

a2 ¼ k2 þ θ2;

a3 ¼ k2: ð46Þ

Making the shift k0 → k0 þ p0 in Eq. (44) and eliminating
the odd terms in k0, due to the symmetric range of the
integral, we have

Σðp;m; θÞ ¼ 3Ce2

8

Z
dD−1k
ð2πÞ2

Z
1

0

dx
Z

1−x

0

dy
ð1 − x − yÞ−1

2

x
5
2

× fjk⃗j2ðvFγipi −mÞ − jk⃗j2vFγikig

×
Z

dk0
ð2πÞ

1

ðk20 þ δk⃗Þ
5
2

; ð47Þ

where

Z
dk0
ð2πÞ

1

ðk20 þ δk⃗Þ
5
2

¼ 2

3πδ2
k⃗

; ð48Þ

and the auxiliary functions δk⃗, αx, and βx are defined as

δk⃗ ¼ βx

�
ki −

xv2F
αx

pi

	
2

þ v2F

�
1 −

xv2F
αx

	
þm2 þ y

x
θ2;

αx ¼ xv2F þ ð1 − xÞ;
βx ¼

αx
x
: ð49Þ

After solving the integration over k0 and performing the

variable transformation ki → ki −
xv2F
αx

pi in Eq. (47), we
obtain

Σðp;m; θÞ ¼ Ce2μϵ

4π

Z
1

0

dx
Z

1−x

0

dy
ð1 − x − yÞ−1

2

x
5
2β2x

×

��
vFγipi −m −

2xv3F
αx

γipi

	Z
dD−1k
ð2πÞ2

k2i
ðk2i þ ΔÞ2

þ x2v4Fp
2
i

α2x

�
vFγipi −mþ xv3F

αx
γipi

	Z
dD−1k
ð2πÞ2

1

ðk2i þ ΔÞ2
�
; ð50Þ

where Δ ¼ ½v2Fð1 − xv2F
αx
Þp2

i þm2 þ y
x θ

2�=βx. Note that, we
will use the dimensional regularization scheme. Hence, we
made e → μϵ=2e, where μ is the scale parameter and ϵ is the
dimensional regulator, such that d ¼ 2þ ϵ. In this case, the
first integral in d2k presents a logarithmic divergence

Z
dD−1k
ð2πÞ2

k2i
ðk2i þ ΔÞ2 ¼

Γðϵ
2
Þ

ð4πÞð2þϵÞ=2 : ð51Þ

On the other hand, the second one is finite, given by

Z
dD−1k
ð2πÞ2

1

ðk2i þ ΔÞ2 ¼
1

4πΔ
: ð52Þ

Next, solving the integrals over the Feynman parameters
(y, x), we have

Σðp;m;θÞ¼−
Ce2

4π

�
1

4
γipiþ

m
2vF

�
1

ϵ
þ finite terms: ð53Þ

Note that, due to the k2i factor, from the gauge-field
propagator in Eq. (27), the dimensional integral over the

k2i -term eliminates the dependence on the θ parameter in
the divergent part of the self-energy. It is also important to
note that the dependence of the topological mass θ is
restricted to the finite terms, hence, the renormalized
quantities like Fermi velocity vRF and mass mR are not
dependent on θ in the light of the renormalization group
equations.
Using the renormalization group method by following

Ref. [18], we obtain that

βvF ¼ μ
∂vF
∂μ ¼ −

e2

16π
ð54Þ

and

βm ¼ μ
∂m
∂μ ¼ −

me2

8πvF
: ð55Þ

For more details about the renormalization group calcu-
lations, see Appendix A.
Using Eq. (54), the flow of the effective Fermi velocity

may be written as
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vRFðμÞ ¼ vFðμ0Þ
�
1 −

α

4
ln

�
μ

μ0

	�
ð56Þ

and, using Eq. (55), the mass is

mRðμÞ ¼ mðμ0Þ
�
μ

μ0

	
−α=2

; ð57Þ

where α is the fine structure constant, namely,
α ¼ e2=4πεeffvF, such that the effective dielectric constant
reads εeff ¼ εð1þ e2=8Þ.
The expression of the renormalized Fermi velocity is

well known in the literature and it has been experimentally
observed in suspended graphene [9,31]. More recently, it
has been shown that electromagnetic interactions also
provides an useful framework to explain the mass renorm-
alization, which has been experimentally observed in a few
TMDs, as discussed in Ref. [10]. In this case, the authors
have considered the large-N expansion and find a good
agreement with the experimental data. The main feature of
mR is that it decreases as we increase the energy scale μ.
Here, considering our result in Eq. (57), we may conclude
that this behavior is preserved regardless of the presence of
θ and even within the perturbation theory, whose result
could be schematically obtained only by taking εeff → ε in
Eq. (57), i.e., by neglecting the term generated by Π1.
A similar result also holds for vRF. Obviously, the reason for
such invariance is connected to the divergent terms that are
relevant for the renormalization group equations.

VI. DISCUSSION

In this work, we study some aspects of a generalization
of the Chern-Simons action, containing the pseudodiffer-
ential operator

ffiffiffiffiffiffiffiffi
−□

p
. From the bosonization of free

massive Dirac particles in ð2þ 1ÞD, we show that, in
the limit whenm2 ≪ p2, the bosonized theory is equivalent
to PQED plus a PCS, given by Eq. (9). On the other hand,
in the limit m2 ≫ p2, we obtain a Maxwell-Chern-Simons
theory, given by Eq. (20), where m is the fermion mass and
p is its momentum. This generalizes the result obtained for
massless fermions in Ref. [4]. Otherwise, Ref. [23] finds
the same theory as a dual-action to the Chern-Simons-
Higgs theory. However, this procedure used by the authors
did not cause any limitation to the theory massive regime,
nor the Dirac matrices representation.
We also investigated the role of the PCS when combined

to PQED theory. At tree level, the static potential between
the electrons, in Eq. (30), is short-range due to the mass in
the mediating field. Furthermore, it presents a confinement
region between an electron pair, given by a nonsymmetric
potential well around the stable equilibrium point. This
is generated by the competition between the repulsive
Coulomb potential of the PQED and the attractive
potential associated with the PCS theory, see Fig. 1.

These electron-electron bonded states have a minimum
binding energy in order of −3.0 × 10−3θ. From the quan-
tum corrections to the static potential, we conclude that the
insertion of the vacuum polarization tensor in the mediating
field produces an effective dielectric constant, given by
εeff ¼ εð1þ e2=8Þ. Therefore, the quantum fluctuations
yields a suppression of the static potential, similarly to
the standard screening effects in the Coulomb potential.
Our static potential VðrÞ is also expected to provide new
physical results when considering the interaction of a point-
like Dirac particle and a conducting surface as discussed in
Ref. [32] for the case of the Maxwell-Chern-Simons theory.
As a final aspect of our model, we calculate the electron

self-energy at one-loop perturbation theory, using the
dimensional regularization scheme. Thereafter, we consider
the renormalization group equation for the renormalized
vertex function, from which we show that the PCS term
does not change the renormalization of both the Fermi
velocity and of the band gap in a Dirac-like material.
Despite the presence of a pseudodifferential operator in

the PCS action, this term provides several interesting
features when coupled to PQED. In particular, it does
not change some results that have been already confirmed
by some independent experimental data. Furthermore, it
includes a mass term for the gauge-field propagator, in
analogy to the topological mass of the Maxwell field, and
predicts the realization of bounded particles with the same
charge. A simple application of this result would be to
consider the generation of Cooper pairs for describing a
superconductor phase in the honeycomb lattice. This may
be relevant for describing non-BCS superconductors. We
shall investigate this elsewhere.
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APPENDIX A: RENORMALIZATION GROUP
CALCULATIONS

We start with the ’t Hooft-Weinberg renormalization
group equation, given by�
μ
∂
∂μþ βvF

∂
∂vF þ βm

∂
∂m − NFγψ

	
ΓðNF;NAÞ
R ¼ 0; ðA1Þ

where ΓðNF;NAÞ
R is the renormalized vertex function with

NF ¼ 2 fermion fields and NA ¼ 0 gauge fields. Note that
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the electric charge and the wavefunction of the gauge field
are not renormalized. The renormalization group functions
are usually defined as βvF ¼ μ ∂vF∂μ , βm ¼ μ ∂m

∂μ , and γψ is the
anomalous dimension of the matter field. For calculating

Γð2;0Þ
R , we use the prescription

ð1 − T ÞμϵIð2;0Þ ¼ Finiteð2;0Þ þ ln μResð2;0Þ ðA2Þ

in order to remove the divergent term in the electron self-
energy Ið2;0Þ, where T is the Taylor operator that removes
the pole. On the other hand, the factor Resð2;0Þ is the residue
of the diagram given by the coefficient of 1=ϵ, as well as
FiniteðNF;NAÞ is the finite part of the amplitude Ið2;0Þ. Using
this prescription we find that, for one-loop calculation,

Γð2;0Þ
R ðp̄Þ ¼ −ðγμp̄μ −mÞ þ Σðp̄Þ; ðA3Þ

where Σðp̄Þ ¼ e2½Finiteð2;0Þ þ ln μResð2;0Þ�, and Resð2;0Þ ¼
A1γ

0p0 þ A2γ
ipi þ A3.

Because we consider an one-loop expansion, we can

write βvF ¼ e2βð2ÞvF , βm ¼ e2βð2Þm , and γψ ¼ e2γð2Þψ .
Thereafter, using Eq. (A3) in Eq. (A1), up to order e2,

we have γð2Þψ ¼ 1
2
A1, β

ð2Þ
vF ¼ A2 − vFA1, and βð2Þm ¼ A1 þ A3.

From the electron self-energy in Eq. (53), we obtain that
A1 ¼ 0, A2 ¼ − 1

16π, A3 ¼ − m
8πvF

. Therefore, it follows that
Eq. (54) and Eq. (55).

APPENDIX B: SCREENING EFFECT FOR THE
4 × 4 DIRAC MATRICES AND RPA APPROACH

In this Appendix, we investigate the effects of the
vacuum fluctuations on the gauge-field propagator, using
the random phase approximation (RPA), and hence on the
interaction potential between two charged particles.
In the RPA method, we incorporate the effects of

electron-electron interaction in the free propagator of the
gauge field through the sum of infinite diagrams, corrected
by the polarization tensor. Figure 2 shows this sum of the
leading-order terms.
This sum results in Eq. (33). Therefore, it also results in

Eq. (34). Nevertheless, in the four-component representa-
tion for the Dirac matrices, Π2 ¼ 0, and the polarization
tensor is written as

Πμνðp;mÞ ¼ Π1ðp;mÞPμν; ðB1Þ

where

Π1ðp;mÞ ¼ −
2e2

π
p2

Z
1

0

dx
xð1 − xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp2 þm2
p ; ðB2Þ

where we have use that Nf ¼ 2. In this case, we find

T ¼ 8ðp2Þ3=2 þ θ2ð8
ffiffiffiffiffi
p2

p
− 4Π1Þ þ 4p2Π1 − Π2

1ð2
ffiffiffiffiffi
p2

p
þ Π1Þ

16ðp2 þ θ2Þ2 þ 8ðθ2 − p2ÞΠ2
1 þ Π4

1

ðB3Þ

and

L ¼ 2θ

4ððp2Þ3=2 − p2Π1Þ þ
ffiffiffiffiffi
p2

p
ð4θ2 þ Π2

1Þ
: ðB4Þ

For simplicity, we will consider only the case of massless
fermions. Hence, Π1ðp;m ¼ 0Þ ¼ −e2

ffiffiffiffiffi
p2

p
=4. Therefore,

Eq. (34) reads

Δμν ¼
p2Pμν þ θ

ð1þe2
8
Þ ϵμνρp

ρ

2εeff
ffiffiffiffiffi
p2

p
½p2 þ θ2

ð1þe2
8
Þ2�

: ðB5Þ

Note that due to the screening effect, the massive pole is
scaled by θ → θ̄ ¼ εθ=εeff, where εeff ¼ εð1þ e2=8Þ may
be understood as an effective dielectric constant. Note that
for θ ¼ 0 Eq. (B5) reproduces the gauge-field propagator
of PQED in the RPA [14].

From Eq. (B5), we obtain the static potential with
quantum corrections as it has been obtained in [23]. Due
to the form of the corrected propagator, the result has the
same form as in Eq. (30), in which we associate θ → θ̄ and
the appearance of an overall factor, ð1þ e2=8Þ−1. Having
this in mind, it is straightforward that the corrected static
potential reads

VðrÞ¼ e2

4πεeff

�
1

r
þ θπ

2ð1þ e2
8
Þ

�
L0

�
θr

1þ e2
8

	
−I0

�
θr

1þ e2
8

	��
:

ðB6Þ

From the corrected static potential, we conclude that the
potential well depth, which is proportional to the massive
pole of the gauge-field propagator, will be inversely
proportional to the factor ð1þ e2=8Þ2, hence, reducing
the number of bound states on the well.

FIG. 2. Illustration of the RPA method. The gauge field
propagator corrected by the vacuum polarization tensor. In this
illustration, the bubbles represent the vacuum polarization tensor.
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